2020年新人教版七年级数学下册导学案全册

合集下载

2020年新版人教版七年级(下)数学导学案(全册)

2020年新版人教版七年级(下)数学导学案(全册)

别画出 P,Q 两点的位置.
M
A
B
N
3 一个人要从 A 地出发去河 a 中挑水,并把水送到 B 地,那么这个人如何行走,才能使行走的
距离最近,画出示意图,并说出理由。
B
A
A
五、【我的感悟】:这节课我的最大收获是: ____________________________________ ____________________________________
画图:两条直线 AB、CD 都与第三条直线 EF 相交, 构成几个角?在所画的图中标记出来。
二、【自主学习】
自学课本第 6、7 页,同位角、内错角、同旁内角
如右图
1 同位角:∠4 和∠8 与截线及两条被截直线在位置上有什么特点?
其它同位角(

2 内错角:∠3 和∠5 与截线及两条被截直线在位置上有什么特点?
三、【达标测试】
1、如图,直线 a,b 相交,∠1=40°,则∠2=_______∠3=_______∠4=_______
2、如图直线 AB、CD、EF 相交于点 O,∠BOE 的对顶角是_______,∠COF 的邻补角是________,
若∠AOE=30°,那么∠BOE=_______,∠BOF=_______
角的另一条边共同一条直线上.( )
②邻补角可看成是平角被过它顶点的一条射线分成的两个角.( ) ③邻补角是互补的两个角,互补的两个角也是邻补角?( ) ④.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角( ). ⑤.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( ) (二)、【自主学习】:(阅读课本 4-5 页,把不懂的地方请记录在这里,课堂上我们共同讨论) 我的疑难问题:

人教版七年级下册数学全册导学案

人教版七年级下册数学全册导学案
处于直线a、b( )
这样位置的一对角就称为同旁内角
∠4和∠5
这样位置的一对角就称为( )
自学检测:
1.如图1所示,∠1与∠2是___角,∠2与∠4是_角,∠2与∠3是___角.
(图1) (图2) (图3)
2.如图2所示,∠1与∠2是____角,是直线______和直线_______ 被直线_______所截而形成的,∠1与∠3是_____角,是直线________和直线______ 被直线________所截而形成的.
3.如图,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____.
三、当堂反馈(25分钟)
预备题:
如图,已知直线a、b相交。∠1=40°,求∠2、∠3、∠4的度数
解:∠3=∠1=40°()。
∠2=180°-∠1=180°-40°=140°()。
∠4=∠2=140°()。
经过探索,我们可以发现:在同一平面内,过一点有且只有_____条直线与已知直线垂直.
自学检测一:
1.如图所示,OA⊥OB,OC是一条射线,若∠AOC=120°,
求∠BOC度数
2.如图所示,直线AB⊥CD于点O,直线EF经过点O,
若∠1=26°,求∠2的度数.
3.如图所示,直线AB,CD相交于点O,P是CD上一点.
④在同一平面内,两条直线的位置关系有平行、 相交、垂线三种
A.3个 B.2个 C.1个 D.0个
三、当堂反馈(15分钟)
1.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.
2.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为________________.

七年级数学下册全册导学案(新版人教版)

七年级数学下册全册导学案(新版人教版)

七年级数学下册全册导学案(新版人教版)本资料为woRD文档,请点击下载地址下载全文下载地址:统计调查(二)【学习目标】了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析.【学习重点】对概念的理解及对数据收集整理【学习难点】总体概念的理解和随机抽样的合理性一、【自主学习】、学前准备:自学课本153—155页,写出你的困惑:二、【合作探究】如果要对某校XX名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?.抽样调查的意义在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查抽样调查:抽取一部分对象进行调查的方法,叫抽样调查.2.总体、个体、样本、样本容量的意义总体:所要考察对象的全体.个体:总体的每一个考察对象叫个体.样本:抽取的部分个体叫做一个样本.样本容量:样本中个体的数目.3.抽样的注意事项:①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查XX名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映XX名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.②抽取的样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在XX名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.4.抽样调查100名学生最喜爱节目情况如下:节目类型划记人数百分比A新闻8B体育20c动画30D娱乐36E戏曲6合计00请你填充上表,并指出最好选择什么统计图来描述较好.三【达标测试】(A)、1、调查夏季市场销售的凉鞋质量情况适合采用_______________调查.2、了解一个班级学生的数学成绩是否有提高适合采用___________调查.3、数据处理的一般过程是_______________________________________.4、抽查我校一月份5天的用电量,结果如下:(单位:度)120,160,150,140,150,根据以上数据估计我校1月份用电总量为__________度.5、庆元宵校园歌手大奖赛,8位评委给6号选手的评分如下:9.8,9.9,9.5,9.7,9.4,9.7,9.6,9.6在去掉一个最高分和一个最低分后,6号选手最后平均分是__________________________.(B)、1、下列调查方式中,合适的是()A.要了解约90万顶救灾帐蓬的质量,采用普查的方式B.要了解外地游客对旅游景点“x疆民街”的满意程度,采用抽样调查的方式c.要保证“神舟七号”飞船成功发射,对主要零部件的检查采用抽样调查的方式D.要了解全疆初中学生的业余爱好,采用普查的方式2、为了了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,这100名学生的身高是()A总体的一个样本B个体c总体D样本容量(即样本中个体的数量)4、下列适合抽样调查而不适合全面调查的是()A了解一批灯泡的使用寿命B了解截止XX年底中国的总人口C了解全市中学生电脑打字速度D了解全市七年级数学期末考试成绩5、甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元.若将甲种糖果8千克,乙种糖果10千克,丙种糖果3千克混合,则售价应定为每千克()元,才能与三种糖果分开卖时卖一样多的钱(保留一位小数)A6.7B6.8c7.5D8.66、下列调查中,样本最具有代表性的是()A在重点中学调查全市高一学生的数学水平。

人教版七年级数学下册8.1二元一次方程组导学案(集体备课)

人教版七年级数学下册8.1二元一次方程组导学案(集体备课)

集体备课导学案学段初中年级七年级学科数学单元第8单元课题8.1二元一次方程组课型新授主备学校初审人终审人主备人合作H日队课标依据掌握二元一次方程的概念。

教学目标1、使学生了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。

教学重点1、二元一次方程(组)的含义;2、检验一对数是否是某个二元一次方程(组)的解。

教学难点检验一对数是否是某个二元一次方程(组)的解。

导学环节课堂流程时间任务驱动问题导学学法指导知识链接呈现目标2分小黑板呈现目标自主学习温故知新5分认真阅读课本88-89页,理解掌握以下概念1、一元一次方程:只含有___未知数,且未知数的次数都是___的方程。

ax=b(a#O)2、方程的解:能使方程等号两边相等的的值。

3、二元一次方程:方程中含有______未知数,并且_____________的次数都是—O一般式:ax+by二c(a乂0,b尹0)4、二元一次方程组:把具有__________的______二元一次方程用______合在一起,就组成了一个二元一次方程组。

5、二元一次方程的解:一般地,使二元一次方程两边的值相等的——未知数的值,叫做二元一次方程的解。

二元一次方程有个解。

6、二元一次方程组的解:一般地,二元一次让学生认真阅读方程的概念,一元次方程的概念及一元次方程解的概念。

方程组的两个方程的________,叫做二元一次方程组的解。

(能使方程组中两个方程等号两边都相等两个未知数的值。

)二元一次方程组有________个解。

互助释疑3分我的疑难问题。

小组内互相帮助解决.探究出招8分1、课本89业“探究”2、二元一次方程的一般式:ax+by=c(a尹0,b#0)用含x的式子表示y,y=_____________用含y的式子表示x,x=3、方程3x+2y=6,有_一个未知数,且未知数都是—次,因此这个方程是____元_____次方程。

《三元一次方程组的解法》人教版七年级数学下册导学案

《三元一次方程组的解法》人教版七年级数学下册导学案

8.4 三元一次方程组的解法【总结解题方法提升解题能力】【知识点梳理】一、三元一次方程及三元一次方程组的概念1、三元一次方程的定义含有三个未知数, 并且含有未知数的项的次数都是1的整式方程.如x+y-z=1, 2a-3b+4c=5等都是三元一次方程.2、三元一次方程组的定义一般地, 由几个一次方程组成, 并且含有三个未知数的方程组, 叫做三元一次方程组.二、三元一次方程组的解法1、解三元一次方程组的一般步骤〔1〕利用代入法或加减法, 把方程组中一个方程与另两个方程分别组成两组, 消去两组中的同一个未知数, 得到关于另外两个未知数的二元一次方程组;〔2〕解这个二元一次方程组, 求出两个未知数的值;〔3〕将求得的两个未知数的值代入原方程组中的一个系数比拟简单的方程, 得到一个一元一次方程;〔4〕解这个一元一次方程, 求出最后一个未知数的值;〔5〕将求得的三个未知数的值用“{〞合写在一起.要点诠释:〔1〕解三元一次方程组的根本思路是:通过“代入〞或“加减〞消元, 把“三元〞化为“二元〞.使解三元一次方程组转化为解二元一次方程组, 进而转化为解一元一次方程.其思想方法是:〔2〕有些特殊的方程组可用特殊的消元法, 解题时要根据各方程特点寻求其较简单的解法.三、三元一次方程组的应用1、列三元一次方程组解应用题的一般步骤〔1〕弄清题意和题目中的数量关系, 用字母(如x, y, z)表示题目中的两个(或三个)未知数;〔2〕找出能够表达应用题全部含义的相等关系;〔3〕根据这些相等关系列出需要的代数式, 从而列出方程并组成方程组;〔4〕解这个方程组, 求出未知数的值;〔5〕写出答案(包括单位名称).一、三元一次方程及三元一次方程组的概念 1、以下方程组不是三元一次方程组的是〔 〕. A 、12236x y y z y +=⎧⎪+=-⎨⎪=⎩ B 、24013x y x xy z ⎧-=⎪+=⎨⎪-=-⎩C 、2231x y x z =⎧⎪=-⎨⎪-=⎩D 、1321y x x z y z -=-⎧⎪+=⎨⎪-=⎩2、以下方程组中是三元一次方程组的是( ).A 、B 、111216y x z y x z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ C 、123a b c d a c b d +++=⎧⎪-=⎨⎪-=⎩ D 、18120m n n t t m +=⎧⎪+=⎨⎪+=⎩3、以下方程组中是三元一次方程组的是〔 〕.A 、111xy yz xz =⎧⎪=⎨⎪=⎩B 、222x y y z x z +=⎧⎪+=⎨⎪+=⎩C 、111111x y z x⎧+=⎪⎪⎨⎪+=⎪⎩D 、23121x y x z x y z ⎧+=⎪+=⎨⎪--=⎩ 二、三元一次方程组的解法1、在等式y=ax 2+bx+c 中, 当x=﹣1时, y=0;当x=2时, y=3;当x=5时, y=60.求a, b, c 的值.2、解方程组:3、解方程组23520x y z x y z ⎧==⎪⎨⎪++=⎩①②4、方程组354x y a y z a z x a +=⎧⎪+=⎨⎪+=⎩①②③的解使得代数式x-2y+3z 的值等于-10, 求a 的值.三、三元一次方程组的应用1、购置铅笔7支, 作业本3本, 圆珠笔1支共需3元;购置铅笔10支, 作业本4本, 圆珠笔1支共需4元, 那么购置铅笔11支、作业本5本圆珠笔2支共需元.2、现有面值为2元、1元和5角的人民币共24张, 币值共计29元, 其中面值为2元的比1元的少6张, 求三种人民币各多少张?【稳固练习】一、填空题.1、以下方程组中是三元一次方程组的是〔 〕.A 、2258232a b c a b c ++=⎧⎪=⎨⎪+=⎩B 、2222225810x y y z x z ⎧+=⎪+=⎨⎪+=⎩C 、1141171110x y y z z x⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ D 、::3:4:524x y z x y z =⎧⎨++=⎩ 2、以下四组数值中, 为方程组的解是〔 〕.A 、B 、C 、D 、3、方程组329a b b c a c +=⎧⎪+=-⎨⎪+=⎩, 那么a+b+c 的值为〔 〕.A 、6B 、-6C 、5D 、-54、532y x y z x a b c ++-与254x y a b c -是同类项, 那么x-y+z 的值为 ( ) .A 、1B 、2C 、3D 、45、代数式2ax bx c ++, 当x =-1时, 其值为4;当x =1时, 其值为8;当x =2时, 其值为25;那么当x =3时, 其值为 〔 〕.A 、4B 、8C 、62D 、526、方程组35204522x y x y z ax by z -=⎧⎪+-=⎨⎪+-=-⎩与方程组85234ax by z x y z c x y -+=⎧⎪++=⎨⎪+=-⎩有相同的解, 那么a 、b 、c 的值为〔 〕.A 、231a b c =-⎧⎪=-⎨⎪=⎩B 、231a b c =-⎧⎪=⎨⎪=⎩C 、231a b c =⎧⎪=-⎨⎪=-⎩D 、231a b c =⎧⎪=⎨⎪=-⎩7、xyz ≠0, 且4520430x y z x y z -+=⎧⎨+-=⎩, 那么x ∶y ∶z 等于〔 〕. A 、3∶2∶1B 、1∶2∶3C 、4∶5∶3D 、3∶4∶5 8、关于x, y 的方程组的解是方程3x+2y=10的解, 那么a 的值为〔 〕.A 、﹣2B 、2C 、﹣1D 、1149、甲、乙、丙三个人各有一些钱, 其中甲的钱是乙的2倍, 乙比丙多1元, 丙比甲少11元, 那么三人共有〔 〕.A 、30元B 、33元C 、36元D 、39元 10、为了奖励进步较大的学生, 某班决定购置甲、乙、丙三种钢笔作为奖品, 其单价分别为4元、5元、6元, 购置这些钢笔需要花60元;经过协商, 每种钢笔单价下降1元, 结果只花了48元, 那么甲种钢笔可能购置( ) .A 、11支B 、9支C 、7支D 、5支二、填空题.11、方程组的解为.12、, 那么=.13、方程组2345216x y z x y z ⎧==⎪⎨⎪-+=⎩, 假设设=234x y z k ==, 那么k =__________. 14、某车间共有86名工人, 每人平均每天可以加工甲种部件15个, 乙种部件12个或丙种部件9个, 要使加工后的部件按3个甲种部件, 2个乙种部件和1个丙种部件配套, 那么应安排__________人加工甲种部件, __________人加工乙种部件, __________人加工丙种部件.15、甲、乙、丙三数的和是26, 甲数比乙数大1, 甲数的两倍与丙数的和比乙数大18, 那么甲、乙、丙三个数分别是__________.三、解以下方程组.16、〔1〕2333215x y z x y z x y z +-=⎧⎪-+=-⎨⎪--=⎩ 〔2〕2362125x y z x y z x y z ++=⎧⎪-+=-⎨⎪+-=⎩ 〔3〕126218x y x y z x y z -=⎧⎪++=⎨⎪-+=⎩四、应用题.1、新定义对有理数x, y 定义新运算x △y=ax+by+c, 其中a, b, c 是常数, 等式右边是通常的加法与乘法运算.1△2=9, 〔-3〕△3=6, 0△1=2, 求〔-2〕△5的值.2、在等式y =ax 2+bx +c 中, 当x =-1时, y =4;当x =2时, y =4;当x =1时, y =2.〔1〕求a , b , c 的值;〔2〕当x =-2时, 求y 的值.3、某单位职工在植树节当天去植树, 甲、乙、丙三个小组共植树50棵, 乙组植树的棵数是甲、丙两组和的 , 甲组植树的棵数恰好是乙组和丙组的和, 那么每组各植树多少棵?4、2003年全国足球甲A 联赛的前12轮(场)比赛后, 前三名比赛成绩如下表.胜〔场〕 平〔场〕 负〔场〕 积分问每队胜一场、平一场、负一场各得多少分?5、某工程由甲、乙两队合作需6天完成, 厂家需付甲、乙两队共8700元, 乙、丙两队合作需10天完成, 厂家需支付乙、丙两队共8000元;甲、丙两队合作5天完成全部工程的23, 此时厂家需付甲、丙两队共5500元. (1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)假设要不超过15天完成全部工程, 问由哪队单独完成此项工程花钱最少?请说明理由. 参考答案一、三元一次方程及三元一次方程组的概念1、以下方程组不是三元一次方程组的是〔 〕.A 、12236x y y z y +=⎧⎪+=-⎨⎪=⎩B 、24013x y x xy z ⎧-=⎪+=⎨⎪-=-⎩C 、2231x y x z =⎧⎪=-⎨⎪-=⎩D 、1321y x x z y z -=-⎧⎪+=⎨⎪-=⎩【答案】B 【解析】解:由题意知, 含有三个相同的未知数, 每个方程中含未知数的项的次数都是1次, 并且一共有三个方程, 叫做三元一次方程组.A 、满足三元一次方程组的定义, 故A 选项错误;B 、x 2-4=0, 未知量x 的次数为2次, ∴不是三元一次方程, 故B 选项正确;C 、满足三元一次方程组的定义, 故C 选项错误;D 、满足三元一次方程组的定义, 故D 选项错误; 应选B .2、以下方程组中是三元一次方程组的是( ).A 、2102x y y z xz ⎧-=⎪+=⎨⎪=⎩B 、111216y xz y x z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ C 、123a b c d a c b d +++=⎧⎪-=⎨⎪-=⎩ D 、18120m n n t t m +=⎧⎪+=⎨⎪+=⎩【答案】D【解析】A 选项中21x y -=与2xz =中未知数项的次数为2次, 故A 选项不是;B 选项中1x , 1y , 1z 不是整式, 故B 选项不是;C 选项中有四个未知数, 故C 选项不是;D 项符合三元一次方程组的定义.3、以下方程组中是三元一次方程组的是〔 〕.A 、111xy yz xz =⎧⎪=⎨⎪=⎩B 、222x y y z x z +=⎧⎪+=⎨⎪+=⎩C 、111111x y z x⎧+=⎪⎪⎨⎪+=⎪⎩D 、23121x y x z x y z ⎧+=⎪+=⎨⎪--=⎩【答案】B【解析】A 、含有三个未知数, 但不是一次方程, 故该选项错误;B 、是三元一次方程组, 故该选项正确;C 、不是整式方程, 故该选项错误;D 、不是一次方程组, 故该选项错误, 应选B .二、三元一次方程组的解法1、在等式y=ax 2+bx+c 中, 当x=﹣1时, y=0;当x=2时, y=3;当x=5时, y=60.求a, b, c 的值. 【解析】解:根据题意, 得,②﹣①, 得a+b=1④;③﹣①, 得4a+b=10 ⑤.④与⑤组成二元一次方程组, 解这个方程组, 得,把代入①, 得c=﹣5. 因此, 即a, b, c 的值分别为3, ﹣2, ﹣5.2、解方程组: 【答案】解:①+②得:5311x y +=④ ①×2+③得:53x y -=⑤由此可得方程组:531153x y x y +=⎧⎨-=⎩④⑤④-⑤得:48y =, 2y =;将2y =代入⑤知:1x =将1x =, 2y =代入①得:3z =所以方程组的解为:123x y z =⎧⎪=⎨⎪=⎩2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③3、解方程组23520x y z x y z ⎧==⎪⎨⎪++=⎩①②【解析】解法一:原方程可化为:253520x z y z x y z ⎧=⎪⎪⎪=⎨⎪⎪++=⎪⎩①②③ 由①③得:25x z =, 35y z =④ 将④代入②得:232055z z z ++=, 得:10z =⑤ 将⑤代入④中两式, 得:2210455x z ==⨯=, 3310655y z ==⨯= 所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩解法二:设235x y z t ===, 那么2,3,5x t y t z t ===③ 将③代入②得:23520t t t ++=, 2t =将2t =代入③得:2224x t ==⨯=, 3326,55210y t z t ==⨯===⨯=所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩4、方程组354x y a y z a z x a +=⎧⎪+=⎨⎪+=⎩①②③的解使得代数式x-2y+3z 的值等于-10, 求a 的值.【解析】解法一:②-①, 得z-x =2a ④③+④, 得2z =6a, z =3a把z =3a 分别代入②和③, 得y =2a, x =a .∴23x a y a z a =⎧⎪=⎨⎪=⎩.把x =a, y =2a, z =3a 代入x-2y+3z =10得:a-2×2a+3×3a =-10. 解得53a =-. 解法二:①+②+③, 得2(x+y+z)=12a ;即x+y+z=6a ④④-①, 得z =3a, ④-②, 得x =a, ④-③, 得y =2a .∴23x a y a z a =⎧⎪=⎨⎪=⎩,把x =a, y =2a, z =3a 代入x-2y+3z =10得:a-2×2a+3×3a =-10. 解得53a =-. 三、三元一次方程组的应用1、购置铅笔7支, 作业本3本, 圆珠笔1支共需3元;购置铅笔10支, 作业本4本, 圆珠笔1支共需4元, 那么购置铅笔11支、作业本5本圆珠笔2支共需元.【答案】5.【解析】解:设铅笔的单价是x 元, 作业本的单价是y 元, 圆珠笔的单价是z 元.购置铅笔11支, 作业本5本, 圆珠笔2支共需a 元.那么由题意得:,由②﹣①得3x+y=1, ④由②+①得17x+7y+2z=7, ⑤由⑤﹣④×2﹣③得0=5﹣a, 解得:a=5.2、现有面值为2元、1元和5角的人民币共24张, 币值共计29元, 其中面值为2元的比1元的少6张, 求三种人民币各多少张?【答案】解:设面值为2元、1元和5角的人民币分别为x 张、y 张和z 张.依题意, 得24122926x y z x y z x y++=⎧⎪⎪++=⎨⎪⎪+=⎩①②③ 把③分别代入①和②, 得21813232x z x z +=⎧⎪⎨+=⎪⎩④⑤ ⑤×2, 得6x+z =46 ⑥⑥-④, 得4x =28, x =7;把x =7代入③, 得y =13;把x =7, y =13代入①, 得z =4.∴方程组的解是7134x y z =⎧⎪=⎨⎪=⎩.答:面值为2元、l 元和5角的人民币分别为7张、13张和4张.【稳固练习】一、填空题.1、以下方程组中是三元一次方程组的是〔 〕.A 、2258232a b c a b c ++=⎧⎪=⎨⎪+=⎩B 、2222225810x y y z x z ⎧+=⎪+=⎨⎪+=⎩C 、1141171110x y y z z x⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ D 、::3:4:524x y z x y z =⎧⎨++=⎩ 【答案】D ;2、以下四组数值中, 为方程组的解是〔 〕.A 、B 、C 、D 、【答案】D .【解析】,①+②得:3x+y=1④,①+③得:4x+y=2⑤,⑤﹣④得:x=1, 将x=1代入④得:y=﹣2, 将x=1, y=﹣2代入①得:z=3,那么方程组的解为.3、方程组329a b b c a c +=⎧⎪+=-⎨⎪+=⎩, 那么a+b+c 的值为〔 〕.A 、6B 、-6C 、5D 、-5【答案】C ;【解析】将方程组中的三个方程左右分别相加, 得2()10a b c ++=, 两边同除以2便得答案.4、532y x y z x a b c ++-与254x y a b c -是同类项, 那么x-y+z 的值为 ( ) .A 、1B 、2C 、3D 、4【答案】D ;【解析】由同类项的定义得:5235y x x y z x y +=⎧⎪+=⎨⎪-=⎩, 解得:211x y z =⎧⎪=-⎨⎪=⎩, 所以4x y z -+=.5、代数式2ax bx c ++, 当x =-1时, 其值为4;当x =1时, 其值为8;当x =2时, 其值为25;那么当x =3时, 其值为 〔 〕.A 、4B 、8C 、62D 、52【答案】D ;【解析】由条件知484225a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩, 解得521a b c =⎧⎪=⎨⎪=⎩.当x =3时, 2252152ax bx c x x ++=++=.6、方程组35204522x y x y z ax by z -=⎧⎪+-=⎨⎪+-=-⎩与方程组85234ax by z x y z c x y -+=⎧⎪++=⎨⎪+=-⎩有相同的解, 那么a 、b 、c 的值为〔 〕.A 、231a b c =-⎧⎪=-⎨⎪=⎩B 、231a b c =-⎧⎪=⎨⎪=⎩C 、231a b c =⎧⎪=-⎨⎪=-⎩D 、231a b c =⎧⎪=⎨⎪=-⎩【答案】D【解析】解方程组35202934x y x y z x y -=⎧⎪+-=⎨⎪+=-⎩, 解得120x y z =⎧⎪=-⎨⎪=⎩,代入可得方程组41022281a b a b c -⎧⎪+=⎨⎪-=⎩=-, 解得231a b c =⎧⎪=⎨⎪=-⎩, 应选D .7、xyz ≠0, 且4520430x y z x y z -+=⎧⎨+-=⎩, 那么x ∶y ∶z 等于〔 〕.A 、3∶2∶1B 、1∶2∶3C 、4∶5∶3D 、3∶4∶5【答案】B 【解析】∵4520430x y z x y z -+=⎧⎨+-=⎩①②,∴①×3+②×2, 得2x =y , ①×4+②×5, 得3x =z , ∴x ∶y ∶z =x ∶2x ∶3x =1∶2∶3, 应选B . 8、关于x, y 的方程组的解是方程3x+2y=10的解, 那么a 的值为〔 〕.A 、﹣2B 、2C 、﹣1D 、1【答案】B ;【解析】解:此题的实质是解三元一次方程组, 用加减法或代入法来解答.〔1〕﹣〔2〕得:6y=﹣3a, ∴y=﹣,代入〔1〕得:x=2a, 把y=﹣, x=2a 代入方程3x+2y=10,得:6a ﹣a=10, 即a=2.应选B .9、甲、乙、丙三个人各有一些钱, 其中甲的钱是乙的2倍, 乙比丙多1元, 丙比甲少11元, 那么三人共有〔 〕.A 、30元B 、33元C 、36元D 、39元 【答案】D ;【解析】解:设甲乙丙分别有,,x y z 元元元, 那么有:2111x y y z x z =⎧⎪-=⎨⎪-=⎩, 解得:20109x y z =⎧⎪=⎨⎪=⎩, 所以三人共有:39x y z ++=〔元〕.10、为了奖励进步较大的学生, 某班决定购置甲、乙、丙三种钢笔作为奖品, 其单价分别为4元、5元、6元, 购置这些钢笔需要花60元;经过协商, 每种钢笔单价下降1元, 结果只花了48元, 那么甲种钢笔可能购置( ) .A 、11支B 、9支C 、7支D 、5支 【答案】D ;【解析】解:设购置甲、乙、丙三种钢笔分别为x 、y 、z 支, 由题意, 得4566034548x y z x y z ++=⎧⎨++=⎩①②①×4-②×5得x-z =0, 所以x =z, 将z =x 代入①, 得4x+5y+6x =60.即y+2x =12. ∵ y >0, ∴ x <6, ∴ x 为小于6的正整数, ∴ 选D.二、填空题.11、方程组的解为.【答案】.12、, 那么=.【答案】;【解析】解:,①×7﹣②×6得:2x ﹣3y=0, 解得:x=y,①×2+②×3得:11x ﹣33z=0解得:x=3z,∵x=y, x=3z, ∴y=2z, ∴===.故答案为:.13、方程组2345216x y zx y z ⎧==⎪⎨⎪-+=⎩, 假设设=234x y z k ==, 那么k =__________.【答案】2 【解析】设=,234x y zk ==那么x =2k , y =3k , z =4k , 代入5x −2y +z =16得:10k −6k +4k =16, 解得:k =2, 故答案为:2. 14、某车间共有86名工人, 每人平均每天可以加工甲种部件15个, 乙种部件12个或丙种部件9个, 要使加工后的部件按3个甲种部件, 2个乙种部件和1个丙种部件配套, 那么应安排__________人加工甲种部件, __________人加工乙种部件, __________人加工丙种部件. 【答案】36;30;20【解析】设应安排x 人加工甲种部件, y 人加工乙种部件, z 人加工丙种部件.那么由题意得8615391229x y z xz yz⎧++=⎪⎪=⎪⎨⎪⎪=⎪⎩①②③,由②得x =95z ④, 由③得y =32z ⑤,将④⑤代入①, 解得z =20, ∴x =36, y =30.故答案为:36, 30, 20.15、甲、乙、丙三数的和是26, 甲数比乙数大1, 甲数的两倍与丙数的和比乙数大18, 那么甲、乙、丙三个数分别是__________. 【答案】10, 9, 7【解析】设甲数为x , 乙数为y , 丙数为z , 根据题意得:261218x y z x y x z y ++=⎧⎪-=⎨⎪+-=⎩, 解得:1097x y z =⎧⎪=⎨⎪=⎩, 那么甲数是10, 乙数是9, 丙数是7, 故答案为:10, 9, 7.三、解以下方程组.16、〔1〕2333215x y z x y z x y z +-=⎧⎪-+=-⎨⎪--=⎩ 〔2〕2362125x y z x y z x y z ++=⎧⎪-+=-⎨⎪+-=⎩ 〔3〕126218x y x y z x y z -=⎧⎪++=⎨⎪-+=⎩【解析】〔1〕2333215x y z x y z x y z +-=⎧⎪-+=-⎨⎪--=⎩①②③,①+③, 得3x -4z =8④, ②-③, 得2x +3z =-6⑤,联立④⑤, 得348236x z x z -=⎧⎨+=-⎩, 解得02x z =⎧⎨=-⎩,把x =0, z =-2代入③, 得y =-3,所以原方程组的解是032x y z =⎧⎪=-⎨⎪=-⎩.〔2〕2362125x y z x y z x y z ++=⎧⎪-+=-⎨⎪+-=⎩①②③,1097x y z =⎧⎪=⎨⎪=⎩14③+①, 得3x +5y =11④, ③×2+②, 得3x +3y =9⑤, ④-⑤, 得2y =2, 解得y =1,将y =1代入⑤, 得3x =6, 解得x =2, 将x =2, y =1代入①, 得z =-1, 所以原方程组的解为211x y z =⎧⎪=⎨⎪=-⎩.〔3〕126218x y x y z x y z -=⎧⎪++=⎨⎪-+=⎩①②③,将方程①+②得:2x +z =27④, 将方程②+③得:3x +2z =44⑤,将④×3﹣⑤×2得:z =7, 将z 值代入⑤得:x =10, 把x =10代入①得:y =9,∴三元一次方程组的解为 . 四、应用题.1、新定义对有理数x, y 定义新运算x △y=ax+by+c, 其中a, b, c 是常数, 等式右边是通常的加法与乘法运算.1△2=9, 〔-3〕△3=6, 0△1=2, 求〔-2〕△5的值.解:由题意得293362a b c a b c b c ++=⎧⎪-++=⎨⎪+=⎩, 解得253a b c =⎧⎪=⎨⎪=-⎩,所以此新运算为x △y =2x +5y -3, 故〔-2〕△5=2×〔-2〕+5×5-3=18.2、在等式y =ax 2+bx +c 中, 当x =-1时, y =4;当x =2时, y =4;当x =1时, y =2.〔1〕求a , b , c 的值; 〔2〕当x =-2时, 求y 的值.3、某单位职工在植树节当天去植树, 甲、乙、丙三个小组共植树50棵, 乙组植树的棵数是甲、丙两组和的 , 甲组植树的棵数恰好是乙组和丙组的和, 那么每组各植树多少棵?解:设甲、乙、丙三个小组分别植树x 棵、y 棵和z 棵.根据题意,得501()4x y z y x z x y z++=⎧⎪⎪=+⎨⎪=+⎪⎩, 解得251015x y z =⎧⎪=⎨⎪=⎩.答:甲、乙、丙三个小组分别植树25棵、10棵和15棵.4、2003年全国足球甲A 联赛的前12轮(场)比赛后, 前三名比赛成绩如下表.胜〔场〕平〔场〕负〔场〕积分大连实德队8 2 2 26 上海申花队 6 5 1 23 北京现代队 5 7 0 22 问每队胜一场、平一场、负一场各得多少分?解:设每队胜一场、平—场、负—场分别得x分, y分, z分根据题意, 得8222665235722x y zx y zx y++=⎧⎪++=⎨⎪+=⎩①②③;由①得4x+y+z=13 ④②一④, 得x+2y=5 ⑤⑤×5-③, 得y=1.把y=1代入⑤, 得x=5-2×1=3, 即x=3.把x=3, y=1代入④, 得z=0.∴310 xyz=⎧⎪=⎨⎪=⎩答:每队胜一场得3分, 平一场得1分, 负一场得0分.5、某工程由甲、乙两队合作需6天完成, 厂家需付甲、乙两队共8700元, 乙、丙两队合作需10天完成, 厂家需支付乙、丙两队共8000元;甲、丙两队合作5天完成全部工程的23, 此时厂家需付甲、丙两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)假设要不超过15天完成全部工程, 问由哪队单独完成此项工程花钱最少?请说明理由.解:〔1〕设甲队单独做x天完成, 乙队单独做y天完成, 丙队单独做z天完成, 那么111611110112135x yy zx z⎧+=⎪⎪⎪+=⎨⎪⎪+=⨯⎪⎩, 解得111011151130xyz⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,∴101530xyz=⎧⎪=⎨⎪=⎩.答:甲、乙、丙各队单独完成全部工程分别需10天, 15天, 30天.〔2〕设甲队做一天应付给a元, 乙队做一天应付给b元, 丙队做一天应付给c元, 那么6()870010()80005()5500a bb ca c+=⎧⎪+=⎨⎪+=⎩,解得875575225abc=⎧⎪=⎨⎪=⎩.∵ 10a=8750〔元〕, 15b=8625〔元〕.答:由乙队单独完成此工程花钱最少.第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x 和y , 并且对于变量x 的每一个值, 变量y 都有________的值与它对应, 那么我们称y 是x 的________, 其中________是自变量. 2.下面选项中给出了某个变化过程中的两个变量x 和 y , 其中y 不是..x 的函数的是( )A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( )9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 二、拓展提升13.在国内投寄本埠平信应付邮资如下表:信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(1)y 是x 的函数吗?为什么?(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:品种 价格(单位:元/棵)成活率 劳务费(单位:元/棵)A 15 95% 3 B2099%4设购置A 种树苗x 棵, 造这片树林的总费用为y 元, 解答以下问题: (1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?第26章 反比例函数实际问题与反比例函数2一、根底稳固1.某工厂现有原材料100吨, 每天平均用去x 吨, 这批原材料能用y 天, 那么y 与x 之间的函数表达式为〔 〕 A .y =100x B .y =C .y =+100D .y =100﹣x2.如图, 市煤气公司方案在地下修建一个容积为104m 3的圆柱形煤气储存室, 那么储存室的底面积S 〔单位:m 2〕与其深度d 〔单位:m 〕的函数图象大致是〔 〕A .B .C .D .3.甲、乙两地相距s 〔单位:km 〕, 汽车从甲地匀速行驶到乙地, 那么汽车行驶的时间y 〔单位:h 〕关于行驶速度x 〔单位:km /h 〕的函数图象是〔 〕A.B.C.D.4.教室里的饮水机接通电源就进入自动程序, 开机加热每分钟上升10℃, 加热到100℃, 停止加热, 水温开始下降,此时水温〔℃〕与开机后用时〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机.饮水机关机后即刻自动开机, 重复上述自动程序.水温y〔℃〕和时间x〔min〕的关系如图.某天张老师在水温为30℃时, 接通了电源, 为了在上午课间时〔8:45〕能喝到不超过50℃的水, 那么接通电源的时间可以是当天上午的〔〕A.7:50B.7:45C.7:30D.7:205.在温度不变的条件下, 通过一次又一次地对汽缸顶部的活塞加压, 测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强, 如下表:那么可以反映y与x之间的关系的式子是〔〕体积x〔mL〕100 80 60 40 20压强y〔kPa〕60 75 100 150 300A.y=3 000x B.y=6 000x C.y=D.y=6.随着私家车的增加, 交通也越来越拥挤, 通常情况下, 某段公路上车辆的行驶速度〔千米/时〕与路上每百米拥有车的数量x〔辆〕的关系如下图, 当x≥8时, y与x成反比例函数关系, 当车速度低于20千米/时, 交通就会拥堵, 为防止出现交通拥堵, 公路上每百米拥有车的数量x应该满足的范围是〔〕A.x<32B.x≤32C.x>32D.x≥327.如图, 在平面直角坐标系中, 函数y=〔k>0, x>0〕的图象与等边三角形OAB的边OA, AB分别交于点M, N, 且OM=2MA, 假设AB=3, 那么点N的横坐标为〔〕A.B.C.4D.68.如图, 反比例函数y1=〔k1>0〕和y2=〔k2<0〕中, 作直线x=10, 分别交x轴, y1=〔k1>0〕和y2=〔k2<0〕于点P, 点A, 点B, 假设=3, 那么=〔〕A.B.3C.﹣3D.9.直线y=x+3与x轴、y轴分别交于A, B点, 与y=〔x<0〕的图象交于C、D两点, E是点C关于点A的中心对称点, EF⊥OA于F, 假设△AOD的面积与△AEF的面积之和为时, 那么k=〔〕A.3B.﹣2C.﹣3D.﹣10.如图, 点A、B在双曲线〔x<0〕上, 连接OA、AB, 以OA、AB为边作▱OABC.假设点C恰落在双曲线〔x>0〕上, 此时▱OABC的面积为〔〕A.B.C.D.411.某物体对地面的压强P〔Pa〕与物体和地面的接触面积S〔m2m2时, 该物体对地面的压强是Pa.12.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示, 售价是销量的反比例函数〔统计数据见下表〕.该运动鞋的进价为180元/双, 要使该款运动鞋每天的销售利润到达2400元, 那么其售价应定为元.售价x〔元/双〕200 240 250 400销售量y〔双〕30 25 24 1513.小刚同学家里要用1500W的空调, 家里保险丝通过的最大电流是10A, 额定电压为220V, 那么他家最多还可以有只50W的灯泡与空调同时使用.14.在一个可以改变体积的密闭容器内装有一定质量的某种气体, 当改变容器的体积时, 气体的密度也会随之改变,密度ρ〔单位:kg/m3〕与体积v〔单位:m3〕满足函数关系式〔k为常数, k≠0〕其图象如下图过点〔6, 1.5〕, 那么k的值为.15.小丁在课余时间找了几副度数不同的老花镜, 让镜片正对太阳光, 上下移动镜片, 直到地上的光斑最小, 此时他测量了镜片与光斑的距离, 得到如下数据:老花镜的度数x/度…100 125 200 250 …镜片与光斑的距离y/m… 1 …m, 那么这副老花镜为度.16.为预防传染病, 某校定期对教室进行“药熏消毒〞, 药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与燃烧时间x〔分钟〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃烧完, 此时教室内每立方米空气含药量为6mgmg时, 对人体方能无毒害作用, 那么从消毒开始, 至少需要经过分钟后, 学生才能回到教室.二、拓展提升17.近似眼镜片的度数y〔度〕是镜片焦距x〔cm〕〔x>0〕的反比例函数, 调查数据如表:眼镜片度数y〔度〕400 625 800 1000 (1250)镜片焦距x〔cm〕25 16 10 (8)〔1〕求y与x的函数表达式;〔2〕假设近视眼镜镜片的度数为500度, 求该镜片的焦距.18.y〔毫克/百毫升〕与时间x〔时〕成正比例;1.5小时后〔包括1.5小时〕y与x成反比例.根据图中提供的信息, 解答以下问题:〔1〕写出一般成人喝半斤低度白酒后, y与x之间的函数关系式及相应的自变量取值范围;〔2〕按国家规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞, 不能驾车上路.参照上述数学模型, 假设某驾驶员晚上21:00在家喝完半斤低度白酒, 第二天早上7:00能否驾车去上班?请说明理由.19.教室里的饮水机接通电源就进入自动程序, 开机加热时每分钟上升10℃, 加热到100℃停止加热, 水温开始下降,此时水温y〔℃〕与开机后用时x〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机, 饮水机关机后即刻自动开机, 重复上述自动程序.假设在水温为30℃时接通电源, 水温y〔℃〕与时间x〔min〕的关系如下图:〔1〕分别写出水温上升和下降阶段y与x之间的函数关系式;〔2〕怡萱同学想喝高于50℃的水, 请问她最多需要等待多长时间?20.某地建设一项水利工程, 工程需要运送的土石方总量为360万米3.〔1〕写出运输公司完成任务所需的时间y〔单位:天〕与平均每天的工作量x〔单位:万米3〕之间的函数关系式;〔2〕当运输公司平均每天的工作量15万米3, 完成任务所需的时间是多少?〔3〕为了能在150天内完成任务, 平均每天的工作量至少是多少万米3?21.蓄电池的电压为定值.使用此蓄电池作为电源时, 电流Ⅰ〔单位:A〕与电阻R〔单位:Ω〕是反比例函数关系, 它的图象如下图.〔1〕求这个反比例函数的表达式;〔2〕如果以此蓄电池为电源的用电器的电流不能超过8A, 那么该用电器的可变电阻至少是多少?22.某公司用100万元研发一种市场急需电子产品, 已于当年投入生产并销售, 生产这种电子产品的本钱为4元/件,在销售过程中发现:每年的年销售量y〔万件〕与销售价格x〔元/件〕的关系如下图, 其中AB为反比例函数图象的一局部, 设公司销售这种电子产品的年利润为s〔万元〕.〔1〕请求出y〔万件〕与x〔元/件〕的函数表达式;〔2〕求出第一年这种电子产品的年利润s〔万元〕与x〔元/件〕的函数表达式, 并求出第一年年利润的最大值.23.为预防传染病, 某校定期对教室进行“药熏消毒〞.药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与药物在空气中的持续时间x〔m〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃完, 此时教室内每立方米空气含药量为8mg.根据以上信息解答以下问题:〔1〕分别求出药物燃烧时及燃烧后y关于x的函数表达式mg时, 对人体方能无毒害作用, 那么从消毒开始, 在哪个时段消毒人员不能停留在教室里?mg的持续时间超过20分钟, 才能有效杀灭某种传染病毒.试判断此次消毒是否有效, 并说明理由.第四单元第1课函数二、根底稳固1.一般地, 如果在一个变化过程中有两个变量x 和y , 并且对于变量x 的每一个值, 变量y 都有________的值与它对应, 那么我们称y 是x 的________, 其中________是自变量. 2.下面选项中给出了某个变化过程中的两个变量x 和 y , 其中y 不是..x 的函数的是( )A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( )9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 三、拓展提升13.在国内投寄本埠平信应付邮资如下表:(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:设购置A (1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?。

人教版七年级数学下册8.3实际问题与二元一次方程组(2)导学案(集体备课)

人教版七年级数学下册8.3实际问题与二元一次方程组(2)导学案(集体备课)

集体备课导学案学段初中年级七年级学科数学单元第8单元课题8.3.1实际问题与二元一次方程组(2)课型新授主备学校初审人终审人主备人合作H日队课标依据掌握代入消元法和加减消元法,能解二元一次方程组。

教学目标1.会借助二元一次方程组解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用;2.通过应用题学习进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性;3.体会列方程组比列一元一次方程容易。

教学重点通过实践与探索,运用二元一次方程组解决有关配套与设计的应用题教学难点通过实践与探索,运用二元一次方程组解决有关配套与设计的应用题导学环节课堂流程时间任务驱动问题导学学法指导知识链接呈现目标2分小黑板呈现目标自主学习温故知新5分1)长方形的面积公式?当宽相同时,面积比等于当长相同时,面积比等于----------------2)回顾列方程解决实际问题的基本思路?复习长方形面积公式和上节课所学知识。

方面公。

长形积式互助释疑3分鼓励学生提出问题小组内互相帮助解决.探究出招8分据统计资料,甲、乙两种作物的单位面积产量的比是1:2.现要把一块长200m,宽100m的长方形土地,分为两块小长方形土地,分别种植这两种作物.怎样划分这块土地,使甲、乙两种作物先独立分析问题中的数量关的总「( 2”是( 什么;(( 物的彳 设如的数二V解这,Vi 把这f种—(*量的比是3 : 4?1) "甲、乙两种作物的单位面积产量比是1 : -什么意思?2) “甲、乙两种作物的总产量比为3 : 4”是 思?3) 本题中有哪些等量关系?4) 如下图,一种种植方案为:甲、乙两种作冲植区域分别为长方形AEFD 和BCFE. 此时= ato , BE=ym,根据问题中涉及长度、产量 宣关系,列方程组D二C系,列出方程 组,得 出问题 的解 答,然 后再在 小组内 互相交 流与评 价。

个方程组,得丁 =——•史长方形土地的长边上离夬土地分为两块长方形土 一种作物,较小的一块土土5)你还能设计其他种植方EB:地——X —►一端约— 地.较大白 也种____案吗?试―处,一块吐 M 乍物.成看展示交流小组展示3分组长负责,组员在小组内展示。

七年级数学下册《相交线与平行线》导学案及课后练习

七年级数学下册《相交线与平行线》导学案及课后练习

七年级数学下册《相交线与平行线》导学案及课后练习《相交线与平行线》课后作业一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________;(2)与∠BOD 互余的角有________________________;(3)与∠EOA 互余的角有________________________;(4)若∠BOD =42°17′,则∠AOD =__________;∠EOD =______;∠AOE =______.二、选择题4.如图,直线AB 与CD 相交于点O ,若A O D A O C ∠=∠31,则∠BOD 的度数为( ).(A)30°(B)45°(C)60°(D)135°三、 解答题5.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB 的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?6.已知:如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COB ,∠AOD ∶∠DOE =4∶1.求∠AOF 的度数.《相交线与平行线》课后作业参考答案1.公共,反向延长线.2.一个公共,反向延长线.3..(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.4.B.5.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.6.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.。

新人教版数学七年级下册导学案(表格式全册,156页)

新人教版数学七年级下册导学案(表格式全册,156页)

集体备课导学案
集体备课导学案
的大小。

集体备课导学案
集体备课导学案
与∠4,线被哪一条直线所截形成的什么角?
集体备课导学案
集体备课导学案
集体备课导学案
集体备课导学案
集体备课导学案
3、思考:在所画的相邻的两个图案中,找出三组对应点,连接它
集体备课导学案
2.如图,直线a∥b,点B在直线
集体备课导学案
集体备课导学案
集体备课导学案
集体备课导学案
集体备课导学案
集体备课导学案
=,
0.81, 1.2
9
0.5
O O’
.圆周率及一些含有
集体备课导学案
集体备课导学案
集体备课导学案
各小组对上面讨论的情况在班上进行展示、交流。

集体备课导学案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年新人教版七年级数学下册导学案目录第五章相交线与平行线 (1)课题:5.1.1 相交线 (1)课题:5.1.2 垂线 (3)课题:5.1.3 同位角、内错角、同旁内角 (6)课题:5.2.1 平行线 (8)课题:5.2.2 平行线的判定 (10)课题:5.3.1 平行线的性质 (12)课题:平行线的判定及性质习题课 (15)课题:5.3.2命题、定理 (17)课题:5.4平移 (19)课题:相交线与平行线全章复习 (21)第六章实数 (24)课题:6.1平方根(第1课时) (24)课题:6.1平方根(第2课时) (26)课题:6.1平方根(第3课时) (28)课题:6.2立方根(第1课时) (30)课题:6.2立方根(第2课时) (33)课题:6.3 实数(第1课时) (36)课题:6.3 实数(第2课时) (38)课题:实数复习(一) (40)课题:实数复习(二) (42)第七章平面直角坐标系 (45)课题:7.1.1 有序数对 (45)课题:7.1.2 平面直角坐标系 (47)课题:7.1平面直角坐标系习题课 (49)课题:7.2.1用坐标表示地理位置 (51)课题:7.2.2用坐标表示平移 (53)课题:平面直角坐标系全章复习 (56)第八章二元一次方程组 (58)课题:8.1 二元一次方程组 (58)课题:8.2.1消元——解二元一次方程组(代入法) (61)课题:8.2.2消元——解二元一次方程组(代入法2) (63)课题:8.2.3消元——解二元一次方程组(加减法1) (66)课题:8.2.4消元——解二元一次方程组(加减法2) (68)课题:8.3.1实际问题与二元一次方程组(1) (70)课题:8.3.2实际问题与二元一次方程组(2) (72)课题:8.3.3实际问题与二元一次方程组(3) (74)课题:8.4.1三元一次方程组 (76)第九章不等式与不等式组 (78)课题:9.1.1不等式及其解集 (78)课题:9.1.2不等式的性质 (81)课题:9.2实际问题与一元一次不等式 (83)课题:9.3一元一次不等式组(1) (86)课题:9.3一元一次不等式组(2) (88)章末复习 (90)第十章数据的收集、整理与描述 (96)课题:10.1 统计调查(第1课时) (96)课题:10.1 统计调查(第2课时) (97)课题:10.2 直方图(第1课时) (99)课题:10.2 直方图(第2课时) (100)第五章相交线与平行线课题:5.1.1 相交线【学习目标】了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.【学习重点】邻补角、对顶角的概念,对顶角性质与应用.【学习难点】理解对顶角相等的性质.【学习过程】一、学前准备各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,并编写两道与它们相关的题目,在小组交流,并推出小组最好的两道题在班级汇报.二、探索思考探索一:完成课本P2页的探究,填在课本上.你能归纳出“邻补角”的定义吗?.“对顶角”的定义呢?.练习一:1.如图1所示,直线AB和CD相交于点O,OE是一条射线.(1)写出∠AOC的邻补角:____ _ ___ __;图1(2)写出∠COE的邻补角: __;(3)写出∠BOC的邻补角:____ _ ___ __;(4)写出∠BOD的对顶角:____ _.2.如图所示,∠1与∠2是对顶角的是()探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.请归纳“对顶角的性质”: . 练习二:1.如图,直线a ,b 相交,∠1=40°,则∠2=_______∠3=_______∠4=_______2.如图直线AB 、CD 、EF 相交于点O ,∠BOE 的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______3.如图,直线AB 、CD 相交于点O ,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____.三、当堂反馈1.如图所示,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图(1),三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。

OF E D CBA3.如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD -∠DOB=50°, 求∠E OB 的度数. OE D CBA4.如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数cba3412四、学习反思本节课我学会了: ;ba4321第1题FEOD CB A第2题FEOD C B A第3题我的困惑是: .课题:5.1.2 垂线【学习目标】1、了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质;2、会用三角板过一点画已知直线的垂线,并会度量点到直线的距离. 【学习重点】垂线的意义、性质和画法,垂线段性质及其简单应用. 【学习难点】垂线的画法以及对点到直线的距离的概念的理解. 【学习过程】一、学前准备在学习对顶角知识的时候,我们认识了“两线四角”,及两条直线相交于一点,得到四个角,这四个角里面,有两对对顶角,它们分别对应相等,如图,可以说成“直线AB 与CD 相交于点O ”.我们如果把直线CD 绕点O 旋转,无论是按照顺时针方向转,还是按照逆时针方向转,∠BOD 的大小都将发生变化.当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫垂线,它们的交点叫垂足.如图 用几何语言表示:方式⑴∵ ∠AOC=90° ∴ AB_____CD ,垂足是_____ 方式⑵∵ AB ⊥CD 于O ∴ ∠AOC=______ 二、探索思考探索一:请你认真画一画,看看有什么收获.⑴如图1,利用三角尺或量角器画已知直线l 的垂线,这样的垂线能画__________条; ⑵如图2,经过直线l 上一点A 画l 的垂线,这样的垂线能画_____条; ⑶如图3,经过直线l 外一点B 画l 的垂线,这样的垂线能画_____条;(图1) (图2) (图3a ) (图3b )ODCBAlllBlB经过探索,我们可以发现:在同一平面内,过一点有且只有_____条直线与已知直线垂直.练习一:1.如图所示,OA⊥OB,OC是一条射线,若∠AOC=120°,求∠BOC度数2.如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,求∠2的度数.3.如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线PE,垂足为E.(2)过点P画CD的垂线,与AB相交于F点.(3)比较线段PE,PF,PO三者的大小关系探索二:仔细观察测量比较上题中点P分别到直线AB上三点E、F、O的距离,你还有什么收获?请将你的收获记录下来:_______________________________________________简单说成:.还有,直线外一点到这条直线的垂线段的叫做点到直线的距离.注意:垂线是,垂线段是一条,点到直线的距离是一个数量,不能说“垂线段”是距离.练习二:1.在下列语句中,正确的是().A.在同一平面内,一条直线只有一条垂线B.在同一平面内,过直线上一点的直线只有一条C.在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条D.在同一平面内,垂线段就是点到直线的距离2.如图所示,AC⊥BC,CD⊥AB于D,AC=5cm,BC=12cm,AB=13cm,则点B到AC的距离是________,点A到BC的距离是_______,点C到AB•的距离是_______,•AC>CD•的依据是_________.三、当堂反馈1.如图所示AB,CD相交于点O,EO⊥AB于O,FO⊥CD于O,∠EOD与∠FOB的大小关系是()A.∠EOD比∠FOB大 B.∠EOD比∠FOB小C.∠EOD与∠FOB相等 D.∠EOD与∠FOB大小关系不确定2.如图,一辆汽车在直线形的公路AB上由A向B行驶,C,D是分别位于公路AB两侧的加油站.设汽车行驶到公路AB上点M的位置时,距离加油站C最近;行驶到点N的位置时,距离加油站D最近,请在图中的公路上分别画出点M,N的位置并说明理由.3.如图,AOB为直线,∠AOD:∠DOB=3:1,OD平分∠COB.(1)求∠AOC的度数;(2)判断AB与OC的位置关系.四、学习反思本节课我学会了:;我的困惑是: .课题:5.1.3 同位角、内错角、同旁内角【学习目标】1.使学生理解三线八角的意义,并能从复杂图形中识别它们;2.通过三线八角的特点的分析,培养学生抽象概括问题的能力.【学习重点】三线八角的意义,以及如何在各种变式的图形中找出这三类角.【学习难点】能准确在各种变式的图形中找出这三类角.【学习过程】一、学前准备在前面我们学习了两条直线相交于一点,得到四个角,即“两线四角”,这四个角里面,有对对顶角,有对邻补角.如果是一条直线分别与两条直线相交,结果又会怎样呢?二、探索思考探索:如图,直线c分别与直线a、b相交(也可以说两条直线a、b被第三条直线c所截),得到8个角,通常称为“三线八角”,那么这8个角之间有哪些关系呢?观察填表:表一位置1 位置2 结论∠1和∠5 处于直线c的同侧处于直线a、b的同一方这样位置的一对角就称为同位角∠2和∠8 处于直线c的()侧这样位置的一对角就称为()∠3和∠6 处于直线a、b的()方这样位置的一对角就称为()∠1和∠5 这样位置的一对角就称为ab c()表二位置1 位置2 结论∠4和∠8 处于直线c的两侧处于直线a、b之间这样位置的一对角就称为内错角∠3和∠5这样位置的一对角就称为()表三位置1 位置2 结论∠3和∠8 处于直线c的()侧处于直线a、b()这样位置的一对角就称为同旁内角∠4和∠5 这样位置的一对角就称为()练习:1.如图1所示,∠1与∠2是__ _角,∠2与∠4是_ 角,∠2与∠3是__ _角.(图1) (图2) (图3)2.如图2所示,∠1与∠2是___ _角,是直线______和直线_______•被直线_______所截而形成的,∠1与∠3是___ __角,是直线________和直线______•被直线________所截而形成的.3.如图3所示,∠B同旁内角有哪些?三、当堂反馈1.如图,(1)直线AD、BC被直线AC所截,找出图中由AD、BC被直线AC所截而成的内错角是_________和__________(2)∠3和∠4是直线_________和_________被_________所截,构成内错角. 2.已知∠1与∠2是同旁内角,且∠1=60°,则∠2为()A. 60°B. 120°C. 60°或120°D.无法确定3.如图,判断正误341E2B CDA①∠1和∠4是同位角;( ) ②∠1和∠5是同位角;( ) ③∠2和∠7是内错角;( ) ④∠1和∠4是同旁内角;( )4.如图,直线DE 、BC 被直线AB 所截.⑴∠1与∠2、∠1与∠3、∠1与∠4各是什么角?⑵如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?四、学习反思本节课我学会了: ; 我的困惑是: .课题:5.2.1 平行线【学习目标】1.使学生知道平行线的概念,掌握平行公理;2.了解平行线具有传递性,能够画出已知直线的平行线.【学习重点】平行线的概念和平行公理,利用直尺和三角板画已知直线的平行线. 【学习难点】用几何语言描述画图过程,根据几何语言画出图形. 【学习过程】 一、学前准备在上学期我们学过点和直线的位置关系,同学们还记得点和直线有几种位置关系吗?请画出来,并尝试用几何语言来表示. 二、探索思考探索一:我们知道,火车行驶的两条笔直的铁轨、人行道上的斑马线等都给我们平行的形象.一般地,在同一平面内,不相交的两条直线叫做平行线.如图,记作“a ∥b ”或“AB ∥CD ”,读作“直线a 平行于直线b ”.请同学们思考一下:在同一平面内,两条不重合的直线有几种位置关系?动手画一画,并尝试用几何语言来表示..练习一:1.下列说法中,正确的是( ).341E2BCDAA BC D abA .两直线不相交则平行B .两直线不平行则相交C .若两线段平行,那么它们不相交D .两条线段不相交,那么它们平行 2.在同一平面内,有三条直线,其中只有两条是平行的,那么交点有( ). A .0个 B .1个 C .2个 D .3个探索二:请同学们仔细阅读课本P13页“平行线的讨论”,认真思考.通过观察和画图,可以体验一个基本事实(平行公理):经过直线外一点, 一条直线与这条直线平行.同样,我们还有(平行线的传递性):如果两条直线都与第三条直线平行,那么这两条直线也互相平行.简单的说就是:平行于同一直线的两直线平行.用几何语言可表示为:如果b ∥a ,c ∥a ,那么 . 练习二:1.如图1所示,与AB 平行的棱有_______条,与AA ′平行的棱有_____条. 2.如图2所示,按要求画平行线.(1)过P 点画AB 的平行线EF ;(2)过P 点画CD 的平行线MN .3.如图3所示,点A ,B 分别在直线1l ,2l 上,(1)过点A 画到2l 的垂线段;(2)过点B 画直线3l ∥1l .(图1) (图2) (图3) 4.下列说法中,错误的有( ).①若a 与c 相交,b 与c 相交,则a 与b 相交; ②若a ∥b ,b ∥c ,那么a ∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、•相交、垂线三种 A .3个 B .2个 C .1个 D .0个 三、当堂反馈1.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.2.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为________________. 3.判断题(1)不相交的两条直线叫做平行线.( )(2)在同一平面内,不相交的两条射线是平行线.( )(3)如果一条直线与两条平行线中的一条平行, 那么它与另一条也互相平行.( )4.读下列语句,并画出图形:⑴点P是直线AB外一点,直线CD经过点P,且与直线AB平行,直线EF也经过点P•且与直线AB垂直.⑵直线AB,CD是相交直线,点P是直线AB,CD外一点,直线EF经过点P•且与直线AB平行,与直线CD相交于E.四、学习反思本节课我学会了:;我的困惑是: . 课题:5.2.2 平行线的判定【学习目标】使学生掌握平行线的判定,并能应用这些知识判断两条直线是否平行,培养学生简单的推理能力.【学习重点】平行线的三种判定方法,并运用这三种方法判断两直线平行.【学习难点】运用平行线的判定方法进行简单的推理.【学习过程】一、学前准备还知道“三线八角”吗?请画一画,找出一组同位角、一组内错角、一组同旁内角.二、探索思考探索一:请同学们仔细阅读课本P13页“平行线判定的思考”,你知道在画平行线这一过程中,三角尺所起的作用吗?由此我们可以得到平行线的判定方法,如图,将下列空白补充完整(填1种就可以)判定方法1(判定公理)几何语言表述为:∵∠___=∠___ ∴ AB∥CD 83625147EDC BA由判定方法1,结合对顶角的性质,我们可以得到:判定方法2(判定定理) 几何语言表述为:∵ ∠___=∠___ ∴ AB ∥CD 由判定方法1,结合邻补角的性质,我们可以得到:判定方法3(判定定理) 几何语言表述为:∵ ∠___+∠___=180° ∴ AB ∥CD 练习一:(1题) (2题) (3题)1.如图1所示,若∠1=∠2,则_____∥______,根据是__ ____. 若∠1=∠3,则______∥______,根据是_____ ____. 2.如图2所示,若∠1=62°,∠2=118°,则_____∥_____,根据是_____ ___ 3.根据图3完成下列填空(括号内填写定理或公理) (1)∵∠1=∠4(已知)∴ ∥ ( ) (2)∵∠ABC +∠ =180°(已知)∴AB ∥CD ( ) (3)∵∠ =∠ (已知)∴AD ∥BC ( ) (4)∵∠5=∠ (已知)∴AB ∥CD ( ) 探索二:木工师傅用角尺画出工件边缘的两条垂线,就可以再找出两条平行线,如图所示,a ∥b ,你能说明是什么道理吗?结论(判定推论):在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行.简记为:在同一平面内,垂直于同一直线的两直线平行.C123 4 5DA B如图,几何语言表述为:∵a ⊥2l ,b ⊥2l ∴ 练习二:1.如图所示,AB ⊥BC ,BC ⊥CD ,BF 和CE 是射线,并且∠1=∠2, 试说明BF ∥CE .三、当堂反馈1.如图所示,在下列条件中,不能判断L 1∥L 2的是( ). A .∠1=∠3 B .∠2=∠3 C .∠4+∠5=180° D .∠2+∠4=180°2.如图所示,已知∠1=120°,∠2=60°.试说明a 与b 的关系?3.如图所示,已知∠OEB=130°,∠FOD=25°,OF 平分∠EOD ,试说明AB ∥CD .四、学习反思本节课我学会了: ; 我的困惑是: .课题:5.3.1 平行线的性质【学习目标】1.使学生掌握平行线的三个性质,并能应用它们进行简单的推理论证;2.使学生经过对比后,理解平行线的性质和判定的区别和联系. 【学习重点】平行线的三个性质及其应用.【学习难点】正确理解性质与判定的区别和联系,并正确运用它们去推理证明. 【学习过程】 一、学前准备1 2a b 3c通过前面的学习,你知道判定两条直线平行有哪几种方法吗?⑴平行线的定义: ⑵平行线的传递性: ⑶平行线的判定公理: ⑷平行线的判定定理1: ⑸平行线的判定定理2: ⑹平行线的判定推论: 二、探索思考探索一:请同学们仔细阅读课本P19页,完成课本上的探究.根据探究内容,我们可以得到平行线的性质,如图,将下列空白补充完整(填1种就可以) 性质1(性质公理) 几何语言表述为:∵ AB ∥CD ∴ ∠___=∠___由性质1,结合对顶角的性质,我们可以得到: 性质2(性质定理) 几何语言表述为:∵ AB ∥CD ∴ ∠___=∠___ 由性质1,结合邻补角的性质,我们可以得到: 性质3(性质定理) 几何语言表述为:∵ AB ∥CD ∴ ∠___+∠___= 练习一:1. 根据右图将下列几何语言补充完整 (1)∵AD ∥ (已知)∴∠A+∠ABC=180°( ) (2)∵AB ∥ (已知)∴∠4=∠ ( ) ∠ABC=∠ ( )2. 如右图所示,BE 平分∠ABC ,DE ∥ BC ,图中相等的角共有( ) A. 3对 B. 4对 C. 5对 D. 6对3、如图,AB ∥CD,∠1=45°,∠D=∠C,求∠D 、∠C 、∠B 的度数.1A B C D83625147FEDCB AC1 23 4 5BA D E D CBA1A 2A1B2B 3B 4B 5B 1C2C3C5C4C探索二:用三角尺和直尺画平行线,做成一张5×5个格子的方格纸.观察做出的方格纸的一部分(如图),线段11C B 、22C B 、…、55C B 都与两条平行的横线51B A 和52C A 垂直吗? 它们的长度相等吗?像这样,同时垂直于两条平行直线,并且夹在这两条平行线间的线段的长度相等,叫做这两条平行线间的距离,即平行线间的距离处处相等. 练习二:1.如图所示,已知直线AB ∥CD ,且被直线EF 所截,若∠1=50°,则∠2=____,•∠3=______.(1题) (2题) (3题) 2.如图所示,AB ∥CD ,AF 交CD 于E ,若∠CEF=60°,则∠A=______. 3.如图所示,已知AB ∥CD ,BC ∥DE ,∠1=120°,则∠2=______. 三、当堂反馈1.如图所示,如果AB ∥CD ,那么( ).A .∠1=∠4,∠2=∠5B .∠2=∠3,∠4=∠5C .∠1=∠4,∠5=∠7D .∠2=∠3,∠6=∠8(1题) (2题) (3题) 2.如图所示,DE ∥BC ,EF ∥AB ,则图中和∠BFE 互补的角有( ). A .3个 B .2个 C .5个 D .4个3.如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.四、学习反思本节课我学会了: ; 我的困惑是: .课题:平行线的判定及性质习题课【学习目标】加深对平行线的判定及性质的理解及其应用.【学习重点】平行线的判定及性质的应用.【学习难点】灵活运用平行线的判定及性质去推理证明.【学习过程】一、学前准备通过前面的学习,你知道判定两条直线平行有哪几种方法吗?⑴平行线的定义:⑵平行线的传递性:⑶平行线的判定公理:⑷平行线的判定定理1:⑸平行线的判定定理2:⑹平行线的判定推论:通过前面的学习,你还知道两条直线平行有哪些性质吗?⑴根据平行线的定义:⑵平行线的性质公理:⑶平行线的性质定理1:⑷平行线的性质定理2:⑸平行线间的距离.二、探索思考练习:让我先试试,相信我能行.1.如图1,若∠1=∠2,那么_____∥______,根据___ __.若a∥b,•那么∠3=_____,根据___ __.(图1) (图2) (图3) (图4)2.如图2,∵∠1=∠2,∴_______∥_______,根据___ _____.∴∠B=______,根据___ _____.3.如图3,若AB∥CD,那么________=•_______;•若∠1=•∠2,•那么_____•∥_____;若BC∥AD,那么_______=_______;若∠A+∠ABC=180°,那么______∥_____4.如图4,•一条公路两次拐弯后,•和原来的方向相同,•如果第一次拐的角是136°(即∠ABC),那么第二次拐的角(∠BCD)是度,根据___ .5.如图,修高速公路需要开山洞,为节省时间,要在山两面A,B同时开工,•在A处测得洞的走向是北偏东76°12′,那么在B处应按什么方向开口,才能使山洞准确接通,请说明其中的道理.6.如图所示,潜望镜中的两个镜子是互相平行放置的,光线经过镜子反射∠1=∠2,∠3=∠4,请你解释为什么开始进入潜望镜的光线和最后离开潜望镜的光线是平行的.三、当堂反馈1.已知如图1,用一吸管吸吮易拉罐内的饮料时,吸管与易拉罐上部夹角∠1=74°,那么吸管与易拉罐下部夹角∠2=_______.2.已知如图2,边OA,OB均为平面反光镜,∠AOB=40°,在OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是().A.60° B.80° C.100° D.120°(图1)(图2)(图3)3.如图3,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.4.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=85°.⑴求∠DAB的度数;⑵求∠EAC的度数;⑶求∠BAC的度数;⑷通过这道题你能说明为什么三角形的内角和是180°吗?AD E四、学习反思本节课我学会了:;我的困惑是: . 课题:5.3.2命题、定理【学习目标】了解命题、定理的概念,能够区分命题的题设和结论.【学习重点】能够区分命题的题设和结论.【学习难点】能够区分命题的题设和结论.【学习过程】一、学前准备歌德是18世纪德国的一位著名文艺大师,一天,他与一位批评家“独路相逢”,这位文艺批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,边走边大声说道:“我从来不给傻子让路!”而对如此的尴尬的局面,歌德笑容可掏,谦恭的闪在一旁,有礼貌地回答道“呵呵,我可恰相反”,结果故作聪明的批评家,反倒自讨没趣.你知道为什么吗?二、探索思考探索:在日常生活中,我们会遇到许多类似的情况,需要对一些事情作出判断,例如:⑴今天是晴天;⑵对顶角相等;⑶如果两条直线都与第三条直线平行,那么这两条直线也互相平行.像这样,判断一件事情的语句,叫做命题.每个命题都是由_______和______组成.每个命题都可以写成.“如果……,那么……”的形式,用“如果”开始的部份是,用“那么”开始的部份是 .像前面举例中的⑵⑶两个命题,都是正确的,这样的命题叫做真命题,即正确的命题叫做______.例如:“如果一个数能被2整除,那么这个数能被4整除”,很明显是错误的命题,这样的命题叫做假命题,即错误的命题叫做______.我们把从长期的实践活动中总结出来的正确命题叫做公理;通过正确的推理得出的真命题叫做定理.练习:1.下列语句是命题的个数为()①画∠AOB的平分线; ②直角都相等; ③同旁内角互补吗?④若│a│=3,则a=3.A.1个 B.2个 C.3个 D.4个2.下列5个命题,其中真命题的个数为()①两个锐角之和一定是钝角; ②直角小于夹角; ③同位角相等,两直线平行; • ④内错角互补,两直线平行; ⑤如果a<b,b<c,那么a<c.A.1个 B.2个 C.3个 D.4个3.下列说法正确的是()A.互补的两个角是邻补角 B.两直线平行,同旁内角相等C.“同旁内角互补”不是命题 D.“相等的两个角是对顶角”是假命题4.“同一平面内,垂直于同一条直线的两条直线互相平行”是命题,其中,题设是,结论是,5.将下列命题改写成“如果……那么……”的形式.(1)直角都相等.(2)末位数是5的整数能被5整除.(3)三角形的内角和是180°.(4)平行于同一条直线的两条直线互相平行.三、当堂反馈1.下列语句中不是命题的有()⑴两点之间,直线最短;⑵不许大声讲话;⑶连接A、B两点;⑷花儿在春天开放. A.1个 B.2个 C.3个 D.4个2.下列命题中,正确的是()A.在同一平面内,垂直于同一条直线的两条直线平行;B.相等的角是对顶角;C.两条直线被第三条直线所截,同位角相等;D.和为180°的两个角叫做邻补角.3.下列命题中的条件(题设)是什么?结论是什么?(1)如果两个角相等,那么它们是对顶角;(2)如果两条直线都与第三条直线平行,那么这两条直线也平行;4.将下列命题改写成“如果……那么……”的形式,并判断正误.(1)对顶角相等;(2)同位角相等;(3)同角的补角相等.四、学习反思本节课我学会了:;我的困惑是: . 课题:5.4平移【学习目标】1了解平移的概念,知道生活中常见的平移例子;2掌握平移的规律,会利用平移画图.【学习重点】平移的规律,画图.【学习难点】利用平移的特征画图.【学习过程】一、学前准备生活中有许多美丽的图案,他们都有着共同的特点,请同学们欣赏下面图案.观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?请你试一试.二、探索思考探究一:请同学们仔细阅读课本P27~28页,你能发现并归纳平移的特征吗?平移的特征:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小;(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是;(3)连接各组对应点的线段平行(或在同一条直线上)且 .即,在平面内,将一个图形沿移动一定的,图形的这种移动,叫做平移变换,简称平移.注意:图形平移的方向,不一定是水平的.图形经过平移后,_______图形的位置,________图形的形状,________图形的大小.(填“改变”或“不改变”)练习一:1.几何图形经过平移,图形中对应点所连的线段平行(或在同一条直线上)且,对应线段且,对应角 .2.平移改变的是图形的().A.位置 B.形状 C.大小 D.位置、形状、大小3.下列现象中,不属于平移的是().A.滑雪运动员在的平坦雪地上滑行 B.大楼上上下下地迎送来客的电梯C.钟摆的摆动 D.火车在笔直的铁轨上飞驰而过4.下列各组图形,可经平移变换由一个图形得到另一个图形的是().探究二:你能按要求将图形平移吗?动手试一试.如图所示,把△ABC沿AB方向平移,平移的距离为线段a的长.练习二:1.如图所示,经过平移,四边形ABCD的顶点A移到点A′,作出平移后的四边形.三、当堂反馈1.一个图形先向右平移5个单位,再向左平移7个单位,所得到的图形可以看作是原来位置的图形一次性向_____平移______个单位得到.2.∠DEF 是∠ABC 经过平移得到的,∠ABC=60°,则∠DEF=3.如图,△ABC 平移后得到了△A 'B 'C ',其中点C 的对应点是点C ',已经标明,请你将点B '、点A '在图中标出来,并画出△A 'B 'C ';若AB 边上的中点为M ,请你再标出点M 的对应点M '.4.已知△ABC 、,过点D 作△ABC 平移后的图形,其中点D 与点A 对应.四、学习反思 本节课我学会了: ;我的困惑是: .课题:相交线与平行线全章复习一、本章知识结构图二、本章知识梳理1.邻补角的定义: . 对顶角的定义: . 对顶角的性质: .DCBA2.当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫 ,它们的交点叫 . 如图,用几何语言表示:方式⑴∵ ∠AOC=90° ∴ AB_____CD ,垂足是_____ 方式⑵∵ AB ⊥CD 于O ∴ ∠AOC=______3.在同一平面内,过一点有且只有_____条直线与已知直线垂直. 注意:垂线是 ,垂线段是一条 ,是图形.点到直线的 距离是 的长度,是一个数量,不能说“垂线段”是距离.4.识别同位角、内错角、同旁内角的关键是要抓住“三线八角”, 只有“三线”出现且必须是两线被第三线所截才能出现这三类角;位置1位置2结论∠1和∠5 处于直线c 的同侧 处于直线a 、b 的同一方这样位置的一对角就称为( ) ∠3和∠5这样位置的一对角就称为( ) ∠4和∠5这样位置的一对角就称为( )5. 现在所说的两条直线的位置关系,是两条直线在“ ”的前提下提出来的,它们的位置关系只有两种:一是 (有一个公共点),二是 (没有公共点).6.平行线的定义:在同一平面内, 的两条直线叫做平行线. 平行公理:经过直线外一点, 一条直线与这条直线平行. 平行线的传递性:平行于同一直线的两直线 .7.两条直线平行的判定方法:⑴平行线的定义,⑵平行线的传递性,⑶平行线的判定公理: ⑷平行线的判定定理1: ⑸平行线的判定定理2: ⑹平行线的判定推论: 8.两条直线平行的性质:⑴根据平行线的定义⑵平行线的性质公理: ⑶平行线的性质定理1:CDA BO a b c。

相关文档
最新文档