四川省遂宁市市中区中兴镇中学2019年中考数学模拟试卷(含解析)

合集下载

2019年四川省遂宁市中考数学仿真试题(一)(含答案)

2019年四川省遂宁市中考数学仿真试题(一)(含答案)

2019年四川省遂宁市中考数学仿真试题(一)一.选择题(共10小题,满分40分)1.写出π﹣3.14的相反数是()A.3.14﹣πB.0C.π+31.4D.﹣π﹣3.142.下列运算正确的是()A.3x2﹣7x=﹣4x B.﹣3y2+4y2=y2C.(﹣a2)3=a6D.(﹣a)2•a4=﹣a63.下列图形为正方体展开图的是()A.B.C.D.4.以下问题,不适合普查的是()A.了解一批灯泡的使用寿命B.学校招聘教师,对应聘人员的面试C.了解全班学生每周体育锻炼时间D.进入地铁站对旅客携带的包进行的安检5.在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(﹣1,﹣2)B.(1,2)C.(1,﹣2)D.(﹣2,1)6.用两种正多边形组合铺满地面,其中的一种是正八边形,则另一种是()A.正三角形B.正方形C.正五边形D.正六边形7.如图,A、D是⊙O上的两个点,BC是直径,若∠D=34°,则∠OAC等于()A.68°B.58°C.72°D.56°8.下列说法不正确的是()A.(a≥0)是二次根式B.当a<0时,()2=﹣aC.是最简二次根式D.=x+3成立的条件是x>﹣39.某斜坡的坡度i=1:,则该斜坡的坡角为()A.75°B.60°C.45°D.30°10.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A.B.C.D.二.填空题(共5小题,满分20分,每小题4分)11.某公司有10名工作人员,他们的月工资情况如表,根据表中信息,该公司工作人员的月工资的众数是.12.如图,在方格纸中,每个小方格都是边长为1 cm的正方形,△ABC的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到△A′B′C′,其中A、B、C的对应点分别为A′,B′,C′,则点B在旋转过程中所经过的路线的长是cm.(结果保留π)13.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.14.菱形的周长为12,它的一个内角为60°,则菱形的较短的对角线长为.15.观察下列顺序排列的等式:1×2×100+25=1522×3×100+25=2523×4×100+25=3524×5×100+25=452…根据以上的规律直接写出结果:2009×2010×100+25=.三.解答题(共3小题,满分21分,每小题7分)16.(7分)计算:cos45°﹣2sin30°+(﹣2)0.17.(7分)定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:,则是“和谐分式”.(1)下列分式中,属于“和谐分式”的是(填序号);①;②;③;④(2)将“和谐分式”化成一个整式与一个分子为常数的分式的和的形式为:=(要写出变形过程);(3)应用:先化简,并求x取什么整数时,该式的值为整数.18.(7分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:DC=BE;(2)连接BF,若BF⊥AE,求证:△ADF≌△ECF.四.解答题(共3小题,满分27分,每小题9分)19.(9分)当k取何值时,方程组的解x,y都是负数.20.(9分)如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?21.(9分)如图,在Rt△ABC中,∠C=90°,点D在BC边上,∠ADC=45°,BD=2,tan B=(1)求AC和AB的长;(2)求sin∠BAD的值.五.解答题(共2小题,满分20分,每小题10分)22.(10分)“食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为°;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.23.(10分)直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B (8,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当x>0时,直接写出的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.六.解答题(共2小题,满分22分)24.(10分)如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.25.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B两点(点A在点B的左侧),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x 轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,求线段MN的最大值;(3)是否存在点P,使得以点C、O、M、N为顶点的四边形是平行四边形?若存在,请直接写出m的值;若不存在,请说明理由.参考答案一.选择题1.解:π﹣3.14的相反数是:﹣(π﹣3.14)=3.14﹣π.故选:A.2.解:A、3x2与﹣7x不是同类项,不能合并,错误;B、﹣3y2+4y2=y2,正确;C、(﹣a2)3=﹣a6,错误;D、(﹣a)2•a4=a6,错误;故选:B.3.解:A、不是正方体展开图,故选项错误;B、不是正方体展开图,故选项错误;C、1﹣4﹣1型,是正方体展开图,故选项正确;D、有田字格,不是正方体展开图,故选项错误.故选:C.4.解:A、了解一批灯泡的使用寿命,数目较多,具有破坏性,故适合抽查,不适合普查,故此选项正确;B、学校招聘教师,对应聘人员的面试,涉及到招聘,必须全面调查,故此选项错误;C、了解全班学生每周体育锻炼时间,人数不多,容易调查,因而适合普查,故此选项错误;D、进入地铁站对旅客携带的包进行的安检,涉及到安全,必须全面调查,故此选项错误.故选:A.5.解:∵点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',∴A′(1,2),∵将点A'向下平移4个单位,得到点A″,∴点A″的坐标是:(1,﹣2).故选:C.6.解:正八边形的一个内角=180°﹣=135°,360°﹣2×135°=90°,∵正方形的每个内角是90°,∴另一种是正方形.故选:B.7.解:∵∠AOC=2∠ADC,∠ADC=34°,∴∠AOC=68°,∵OA=OC,∴∠OAC=∠OCA=(180°﹣68°)=56°,故选:D.8.解:A、(a≥0)是二次根式,故A正确;B、被开方数不能小于零,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、=x+3成立的条件是x>﹣3,故D正确;故选:B.9.解:∵tanα=1:=,∴坡角=60°.故选:B.10.解:若a>0,b>0,则y=ax+b经过一、二、三象限,y=bx2+ax开口向上,顶点在y 轴左侧,故B、C错误;若a<0,b<0,则y=ax+b经过二、三、四象限,y=bx2+ax开口向下,顶点在y轴左侧,故D错误;若a>0,b<0,则y=ax+b经过一、三、四象限,y=bx2+ax开口向下,顶点在y轴右侧,故A正确;故选:A.二.填空题(共5小题,满分20分,每小题4分)11.解:由表可知0.6万元出现次数最多,有4次,所以该公司工作人员的月工资的众数是0.6万元,故答案为:0.6万元.12.解:如图所示,△A′B′C′即为所求.∵∠BOB′=90°,OB=3,∴点B在旋转过程中所经过的路线的长是=π,故答案为:π.13.解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠F AE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.14.解:由已知得,较短的对角线与两邻边组成等边三角形,则菱形较短的对角线长=菱形的边长=12÷4=3,故答案为:3.15.解:根据题意,观察可得:1×2×100+25=(1×10+5)2=1522×3×100+25=(2×10+5)2=252…分析可得:n×(n+1)×100+25=(n×10+5)2,故2009×2010×100+25=(2009×10+5)2=200952.三.解答题(共3小题,满分21分,每小题7分)16.解:原式=﹣2×+1=﹣1+1=.17.解:(1)①=1+,是和谐分式;②=1+,不是和谐分式;③==1+,是和谐分式;④=1+,是和谐分式;故答案为:①③④.(2)==+=a﹣1+,故答案为:a﹣1+.(3)原式=﹣•=﹣===2+,∴当x+1=±1或x+1=±2时,分式的值为整数,此时x=0或﹣2或1或﹣3,又∵分式有意义时x≠0、1、﹣1、﹣2,∴x=﹣3.18.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)证明:∵AB=BE,BF⊥AE,∴AF=EF.∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),四.解答题(共3小题,满分27分,每小题9分)19.解,由②,得y=﹣5﹣2x③把③代入①,得3x﹣5(﹣5﹣2x)=k∴x=把x=代入③,得y=∵x、y都是负数,所以解①,得k<25,解②,得k>﹣∴﹣<k<25即当﹣<k<25时,方程组的解都是负数.20.解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S=•PB•QE.△PQB设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.21.解:(1)如图,在Rt△ABC中,∵tan B==,∴设AC=3x、BC=4x,∵BD=2,∴DC=BC﹣BD=4x﹣2,∵∠ADC=45°,∴AC=DC,即4x﹣2=3x,解得:x=2,则AC=6、BC=8,∴AB==10;(2)作DE⊥AB于点E,由tan B==可设DE=3a,则BE=4a,∵DE2+BE2=BD2,且BD=2,∴(3a)2+(4a)2=22,解得:a=(负值舍去),∴DE=3a=,∵AD==6,∴sin∠BAD==.五.解答题(共2小题,满分20分,每小题10分)22.解:(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60,90.(2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为=.23.解:(1)∵点A(m,4)和点B(8,n)在y=图象上,∴m==2,n==1,即A(2,4),B(8,1)把A(2,4),B(8,1)两点代入y=kx+b中得解得:,所以直线AB的解析式为:y=﹣x+5;(2)由图象可得,当x>0时,kx+b>的解集为2<x<8.(3)由(1)得直线AB的解析式为y=﹣x+5,当x=0时,y=5,∴C(0,5),∴OC=5,当y=0时,x=10,∴D点坐标为(10,0)∴OD=10,∴CD==5∵A(2,4),∴AD==4设P点坐标为(a,0),由题可以,点P在点D左侧,则PD=10﹣a由∠CDO=∠ADP可得①当△COD∽△APD时,,∴,解得a=2,故点P坐标为(2,0)②当△COD∽△P AD时,,∴,解得a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.六.解答题(共2小题,满分22分)24.解:(1)CG与⊙O相切,理由如下:如图1,连接CE,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∴CG与⊙O相切;(2)∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴=,即BO•AB=BC•BF,∵AB=2BO,∴2OB2=BC•BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=2∠F,又∵∠DCE=2∠F,∴∠EGC=∠DCE,∵∠DEC=∠CEG,∴△ECD∽△EGC,∴=,∵CE=3,DG=2.5,∴=,整理,得:DE2+2.5DE﹣9=0,解得:DE=2或DE=﹣4.5(舍),故DE=2.25.解:(1)将A(﹣1,0)、C(0,3)代入y=﹣x2+bx+c中,,解得:,∴抛物线的解析式为y=﹣x2+2x+3.(2)当y=﹣x2+2x+3=0时,x1=﹣1,x2=3,∴点B的坐标为(3,0).设直线BC的解析式为y=kx+b(k≠0),将B(3,0)、C(0,3)代入y=kx+b中,,解得:,∴直线BC的解析式为y=﹣x+3.设点P的坐标为(m,0)(0≤m≤3),点M的坐标为(m,﹣m2+2m+3),点N的坐标为(m,﹣m+3),∴MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,∴当m=,线段MN取最大值,最大值为.(3)∵MN∥CO,∴当MN=CO时,以点C、O、M、N为顶点的四边形是平行四边形.∵点O(0,0)、C(0,3),∴OC=3,∴|﹣m2+3m|=3,当m<0或m>3时,有m2﹣3m=3,解得:m1=,m2=;当0≤m≤3时,有﹣m2+3m=3,∵△=(﹣3)2﹣4×1×3=﹣3<0,∴此时方程无解.综上所述:存在点P,使得以点C、O、M、N为顶点的四边形是平行四边形,此时m的值为或.。

2019年四川省遂宁市中考真题数学试题(解析版)(含考点分析)

2019年四川省遂宁市中考真题数学试题(解析版)(含考点分析)

{来源}2019年遂宁中考数学试卷 {适用范围:3.九年级}{标题}2019年四川省遂宁市中考数学试卷第Ⅰ卷(选择题,满分40分){题型:1-选择题}一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求){题目}1.(2019年遂宁)- ( ) A. 2B.-2C.±2D.2{答案}B{解析}本题考查了绝对值符号的识别和绝对值意义的理解,-表示-2的绝对值的相反数.因为负数的绝对值等于它的相反数,所以-2的绝对值为2,2的相反数是-2,因此本题选B . {分值}4{考点: 绝对值的意义} {考点:多重符号的化简} {章节: [1-1-2-4]绝对值} {类别:常考题} {难度:1-最简单}{题目}2. (2019年遂宁)下列等式成立的是( )A.2=B.()22346a ba b =C. (2a 2+a)÷a=2a D.5x 2y-2x 2y=3 {答案}B{解析}本题考查了整式运算法则的掌握,选项A .2与2不是同类项,不能进行合并;选项B .根据积的乘方法则,将各因式分别乘方,再根据幂的乘方,底数不变指数相乘,结果正确;选项C .根据多项式除以单项式的法则,将多项式中的各项分别除以这个单项式,再它们的和相加,即(2a 2+a)÷a=2a+1,所以该项不正确;选项D .根据合并同类项的法则,系数相加减,字母及其指数不变,即5x 2y-2x 2y=3x 2y ,所以该项不正确;因此本题选B . {分值}4{考点:合并同类项} {考点:幂的乘方} {考点:积的乘方}{考点:多项式除以单项式}{章节: [1-16-3]二次根式的加减} {类别:常考题} {难度:1-最简单}{题目}3. (2019年遂宁)如图为正方形的一种平面展开图,各面都标有数字,则数字为-2的面与其对面上的数字之积为 ( )A.-12B.0C.-8D.-10{答案}A{解析}本题考查了正方体的侧面展开图和空间观念.根据正方体的平面展开图的特征知,其相对面的两个正方形之间一定相隔一个正方形,所以数字为-2的面的对面上的数字是6,其积为-12,因此本题选A.{分值}4{考点:几何体的展开图}{章节:[1-4-1-1]立体图形与平面图形}{类别:常考题}{难度:1-最简单}{题目}4.(2019年遂宁)某校为了了解家长对“禁止学生带手机进校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中的样本是()A.100B.被抽取的100名学生家长C.被抽取的100名学生家长的意见D.全校学生家长的意见{答案}C{解析}本题考查了总体、个体、样本与样本容量的理解,因为要了解家长对“禁止学生带手机进校园”这一规定的意见,并且随机对全校100名学生家长进行调查,故此样本是指被抽取的100名学生家长的意见,因此本题选C.{分值}4{考点:总体、个体、样本、样本容量}{章节:[1-10-1]统计调查}{类别:常考题}{难度:1-最简单}{题目}5.(2019年遂宁)已知关于x的一元二次方程(a-1)x2-2x+a2-1=0有一个根为x=0,则a的值为()A.0B.±1C.1D.-1{答案}D{解析}本题考查了一元二次方程的概念和方程解的意义.根据方程解的意义,将这个根x=0代入方程可得a2-1=0,解得a=1或a=-1,再根据一元二次方程的概念可知a-1≠0,即a≠1,则a=-1,因此本题选D.{分值}4{考点:一元二次方程的定义}{考点:一元二次方程的解}{章节:[1-21-1]一元二次方程}{类别:常考题}{难度:2-最简单}{题目}6.(2019年遂宁)如图,△ABC内接于⊙O,若∠A=45°,⊙O的半径r=4,则阴影部分的面积为()A.4π-8B.2πC.4πD.8π-8{答案}A{解析}本题考查了圆周角定理和扇形面积公式以及应用转化思想求不规则图形面积. ∵在⊙O 中,圆周角∠A=45°,∴∠BOC=90°,∴S 扇形BOC =3604902⨯π=4π.∵S △BOC =21×4×4=8,∴阴影部分的面积为S 扇形BOC -S △BOC =4π-8,因此本题选A .{分值}4{考点:圆周角定理} {考点:扇形的面积}{章节:[1-24-4]弧长和扇形面积} {难度:3-中等难度} {类别:易错题} {题目}7.(2019年遂宁)如图,□ABCD 中,对角线AD 、BD 相交于点O ,OE ⊥BD 交AD 于点E ,连接BE ,若□ABCD 的周长为28,则△ABE 的周长为 ( )A.28B.24C.21D.14 {答案}D{解析}本题考查了平行四边形的性质和线段垂直平分线的性质. □ABCD 的周长为28,则AB+AD=14.根据平行四边形的性质“平行四边形的对角线互相平分”可知:点O 是BD 的中点,又有条件“OE ⊥BD 交AD 于点E ”可知OE 垂直平分BD ,∴BE=DE ,则△ABE 的周长为AB+BE+AE=AB+AE+DE=AB+AD=14,因此本题选D . {分值}4{考点:垂直平分线的性质} {考点:平行四边形边的性质}{章节:[1-18-1-1]平行四边形的性质} {难度:3-中等难度} {类别:易错题}{题目}8.(2019年遂宁)若关于x 的方程1242k xx x -=--的解为正数,则k 的取值范围是( )A.k >4B.k <4C.k >-4且k ≠4D.k <4且k ≠-4{答案}C{解析}本题考查了分式方程的解法和不等式的应用.解1242k x x x -=--得x =+44k ,∵方程的解是正数,∴+44k >0,∴k >-4,∵当2(x-2)=0即x=2时方程有增根,∴+44k ≠2,即k ≠4,∴k >-4且k ≠4.因此本题选C .{分值}4{考点:解一元一次不等式} {考点:分式方程的解} {考点:分式方程的增根} {章节:[1-15-3]分式方程} {难度:3-中等难度} {类别:易错题}{题目}9.(2019年遂宁)二次函数y=x 2-ax+b 的图像如图所示,对称轴为直线x=2.下列结论不正确的是 ( ) A.a=4 B.当b=-4时,顶点坐标为(2,-8) C.当x=-1时,b >-5 D.当x >3时,y 随x 的增大而增大{答案}D{解析}本题考查了二次函数的图像与性质以及从图像中获取有用信息的能力. ∵二次函数y=x 2-ax+b 的图像对称轴为直线x=2,∴-2a-=2,解得a=4,则选项A 是正确的;当b=-4时,二次函数表达式为y=x 2-4x-4=(x-2)2-8,此时顶点坐标为(2,-8),则选项B 是正确的;当x=-1时,由图象知此时y <0,即1+4+b <0,∴b <-5,则选项C 不正确;∵对称轴为直线x=2且图象开口向上,∴当x >3时,y 随x 的增大而增大,则选项D 正确.因此本题选D . {分值}4{考点:二次函数y=ax2+bx+c 的性质} {考点:抛物线与一元二次方程的关系}{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质} {难度:3-中等难度} {类别:易错题}{题目}10.(2019年遂宁)如图,四边形ABCD 是边长为1的正方形,△BPC 是等边三角形,连接DP 并延长交CB 的延长线与点H ,连接BD 交PC 于点Q.下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④314BDPS∆-=,其中正确的有()A.①②③B.②③④C.①③④D.①②④{答案}D{解析}本题考查了等边三角形和正方形的性质以及相似三角形的判定方法. ∵四边形ABCD 是正方形,∴CD=CB,∠BCD=90°,∠DBC=45°.∵△BPC是等边三角形,∴BC=CP,∠BCP=∠BPC=60°,∴CP=CD,∠DCP=30°,∴∠DPC=75°,∠DPP=135°,则①正确;∵∠DBC=45°,∴∠DBH=135°=∠DPB,∵∠PDB=∠BDH,∴△BDP∽△HDB,则②正确;延长CP∠AD于点E,则DE=33CD=33.∵AD∥BC,∴DQ:BQ=DE:BC=33,则③正确;过点P作PF⊥CD,垂足为点F,∴PF=12,∴311131+-S1-1222BDPS S S∆-=⨯⨯⨯⨯△BPC△PDC△BCD,则④正确.因此本题选D.FPQHA{分值}4{类别:思想方法}{考点:正方形的性质}{考点:等边三角形的性质}{考点:等边对等角}{考点:由平行判定相似}{章节:[1-18-2-3] 正方形}{难度:5-高难度}{类别:高度原创}{类别:思想方法}{考点:几何选择压轴}第Ⅱ卷(非选择题,满分110分)注意事项:1、请用0.5毫米的黑色墨水签字笔在第Ⅱ卷答题卡上作答,不能答在此试卷上。

2019年四川省遂宁中考数学试卷(附答案与解析)

2019年四川省遂宁中考数学试卷(附答案与解析)

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前四川省遂宁市2019年初中毕业会考、高级中等学校招生考试数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,总分150分,考试时间120分钟.第Ⅰ卷(选择题,满分40分)一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.) 1.-的值为( ) AB. C. D .2 2.下列等式成立的是( )A.2=B .()22346a ba b =C .()222a a a a +÷=D .22523x y x y -=3.如图为正方体的一种平面展开图,各面都标有数字,则数字为2-的面与其对面上的数字之积是( )A .12-B .0C .8-D .10-4.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见5.已知关于x 的一元二次方程2212)10(a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .1±C .1D .1- 6.如图,ABC △内接于O ⊙,若45A ∠=︒,O ⊙的半径4r =,则阴影部分的面积为( )A .48π-B .2πC .4πD .88π- 7.如图,ABCD 中,对角线AC 、BD 相交于点O ,OE BD ⊥交AD 于点E ,连接BE ,若ABCD 的周长为28,则ABE △的周长为( )A .28B .24C .21D .14 8.关于x 的方程1242k xx x -=--的解为正数,则k 的取值范围是( )A .4k >-B .4k <C .4k >-且4k ≠D .4k <且4k ≠- 9.二次函数2 y x ax b =-+的图象如图所示,对称轴为直线2x =,下列结论不正确的是( )A .4?a =B .当4?b =-时,顶点的坐标为(2,)8-C .当1x =-时,5b >-D .当3x >时,y 随x 的增大而增大10.如图,四边形ABCD 是边长为1的正方形,BPC △是等边三角形,连接DP 并延长交CB 的延长线于点H ,连接BD 交PC 于点Q ,下列结论:①135BPD ∠=︒;②BDP HDB △∽△;③:1:2DQ BQ =;④BDP S =△ 其中正确的有( )毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)A .①②③B .②③④C .①③④D .①②④第Ⅱ卷(非选择题,满分110分)二、填空题(本大题共5个小题,每小题4分,共20分)11.2018年10月24日,我国又一项世界级工程——港珠澳大桥正式建成通车,它全长55000米,用科学记数法表示为 米.12.若关于x 的方程220x x k -+=有两个不相等的实数根,则k 的取值范围为 . 13.某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为 分.14.阅读材料:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似. 例如计算:462461()()()()210i i i i ++-++--==;2()()2363261(7)i i i i i i i -+-+-----===; 2441616117()()()i i i +----===; 22(24444134)i i i i i ++++-+===根据以上信息,完成下面计算:2()(22(2)1)i i i +-+-= .15.如图,在平面直角坐标系中,矩形OABC 的顶点O 落在坐标原点,点A 、点C 分别位于x 轴,y 轴的正半轴,G 为线段OA 上一点,将OCG △沿CG 翻折,O 点恰好落在对角线AC 上的点P 处,反比例函数12y x=经过点B 二次函数2()0y ax bx c a =++≠的图象经过()0,3C 、G 、A 三点,则该二次函数的解析式为 .(填一般式)三、计算或解答题(本大题共10小题,满分90分) 16.(本小题满分7分)计算:20192012 3.144()()cos3()|02π---++--︒+17.(本小题满分7分)解不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.18.(本小题满分7分)先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b满足2(2)0a -.19.(本小题满分9分)如图,在四边形ABCD 中,AD BC ∥,延长BC 到E ,使=CE BC ,连接AE 交CD 于点F ,点F 是CD 的中点.求证: (1)ADF ECF △≌△.(2)四边形ABCD 是平行四边形.数学试卷 第5页(共20页) 数学试卷 第6页(共20页)20.(本小题满分9分)汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固.如图,加固前大坝背水坡坡面从A 至A 共有30级阶梯,平均每级阶梯高30cm ,斜坡AB 的坡度1:1i =;加固后,坝顶宽度增加2米,斜坡EF的坡度i =,问工程完工后,共需土石多少立方米?(计算土石方时忽略阶梯,结果保留根号)21.(本小题9分)仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2 400元购进一批仙桃,很快售完;老板又用3 700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元. (1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价-进价)22.(本小题满分10分)我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:代号 活动类型 A 经典诵读与写作 B 数学兴趣与培优 C 英语阅读与写作 D 艺体类 E其他为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了 名学生. (2)将条形统计图补充完整.(3)“数学兴趣与培优”所在扇形的圆心角的度数为 .(4)若该校共有2 000名学生,请估计该校喜欢A 、B 、C 三类活动的学生共有多少人?(5)学校将从喜欢“A ”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园“金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.23.(本小题满分10分)如图,一次函数3y x =-的图象与反比例函数(0)ky k x=≠的图象交于点A 与点(),4B a -. (1)求反比例函数的表达式; (2)若动点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,且过点P 作y 轴的平行线交直线AB 于点C ,连接OC ,若POC △的面积为3,求出点P 的坐标.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共20页) 数学试卷 第8页(共20页)24.(本小题满分10分)如图,ABC △内接于O ⊙,直径AD 交BC 于点E ,延长AD 至点F ,使2DF OD =,连接FC 并延长交过点A 的切线于点G ,且满足AG BC ∥,连接OC ,若1cos 3BAC ∠=,6BC =.(1)求证:COD BAC ∠=∠;(2)求O ⊙的半径OC ; (3)求证:CF 是O ⊙的切线.25.(本小题满分12分)如图,顶点为()3,3P 的二次函数图象与x 轴交于点()6,0A ,点B 在该图象上,OB 交其对称轴l 于点M ,点M 、N 关于点P 对称,连接BN 、ON . (1)求该二次函数的关系式.(2)若点B 在对称轴l 右侧的二次函数图象上运动,请解答下列问题: ①连接OP ,当12OP MN =时,请判断NOB △的形状,并求出此时点B 的坐标. ②求证:BNM ONM ∠=∠.数学试卷 第9页(共20页) 数学试卷 第10页(共20页)四川省遂宁市2019年初中毕业会考、高级中等学校招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】-=B 2.【答案】B【解析】A、2,无法计算,故此选项错误;B 、()22346a b a b =,正确;C 、()2221aa a a +÷=+,故此选项错误;D 、故222523x y x y x y -=,此选项错误。

四川省遂宁市2019-2020学年中考数学一模试卷含解析

四川省遂宁市2019-2020学年中考数学一模试卷含解析

四川省遂宁市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.抛物线y=ax2﹣4ax+4a﹣1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x1<2<x2,x1+x2<4,则下列判断正确的是()A.m<n B.m≤n C.m>n D.m≥n2.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A .B.2 C .D .3.把不等式组2010xx-⎧⎨+<⎩…的解集表示在数轴上,正确的是()A .B .C .D .4.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为A.1 B.2 2C.2D.31-5.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC 的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.36.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A .25B .5 C .2 D .127.如图,在平行四边形ABCD 中,AB=4,BC=6,分别以A ,C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M ,N 两点,作直线MN 交AD 于点E ,则△CDE 的周长是( )A .7B .10C .11D .128.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。

那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A .()222a b a b -=- B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+D .()()22a b a b a b -=+-9.不等式2x ﹣1<1的解集在数轴上表示正确的是( ) A . B . C .D .10.如图,在四边形ABCD 中,∠A+∠D=α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P=( )A .90°-12α B .90°+12α C .2α D .360°-α11.下列计算正确的是( ) A .a 4+a 5=a 9 B .(2a 2b 3)2=4a 4b 6C .﹣2a (a+3)=﹣2a 2+6aD .(2a ﹣b )2=4a 2﹣b 212. “可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为( ) A .0.8×1011B .8×1010C .80×109D .800×108二、填空题:(本大题共6个小题,每小题4分,共24分.)13.菱形ABCD 中,∠A=60°,AB=9,点P 是菱形ABCD 内一点,PB=PD=33,则AP 的长为_____. 14.若2a ﹣b=5,a ﹣2b=4,则a ﹣b 的值为________. 15.抛物线y=﹣x 2+4x ﹣1的顶点坐标为 .16.可燃冰是一种新型能源,它的密度很小,31cm 可燃冰的质量仅为0.00092kg .数字0.00092用科学记数法表示是__________. 17.如果分式4xx +的值是0,那么x 的值是______. 18.12的相反数是______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)在矩形ABCD 中,两条对角线相交于O ,∠AOB=60°,AB=2,求AD 的长.20.(6分)已知x 1﹣1x ﹣1=1.求代数式(x ﹣1)1+x (x ﹣4)+(x ﹣1)(x+1)的值. 21.(6分)如图,在平面直角坐标系xOy 中,函数()0ky x x=>的图象与直线y =2x+1交于点A (1,m ). (1)求k 、m 的值;(2)已知点P (n ,0)(n≥1),过点P 作平行于y 轴的直线,交直线y =2x+1于点B ,交函数()0ky x x=>的图象于点C.横、纵坐标都是整数的点叫做整点.①当n =3时,求线段AB 上的整点个数; ②若()0ky x x=>的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(包括边界)恰有5个整点,直接写出n 的取值范围.22.(8分)如图,在ABC V 中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F.12∠∠=,试判断DG 与BC 的位置关系,并说明理由.23.(8分)如图,已知AB 是O e 的直径,点C 、D 在O e 上,60D ∠=o 且6AB =,过O 点作OE AC ⊥,垂足为E .()1求OE 的长;()2若OE 的延长线交O e 于点F ,求弦AF 、AC 和弧CF 围成的图形(阴影部分)的面积S .24.(10分)如图, 二次函数23y ax bx =++的图象与 x 轴交于()30A -,和()10B ,两点,与 y 轴交于点 C ,一次函数的图象过点 A 、C .(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围.25.(10分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示: 本数(本) 频数(人数) 频率 5a0.26 18 0.17 14 b8 8 0.16 合计50 c我们定义频率=频数抽样人数,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是1850=0.1.(1)统计表中的a、b、c的值;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程.26.(12分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:(1)样本中的总人数为人;扇形统计十图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?27.(12分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点(1)求证:∠A=∠ADE ;(2)若AD=8,DE=5,求BC 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】分析:将一般式配方成顶点式,得出对称轴方程2x =,根据抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,得出()()244410a a a =--⨯->V ,求得 0a >,距离对称轴越远,函数的值越大,根据121224x x x x <<+<,,判断出它们与对称轴之间的关系即可判定.详解:∵()2244121y ax ax a a x =-+-=--, ∴此抛物线对称轴为2x =,∵抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,∴当24410ax ax a -+-=时,()()244410a a a =--⨯->V ,得0a >, ∵121224x x x x <<+<,, ∴1222x x ,->- ∴m n >, 故选C .点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n 分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=52,∴m=11 8,∵m<0,∴此种情形不合题意,所以m+n=﹣1+52=12.3.B【解析】【分析】首先解出各个不等式的解集,然后求出这些解集的公共部分即可.【详解】解:由x﹣2≥0,得x≥2,由x+1<0,得x<﹣1,所以不等式组无解,故选B.【点睛】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.4.C【解析】作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN∧的中点,∴∠BON=30 °,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴2∴2故选:C.5.C【解析】【分析】过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.【详解】延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得,四边形PGBD,EPHC是平行四边形,∴PG=BD,PE=HC,又△ABC是等边三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,∴PF=PG=BD,PD=DH,又△ABC的周长为12,∴PD+PE+PF=DH+HC+BD=BC=13×12=4,故选C.【点睛】本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.6.D【解析】【分析】根据同弧或等弧所对的圆周角相等可知∠BED=∠BAD,再结合图形根据正切的定义进行求解即可得. 【详解】∵∠DAB=∠DEB,∴tan∠DEB= tan∠DAB=12,故选D.【点睛】本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.7.B【解析】∵四边形ABCD是平行四边形,∴AD=BC=4,CD=AB=6,∵由作法可知,直线MN是线段AC的垂直平分线,∴AE=CE,∴AE+DE=CE+DE=AD,∴△CDE的周长=CE+DE+CD=AD+CD=4+6=1.故选B.8.D【解析】【分析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.【详解】阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).故选:D.【点睛】考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.9.D【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】移项得,2x<1+1,合并同类项得,2x<2,x的系数化为1得,x<1.在数轴上表示为:.故选D.【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解题的关键.10.C【解析】试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=12(360°﹣α)=180°﹣12α,。

四川省遂宁市2019-2020学年中考数学考前模拟卷(1)含解析

四川省遂宁市2019-2020学年中考数学考前模拟卷(1)含解析

四川省遂宁市2019-2020学年中考数学考前模拟卷(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列运算结果正确的是( ) A .3a ﹣a=2 B .(a ﹣b )2=a 2﹣b 2 C .a (a+b )=a 2+b D .6ab 2÷2ab=3b2.在平面直角坐标系中,点P (m ﹣3,2﹣m )不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.将抛物线()2y x 13=-+向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( ) A .()2y x 2=-B .()2y x 26=-+ C .2y x 6=+D .2y x =4.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,且AB=10,BC=15,MN=3,则AC 的长是( )A .12B .14C .16D .185.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是( )A .B .C .D .6.下列各式属于最简二次根式的有( ) A 8B .21x +C 3yD 127.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数B .平均数C .中位数D .方差A .5 cmB .6 cmC .8 cmD .10 cm9.计算(ab 2)3的结果是( ) A .ab 5B .ab 6C .a 3b 5D .a 3b 610.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( ) A .1一定不是关于x 的方程x 2+bx+a=0的根 B .0一定不是关于x 的方程x 2+bx+a=0的根 C .1和﹣1都是关于x 的方程x 2+bx+a=0的根 D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根11.下图是某几何体的三视图,则这个几何体是( )A .棱柱B .圆柱C .棱锥D .圆锥12.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a 一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.因式分解:323x y x -=_______________.14.已知圆锥的底面半径为3cm ,侧面积为15πcm 2,则这个圆锥的侧面展开图的圆心角 °. 15.如图,△ABC 是⊙O 的内接三角形,AD 是⊙O 的直径,∠ABC=50°,则∠CAD=________ .16.欣欣超市为促销,决定对A,B两种商品统一进行打8折销售,打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元,打折后,小敏买50件A商品和40件B商品仅需________元.17.已知线段a=4,线段b=9,则a,b的比例中项是_____.18.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果是____________(用含字母x和n的代数式表示).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知△ABC内接于Oe,AB是直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平行四边形;(2)填空:①当∠B= 时,四边形OCAD是菱形;②当∠B= 时,AD与Oe相切.20.(6分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=12α.(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,①求∠DAF的度数;②求证:△ADE≌△ADF;(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为.21.(6分)先化简,再求值:2121111a a a a -⎛⎫-÷⎪+-+⎝⎭,其中31a =+ 22.(8分)如图,△ABC 中,点D 在边AB 上,满足∠ACD=∠ABC ,若AC=3,AD=1,求DB 的长.23.(8分)计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭.24.(10分)如图,在Rt △ABC 中,∠C =90°,AC 5=,tanB 12=,半径为2的⊙C 分别交AC ,BC 于点D 、E ,得到DE 弧.求证:AB 为⊙C 的切线.求图中阴影部分的面积.25.(10分)如下表所示,有A 、B 两组数: 第1个数 第2个数 第3个数 第4个数 …… 第9个数 …… 第n 个数 A 组 ﹣6 ﹣5 ﹣2 …… 58 …… n 2﹣2n ﹣5 B 组14710……25……(1)A 组第4个数是 ;用含n 的代数式表示B 组第n 个数是 ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.26.(12分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). 请画出△ABC 向左平移5个单位长度后得到的△A B C ;请画出△ABC 关于原点对称的△A B C ; 在轴上求作一点P ,使△PAB 的周长最小,请画出△PAB ,并直接写出P 的坐标.27.(12分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】各项计算得到结果,即可作出判断.【详解】解:A、原式=2a,不符合题意;D 、原式=3b ,符合题意; 故选D 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 2.A 【解析】 【分析】分点P 的横坐标是正数和负数两种情况讨论求解. 【详解】①m-3>0,即m >3时, 2-m <0,所以,点P (m-3,2-m )在第四象限; ②m-3<0,即m <3时,2-m 有可能大于0,也有可能小于0, 点P (m-3,2-m )可以在第二或三象限, 综上所述,点P 不可能在第一象限. 故选A . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 3.D 【解析】根据“左加右减、上加下减”的原则,将抛物线()2y x 13=-+向左平移1个单位所得直线解析式为:()22y x 113y x 3=-++⇒=+; 再向下平移3个单位为:22y x 33y x =+-⇒=.故选D . 4.C 【解析】在△ABN与△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选C.5.A【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.6.B【解析】【分析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【详解】A=A选项错误;B是最简二次根式,故B选项正确;C=D=D选项错误;故选:B.【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.7.D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

四川省遂宁市2019-2020学年中考数学考前模拟卷(3)含解析

四川省遂宁市2019-2020学年中考数学考前模拟卷(3)含解析

四川省遂宁市2019-2020学年中考数学考前模拟卷(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.B.C.D.2.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.18B.16C.14D.123.如图,已知Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转,使点D落在射线CA上,DE 的延长线交BC于F,则∠CFD的度数为()A.80°B.90°C.100°D.120°4.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x 之间的函数关系的是()A.B.C.D.5.如图所示的几何体的主视图是()A.B.C.D.6.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.33B.55C.233D.2557.下列关于x的方程中,属于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.ax2+bx+c=08.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( )A.6 B.8 C.10 D.129.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,2C.1,1,3D.1,2,310.工人师傅用一张半径为24cm,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为()cm.A.119B.2119C.46D.1119 211.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是()A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=412.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2 C.∠BAD与∠D互补 D.∠BCD与∠D互补二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点M是反比例函数2yx(x>0)图像上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为A .1B .2C .4D .不能确定14.已知x 1,x 2是方程x 2+6x+3=0的两实数根,则2112x x x x +的值为_____. 15.阅读以下作图过程: 第一步:在数轴上,点O 表示数0,点A 表示数1,点B 表示数5,以AB 为直径作半圆(如图); 第二步:以B 点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A 点为圆心,AC 为半径作弧交数轴的正半轴于点M .请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M 表示的数为______.16.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.17.如图,已知ABC V ,D 、E 分别是边BA 、CA 延长线上的点,且//.DE BC 如果35DE BC =,4CE =,那么AE 的长为______.18.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB =6cm ,BC =8cm ,则EF =_____cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB 为⊙O 的直径,点D 、E 位于AB 两侧的半圆上,射线DC 切⊙O 于点D ,已知点E 是半圆弧AB 上的动点,点F 是射线DC 上的动点,连接DE 、AE ,DE 与AB 交于点P ,再连接FP 、FB ,且∠AED =45°.(1)求证:CD ∥AB ;(2)填空:①当∠DAE = 时,四边形ADFP 是菱形;②当∠DAE = 时,四边形BFDP 是正方形.20.(6分)如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数m y x=的图象经过点E ,与AB 交于点F . 若点B 坐标为(6,0)-,求m 的值及图象经过A 、E 两点的一次函数的表达式;若2AF AE -=,求反比例函数的表达式.21.(6分)阅读(1)阅读理解:如图①,在△ABC 中,若AB=10,AC=6,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE=AD ,再连接BE (或将△ACD 绕着点D 逆时针旋转180°得到△EBD ),把AB ,AC ,2AD 集中在△ABE 中,利用三角形三边的关系即可判断.中线AD 的取值范围是________;(2)问题解决:如图②,在△ABC 中,D 是BC 边上的中点,DE ⊥DF 于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE+CF >EF ;(3)问题拓展:如图③,在四边形ABCD 中,∠B+∠D=180°,CB=CD ,∠BCD=140°,以C 为顶点作一个70°角,角的两边分别交AB ,AD 于E ,F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并加以证明. 22.(8分)如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过B 点的切线交OP 于点C .求证:∠CBP=∠ADB .若OA=2,AB=1,求线段BP 的长.23.(8分)如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA =∠CBD .(1)求证:CD 是⊙O 的切线;(2)过点B 作⊙O 的切线交CD 的延长线于点E ,BC =6,.求BE 的长.24.(10分)如图,已知ABC DCB ∠=∠,ACB DBC ∠=∠.求证AB DC =.25.(10分)(感知)如图①,四边形ABCD 、CEFG 均为正方形.可知BE=DG .(拓展)如图②,四边形ABCD 、CEFG 均为菱形,且∠A=∠F .求证:BE=DG .(应用)如图③,四边形ABCD 、CEFG 均为菱形,点E 在边AD 上,点G 在AD 延长线上.若AE=2ED ,∠A=∠F ,△EBC 的面积为8,菱形CEFG 的面积是_______.(只填结果)26.(12分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.九宫格27.(12分)如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BF∥AC.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可.解答:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确.故选D.2.B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是1 6 .故选B.考点:简单概率计算.3.B【解析】【分析】根据旋转的性质得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根据三角形外角性质得出∠CFD=∠B+∠BEF,代入求出即可.【详解】解:∵将△ABC绕点A顺时针旋转得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故选:B.【点睛】本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键.4.A【解析】由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选A.5.A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.D【解析】【详解】过B点作BD⊥AC,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=ADAB=2210=25,故选D.7.B【解析】【分析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.【详解】A. 未知数的最高次数不是2 ,不是一元二次方程,故此选项错误;B. 是一元二次方程,故此选项正确;C. 未知数的最高次数是3,不是一元二次方程,故此选项错误;D. a=0时,不是一元二次方程,故此选项错误;故选B.【点睛】本题考查一元二次方程的定义,解题的关键是明白:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.8.C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,DE AD FC EF=,∴四边形BFED是平行四边形,∴BD=EF,∴563DE ADBD==,解得:DE=10.故选C.9.D【解析】【分析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.【详解】∵1+2=3,不能构成三角形,故选项错误;B、∵12+12)2,是等腰直角三角形,故选项错误;C=12,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选D.10.B【解析】分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.详解:由题意可得圆锥的母线长为:24cm,设圆锥底面圆的半径为:r,则2πr=15024180π⨯,解得:r=10,(cm).故选B.点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键.11.D【解析】解:由对称轴x=2可知:b=﹣4,∴抛物线y=x2﹣4x+c,令x=﹣1时,y=c+5,x=3时,y=c﹣3,关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,当△=0时,即c=4,此时x=2,满足题意.当△>0时,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,当c=﹣5时,此时方程为:﹣x2+4x+5=0,解得:x=﹣1或x=5不满足题意,当c=3时,此时方程为:﹣x 2+4x ﹣3=0,解得:x=1或x=3此时满足题意,故﹣5<c≤3或c=4,故选D.点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.12.C【解析】【分析】分清截线和被截线,根据平行线的性质进行解答即可.【详解】解:∵AB ∥CD ,∴∠BAD 与∠D 互补,即C 选项符合题意;当AD ∥BC 时,∠BAD 与∠B 互补,∠1=∠2,∠BCD 与∠D 互补,故选项A 、B 、D 都不合题意,故选:C .【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.A【解析】【分析】可以设出M 的坐标,MNP V 的面积即可利用M 的坐标表示,据此即可求解.【详解】设M 的坐标是(m,n),则mn=2.则MN=m ,MNP V 的MN 边上的高等于n.则MNP V 的面积1 1.2mn == 故选A.【点睛】考查反比例函数系数k 的几何意义,是常考点,需要学生熟练掌握.14.1.【解析】试题分析:∵1x ,2x 是方程的两实数根,∴由韦达定理,知126x x +=-,123x x =,∴2112x x x x +=2121212()2x x x x x x +-=2(6)233--⨯=1,即2112x x x x +的值是1.故答案为1. 考点:根与系数的关系.15.作图见解析,151+【解析】解:如图,点M 即为所求.连接AC 、BC .由题意知:AB=4,BC=1.∵AB 为圆的直径,∴∠ACB=90°,则AM=AC=22AB BC -=2241-=15,∴点M 表示的数为151+.故答案为151+.点睛:本题主要考查作图﹣尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理. 16.1.【解析】【分析】设小矩形的长为x ,宽为y ,则由图1可得5y=3x ;由图2可知2y-x=2.【详解】解:设小矩形的长为x ,宽为y ,则可列出方程组,3522x y y x =⎧⎨-=⎩,解得106x y =⎧⎨=⎩, 则小矩形的面积为6×10=1. 【点睛】本题考查了二元一次方程组的应用.17.32【解析】【分析】由DE ∥BC 不难证明△ABC ~△ADE,再由DE AE BC AC =,将题中数值代入并根据等量关系计算AE 的长. 【详解】解:由DE ∥BC 不难证明△ABC ~△ADE,∵35DE AE BC AC ==,CE=4,∴345 DE AEBC AE==-,解得:AE=3 2故答案为3 2 .【点睛】本题考查了相似三角形的判定和性质,熟记三角形的判定和性质是解题关键.18.2.1【解析】【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=1cm,∵点E、F分别是AO、AD的中点,∴EF=12OD=2.1cm,故答案为2.1.【点评】本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析;(2)①67.5°;②90°.【解析】【分析】(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;②根据四边形BFDP是正方形,可以求得∠DAE的度数.【详解】(1)证明:连接OD,如图所示,∵射线DC 切⊙O 于点D ,∴OD ⊥CD ,即∠ODF =90°,∵∠AED =45°,∴∠AOD =2∠AED =90°,∴∠ODF =∠AOD ,∴CD ∥AB ;(2)①连接AF 与DP 交于点G ,如图所示,∵四边形ADFP 是菱形,∠AED =45°,OA =OD ,∴AF ⊥DP ,∠AOD =90°,∠DAG =∠PAG ,∴∠AGE =90°,∠DAO =45°,∴∠EAG =45°,∠DAG =∠PEG =22.5°,∴∠EAD =∠DAG+∠EAG =22.5°+45°=67.5°,故答案为:67.5°;②∵四边形BFDP 是正方形,∴BF =FD =DP =PB ,∠DPB =∠PBF =∠BFD =∠FDP =90°,∴此时点P 与点O 重合,∴此时DE 是直径,∴∠EAD =90°,故答案为:90°.【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.20.(1)12=-m ,43y x =-;(2)4y x =-. 【解析】分析:(1)由已知求出A 、E 的坐标,即可得出m 的值和一次函数函数的解析式;(2)由34AD DE ==,,得到5AE =,由2AF AE -=,得到71AF BF ,==.设E 点坐标为()4a ,,则点F 坐标为()31a -,,代入反比例函数解析式即可得到结论.详解:(1)∵()6038B AD AB E -==,,,,为CD 的中点, ∴()()3468E A --,,,. ∵反比例函数图象过点()34E ,-, ∴3412m =-⨯=-.设图象经过A 、E 两点的一次函数表达式为:y kx b =+,∴6834k b k b -+=⎧⎨-+=⎩, 解得430k b ⎧=-⎪⎨⎪=⎩:, ∴43y x =-. (2)∵34AD DE ==,,∴5AE =.∵2AF AE -=,∴7AF =,∴1BF =.设E 点坐标为()4a ,,则点F 坐标为()31a -,.∵E F ,两点在m y x=图象上, ∴43a a =-,解得:1a =-, ∴()14E -,, ∴4m =-, ∴4y x=-.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F 的坐标.21.(1)2<AD<8;(2)证明见解析;(3)BE+DF=EF;理由见解析.【解析】试题分析:(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.试题解析:(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,BN=DF,∠NBC =∠D,BC=DC,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,CN=CF,∠ECN=∠ECF,CE=CE,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.考点:全等三角形的判定和性质;三角形的三边关系定理.22.(1)证明见解析;(2)BP=1.【解析】分析:(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.详(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴AP AOAD AB=,即1241BP+=,∴BP=1.点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.23.(1)证明见解析;(2).【解析】试题分析:连接OD.根据圆周角定理得到∠ADO+∠ODB=90°,而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以证明是切线.根据已知条件得到由相似三角形的性质得到求得由切线的性质得到根据勾股定理列方程即可得到结论.试题解析:(1)连接OD.∵OB=OD,∴∠OBD=∠BDO.∵∠CDA=∠CBD,∴∠CDA=∠ODB.又∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD.∵OD是⊙O的半径,∴CD是⊙O的切线;(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,BC=6,∴CD=4.∵CE,BE是⊙O的切线,∴BE=DE,BE⊥BC,∴BE2+BC2=EC2,即BE2+62=(4+BE)2,解得BE=.24.见解析【解析】【分析】根据∠ABD=∠DCA,∠ACB=∠DBC,求证∠ABC=∠DCB,然后利用AAS可证明△ABC≌△DCB,即可证明结论.【详解】证明:∵∠ABD=∠DCA,∠DBC=∠ACB∴∠ABD+∠DBC=∠DCA+∠ACB即∠ABC=∠DCB在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA )∴AB=DC【点睛】本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证△ABC ≌△DCB .难度不大,属于基础题.25.见解析【解析】试题分析:探究:由四边形ABCD 、四边形CEFG 均为菱形,利用SAS 易证得△BCE ≌△DCG ,则可得BE=DG ;应用:由AD ∥BC ,BE=DG ,可得S △ABE +S △CDE =S △BEC =S △CDG =8,又由AE=3ED ,可求得△CDE 的面积,继而求得答案.试题解析:探究:∵四边形ABCD 、四边形CEFG 均为菱形,∴BC=CD ,CE=CG ,∠BCD=∠A ,∠ECG=∠F .∵∠A=∠F ,∴∠BCD=∠ECG .∴∠BCD-∠ECD=∠ECG-∠ECD ,即∠BCE=∠DCG .在△BCE 和△DCG 中,BC CD BCE DCG CE CG ⎧⎪∠∠⎨⎪⎩===∴△BCE ≌△DCG (SAS ),∴BE=DG .应用:∵四边形ABCD 为菱形,∴AD ∥BC ,∵BE=DG ,∴S △ABE +S △CDE =S △BEC =S △CDG =8,∵AE=3ED ,∴S△CDE=182 4⨯=,∴S△ECG=S△CDE+S△CDG=10 ∴S菱形CEFG=2S△ECG=20.26.(1)12;(2)14【解析】试题分析:(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.试题解析:(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.考点:列表法与树状图法;概率公式.27.见解析.【解析】【分析】(1)画出⊙O的两条直径,交点即为圆心O.(2)作直线AO交⊙O于F,直线BF即为所求.【详解】解:作图如下:(1);(2).【点睛】本题考查作图−复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

四川省遂宁市2019-2020学年中考数学模拟试题(2)含解析

四川省遂宁市2019-2020学年中考数学模拟试题(2)含解析

四川省遂宁市2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°2.2017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为()A.7.49×107B.74.9×106C.7.49×106D.0.749×1073.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为()A.3B.23C.22D.44.下列等式正确的是()A.x3﹣x2=x B.a3÷a3=aC.231(2)(2)2-÷-=-D.(﹣7)4÷(﹣7)2=﹣725.如图,AB∥CD,直线EF与AB、CD分别相交于E、F,AM⊥EF于点M,若∠EAM=10°,那么∠CFE 等于()A.80°B.85°C.100°D.170°6.如图,已知△ABC中,∠A=75°,则∠1+∠2=( )A .335°°B .255°C .155°D .150°7.将抛物线y=x 2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为( ) A .y=(x ﹣2)2+3 B .y=(x ﹣2)2﹣3 C .y=(x+2)2+3 D .y=(x+2)2﹣38.如图,直线y=x+3交x 轴于A 点,将一块等腰直角三角形纸板的直角顶点置于原点O ,另两个顶点M 、N 恰落在直线y=x+3上,若N 点在第二象限内,则tan ∠AON 的值为( )A .B .C .D .9.在直角坐标平面内,已知点M(4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,那么r 的取值范围为( ) A .0r 5<<B .3r 5<<C .4r 5<<D .3r 4<<10.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( ) A .2003503x x =- B .2003503x x =+ C .2003503x x=+ D .2003503x x=- 11.下列各数:π,sin30°39 ) A .1个B .2个C .3个D .4个12.在3-,1-,0,1这四个数中,最小的数是( ) A .3-B .1-C .0D .1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.有一组数据:2,3,5,5,x ,它们的平均数是10,则这组数据的众数是 .14.已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c=_____.15.如下图,在直径AB的半圆O中,弦AC、BD相交于点E,EC=2,BE=1.则cos∠BEC=________.16.如图,已知,第一象限内的点A在反比例函数y=2x的图象上,第四象限内的点B在反比例函数y=kx的图象上.且OA⊥OB,∠OAB=60°,则k的值为_________.17.已知△ABC中,BC=4,AB=2AC,则△ABC面积的最大值为_______.18.如图,等腰△ABC中,AB=AC=5,BC=8,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,BD的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.20.(6分)如图,矩形ABCD中,对角线AC、BD交于点O,以AD、OD为邻边作平行四边形ADOE,连接BE求证:四边形AOBE 是菱形若180EAO DCO ∠+∠=︒,2DC =,求四边形ADOE 的面积21.(6分)下表给出A 、B 、C 三种上宽带网的收费方式: 收费方式 月使用费/元 包时上网时间/h 超时费/(元/min ) A 30 25 0.05 B 50 50 0.05 C120不限时设上网时间为t 小时. (I )根据题意,填写下表: 月费/元 上网时间/h 超时费/(元) 总费用/(元) 方式A 30 40 方式B50100(II )设选择方式A 方案的费用为y 1元,选择方式B 方案的费用为y 2元,分别写出y 1、y 2与t 的数量关系式;(III )当75<t <100时,你认为选用A 、B 、C 哪种计费方式省钱(直接写出结果即可)? 22.(8分)解方程(2x+1)2=3(2x+1)23.(8分)如图,一次函数y =kx +b 的图象与反比例函数ay x=的图象交于点A (4,3),与y 轴的负半轴交于点B ,连接OA ,且OA =OB . (1)求一次函数和反比例函数的表达式;(2)过点P (k ,0)作平行于y 轴的直线,交一次函数y =2x +n 于点M ,交反比例函数ay x=的图象于点N ,若NM =NP ,求n 的值.24.(10分)如图,在平面直角坐标系中,二次函数y=(x-a )(x-3)(0<a<3)的图象与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点D ,过其顶点C 作直线CP ⊥x 轴,垂足为点P ,连接AD 、BC .(1)求点A 、B 、D 的坐标;(2)若△AOD 与△BPC 相似,求a 的值;(3)点D 、O 、C 、B 能否在同一个圆上,若能,求出a 的值,若不能,请说明理由. 25.(10分)观察下列等式:第1个等式:a 1212=+, 第2个等式:a 23223=+第3个等式:a 332+3, 第4个等式:a 4525=+-2,…按上述规律,回答以下问题:请写出第n 个等式:a n =__________.a 1+a 2+a 3+…+a n =_________.26.(12分)为响应国家“厉行节约,反对浪费”的号召,某班一课外活动小组成员在全校范围内随机抽取了若干名学生,针对“你每天是否会节约粮食”这个问题进行了调查,并将调查结果分成三组(A .会;B .不会;C .有时会),绘制了两幅不完整的统计图(如图)(1)这次被抽查的学生共有______人,扇形统计图中,“A组”所对应的圆心度数为______;(2)补全两个统计图;(3)如果该校学生共有2000人,请估计“每天都会节约粮食”的学生人数;(4)若不节约零食造成的浪费,按平均每人每天浪费5角钱计算,小江认为,该校学生一年(365天)共将浪费:2000×20%×0.5×365=73000(元),你认为这种说法正确吗?并说明理由.27.(12分)计算:﹣16+(﹣12)﹣2﹣|3﹣2|+2tan60°参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:已知m∥n,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD的一个外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案选C.考点:平行线的性质.2.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】7490000=7.49×106.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B【解析】分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解.详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,∴等边三角形的高==故选B.点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度.4.C【解析】【分析】直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案.【详解】解:A、x3-x2,无法计算,故此选项错误;B、a3÷a3=1,故此选项错误;C、(-2)2÷(-2)3=-12,正确;D、(-7)4÷(-7)2=72,故此选项错误;故选C.【点睛】此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键.5.C【解析】【分析】根据题意,求出∠AEM,再根据AB∥CD,得出∠AEM与∠CFE互补,求出∠CFE.【详解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故选C.【点睛】本题考查三角形内角和与两条直线平行内错角相等.6.B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故选B.点睛:本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n﹣2)×180°(n≥3且n为整数)是解题的关键.7.D【解析】【分析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选:D.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.A【解析】【分析】过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.【详解】过O作OC⊥AB于C,过N作ND⊥OA于D,∵N在直线y=x+3上,∴设N的坐标是(x,x+3),则DN=x+3,OD=-x,y=x+3,当x=0时,y=3,当y=0时,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,∴3×4=5OC,OC=,∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=,∴ON=,在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(x+3)2+(-x)2=()2,解得:x1=-,x2=,∵N在第二象限,∴x只能是-,x+3=,即ND=,OD=,tan∠AON=.故选A.【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.9.D【解析】【分析】先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.【详解】解:∵点M的坐标是(4,3),∴点M到x轴的距离是3,到y轴的距离是4,∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,∴r的取值范围是3<r<4,故选:D.【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.10.B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程11.B【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可.【详解】sin30°=12,9=3,故无理数有π,-3,故选:B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.12.A【解析】【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案.【详解】由正数大于零,零大于负数,得3101-<-<<,最小的数是3-,故选A.【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】根据平均数为10求出x的值,再由众数的定义可得出答案.解:由题意得,(2+3+1+1+x)=10,解得:x=31,这组数据中1出现的次数最多,则这组数据的众数为1.故答案为1.14.1 【解析】 【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负. 【详解】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积. 则c 1=4×1,c=±1,(线段是正数,负值舍去), 故c=1. 故答案为1. 【点睛】本题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数. 15.12【解析】分析:连接BC ,则∠BCE =90°,由余弦的定义求解.详解:连接BC ,根据圆周角定理得,∠BCE =90°, 所以cos ∠BEC =2142CE BE ==. 故答案为12. 点睛:本题考查了圆周角定理的余弦的定义,求一个锐角的余弦时,需要把这个锐角放到直角三角形中,再根据余弦的定义求解,而圆中直径所对的圆周角是直角. 16.-6 【解析】如图,作AC ⊥x 轴,BD ⊥x 轴, ∵OA ⊥OB , ∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°, ∴∠OAC=∠BOD , ∴△ACO ∽△ODB , ∴OA OC ACOB BD OD==, ∵∠OAB=60°,∴3OA OB =,设A(x,2x ),∴BD=3OC=3x,OD=3AC=23x,∴B(3x,-23x),把点B代入y=kx得,-23=3x,解得k=-6,故答案为-6.17.16 3【解析】【分析】设AC=x,则AB=2x,根据面积公式得S△ABC21cos C-,由余弦定理求得cosC代入化简S△ABC222569809169x⎛⎫--⎪⎝⎭,由三角形三边关系求得443x<<,由二次函数的性质求得S△ABC取得最大值. 【详解】设AC=x,则AB=2x,根据面积公式得:c=1sin2sin2AC BC C x C⋅⋅=21cos C-.由余弦定理可得:2163cos8xCx-=,∴S△ABC21cos C-2216318xx⎛⎫-- ⎪⎝⎭222569809139x⎛⎫--⎪⎝⎭由三角形三边关系有2442x xx x+>⎧⎨+>⎩,解得443x<<,故当453x=时,443x<<取得最大值163,故答案为: 16 3.【点睛】本题主要考查了余弦定理和面积公式在解三角形中的应用,考查了二次函数的性质,考查了计算能力,当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.18.2或7 8【解析】【分析】分两种情况讨论:(1)当AFC90∠︒=时,AF BC⊥,利用等腰三角形的三线合一性质和垂直平分线的性质可解;(2)当CAF90=∠︒时,过点A作AM BC⊥于点M,证明AMC FACV V∽,列比例式求出FC,从而得BF,再利用垂直平分线的性质得BD.【详解】解:(1)当AFC90∠︒=时,AF BC⊥,142AB ACBF BC BF=∴=∴=Q∵DE垂直平分BF,8122BCBD BF=∴==Q.(2)当CAF90=∠︒时,过点A作AM BC⊥于点M,AB ACQ=BM CM=∴在Rt AMCV与Rt FACV中,AMC FAC90C C∠∠∠∠︒==,=,AMC FAC∴V V∽,AC MCFC AC=Q2ACFCMC∴=15,42254AC MC BCFC===∴=Q2578441728BF BC FCBD BF∴=-=-=∴==.故答案为2或78.【点睛】本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.300米【解析】【详解】解:设原来每天加固x米,根据题意,得.去分母,得1200+4200=18x(或18x=5400)解得300x=.检验:当300x=时,20x≠(或分母不等于0).∴300x=是原方程的解.答:该地驻军原来每天加固300米.20.(1)见解析;(2)S四边形ADOE =3【解析】【分析】(1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.(2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=23根据面积公式SΔADC,即可求解.【详解】(1)证明:∵矩形ABCD,∴OA=OB=OC=OD.∵平行四边形ADOE , ∴OD ∥AE ,AE=OD. ∴AE=OB.∴四边形AOBE 为平行四边形. ∵OA=OB ,∴四边形AOBE 为菱形. (2)解:∵菱形AOBE , ∴∠EAB=∠BAO. ∵矩形ABCD , ∴AB ∥CD.∴∠BAC=∠ACD ,∠ADC=90°. ∴∠EAB=∠BAO=∠DCA. ∵∠EAO+∠DCO=180°, ∴∠DCA=60°. ∵DC=2,∴AD=∴S ΔADC =122⨯⨯=∴S 四边形ADOE =【点睛】考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强. 21.(I )见解析;(II )见解析;(III )见解析. 【解析】 【分析】(I )根据两种方式的收费标准分别计算,填表即可;(II )根据表中给出A ,B 两种上宽带网的收费方式,分别写出y 1、y 2与t 的数量关系式即可; (III )计算出三种方式在此取值范围的收费情况,然后比较即可得出答案. 【详解】(I )当t=40h 时,方式A 超时费:0.05×60(40﹣25)=45,总费用:30+45=75, 当t=100h 时,方式B 超时费:0.05×60(100﹣50)=150,总费用:50+150=200, 填表如下:(II)当0≤t≤25时,y1=30,当t>25时,y1=30+0.05×60(t﹣25)=3t﹣45,所以y1=30(025){345(25)tt t≤≤->;当0≤t≤50时,y2=50,当t>50时,y2=50+0.05×60(t﹣50)=3t﹣100,所以y2=50(050){3100(50)tt t≤≤->;(III)当75<t<100时,选用C种计费方式省钱.理由如下:当75<t<100时,y1=3t﹣45,y2=3t﹣100,y3=120,当t=75时,y1=180,y2=125,y3=120,所以当75<t<100时,选用C种计费方式省钱.【点睛】本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键.22.x1=-12,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x1=﹣12,x2=1.点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.23.20(1)y=2x-5, y=12x;(2)n=-4或n=1【解析】【分析】(1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;(2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x-n可得答案.【详解】解:(1)∵点A 的坐标为(4,3), ∴OA=5, ∵OA=OB , ∴OB=5,∵点B 在y 轴的负半轴上, ∴点B 的坐标为(0,-5),将点A (4,3)代入反比例函数解析式y=ax中, ∴反比例函数解析式为y=12x, 将点A (4,3)、B (0,-5)代入y=kx+b 中,得: k=2、b=-5,∴一次函数解析式为y=2x-5; (2)由(1)知k=2, 则点N 的坐标为(2,6), ∵NP=NM ,∴点M 坐标为(2,0)或(2,12), 分别代入y=2x-n 可得: n=-4或n=1. 【点睛】本题主要考查直线和双曲线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式及分类讨论思想的运用.24.(1)(1)A (a ,0),B (3,0),D (0,3a ).(2)a 的值为73.(3)当a=5时,D 、O 、C 、B 四点共圆. 【解析】【分析】(1)根据二次函数的图象与x 轴相交,则y=0,得出A (a ,0),B (3,0),与y 轴相交,则x=0,得出D (0,3a ).(2)根据(1)中A 、B 、D 的坐标,得出抛物线对称轴x=32a +,AO=a ,OD=3a ,代入求得顶点C (32a +,-232a -⎛⎫ ⎪⎝⎭),从而得PB=3- 32a +=32a -,PC=232a -⎛⎫ ⎪⎝⎭;再分情况讨论:①当△AOD ∽△BPC 时,根据相似三角形性质得233322a aa a =--⎛⎫ ⎪⎝⎭, 解得:a=3(舍去);②△AOD ∽△CPB ,根据相似三角形性质得233322aaa a =--⎛⎫⎪⎝⎭,解得:a 1=3(舍),a 2=73; (3)能;连接BD ,取BD 中点M ,根据已知得D 、B 、O 在以BD 为直径,M (32,32a )为圆心的圆上,若点C 也在此圆上,则MC=MB ,根据两点间的距离公式得一个关于a 的方程,解之即可得出答案.【详解】(1)∵y=(x-a )(x-3)(0<a<3)与x 轴交于点A 、B (点A 在点B 的左侧),∴A (a ,0),B (3,0), 当x=0时,y=3a , ∴D (0,3a );(2)∵A (a ,0),B (3,0),D (0,3a ).∴对称轴x=32a +,AO=a ,OD=3a , 当x= 32a +时,y=-232a -⎛⎫ ⎪⎝⎭, ∴C (32a +,-232a -⎛⎫ ⎪⎝⎭), ∴PB=3-32a +=32a -,PC=232a -⎛⎫ ⎪⎝⎭, ①当△AOD ∽△BPC 时, ∴AO OD BP PC=, 即 233322a aa a =--⎛⎫ ⎪⎝⎭,解得:a=3(舍去);②△AOD ∽△CPB , ∴AO OD CP PB=, 即233322aaa a =--⎛⎫⎪⎝⎭, 解得:a 1=3(舍),a 2=73. 综上所述:a 的值为73; (3)能;连接BD ,取BD 中点M ,∵D 、B 、O 三点共圆,且BD 为直径,圆心为M (32,32a ), 若点C 也在此圆上, ∴MC=MB ,∴222223333333222222a a a a ⎡⎤+-⎛⎫⎛⎫⎛⎫⎛⎫-++=-+⎢⎥ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ , 化简得:a 4-14a 2+45=0, ∴(a 2-5)(a 2-9)=0, ∴a 2=5或a 2=9,∴a 15a 25a 3=3(舍),a 4=-3(舍), ∵0<a<3, ∴5∴当5D 、O 、C 、B 四点共圆.【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键. 25.(1)1n a n n =++1n n + (211n +.【解析】 【分析】(1)根据题意可知,12112a ==+,23223a ==+32332a ==+45225a ==+,…由此得出第n 个等式:a n 11n n n n =+++(2)将每一个等式化简即可求得答案. 【详解】解:(1)∵第1个等式:12112a ==+,第2个等式:2a ==第3个等式:3 2a ==-第4个等式:4 2a ==,∴第n 个等式:a n= (2)a 1+a 2+a 3+…+a n=()()+++++L=1.=1.【点睛】 此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案. 26.(1)50 ,108°(2)见解析;(3)600人;(4)不正确,见解析.【解析】【分析】(1)由C 组人数及其所占百分比可得总人数,用360°乘以A 组人数所占比例可得;(2)根据百分比之和为1求得A 组百分比补全图1,总人数乘以B 的百分比求得其人数即可补全图2; (3)总人数乘以样本中A 所占百分比可得;(4)由样本中浪费粮食的人数所占比例不是20%即可作出判断.【详解】(1)这次被抽查的学生共有25÷50%=50人, 扇形统计图中,“A 组”所对应的圆心度数为360°×1550=108°, 故答案为50、108°;(2)图1中A 对应的百分比为1-20%-50%=30%,图2中B 类别人数为50×20%=5, 补全图形如下:(3)估计“每天都会节约粮食”的学生人数为2000×30%=600人;(4)不正确,因为在样本中浪费粮食的人数所占比例不是20%,所以这种说法不正确.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.27.3【解析】【分析】先根据乘方、负指数幂、绝对值、特殊角的三角函数值分别进行计算,然后根据实数的运算法则求得计算结果.【详解】﹣16+(﹣12)﹣2﹣3﹣2|+2tan60°=﹣1+4﹣(233,=﹣1+4﹣333【点睛】本题主要考查了实数的综合运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算法则.。

四川省遂宁市2019-2020学年中考数学考前模拟卷(2)含解析

四川省遂宁市2019-2020学年中考数学考前模拟卷(2)含解析

四川省遂宁市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是( )A.(2,0) B.(3,0) C.(2,-1) D.(2,1)2.下列四个不等式组中,解集在数轴上表示如图所示的是()A.23xx≥⎧⎨>-⎩B.23xx≤⎧⎨<-⎩C.23xx≥⎧⎨<-⎩D.23xx≤⎧⎨>-⎩3.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为()A.23B.2 C.4 D.34.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.5.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°6.在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( )A .众数B .中位数C .平均数D .方差7.一元二次方程2240x x ++=的根的情况是( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根8.函数22a y x --=(a 为常数)的图像上有三点17()2y -,,21()2y -,,33()2y ,,则函数值123,,y y y 的大小关系是( )A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 19.如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧),则∠C 与∠D 的大小关系为( )A .∠C >∠DB .∠C <∠D C .∠C=∠D D .无法确定10.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如,,,若x 4510+⎡⎤=⎢⎥⎣⎦,则x 的取值可以是( ) A .40 B .45 C .51 D .5611.等腰三角形一边长等于5,一边长等于10,它的周长是( )A .20B .25C .20或25D .1512.已知反比例函数1y x=下列结论正确的是( ) A .图像经过点(-1,1) B .图像在第一、三象限C .y 随着 x 的增大而减小D .当 x > 1时, y < 1 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组1x x m >-⎧⎨<⎩有2个整数解,则m 的取值范围是_____. 14.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_____.15.如图,在平面直角坐标系中,已知A (﹣2,1),B (1,0),将线段AB 绕着点B 顺时针旋转90°得到线段BA′,则A′的坐标为_____.16.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____.17.化简:a+1+a (a+1)+a (a+1)2+…+a (a+1)99=________.18.已知A (0,3),B (2,3)是抛物线上两点,该抛物线的顶点坐标是_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,某校自行车棚的人字架棚顶为等腰三角形,D 是AB 的中点,中柱CD =1米,∠A =27°,求跨度AB 的长(精确到0.01米).20.(6分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?21.(6分)如图,在平面直角坐标系xOy 中,直线y kx k =+与双曲线4=y x(x>0)交于点1)(,A a . 求a ,k 的值;已知直线l 过点(2,0)D 且平行于直线y kx k =+,点P(m ,n )(m>3)是直线l 上一动点,过点P 分别作x 轴、y 轴的平行线,交双曲线4=y x(x>0)于点M 、N ,双曲线在点M 、N 之间的部分与线段PM 、PN 所围成的区域(不含边界)记为W .横、纵坐标都是整数的点叫做整点.①当4m=时,直接写出区域W内的整点个数;②若区域W内的整点个数不超过8个,结合图象,求m 的取值范围.22.(8分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.判断直线MN与⊙O的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.23.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线1y x32=-+交AB,BC分别于点M,N,反比例函数kyx=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.24.(10分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10 10 35030 20 850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?25.(10分)我们来定义一种新运算:对于任意实数 x 、y ,“※”为 a ※b =(a+1)(b+1)﹣1. (1)计算(﹣3)※9(2)嘉琪研究运算“※”之后认为它满足交换律,你认为她的判断 ( 正确、错误)(3)请你帮助嘉琪完成她对运算“※”是否满足结合律的证明.26.(12分)在平面直角坐标系xOy 中,若抛物线2y x bx c =++顶点A 的横坐标是1-,且与y 轴交于点()B 0,1-,点P 为抛物线上一点.()1求抛物线的表达式;()2若将抛物线2y x bx c =++向下平移4个单位,点P 平移后的对应点为Q.如果OP OQ =,求点Q 的坐标.27.(12分)如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象分别交x 轴、y 轴于A 、B 两点,与反比例函数()0m y m x=≠的图象交于C 、D 两点.已知点C 的坐标是(6,-1),D (n ,3).求m 的值和点D 的坐标.求tan BAO ∠的值.根据图象直接写出:当x 为何值时,一次函数的值大于反比例函数的值?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.试题解析:AC=2,则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B.考点:坐标与图形变化-旋转.2.D【解析】【分析】此题涉及的知识点是不等式组的表示方法,根据规律可得答案.【详解】由解集在数轴上的表示可知,该不等式组为23 xx≤⎧⎨-⎩f,故选D.【点睛】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.3.A【解析】连接CC′,∵将△ADC沿AD折叠,使C点落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等边三角形,∴∠DC′C=60°,∵在△ABC中,AD是BC边的中线,即BD=CD,∴C′D=BD,∴∠DBC′=∠DC′B=12∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC•cos∠DBC′=4×3=23,故选A.【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键.4.A【解析】试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.故选A.【考点】简单组合体的三视图.5.D【解析】【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6.B【解析】【分析】【详解】解:11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.故选B.【点睛】本题考查统计量的选择,掌握中位数的意义是本题的解题关键.7.D【解析】试题分析:△=22-4×4=-12<0,故没有实数根;故选D.考点:根的判别式.8.A【解析】试题解析:∵函数y=2-2ax(a为常数)中,-a1-1<0,∴函数图象的两个分支分别在二、四象限,在每一象限内y随x的增大而增大,∵32>0,∴y3<0;∵-72<-12,∴0<y1<y1,∴y3<y1<y1.故选A.9.A【分析】直接利用圆周角定理结合三角形的外角的性质即可得.【详解】连接BE,如图所示:∵∠ACB=∠AEB,∠AEB>∠D,∴∠C>∠D.故选:A.【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.10.C【解析】【分析】【详解】解:根据定义,得x45<5110+≤+∴50x4<60≤+解得:46x<56≤.故选C.11.B【解析】【分析】题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.【详解】当5为腰时,三边长为5、5、10,而5510+=,此时无法构成三角形;当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长5101025=++=故选B.12.B分析:直接利用反比例函数的性质进而分析得出答案.详解:A .反比例函数y=1x ,图象经过点(﹣1,﹣1),故此选项错误; B .反比例函数y=1x,图象在第一、三象限,故此选项正确; C .反比例函数y=1x,每个象限内,y 随着x 的增大而减小,故此选项错误; D .反比例函数y=1x,当x >1时,0<y <1,故此选项错误. 故选B .点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1<m≤2【解析】【分析】首先根据不等式恰好有2个整数解求出不等式组的解集为1x m -<<,再确定12m <≤.【详解】Q 不等式组1x x m >-⎧⎨<⎩有2个整数解, ∴其整数解有0、1这2个,∴12m <≤.故答案为:12m <≤.【点睛】此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.14.513【解析】如图,有5种不同取法;故概率为 5 13 .15. (2,3)【解析】作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.【详解】如图,作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,∵点A、B的坐标分别为(-2,1)、(1,0),∴AC=2,BC=2+1=3,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴点A′的坐标为(2,3).故答案为(2,3).【点睛】此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.16.1【解析】【分析】设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可.【详解】解:设正多边形的边数为n,由题意得,()2180nn-︒g=144°,解得n=1.故答案为1.本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.17.(a+1)1.【解析】【分析】原式提取公因式,计算即可得到结果.【详解】原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],=…,=(a+1)1.故答案是:(a+1)1.【点睛】考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.18.(1,4).【解析】试题分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.AB≈3.93m.【解析】【分析】想求得AB长,由等腰三角形的三线合一定理可知AB=2AD,求得AD即可,而AD可以利用∠A的三角函数可以求出.【详解】∵AC=BC,D是AB的中点,∴CD⊥AB,又∵CD=1米,∠A=27°,∴AD=CD÷tan27°≈1.96,∴AB=2AD,∴AB≈3.93m.本题考查了三角函数,直角三角形,等腰三角形等知识,关键利用了正切函数的定义求出AD ,然后就可以求出AB .20.每台电脑0.5万元;每台电子白板1.5万元.【解析】【分析】先设每台电脑x 万元,每台电子白板y 万元,根据电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元列出方程组,求出x ,y 的值即可.【详解】设每台电脑x 万元,每台电子白板y 万元.根据题意,得:351017.5y x x y =⎧⎨+=⎩解得0.51.5x y =⎧⎨=⎩, 答:每台电脑0.5万元,每台电子白板1.5万元.【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组.21.(1)4a =,=2k ;(2)① 3,② 3 4.5m <≤.【解析】【分析】(1)将1)(,Aa 代入4=y x可求出a ,将A 点坐标代入y kx k =+可求出k ; (2)①根据题意画出函数图像,可直接写出区域W 内的整点个数;②求出直线l 的表达式为24y x =-,根据图像可得到两种极限情况,求出对应的m 的取值范围即可.【详解】 解:(1)将1)(,Aa 代入4=y x得a=4 将14)(,A代入=4+k k ,得=2k (2)①区域W 内的整点个数是3②∵直线l 是过点(2,0)D 且平行于直线22y x =+∴直线l 的表达式为24y x =-当24=5-x 时,即=4.5x 线段PM 上有整点∴3 4.5m <≤【点睛】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.22.(1)相切;(2)1643 3π-【解析】试题分析:(1)MN是⊙O切线,只要证明∠OCM=90°即可.(2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可.试题解析:(1)MN是⊙O切线.理由:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=12OC=2,3∴S阴=S扇形OAC﹣S△OAC=2120411642343 36023ππ-⨯⨯=-g考点:直线与圆的位置关系;扇形面积的计算.23.(1)4y x =;(2)点P 的坐标是(0,4)或(0,-4). 【解析】【分析】(1)求出OA=BC=2,将y=2代入1y x 32=-+求出x=2,得出M 的坐标,把M 的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON 的面积,求出OP 的值,即可求出P 的坐标.【详解】(1)∵B (4,2),四边形OABC 是矩形,∴OA=BC=2. 将y=2代入1y x 32=-+3得:x=2,∴M (2,2). 把M 的坐标代入k y x =得:k=4, ∴反比例函数的解析式是4y x=; (2)AOM CON BMON OABC 1S S S S 422442∆∆=--=⨯-⨯⨯=四边形矩形. ∵△OPM 的面积与四边形BMON 的面积相等, ∴1OP AM 42⋅⋅=. ∵AM=2,∴OP=4.∴点P 的坐标是(0,4)或(0,-4).24.(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【解析】【分析】(1)设生产一件甲种产品需x 分,生产一件乙种产品需y 分,利用待定系数法求出x ,y 的值.(2)设生产甲种产品用x 分,则生产乙种产品用(25×8×60-x )分,分别求出甲乙两种生产多少件产品. 【详解】(1)设生产一件甲种产品需x 分,生产一件乙种产品需y 分.由题意得:10103503020850x y x y +=⎧⎨+=⎩, 解这个方程组得:1520x y =⎧⎨=⎩, 答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x 分,则生产乙种产品用(25×8×60-x )分. 则生产甲种产品15x 件,生产乙种产品2586020x ⨯⨯-件. ∴w 总额=1.5×15x +2.8×2586020x ⨯⨯-=0.1x+1200020x -×2.8=0.1x+1680-0.14x=-0.04x+1680, 又15x ≥60,得x≥900, 由一次函数的增减性,当x=900时w 取得最大值,此时w=0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元), 此时甲有90015=60(件), 乙有:2586090020⨯⨯-=555(件), 答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【点睛】考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.25.(1)-21;(2)正确;(3)运算“※”满足结合律【解析】【分析】(1)根据新定义运算法则即可求出答案.(2)只需根据整式的运算证明法则a ※b=b ※a 即可判断.(3)只需根据整式的运算法则证明(a ※b )※c=a ※(b ※c )即可判断.【详解】(1)(-3)※9=(-3+1)(9+1)-1=-21(2)a ※b=(a+1)(b+1)-1b ※a=(b+1)(a+1)-1,∴a ※b=b ※a ,故满足交换律,故她判断正确;(3)由已知把原式化简得a ※b=(a+1)(b+1)-1=ab+a+b∵(a ※b )※c=(ab+a+b )※c=(ab+a+b+1)(c+1)-1=abc+ac+ab+bc+a+b+c∵a ※(b ※c )=a (bcv+b+c )+(bc+b+c )+a=abc+ac+ab+bc+a+b+c∴(a ※b )※c=a ※(b ※c )∴运算“※”满足结合律【点睛】本题考查新定义运算,解题的关键是正确理解新定义运算的法则,本题属于中等题型.26.()1为2y x 2x 1=+-;()2点Q 的坐标为()3,2--或()1,2-.【解析】【分析】()1依据抛物线的对称轴方程可求得b 的值,然后将点B 的坐标代入线22y x x c =-+可求得c 的值,即可求得抛物线的表达式;()2由平移后抛物线的顶点在x 轴上可求得平移的方向和距离,故此4QP =,然后由点QO PO =,//QP y 轴可得到点Q 和P 关于x 对称,可求得点Q 的纵坐标,将点Q 的纵坐标代入平移后的解析式可求得对应的x 的值,则可得到点Q 的坐标.【详解】()1Q 抛物线2y x bx c =++顶点A 的横坐标是1-,b x 12a ∴=-=-,即b 121-=-⨯,解得b 2=. 2y x 2x c ∴=++.将()B 0,1-代入得:c 1=-,∴抛物线的解析式为2y x 2x 1=+-.()2Q 抛物线向下平移了4个单位.∴平移后抛物线的解析式为2y x 2x 5=+-,PQ 4=.OP OQ Q =,∴点O 在PQ 的垂直平分线上.又QP //y Q 轴,∴点Q 与点P 关于x 轴对称.∴点Q 的纵坐标为2-.将y 2=-代入2y x 2x 5=+-得:2x 2x 52+-=-,解得:x 3=-或x 1=. ∴点Q 的坐标为()3,2--或()1,2-.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q 与点P 关于x 轴对称,从而得到点Q 的纵坐标是解题的关键.27.(1)m=-6,点D 的坐标为(-2,3);(2)1tan BAO 2∠=;(3)当2x <-或06x <<时,一次函数的值大于反比例函数的值.【解析】【分析】(1)将点C 的坐标(6,-1)代入m y x=即可求出m ,再把D (n ,3)代入反比例函数解析式求出n 即可.(2)根据C (6,-1)、D (-2,3)得出直线CD 的解析式,再求出直线CD 与x 轴和y 轴的交点即可,得出OA 、OB 的长,再根据锐角三角函数的定义即可求得;(3)根据函数的图象和交点坐标即可求得.【详解】 ⑴把C (6,-1)代入m y x=,得()m 616=⨯-=-. 则反比例函数的解析式为6y x=-, 把y 3=代入6y x =-,得x 2=-, ∴点D 的坐标为(-2,3).⑵将C (6,-1)、D (-2,3)代入y kx b =+,得6123k b k b +=-⎧⎨-+=⎩,解得122k b ⎧=-⎪⎨⎪=⎩. ∴一次函数的解析式为1y x 22=-+, ∴点B 的坐标为(0,2),点A 的坐标为(4,0).∴OA 4OB 2==,,在在Rt ΔABO 中, ∴OB 21tan BAO OA 42∠===.⑶根据函数图象可知,当x 2<-或0x 6<<时,一次函数的值大于反比例函数的值【点睛】此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!2019年四川省遂宁市市中区中兴镇中学中考数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.﹣8的相反数是()A.﹣8 B.C.8 D.﹣2.下列计算正确的是()A.a5+a5=a10B.a5•a2=a10C.a5•a5=a10D.(a5)5=a103.下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.4.下列调查中,最适合采用普查方式的是()A.对全省初中学生每天阅读时间的调查B.对中秋节期间全国市场上月饼质量情况的调查C.对某品牌手机的防水功能的调查D.对某校七年级2班学生肺活量情況的调査5.已知△ABC在平面直角坐标系中,将△ABC的三个顶点的纵坐标保持不变,横坐标都乘以﹣1,得到△A1B1C1,则下列说法正确的是()A.△ABC与△A1B1C1关于x轴对称B.△ABC与△A1B1C1关于y轴对称C.△A1B1C1是由△ABC沿x轴向左平移一个单位长度得到的D.△A1B1C1是由△ABC沿y轴向下平移一个单位长度得到的6.在用边长相同的正多边形地砖镶嵌的地板中,某个顶点处由两种正多边形镶嵌而成,其中一种是正八边形,则另一种是()A.正三边形B.正四边形C.正六边形D.正八边形7.如图,AB是⊙O的直径,若∠BDC=40°,则∠BOC的度数为()A.40°B.80°C.14°D.无法确定8.下列选项中,正确的是()A.有意义的条件是x>1 B.是最简二次根式C.D.9.如图,某商店营业大厅自动扶梯AB的坡比1:(坡比是坡面的铅直高度BC与水平宽度AC之比),AB的长为12米,则大厅两层之间的高度BC为()米.A.6 B.6C.4D.410.在同一坐标中,一次函数y=﹣kx+2与二次函数y=x2+k的图象可能是()A.B.C.D.二.填空题(共5小题,满分20分,每小题4分)11.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.12.将△ABC以B为旋转中心,顺时针旋转90°.得到△DBE,AB=4,则点A经过的路径长为.13.如图,在矩形ABCD中,E是边AB的中点,连结DE交对角线AC于点F.若AB=8,AD=6,则CF的长为.14.如图,已知菱形ABCD的边长为4,∠ABC=60°,对角线AC、BD相交于点O,则菱形ABCD的面积是.15.(1)我们平常用的数是十进制数,如2639=2×103+6×102+3×10+9,表示十进制的数要用10个数的数码(又叫数字):0,1,2,3,…9,在电子计算机中用的是二进制,只要两个数码0和1,如二进制中101=1×22+0×21+1等于十进制的数5,那么二进制中的1101等于十进制的数.(2)探究数字“黑洞”:“黑洞”原指非常奇怪的天体,它体积小,密度大.吸引力强,任何物体到了它那里都别想再“爬”出来,无独有偶,数字中也有类似的“黑洞”.满足某种条件的所有数,通过一种运算,都能被它吸进去,无一能逃脱它的魔掌,譬如:任意找一个3的倍数的数,先把这个数的每一个数位上的数字都立方.再相加.得到一个新数,然后把这个新数的每一个数位上的数字再立方、求和….重复运算下去,就能得到一个固定的数T=,我们称之为数字“黑洞”.三.解答题(共3小题,满分21分,每小题7分)16.(7分)计算:cos45°﹣2sin30°+(﹣2)0.17.(7分)阅读理解:类比定义:我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则等等.小学里,把分子比分母小的分数叫做真分数,类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.拓展定义:对于任何一个分式都可以化成整式与真分式的和的形式,如:;.理解定义:(1)下列分式中,属于真分式的是:属于假分式的是:(填序号)①;②;③;④.拓展应用:(2)将分式化成整式与真分式的和的形式;(3)将假分式化成整式与真分式的和的形式.18.(7分)如图,四边形ABCD是平行四边形,延长BA至E,延长DC至F,使得AE=CF,连结EF 交AD于G,交BC于H.求证:△AEG≌△CFH.四.解答题(共3小题,满分27分,每小题9分)19.(9分)已知关于x、y的方程组的解是一对正数;(1)试用m表示方程组的解;(2)求m的取值范围;(3)化简|m﹣1|+|m+|.20.(9分)如图,△ABC中,∠C=90°,AC=16cm,BC=8cm,一动点P从点C出发沿着CB方向以2cm/s的速度运动,另一动点Q从A出发沿着AC边以4cm/s的速度运动,P、Q两点同时出发,运动时间为t(s).(1)若△PCQ的面积是△ABC面积的,求t的值?(2)△PCQ的面积能否与四边形ABPQ面积相等?若能,求出t的值;若不能,说明理由.21.(9分)如图,在△ABC中,∠B为锐角,AB=3,AC=5,sin C=,求BC的长.五.解答题(共2小题,满分20分,每小题10分)22.(10分)“食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为°;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.23.(10分)如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.六.解答题(共2小题,满分22分)24.(10分)【数学概念】若四边形ABCD的四条边满足AB•CD=AD•BC,则称四边形ABCD是和谐四边形.【特例辨别】(1)下列四边形:①平行四边形,②矩形,③菱形,④正方形.其中一定是和谐四边形的是.【概念判定】(2)如图①,过⊙O外一点P引圆的两条切线PS、PT,切点分别为A、C,过点P作一条射线PM,分别交⊙O于点B、D,连接AB、BC、CD、DA.求证:四边形ABCD是和谐四边形.【知识应用】(3)如图②,CD是⊙O的直径,和谐四边形ABCD内接于⊙O,且BC=AD.请直接写出AB与CD 的关系.25.(12分)(1)如图1,若点A坐标为(x1,y1),点B坐标为(x2,y2),作AD⊥x轴于点D,BE⊥y轴于点E,AD与BE相交于点C,则有AC=|y1﹣y2|,BC=|x1﹣x2|,所以,A、B两点间的距离为AB=.根据结论,若M、N两点坐标分别为(1,4)、(5,1),则MN=(直接写出结果).(2)如图2,直线y=kx+1与y轴相交于点D,与抛物线y=x2相交于A,B两点,A点坐标为(4,a),过点A作y轴的垂线交y轴于点C,E是AC中点,点P是第一象限内直线AB下方抛物线上一动点,连接PE、PD、ED;①a=,k=,AD=(直接写出结果).②若△DEP是以DE为底的等腰三角形,求点P的横坐标;③求四边形CDPE的周长的最小值.2019年四川省遂宁市市中区中兴镇中学中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.【分析】根据合并同类项法则、同底数幂的乘法法则、幂的乘方法则计算,判断即可.【解答】解:a5+a5=2a5,A错误;a5•a2=a7,B错误;a5•a5=a10,C正确;(a5)5=a25,D错误;故选:C.【点评】本题考查的是幂的乘方与积的乘方、合并同类项、同底数幂的乘法,掌握它们的运算法则是解题的关键.3.【分析】根据三棱柱的展开图的特点进行解答即可.【解答】解:A、是三棱锥的展开图,故选项错误;B、是三棱柱的平面展开图,故选项正确;C、两底在同一侧,故选项错误;D、是四棱锥的展开图,故选项错误.故选:B.【点评】此题主要考查了几何体展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.4.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A.对全省初中学生每天阅读时间的调查适合抽样调查;B.对中秋节期间全国市场上月饼质量情况的调查适合抽样调查;C.对某品牌手机的防水功能的调查适合抽样调查;D.对某校七年级2班学生肺活量情況的调査适合全面调查;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”,可知所得的三角形与原三角形关于y轴对称.【解答】解:∵横坐标乘以﹣1,∴横坐标相反,又纵坐标不变,∴关于y轴对称.故选:B.【点评】考查了关于坐标轴对称的点的坐标的知识,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.6.【分析】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【解答】解:正八边形的一个内角=180°﹣=135°,360°﹣2×135°=90°,∵正方形的每个内角是90°,∴另一种是正四边形.故选:B.【点评】考查了平面镶嵌(密铺),几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.7.【分析】利用圆周角定理即可解决问题.【解答】解:∵∠BOC=2∠CDB,∠CDB=40°,∴∠BOC=80°,故选:B.【点评】本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考基础题.8.【分析】根据最简二次根式、二次根式的性质判断即可.【解答】解:A、有意义的条件是x≥1,错误;B、不是最简二次根式,错误;C、,错误;D、,正确;故选:D.【点评】此题考查最简二次根式,关键是根据最简二次根式、二次根式的性质解答.9.【分析】根据坡比的定义可知,坡比就是坡角的正切值,从而可以解答本题.【解答】解:∵自动扶梯AB的坡比1:,设BC=x,∴AB==12,解得:x=6,∴BC=6,故选:A.【点评】此题考查了坡度坡角问题.此题比较简单,注意理解坡度的定义是解此题的关键.10.【分析】根据一次函数和二次函数的解析式可得一次函数与y轴的交点为(0,2),二次函数的开口向上,据此判断二次函数的图象.【解答】解:由二次函数y=x2+k可知,抛物线开口向上,由一次函数y=﹣kx+2可知,直线与y轴的交点为(0,2),当k>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、四象限;当k<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、三象限.故选:A.【点评】此题主要考查了二次函数及一次函数的图象的性质,用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标.二.填空题(共5小题,满分20分,每小题4分)11.【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.【点评】本题主要考查众数,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据.12.【分析】根据旋转的性质得到∠ABD=90°,根据弧长的公式即可得到结论.【解答】解:∵将△ABC以B为旋转中心,顺时针旋转90°.得到△DBE,∴∠ABD=90°,∴点A经过的路径长==2π,故答案为:2π.【点评】本题考查了旋转的性质,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长公式.13.【分析】在Rt△ABC中,利用勾股定理可求出AC的长,由AB∥CD可得出∠DCF=∠EAF,∠CDF =∠AEF,进而可得出△AEF∽△CDF,利用相似三角形的性质结合CD=AB=2AE,即可得出CF=2AF,再结合AC=AF+CF=10,即可得出CF=AC=,此题得解.【解答】解:在Rt△ABC中,AB=8,BC=AD=6,∠B=90°,∴AC==10.∵AB∥CD,∴∠DCF=∠EAF,∠CDF=∠AEF,∴△AEF∽△CDF,∴=.又∵E是边AB的中点,∴CD=AB=2AE,∴=2,∴CF=2AF.∵AC=AF+CD=10,∴CF=AC=.故答案为:.【点评】本题考查了相似三角形的判定与性质、勾股定理以及矩形的性质,利用相似三角形的性质结合AC=AF+CF,找出CF=AC是解题的关键.14.【分析】根据菱形的性质可得AO=CO,BO=DO,AC⊥BD,∠DBC=∠ABC=30°,根据直角三角形的性质可得CO=BC=2,BO=CO=2,即可求菱形ABCD的面积.【解答】解:∵四边形ABCD是菱形,∴AO=CO,BO=DO,AC⊥BD,∠DBC=∠ABC=30°,∴CO=BC=2,BO=CO=2∴AC=4,BD=4∴S菱形ABCD=×AC×BD=8故答案为8【点评】本题考查了菱形的性质,直角三角形的性质,熟练掌握菱形的性质是本题的关键.15.【分析】(1)从阅读中可知,无论何种进制的数都可表示与数位上的数字、进制值有关联的和的形式;由101=1×22+0×21+1,而1×22+0×21+1=5,故二进制中101等于十进制的数5,可得,1101=1×23+1×22+0×21+1,而1×23+1×22+0×21+1=13,二进制中的1101等于十进制的数等于十进制的数13;(2)按要求找一个具体的数,根据题目意思进行计算即可发现规律.【解答】解:(1)从阅读中可知,无论何种进制的数都可表示与数位上的数字、进制值有关联的和的形式;1101=1×23+1×22+0×21+1=13故填:13(2)从一个具体的数操作,发现规律.假设这个数是24,∴23+43=72,73+23=35133+53+13=153,13+53+33=153,13+33+53=153…这样下去始终会出现153故填:153【点评】此题主要考查了数字的变化中二进制与特殊数据的规律,能够激发同学们的学习兴趣.三.解答题(共3小题,满分21分,每小题7分)16.【分析】原式利用特殊角的三角函数值,以及零指数幂法则计算即可求出值.【解答】解:原式=﹣2×+1=﹣1+1=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.【分析】(1)根据真分式和假分式的定义判断即可得;(2)将分子化为4a﹣2+5,再进一步计算可得;(3)将分子化为a2﹣1+4,再进一步计算可得.【解答】解:(1)属于真分式的是:③;属于假分式的是②;故答案为:③,②;(2)==+=2+;(3)==+=a+1+.【点评】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则及新定义的理解和运用.18.【分析】根据平行四边形的性质可得出∠E=∠F,∠EGA=∠FHC,利用AAS,即可证明△EAG≌△FCH.【解答】证明:∵E、F分别是平行四边形ABCD的边BA、DC延长线上的点,∴BE∥DF,∴∠E=∠F,又∵平行四边形中AD∥BC,∴∠EGA=∠EHB,又∵∠EHB=∠FHC,∴∠EGA=∠FHC,在△EAG与△FCH中,,∴△EAG≌△FCH(AAS).【点评】本题考查了平行四边形的性质,解答本题的关键是掌握平行四边形的对边平行的性质及全等三角形的判定定理.四.解答题(共3小题,满分27分,每小题9分)19.【分析】(1)利用加减消元法求解可得;(2)根据方程组的解是一对正数列出关于m的不等式组,解之可得;(3)由m的范围判断出m﹣1、m+的值的情况,再根据绝对值性质取绝对值符号、合并同类项即可得.【解答】解:(1),①﹣②×2,得:5y=5﹣5m,解得:y=1﹣m,将y=1﹣m代入②,得:x﹣1+m=4m+1,解得:x=3m+2,∴方程组的解为;(2)∵方程组的解是一对正数,∴,解不等式①,得:m>﹣,解不等式②,得:m<1,则﹣<m<1;(3)∵﹣<m<1,∴m﹣1<0、m+>0,则|m﹣1|+|m+|=1﹣m+m+=.【点评】本题主要考查解一元一次不等式组,解题的关键是掌握加减消元法解二元一次方程组、根据方程组的解得情况列出关于m的不等式组及绝对值的性质.20.【分析】(1)根据三角形的面积公式可以得出△ABC面积为:×8×16=64,△PCQ的面积为×2t(16﹣4t),由题意列出方程解答即可;(2)由等量关系S△PCQ=S△ABC列方程求出t的值,但方程无解.【解答】解:(1)∵S△PCQ=×2t(16﹣4t),S△ABC=×8×16=64,∴2t(16﹣4t)=64×,整理得t2﹣4t+4=0,解得t=2.答:当t=2s时△PCQ的面积为△ABC面积的;(2)当△PCQ的面积与四边形ABPQ面积相等,即:当S△PCQ=S△ABC时,×2t(16﹣4t)=64×,整理得t2﹣4t+8=0,△=(﹣4)2﹣4×1×8=﹣16<0,∴此方程没有实数根,∴△PCQ的面积不能与四边形ABPQ面积相等.【点评】本题考查一元二次方程的应用,三角形的面积,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.【分析】作AD⊥BC,在△ACD中求得AD=AC sin C=3、,再在△ABD中根据AB=3、AD=3求得BD=3,继而根据BC=BD+CD可得答案.【解答】解:作AD⊥BC于点D,∴∠ADB=∠ADC=90°.∵AC=5,,∴AD=AC•sin C=3.∴在Rt△ACD中,.∵AB=,∴在Rt△ABD中,.∴BC=BD+CD=7.【点评】本题主要考查解直角三角形,解题的关键是根据题意构建合适的直角三角形及三角函数的定义.五.解答题(共2小题,满分20分,每小题10分)22.【分析】(1)根据了解很少的人数和所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案.【解答】解:(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60,90.(2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为=.【点评】此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率=所求情况数与总情况数之比.23.【分析】(1)将点A坐标代入y=mx﹣4(m≠0),求出m,得出直线AB的解析式,进而求出点C坐标,再代入反比例函数解析式中,求出k,即可得出结论;(2)先求出点B坐标,设出点P,Q坐标,分两种情况,利用平行四边形的对角线互相平分建立方程组求解即可得出结论.【解答】解:(1)∵点A是一次函数y=mx﹣4的图象上,∴﹣4m﹣4=0,∴m=﹣1,∴一次函数的解析式为y=﹣x﹣4,∵点C(﹣5,n)是直线y=﹣x﹣4上,∴n=﹣(﹣5)﹣4=1,∴C(﹣5,1),∵点C(﹣5,1)是反比例函数y=(k≠0)的图象上,∴k=﹣5×1=﹣5,∴反比例函数的解析式为y=﹣;(2)由(1)知,C(﹣5,1),直线AB的解析式为y=﹣x﹣4,∴B(0,﹣4),设点Q(q,0),P(p,﹣),∵以B,C,P,Q为顶点的四边形是平行四边形,且P,Q两点在直线AB的同侧,∴①当BP与CQ是对角线时,∴BP与CQ互相平分,∴,∴,∴P(﹣1,5),Q(4,0)②当BQ与CP是对角线时,∴BQ与CP互相平分,∴,∴,∴P(﹣1,5),Q(﹣4,0),此时,点C,Q,B,P在同一条线上,不符合题意,舍去,即以B,C,P,Q为顶点的四边形是平行四边形,点P(﹣1,5),点Q(4,0).【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的性质,用方程组的思想解决问题是解本题的关键.六.解答题(共2小题,满分22分)24.【分析】(1)如图1,若▱ABCD为和谐四边形,则AB•CD=AD•BC,根据对边相等得出AB2=BC2,即AB=CD,从而知▱ABCD为菱形;同理可得正方形也是和谐矩形;(2)连接CO并延长,交⊙O于点E,连接BE.证△PBC∽△PCD得,同理得,再根据PA、PC为⊙O的切线知PA=PC,据此可得,得证;(3)连接BD、作BE⊥CD于点E,由BC=AD可得∠CDB=∠ABD,知AB∥CD,据此得四边形ABCD 是等腰梯形,设BC=AD=a、AB=x、CD=y,可得CE==,证△CBE∽△CDB得BC2=CD•CE,即a2=y•,结合和谐四边形定义知a2=xy,从而y•=xy,解之得出y=3x,即CD=3AB,从而得出答案.【解答】解:(1)如图1,若▱ABCD为和谐四边形,则AB•CD=AD•BC,∵AB=CD、AD=BC,∴AB2=BC2,即AB=CD,则▱ABCD为菱形;若矩形PQMN为和谐四边形,则PQ•MN=PN•QM,∵PQ=MN、PN=QM,∴PQ2=QM2,即PQ=MN,则矩形PQMN是正方形;∴一定是和谐四边形的是菱形和正方形,故答案为:③④.(2)如图2,连接CO并延长,交⊙O于点E,连接BE.∵PT是⊙O的切线,切点为C,∴∠PCE=90°.∴∠PCB+∠ECB=90°.∵CE是⊙O的直径,∴∠CBE=90°,∴∠BEC+∠ECB=90°,∴∠BEC=∠PCB.又∵∠BEC=∠BDC,∴∠PCB=∠BDC.又∵∠BPC=∠CPD,∴△PBC∽△PCD,∴.同理,.∵PA、PC为⊙O的切线,∴PA=PC,∴.∴AB•CD=AD•BC.∴四边形ABCD是和谐四边形.(3)如图3,连接BD、作BE⊥CD于点E,∵BC=AD,∴=,∴∠CDB=∠ABD,则AB∥CD,∴四边形ABCD是等腰梯形,设BC=AD=a、AB=x、CD=y,则CE==,∵CD为⊙O的直径,∴∠CBD=∠CEB=90°,又∠C=∠C,∴△CBE∽△CDB,则=,即BC2=CD•CE,∴a2=y•,∵四边形ABCD是和谐四边形,∴AB•CD=BC•AD,即a2=xy,∴y•=xy,解得y=3x,即CD=3AB,综上,AB∥CD且CD=3AB.【点评】本题主要考查圆的综合问题,解题的关键是熟练掌握与圆有关的概念和性质、对新定义的理解、应用,相似三角形的判定与性质,等腰梯形的判定与性质等知识点的运用.25.【分析】(1)利用题目提供的两点间距离公式即可求解;(2)①将点A的坐标代入二次函数表达式得:a=×42=4,则点A坐标为(4,4),将点A的坐标代入一次函数表达式得k=,即可求解;②利用PD=PE,整理得:3x2+8x﹣38=0,即可求解;③在y轴上,截取CD′=CD,连接D′E并延长交抛物线于点P,则此时,四边形CDPE的周长最小,最小值=CD+CE+PD′=5+PD′,即可求解.【解答】解:(1)MN==5,故答案为5;(2)①将点A的坐标代入二次函数表达式得:a=×42=4,则点A坐标为(4,4),点E的坐标为(2,4),将点A的坐标代入一次函数表达式得:4=4k+1,解得k=,∵CD=3,CE=4,∴AD=5,故:答案为:4,,5;②设点P的横坐标为x,即点P坐标为(x, x2),点D、E的坐标分别为(0,1)、(2,4),由题意得:PD=PE,即:PD2=PE2,x2+(x2﹣1)2=(x﹣2)2+(x2﹣4)2,整理得:3x2+8x﹣38=0,解得:x=(负值已舍去),即点P的横坐标为;③在y轴上,截取CD′=CD,连接D′E并延长交抛物线于点P,则此时,四边形CDPE的周长最小,DE+PE=PD′,点D′的坐标为(7,0),四边形CDPE的周长最小值=CD+CE+PD′=5+PD′,直线D′E的表达式为:y=kx+7,把点E的坐标代入上式得:4=2k+7,解得:k=﹣,则直线D′E的表达式为:y=﹣x+7,将该表达式与二次函数表达式联立并求解得:x=﹣3,即点P的坐标为(﹣3,),则PD′==,四边形CDPE的周长最小值=5+.【点评】本题考查的是二次函数知识的综合运用,是对两点间距离的解读与运用,题目看起来难度不大,但是数值处理难度很大.。

相关文档
最新文档