噶尔县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
嘎玛乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

嘎玛乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)在数﹣,0,,0.101001000…,中,无理数有()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】无理数的认识【解析】【解答】π/2,0.101001000…为无理数,﹣2/3,0,22/7为有理数,故无理数有两个.故答案为:B.【分析】根据无理数是无限不循环的小数,就可得出无理数的个数。
2、(2分)已知等腰三角形的两边长x、y,满足方程组则此等腰三角形的周长为()A.5B.4C.3D.5或4【答案】A【考点】解二元一次方程组,三角形三边关系,等腰三角形的性质【解析】【解答】解:解方程组,得,所以等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为5.所以,这个等腰三角形的周长为5.故答案为:A【分析】首先解方程组得出x,y的值,由于x,y是等腰三角形的两条边,但没有明确的告知谁是等腰三角形的底边,谁是腰长,故需要分①若腰长为1,底边长为2,②若腰长为2,底边长为1,两种情况再根据三角形三边的关系判断能否围成三角形,能围成三角形的由三角形周长的计算方法算出答案即可。
3、(2分)下列各式正确的是().A.B.C.D.【答案】A【考点】立方根及开立方【解析】【解答】A选项中表示为0.36的平方根,正数的平方根有两个,(±0.6)2=0.36,0.36的平方根为±0.6,所以正确;B选项中表示9的算术平方根,而一个数的算术平方根只有1个,是正的,所以错误;C选项中表示(-3)3的立方根,任何一个数只有一个立方根,(-3)3=-27,-27的立方根是-3,所以错误;D选项中表示(-2)2的算术平方根,一个正数的算术平方根只有1个,(-2)2=4,4的算术平方根是2,所以错误。
2018-2019学年度第二学期期中质量检测七年级数学试卷及答案

26.(本题满分 12 分) (1)如图①,△OAB、△OCD 的顶点 O 重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+ ∠COD= ▲ °;(直接写出结果) (2)连接 AD、BC,若 AO、BO、CO、DO 分别是四边形 ABCD 的四个内角的平分线. ①如图②,如果∠AOB=110°,那么∠COD 的度数为 ▲ ;(直接写出结果) ②如图③,若∠AOD=∠BOC,AB 与 CD 平行吗?为什么?
x
y
=-2,求
a
的值.
25.(本题满分 8 分) (1)观察下列式子: ① 21 20 =2-1=1= 20 ; ② 22 21 =4-2=2= 21 ; ③ 23 22 =8-4=4= 22 ; …… 根据上述等式的规律,试写出第 n 个等式,并说明第 n 个等式成立; (2)求 20 21 22 22 019 的个位数字.
A.4
B.5
C.6
D.7
4. 下列式子从左到右的变形中,属于因式分解的是·············································· ( ▲ )
A. 4x x = 5x
B. (x 2)2 = x2 4x 4
C. a2 a 1= a(a 1) 1
说明: (x 3)(x 7) 、 x(x 1) 计算正确分别给 1 分.
19.(本题满分 6 分,每小题 3 分)因式分解: 解:(1)原式= x2 (2y)2 ·········································································· 1 分
说明: (2a)3 、 a5 a2 计算正确分别给 1 分.
2018-2019年度数学学科初一年级第二学期期中考试试题+答案

2018-2019学年度第二学期期中考试初一数学本试卷共4页,共100分,考试时长120分钟,考试务必将答案作答在答题卡上,在试卷上作答无效一、 选择题:本大题共10题,每小题3分,共30分,在每小题给出的四个选项中,选出符合题目要求的一项填写在答题卡相应位置 1. 下列方程中是二元一次方程的是( )A 、21x y =+B 、11y x=- C 、325x += D 、2x y xy -= 2. 下列计算结果正确的是A. 236.a a a =B. 236()a a =C. 329()a a =D.623a a a ÷= 3. .不等式组21x x >-⎧⎨<⎩的解集在数轴上表示正确的是A B C D4. 32x y =⎧⎨=⎩是方程10mx y +-= 的一组解,则m 的值A.13B. 12C.12-D.13- 5. 若a b >,则下列不等式正确的是A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+6. 2016年4月15日,某校组织学生去圣泉寺开展社会大课堂活动.其中一项活动是体验民俗风情——包粽子.粽子是端午节的节日食品,是中国历史上迄今为止文化积淀最深厚的传统食品.所用食材是糯米或黄米,一粒大黄米的直径大约是0.0021m ,把0.0021用科学记数法表示应为-3-23210-1A .B .C .D . 7. 已知2x ﹣3y=1,用含x 的代数式表示y 正确的是 A .y=x ﹣1 B .x=C. y=D . y=﹣﹣23x8. 利用右图中图形面积关系可以解释的公式是 A .222()2a b a ab b +=++ B. 222()2a b a ab b -=-+ C. 22()()a b a b a b +-=- D. 2333()()a b a ab b a b +-+=+ 9. 已知a +b =5,ab =1 ,则a 2+b 2的值为 A .6 B .23 C .24 D .2710. 五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为A.11B.12C.13D.14 二、填空题(本大题共6题,每小题3分,共18分) 11. 用不等式表示“y 的21与5的和是正数”______________. 12. 计算:(π-1)0= ,(21)2- =_______________. 13.如果一个二元一次方程组的解为 ,则这个二元一次方程组可以是 .14. 若x 2+mx+9是一个完全平方式,则m 的值为_____________ 15.我国古代数学著作《孙子算经》中有这样一个“鸡兔同笼”题目: 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?根据题意,设有鸡x 只,兔子y 只,可以列二元一次方程组为 . 16. 右边的框图表示解不等式3542x x ->-的流程,其中“系数化为1”这一步骤的依据是 .21021.0-⨯2101.2-⨯3101.2-⨯31021.0-⨯三、解答题(本题共52分,每小题4分)17.解不等式 ,并将解集在数轴上表示出来 18. 求不等式的13(1)148x x ---≥非负整数解 19.解不等式组 >20、解方程组:21、解方程组:22.解二元一次方程组 ① ②23.计算:3(a-2b+c )-4(2a+b-c )24. 计算:1021(2016)(2)4-⎛⎫-+-- ⎪⎝⎭25. 先化简,再求值:()()()()1x 5x 13x 13x 12x 2-+-+--,其中x=-2. 26. 解不等式:(x+4)(x-4)<(x-2)(x+3) 27. 列方程(或方程组)解应用题第六届北京国际电影节于2016年4月16日至4月23日在怀柔区美丽的雁栖湖畔举办.本届“天坛奖”共收到来自全世界各地的433部报名参赛影片,其中国际影片比国内影片多出27部.请问本次报名参赛的国际影片和国内影片各多少部? 28.阅读材料后解决问题:小明遇到下面一个问题:计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++5,4;x y y x +=⎧⎨=⎩37,35;x y x y +=⎧⎨-=⎩=248(21)(21)(21)(21)(21)+-+++=2248(21)(21)(21)(21)-+++=448(21)(21)(21)-++=88(21)(21)-+=1621-请你根据小明解决问题的方法,试着解决以下的问题:(1)24816(21)(21)(21)(21)(21)+++++=____________.(2)24816(31)(31)(31)(31)(31)+++++=_____________.(3)化简:2244881616()()()()()m n m n m n m n m n+++++.29.阅读下列材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=)(>)(1)填空:(填a,b,c的大小关系)”③运用②的结论,填空:参考答案11 / 11。
咯尔乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

咯尔乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列变形中不正确的是()A.由得B.由得C.若a>b,则ac2>bc2(c为有理数)D.由得【答案】C【考点】不等式及其性质【解析】【解答】解:A、由前面的式子可判断a是较大的数,那么b是较小的数,正确,不符合题意;B、不等式两边同除以-1,不等号的方向改变,正确,不符合题意;C、当c=0时,左右两边相等,错误,符合题意;D、不等式两边都乘以-2,不等号的方向改变,正确,不符合题意;故答案为:C【分析】A 由原不等式可直接得出;B 、C、D 都可根据不等式的性质②作出判断(注意:不等式两边同时除以或除以同一个负数时,不等号的方向改变。
);2、(2分)下列方程组是二元一次方程组的是()A.B.C.D.【答案】D【考点】二元一次方程组的定义【解析】【解答】解:A、是二元二次方程组,故A不符合题意;B、是分式方程组,故B不符合题意;C、是二元二次方程组,故C不符合题意;D、是二元一次方程组,故D符合题意;故答案为:D.【分析】根据二元一次方程组的定义:方程组中含有两个未知数,且未知数的最高次数是2的整式方程,再对关系逐一判断,可得出答案。
3、(2分)如图,已知AB∥CD,∠1=56°,则∠2的度数是()A. 34°B. 56°C. 65°D. 124°【答案】B【考点】平行线的性质【解析】【解答】解:∵AB∥CD,∠1=56°,∴∠2=∠1=56°.故答案为:B.【分析】根据两直线平行,同位角相等,即可得出答案。
4、(2分)下列各式中正确的是()A. B. C. D.【答案】A【考点】平方根,算术平方根,立方根及开立方【解析】【解答】解:A、,故A选项符合题意;B、,故B选项不符合题意;C、,故C选项不符合题意;D、,故D选项不符合题意;故答案为:A.【分析】一个正数的算数平方根是一个正数,一个正数的平方根有两个,它们互为相反数;任何数都只有一个立方根,正数的立方根是一个正数,根据定义即可一一判断。
黑嘎乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

黑嘎乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,点在射线上,,则等于()A. B. 180ºC. D. 180º【答案】C【考点】平行线的性质【解析】【解答】解:∵AB∥CD∥EF∴∠B=∠BCD,∠E+∠DCE=180°∴∠DCE=180°-∠E∵∠BCD+∠DCE+∠GCE=180°∴∠B+180°-∠E+∠GCE=180°∴∠GCE=∠E-∠B故答案为:C【分析】根据平行线的性质得出∠B=∠BCD,∠E+∠DCE=180°,再根据∠BCD+∠DCE+∠GCE=180°,即可证得结论。
2、(2分)的值是()A. -3B. 3C. ±3D. 不确定【答案】A【考点】立方根及开立方【解析】【解答】解:根据=a这一性质解题.故答案为:A【分析】根据立方根的意义,一个数的立方的立方根等于它本身,即可得出答案。
3、(2分)用不等式表示如图所示的解集,其中正确的是()A.x>-2B.x<-2C.x≥-2D.x≤-2【答案】C【考点】在数轴上表示不等式(组)的解集【解析】【解答】解:图中数轴上表达的不等式的解集为:.故答案为:C.【分析】用不等式表示如图所示的解集都在-2的右边且用实心的圆点表示,即包括-2,应用“ ≥ ”表示。
4、(2分)如图,表示的点在数轴上表示时,应在哪两个字母之间()A. C与DB. A与BC. A与CD. B与C【答案】A【考点】实数在数轴上的表示,估算无理数的大小【解析】【解答】解:∵6.25<7<9,∴2.5<<3,则表示的点在数轴上表示时,所在C和D两个字母之间.故答案为:A.【分析】本题应先估计无理数的大小,然后才能在数轴上将表示出来,因为,所以应该在C与D之间.5、(2分)在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A. 1个B. 2个C. 3个D. 4个【答案】C【考点】平行线的判定【解析】【解答】解:①过两点有且只有一条直线,正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故本小题错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,该说法正确;④经过直线外一点有且只有一条直线与已知直线平行,正确,【分析】②两条不相同的直线如果相交,有且只有一个公共点,如果平行,没有公共点。
二嘎里乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

二嘎里乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列不等式变形中,一定正确的是()A. 若ac>bc,则a>bB. 若ac2>bc2,则a>bC. 若a>b,则ac2>bc2D. 若a>0,b>0,且,则a>b【答案】B【考点】不等式及其性质【解析】【解答】解:A、ac>bc,当c<0时,得a<b,A不符合题意,B、若ac2>bc2,则a>b,B符合题意;C、若a>b,而c=0时,ac2=bc2,C不符合题意;D、若a>0,b>0,且,当a= ,b= 时,而a<b,故D不符合题意;故答案为:B【分析】根据不等式的基本性质,在不等式的两边都乘以或除以同一个正数,不等号号方向才不变,由于A,B 两选项没有强调C是什么数,故不一定成立;对于B,其实是有隐含条件,C≠0的;对于D,可以用举例子来说明。
2、(2分)在数﹣,0,,0.101001000…,中,无理数有()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】无理数的认识【解析】【解答】π/2,0.101001000…为无理数,﹣2/3,0,22/7为有理数,故无理数有两个.故答案为:B.【分析】根据无理数是无限不循环的小数,就可得出无理数的个数。
3、(2分)如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A. 40°B. 35°C. 50°D. 45°【答案】A【考点】平行线的性质【解析】【解答】解:∵AD平分∠BAC,∠BAD=70°∴∠BAC=140°∵AB∥CD,∴∠ACD +∠BAC=180°,∠ACD=40°,故答案为:A【分析】因为AD是角平分线,所以可以求出∠BAC的度数,再利用两直线平行,同旁内角互补,即可求出∠ACD的度数.4、(2分)下列各式正确的是().A.B.C.D.【答案】A【考点】立方根及开立方【解析】【解答】A选项中表示为0.36的平方根,正数的平方根有两个,(±0.6)2=0.36,0.36的平方根为±0.6,所以正确;B选项中表示9的算术平方根,而一个数的算术平方根只有1个,是正的,所以错误;C选项中表示(-3)3的立方根,任何一个数只有一个立方根,(-3)3=-27,-27的立方根是-3,所以错误;D选项中表示(-2)2的算术平方根,一个正数的算术平方根只有1个,(-2)2=4,4的算术平方根是2,所以错误。
人教版2018-2019学年七年级下册期中数学试题(含答案解析)

2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=42.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣13.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x54.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.105.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.26.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b27.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.29.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣210.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.1211.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A .B .C .D . 12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.你根据图乙能得到的数学公式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab +b 2C .a (a +b )=a 2+abD .a (a ﹣b )=a 2﹣ab二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104= .14.当a =2时,代数式a 2+2a +1的值为 .15.把多项式9a 3﹣ab 2因式分解的结果是 .16.已知a +=2,求a 2+= .17.已知|5x ﹣y +9|与|3x +y ﹣1|互为相反数,则x +y = .18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为 .三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x 2﹣6x .(2)(x 2+16y 2)2﹣64x 2y 2.20.(5分)先化简,再求值:[(a +b )2﹣(a ﹣b )2]•a ,其中a =﹣1,b =3.21.(7分)已知:a +b =3,ab =2,求下列各式的值:(1)a 2b +ab 2;(2)a 2+b 2.22.(8分)解下列二元一次方程组:(1)(2)23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y426.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=4【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得答案.【解答】解:A、未知数的次数是2,错误;B、不符合二元一次方程的条件,错误;C、只有一个未知数,错误;D、符合二元一次方程的条件,正确;故选:D.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.2.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣1【分析】本题考查公因式的定义.找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【解答】解:8x2n﹣4x n=4x n(2x n﹣1),∴4x n是公因式.故选:A.【点评】本题考查公因式的定义,难度不大,要根据找公因式的要点进行.3.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x5【分析】根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质计算即可.【解答】解:(﹣3x2)•2x3,=﹣3×2x2•x3,=﹣6x2+3,=﹣6x5.故选:A.【点评】本题主要考查单项式的乘法法则,同底数的幂的乘法的性质,熟练掌握性质是解题的关键.4.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.10【分析】根据(ab)m=a m•b m得到2×(2×0.5)100,即可得到答案.【解答】解:原式=2×2100×0.5100=2×(2×0.5)100=2.故选:B.【点评】本题考查了同底数幂的运算:(ab)m=a m•b m;a m•a n=a m+n;(a m)n=a mn;a>0,b>0,m、n为正整数.5.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.2【分析】由a2﹣b2=(a+b)(a﹣b)与a2﹣b2=,a﹣b=,即可得(a+b)=,继而求得a+b的值.【解答】解:∵a2﹣b2=,a﹣b=,∴a2﹣b2=(a+b)(a﹣b)=(a+b)=,∴a+b=.故选:B.【点评】此题考查了平方差公式的应用.此题比较简单,注意掌握公式变形与整体思想的应用.6.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b2【分析】分别根据合并同类项、平方差公式、同底数幂的乘法及完全平方公式进行逐一计算即可.【解答】解:A、错误,应该为3a+2a=5a;B、(2a+b)(2a﹣b)=4a2﹣b2,正确;C、错误,应该为2a2•a3=2a5;D、错误,应该为(2a+b)2=4a2+4ab+b2.故选:B.【点评】此题比较简单,解答此题的关键是熟知以下概念:(1)同类项:所含字母相同,并且所含字母指数也相同的项叫同类项;(2)同底数幂的乘法:底数不变,指数相加;(3)平方差公式:两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式.(4)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式.7.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除【分析】将该多项式分解因式,其必能被它的因式整除.【解答】解:(4m+5)2﹣9=(4m+5)2﹣32,=(4m+8)(4m+2),=8(m+2)(2m+1),∵m是整数,而(m+2)和(2m+1)都是随着m的变化而变化的数,∴该多项式肯定能被8整除.故选:A.【点评】本题考查了因式分解的应用,难度一般.8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.2【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可.【解答】解:∵(x+1)(x+n)=x2+(1+n)x+n=x2+mx﹣2,∴1+n=m,n=﹣2,解得:m=1﹣2=﹣1.故选:A.【点评】本题考查了多项式乘以多项式的法则,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.9.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣2【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选:B.【点评】根据同类项的定义列出方程组,是解本题的关键.10.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.12【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值.【解答】解:根据题意得:,把(3)代入(1)解得:x=y=,代入(2)得:a+(a﹣1)=3,解得:a=11.故选:C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.11.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A.B.C.D.【分析】根据此题的等量关系:①共36人;②挑水人数是植树人数的2倍列出方程解答即可.【解答】解:设有x人挑水,y人植树,可得:,故选:C.【点评】此题考查方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.a(a+b)=a2+ab D.a(a﹣b)=a2﹣ab【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:大正方形的面积=(a﹣b)2,还可以表示为a2﹣2ab+b2,∴(a﹣b)2=a2﹣2ab+b2.故选:B.【点评】正确列出正方形面积的两种表示是得出公式的关键,也考查了对完全平方公式的理解能力.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104=107.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:103×104=107.故答案为:107.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.14.当a=2时,代数式a2+2a+1的值为9.【分析】把a的值代入原式计算即可求出值.【解答】解:当a=2时,原式=4+4+1=9,故答案为:9【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.把多项式9a3﹣ab2因式分解的结果是a(3a+b)(3a﹣b).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(9a2﹣b2)=a(3a+b)(3a﹣b),故答案为:a(3a+b)(3a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.已知a+=2,求a2+=2.【分析】根据完全平方公式把已知条件两边平方,然后整理即可.【解答】解:∵(a+)2=a2+2+=4,∴a2+=4﹣2=2.【点评】本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是常数是解题的关键.17.已知|5x﹣y+9|与|3x+y﹣1|互为相反数,则x+y=3.【分析】利用互为相反数两数之和为0列出方程组,求出方程组的解得到x与y的值,即可求出x+y 的值.【解答】解:根据题意得:|5x﹣y+9|+|3x+y﹣1|=0,可得,①+②得:8x=﹣8,解得:x=﹣1,把x=﹣1代入①得:y=4,则x+y=﹣1+4=3,故答案为:3【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n 个等式为(2n+1)2﹣12=4n(n+1).【分析】通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).【解答】解:通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).故答案为:(2n+1)2﹣12=4n(n+1).【点评】此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x2﹣6x.(2)(x2+16y2)2﹣64x2y2.【分析】(1)直接提取公因式3x,进而分解因式得出答案;(2)直接利用平方差公式以及结合完全平方公式分解因式得出答案.【解答】解:(1)3x2﹣6x=3x(x﹣2);(2)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20.(5分)先化简,再求值:[(a+b)2﹣(a﹣b)2]•a,其中a=﹣1,b=3.【分析】根据完全平方公式可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:[(a+b)2﹣(a﹣b)2]•a=(a2+2ab+b2﹣a2+2ab﹣b2)•a=4a2b,当a=﹣1,b=3时,原式=4×(﹣1)2×3=12.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.21.(7分)已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2;(2)a2+b2.【分析】(1)把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;(2)利用完全平方公式把代数式化为已知的形式求解.【解答】解:(1)a2b+ab2=ab(a+b)=2×3=6;(2)∵(a+b)2=a2+2ab+b2∴a2+b2=(a+b)2﹣2ab,=32﹣2×2,=5.【点评】本题考查了提公因式法分解因式,完全平方公式,关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.22.(8分)解下列二元一次方程组:(1)(2)【分析】各方程组利用加减消元法求出解即可.【解答】解:(1)①+②得:3x=15,解得:x=5,把x=5代入①得:y=1,则方程组的解为;(2)①×3+②×2得:11x=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?【分析】设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据“乘坐这种出租车走了9km,付了14元;乘坐这种出租车走了13千米,付了20元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据题意得:,解得:.答:这种出租车的起步价是5元,超过3km后,每千米的车费是1.5元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.【分析】先找出规律22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,进而22+42+62+…+502=22×(12+22+32+…+252即可得出结论.【解答】解:∵22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,∴22+42+62+…+502=22×12+22×22+22×32+…+22×252=22×(12+22+32+…+252)=4××25×26×51=22100.【点评】此题主要考查了数字的变化类,公式的应用,将22+42+62+…+502转化成22×(12+22+32+…+252是解本题的关键.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y4【分析】(1)代数式加16x2再减去,先用完全平方公式再用平方差公式因式分解;(2)代数式加上x2y2,先用完全平方公式再用平方差公式因式分解.【解答】解:(1)原式=x4+16x2+64﹣16x2=(x2+8)2﹣16x2=(x2+8+4x)(x2+8﹣4x);(2)原式=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy)【点评】本题考查了完全平方公式和平方差公式,解决本题的关键是看懂题目给出的例子.26.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【分析】(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据共支出公路运输费15000元、铁路运输费97200元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据利润=销售收入﹣成本﹣运费,即可求出结论.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据题意得:,解得:.答:工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)300×8000﹣400×1000﹣15000﹣97200=1887800(元).答:这批产品的销售款比原料费与运输费的和多1887800元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据利润=销售收入﹣成本﹣运费,列式计算.。
嘎玛贡桑初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

嘎玛贡桑初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A. 40°B. 70°C. 80°D. 140°【答案】B【考点】角的平分线,平行线的性质【解析】【解答】解:∵AB∥CD,∠ACD=40°,∴∠ACD+∠BAC=180°∴∠BAC=180°-40°=140°∵AE平分∠CAB∴∠BAE=∠CAB=×140°=70°故答案为:B【分析】根据平行线的性质可求出∠BAC的度数,再根据角平分线的定义得出∠BAE=∠CAB,即可得出答案。
2、(2分)若m>n,且am<an,则a的取值应满足条件()A. a>0B. a<0C. a=0D. a0【答案】B【考点】不等式及其性质【解析】【解答】解:根据题意,在不等式的两边都乘以a后,不等号方向发生了改变,根据不等式的性质,所乘的数一定是负数.【分析】不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立。
3、(2分)若3x>﹣3y,则下列不等式中一定成立的是()A.x+y>0B.x﹣y>0C.x+y<0D.x﹣y<0【答案】A【考点】不等式及其性质【解析】【解答】解:两边都除以3,得x>﹣y,两边都加y,得:x+y>0,故答案为:A.【分析】根据不等式的性质(两边同时除以3,再把所得结果的两边同时加上y)即可得出答案。
4、(2分)如图所示,直线L1,L2,L3相交于一点,则下列答案中,全对的一组是()A. ∠1=90°,∠2=30°,∠3=∠4=60°;B. ∠1=∠3=90°,∠2=∠4=30°C. ∠1=∠3=90°,∠2=∠4=60°;D. ∠1=∠3=90°,∠2=60°,∠4=30°【答案】D【考点】对顶角、邻补角【解析】【解答】解:根据对顶角相等,可知∠2=60°,∠4=30°.由平角的定义知,∠3=180°-∠2-∠4=90°,所以∠1=∠3=90°.【分析】因为∠1和∠3是对顶角,所以相等,∠2和的角,∠4和的角分别是对顶角.5、(2分)下列对实数的说法其中错误的是()A. 实数与数轴上的点一一对应B. 两个无理数的和不一定是无理数C. 负数没有平方根也没有立方根D. 算术平方根等于它本身的数只有0或1【答案】C【考点】算术平方根,实数在数轴上的表示,有理数及其分类【解析】【解答】A. 实数与数轴上的点一一对应,故A不符合题意;B. =2,故B不符合题意;C. 负数立方根是负数,故C符合题意;D. 算术平方根等于它本身的数只有0或1,故D不符合题意;故答案为:C.【分析】实数与数轴上的点是一一对应的关系;两个无理数的和不一定是无理数,可能是0,也可能是有理数;负数立方根是负数,负数没有平方根;算术平方根等于它本身的数只有0或1.6、(2分)如图,AB//CD,那么∠A , ∠D ,∠E 三者之间的关系为()A. ∠A+∠D+∠E=360°B. ∠A-∠D+∠E=180°C. ∠A+∠D-∠E=180°D. ∠A+∠D+∠E=180°【答案】B【考点】平行线的判定与性质【解析】【解答】解:过点E作EF∥AB∵AB∥CD∴AB∥CD∥EF∴∠1+∠A=180°①,∠2=∠D②由①+②得:∠1+∠A+∠2=180°+∠D∴∠A-∠D+∠AED=180°故答案为:B【分析】过点E作EF∥AB,根据平行线的性质,得出∠1+∠A=180°①,∠2=∠D②,由①+②,即可得出结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
噶尔县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图是测量一颗玻璃球体积的过程:(1)将300mL的水倒进一个容量为500mL的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在(1mL水的体积为1cm3)()A. 20cm3以上,30cm3以下B. 30cm3以上,40cm3以下C. 40cm3以上,50cm3以下D. 50cm3以上,60cm3以下【答案】C【考点】一元一次不等式组的应用【解析】【解答】解:设玻璃球的体积为x,则有,解得40<x<50.故一颗玻璃球的体积在40cm3以上,50cm3以下.故答案为:C【分析】先设出一颗球的体积,利用条件(2)可列出第一个不等式,利用(3)可列出第二个不等式,解不等式组即可求得一颗玻璃球体积的范围.2、(2分)一元一次不等式的最小整数解为()A.B.C.1D.2【答案】C【考点】一元一次不等式的特殊解【解析】【解答】解:∴最小整数解为1.故答案为:C.【分析】先解不等式,求出不等式的解集,再从中找出最小整数即可。
3、(2分)如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥OE于O,若∠AOD=70°,则∠AOF 等于()A. 35°B. 45°C. 55°D. 65°【答案】C【考点】角的平分线,角的运算,对顶角、邻补角【解析】【解答】∵∠B0C=∠AOD=70°,又∵OE平分∠BOC,∴∠BOE= ∠BOC=35°.∵OF⊥OE,∴∠EOF=90°.∴∠AOF=180°-∠EOF-∠BOE=55°.故答案为:C.【分析】有角平分线性质和对顶角相等,由角的和差求出∠AOF=180°-∠EOF-∠BOE的度数.4、(2分)如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A. 40°B. 35°C. 50°D. 45°【答案】A【考点】平行线的性质【解析】【解答】解:∵AD平分∠BAC,∠BAD=70°∴∠BAC=140°∵AB∥CD,∴∠ACD +∠BAC=180°,∠ACD=40°,故答案为:A【分析】因为AD是角平分线,所以可以求出∠BAC的度数,再利用两直线平行,同旁内角互补,即可求出∠ACD的度数.5、(2分)π、,﹣,,3.1416,0. 中,无理数的个数是()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】无理数的认识【解析】【解答】解:在π、,﹣,,3.1416,0. 中,无理数是:π,- 共2个.故答案为:B【分析】本题考察的是无理数,根据无理数的概念进行判断。
6、(2分)在实数,,,0,-1.414,,,0.1010010001中,无理数有()A. 2个B. 3个C. 4个D. 5个【答案】A【考点】无理数的认识【解析】【解答】解:无理数有:共2个.故答案为:A.【分析】无理数指的是无限不循环的小数,其中包括开放开不尽的数,特殊之母,还有0.1010010001000017、(2分)为了了解所加工的一批零件的长度,抽取了其中200个零件的长度,在这个问题中,200个零件的长度是()A. 总体B. 个体C. 总体的一个样本D. 样本容量【答案】C【考点】总体、个体、样本、样本容量【解析】【解答】解:A、总体是所加工的一批零件的长度的全体,错误,故选项不符合题意;B、个体是所加工的每一个零件的长度,错误,故选项不符合题意;C、总体的一个样本是所抽取的200个零件的长度,正确,故选项符合题意;D、样本容量是200,错误,故选项不符合题意.故答案为:C【分析】根据总体、个体和样本、样本容量的定义进行判断即可解答.8、(2分)下列各式计算错误的是()A. B. C. D.【答案】B【考点】立方根及开立方【解析】【解答】A、,不符合题意;B、,符合题意;C、,不符合题意;D、,不符合题意;故答案为:B.【分析】求一个数的立方根的运算叫开立方。
(1)根据开立方的意义可得原式=0.2 ;(2)根据算术平方根的意义可得原式=11;(3)根据开立方的意义可得原式=;(4)根据开立方的意义可得原式=-.9、(2分)在期末复习课上,老师要求写出几个与实数有关的结论:小明同学写了以下5个:①任何无理数都是无限不循环小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有这4个;④是分数,它是有理数;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数.其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B【考点】实数在数轴上的表示,无理数的认识【解析】【解答】①任何无理数都是无限不循环小数,故①正确;②实数与数轴上的点一一对应,故②错误;③在1和3之间的无理数有无数个,故③错误;④是无理数,故④错误;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数,故⑤正确;故答案为:B.【分析】无理数的定义:无限不循环小数统称为无理数,所以①正确;又因为无理数都是小数,所以1和3之间有无数个;因为是无理数,所以也是无理数;最后一项考查的是四舍五入。
10、(2分)已知一个正方形纸片面积为32cm2,则这个正方形纸片的边长为()A. 8 cmB. 4 cmC. 8 cmD. 4 cm【答案】B【考点】平方根,算术平方根【解析】【解答】设这个正方形纸片的边长为x(x为一个正数).根据题意得:x2=32.所以x= =4 .故答案为:B.【分析】设这个正方形纸片的边长为x(x为一个正数).根据正方形的面积=边长的平方可得:x2=32.由算术平方根的意义可求解。
11、(2分)如图,,、、分别平分的内角、外角、外角.以下结论:①∥;②;③;④;⑤平分.其中正确的结论有()A. 2个B. 3个C. 4个D. 5个【答案】C【考点】平行线的判定与性质,三角形内角和定理,三角形的外角性质,等边三角形的判定,菱形的判定【解析】【解答】解:延长BA,在BA的延长线上取点F.①∵BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,∴AD平分△ABC的外角∠FAC,∴∠FAD=∠DAC,∵∠FAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠FAD=∠ABC,∴AD∥BC,故①正确;故①符合题意,②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=∠ABC+∠MBC=×180∘=90∘,∴EB⊥DB,故②正确,故②符合题意,③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=②∠BAC,∵∠BAC+2∠ACB=180∘,∴∠BAC+∠ACB=90∘,∴∠BDC+∠ACB=90∘,故③正确,故③符合题意,④∵∠BEC=180∘−(∠MBC+∠NCB)=180∘−(∠BAC+∠ACB+∠BAC+∠ABC)=180∘−(180∘+∠BAC)∴∠BEC=90∘−∠BAC,∴∠BAC+2∠BEC=180∘,故④正确,故④符合题意,⑤不妨设BD平分∠ADC,则易证四边形ABCD是菱形,推出△ABC是等边三角形,这显然不可能,故⑤错误。
故⑤不符合题意故应选:C。
【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角的性质、平行线的判定、菱形的判定、等边三角形的判定一一判断即可.12、(2分)下列说法中错误的是()A.中的可以是正数、负数或零B.中的不可能是负数C.数的平方根有两个D.数的立方根有一个【答案】C【考点】平方根,立方根及开立方【解析】【解答】A选项中表示a的立方根,正数,负数和零都有立方根,所以正确;B选项中表示a的算术平方根,正数和零都有算术平方根,而负数没有算术平方根,所以正确;C选项中正数的平方根有两个,零的平方根是零,负数没有平方根,所以数a是非负数时才有两个平方根,所以错误;D选项中任何数都有立方根,所以正确。
故答案为:C【分析】正数有两个平方根,零的平方根是零,负数没有平方根,任何一个数都有一个立方根,A选项中被开方数a可以是正数,负数或零,B选项中的被开方数只能是非负数,不能是负数,C选项中只有非负数才有平方根,而a有可能是负数,D选项中任何一个数都有一个立方根。
二、填空题13、(1分)判断是否是三元一次方程组的解:________(填:“是”或者“不是”).【答案】是【考点】三元一次方程组解法及应用【解析】【解答】解:∵把代入:得:方程①左边=5+10+(-15)=0=右边;方程②左边=2×5-10+(-15)=-15=右边;方程③左边=5+2×10-(-15)=40=右边;∴是方程组:的解.【分析】将已知x、y、z的值分别代入三个方程计算,就可判断;或求出方程组的解,也可作出判断。
14、(1分)已知一个数的平方根是和,则这个数的立方根是________.【答案】4【考点】平方根,立方根及开立方【解析】【解答】解:依题可得:(3a+1)+(a+11)=0,解得:a=-3,∴这个数为:(3a+1)2=(-9+1)2=64,∴这个数的立方根为:=4.故答案为:4.【分析】一个数的平方根互为相反数,依此列出方程,解之求出a,将a值代入求出这个数,从而得出对这个数的立方根15、(3分)已知a、b、c满足,则a=________,b=________,c=________.【答案】2;2;-4【考点】三元一次方程组解法及应用【解析】【解答】解:①﹣②,得:3a﹣3b=0④①﹣③,得:﹣4b=﹣8,解得:b=2,把b=2代入④,得:3a﹣3×2=0,解得:a=2,把a=2,b=2代入②,得2+2+c=0,解得:c=﹣4,∴原方程组的解是.故答案为:2,2,﹣4.【分析】观察方程组中同一未知数的系数特点:三个方程中c的系数都是1,因此①﹣②和①﹣③,就可求出b的值,再代入计算求出a、c的值。
16、(1分)如图,∠1=15°,∠AOC=90°.若点B,O,D在同一条直线上,则∠2=________.【答案】105°【考点】对顶角、邻补角,垂线【解析】【解答】解:∵∠AOC=90°,∠1=15°,∴∠BOC=∠AOC-∠1=90°-15°=75°,又∵∠BOC+∠2=180°,∴∠2=180°-∠BOC=180°-75°=105°.故答案为:105°.【分析】根据角的运算结合已知条件得∠BOC=75°,由补角定义得∠2=180°-∠BOC即可得出答案.17、(1分)若则x+y+z=________.【答案】3【考点】三元一次方程组解法及应用【解析】【解答】解:在中,由①+②+③得:,∴.【分析】方程组中的三个方的x、y、z的系数都是1,因此由(①+②+③)÷2,就可求出结果。