计量经济学实例时间序列
《计量经济学》3.3时间序列分析

3.3时间序列分析3.3.1时间序列概述1.基本概念(1)一般概念:系统中某一变量的观测值按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻找和分析事物的变化特征、发展趋势和规律。
它是系统中某一变量受其它各种因素影响的总结果。
(2)研究实质:通过处理预测目标本身的时间序列数据,获得事物随时间过程的演变特性与规律,进而预测事物的未来发展。
它不研究事物之间相互依存的因果关系。
(3)假设基础:惯性原则。
即在一定条件下,被预测事物的过去变化趋势会延续到未来。
暗示着历史数据存在着某些信息,利用它们可以解释与预测时间序列的现在和未来。
近大远小原理(时间越近的数据影响力越大)和无季节性、无趋势性、线性、常数方差等。
(4)研究意义:许多经济、金融、商业等方面的数据都是时间序列数据。
时间序列的预测和评估技术相对完善,其预测情景相对明确。
尤其关注预测目标可用数据的数量和质量,即时间序列的长度和预测的频率。
2.变动特点(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不等。
(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。
(3)随机性:个别为随机变动,整体呈统计规律。
(4)综合性:实际变化情况一般是几种变动的叠加或组合。
预测时一般设法过滤除去不规则变动,突出反映趋势性和周期性变动。
3.特征识别认识时间序列所具有的变动特征,以便在系统预测时选择采用不同的方法。
(1)随机性:均匀分布、无规则分布,可能符合某统计分布。
(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多数服从正态分布。
)(2)平稳性:样本序列的自相关函数在某一固定水平线附近摆动,即方差和数学期望稳定为常数。
样本序列的自相关函数只是时间间隔的函数,与时间起点无关。
其具有对称性,能反映平稳序列的周期性变化。
特征识别利用自相关函数ACF:ρk =γk/γ其中γk是y t的k阶自协方差,且ρ0=1、-1<ρk<1。
计量经济学:时间序列模型习题与解析

计量经济学:时间序列模型习题与解析第九章时间序列计量经济学模型的理论与⽅法练习题1、请描述平稳时间序列的条件。
2、单整变量的单位根检验为什么从DF检验发展到ADF检验?23、设X t cost si n t,0 t 1,其中,是相互独⽴的正态分布N(0, )随机变量,是实数。
试证:{x t,0 t 1}为平稳过程。
LB5、利⽤4中数据,⽤ADF法对居民消费总额时间序列进⾏平稳性检验。
6、利⽤4中数据,对居民消费总额时间序列进⾏单整性分析。
7、根据6中的结论,对居民消费总额的差分平稳时间序列进⾏模型识别。
8、⽤Yule Walker法和最⼩⼆乘法对7中的居民消费总额的差分平稳时间序列进⾏时间序列模型估计,并⽐较估计结果。
9、有如下AR(2)随机过程:X t 0.1X t1 0.06X t 2 t该过程是否是平稳过程?10、求MA(3)模型y t 1 u t 0.8u t 1 0.5u t 2 0.3u t 3的⾃协⽅差和⾃相关函数。
11、设动态数据x10.8,x20.7, x3 0.9, x4 0.74, x5 0.82,x6 0.92, x7 0.78,X8 0.86, X9 0.72, X10 0.84,求样本均值x,样本⽅差?。
,样本⾃协⽅差?、?2和样本⾃相关函数?1、?2。
12、判断如下ARMA过程是否是平稳过程:x t 0.7x t 1 0.1x t 2 t 0.14 t 113、以Q t表⽰粮⾷产量,A t表⽰播种⾯积,C t表⽰化肥施⽤量,经检验,他们取对数后都是I (1)变量且相互之间存在CI( 1,1)关系。
同时经过检验并剔除了不显著的变量(包括滞后变量),得到如下粮⾷⽣产模型:In Q o In Q [ 21n A t 31n C t 4In C t 1 t推导误差修正模型的表达式,并指出误差修正模型中每个待估参数的经济意义。
14、固定资产存量模型K t 0 1K t 1 2I t 3I t 1 t中,经检验,K t ~ I (2), 11 ~ I (1),试写出由该ADL模型导出的误差修正模型的表达式。
初计量经济学之时间序列分析

初计量经济学之时间序列分析1. 引言时间序列分析是计量经济学中的一个重要领域,研究的是时间序列数据的性质、模式和预测方法。
时间序列数据是按照时间顺序排列的一系列观测值,包括经济指标、股票价格、气象数据等。
时间序列分析可以帮助我们理解和预测经济现象的发展趋势,为政府和企业决策提供科学依据。
本文将介绍时间序列分析的基本概念、方法和应用。
首先,我们将介绍时间序列分析的基本步骤和基本假设。
然后,我们将介绍时间序列模型的常用类型,包括自回归模型(AR)、滑动平均模型(MA)和自回归滑动平均模型(ARMA)。
最后,我们将介绍时间序列的应用领域,包括经济预测、金融风险管理和气象预测。
2. 时间序列分析的基本步骤时间序列分析的基本步骤包括数据的收集和准备、数据的探索性分析、模型的选择和估计、模型的诊断和预测。
下面将对每个步骤进行详细介绍。
2.1 数据的收集和准备数据的收集和准备是时间序列分析的第一步。
我们需要收集时间序列数据,并进行数据清洗和预处理。
数据清洗包括删除缺失值、处理异常值和去除趋势。
数据预处理包括对数据进行平滑处理、差分和变换。
2.2 数据的探索性分析数据的探索性分析是时间序列分析的第二步。
我们需要对时间序列数据进行可视化和统计分析,以了解数据的基本性质和模式。
可视化方法包括绘制时间序列图、自相关图和偏自相关图。
统计分析方法包括计算统计指标、分析趋势、季节性和周期性。
2.3 模型的选择和估计模型的选择和估计是时间序列分析的第三步。
我们需要选择合适的时间序列模型,并进行参数估计。
常用的时间序列模型包括自回归模型(AR)、滑动平均模型(MA)、自回归滑动平均模型(ARMA)和季节性模型。
2.4 模型的诊断和预测模型的诊断和预测是时间序列分析的最后一步。
我们需要对模型进行诊断,检验模型的拟合程度和残差的平稳性、独立性和正态性。
然后,我们可以使用模型进行未来值的预测。
3. 时间序列模型时间序列模型是描述和预测时间序列数据的数学模型。
时间序列案例

时间序列案例时间序列分析是指按照时间顺序排列的数据,通过对其进行统计和分析,揭示出其中的规律和趋势。
时间序列分析在经济、金融、气象、环境等领域都有着广泛的应用。
本文将以一个销售数据的时间序列案例为例,介绍时间序列分析的基本方法和步骤。
首先,我们需要收集一段时间内的销售数据,比如某商品在过去一年内的销售额。
然后,我们可以利用统计软件将这些数据进行可视化展示,绘制成折线图或者柱状图。
通过图表,我们可以直观地看出销售额的波动和变化趋势。
接下来,我们可以对这些销售数据进行平稳性检验。
平稳性是时间序列分析的基本假设之一,它要求时间序列的均值和方差在不同时间段内保持不变。
我们可以利用单位根检验等方法来检验数据的平稳性,如果数据不平稳,我们可以进行差分处理,将其转化为平稳时间序列。
在确认数据的平稳性后,我们可以对时间序列数据进行自相关性和偏自相关性的分析。
自相关性是指时间序列中各个时刻的数据之间存在的相关关系,而偏自相关性则是在排除了中间时刻的影响后,两个时刻数据之间的相关关系。
通过自相关性和偏自相关性的分析,我们可以确定时间序列的阶数,为后续的模型拟合提供参考。
在完成数据的预处理和分析后,我们可以选择合适的时间序列模型进行拟合。
常见的时间序列模型包括ARMA模型、ARIMA模型、季节性模型等。
我们可以利用最小二乘法或者最大似然估计等方法来拟合模型参数,并进行模型检验和诊断,确保模型的拟合效果和预测能力。
最后,我们可以利用拟合好的时间序列模型进行预测和分析。
通过模型的预测值和实际值进行比对,我们可以评估模型的拟合效果和预测能力,为未来销售额的预测提供参考。
总之,时间序列分析是一种重要的数据分析方法,通过对时间序列数据的统计和分析,可以揭示出其中的规律和趋势,为未来的预测和决策提供参考。
希望本文的案例能够帮助读者更好地理解时间序列分析的基本方法和步骤,为实际问题的解决提供参考和借鉴。
计量经济学中的时间序列分析

计量经济学中的时间序列分析时间序列分析是计量经济学中的重要内容之一,它主要研究特定变量随时间变化的规律性和趋势。
通过时间序列分析,我们可以更好地理解经济现象,预测未来变化趋势,制定合适的政策和策略。
本文将从时间序列的概念入手,介绍时间序列分析的基本原理、方法和应用。
一、时间序列的概念时间序列是按照时间顺序排列的一系列数据观测值的集合。
在计量经济学中,时间序列通常用来观察和研究某一经济变量在不同时间点上的变化情况。
时间序列数据可以是连续的,也可以是间断的,常见的时间单位包括年、季、月、周等。
通过对时间序列数据的分析,我们可以揭示出其中的规律性和特征。
二、时间序列分析的基本原理时间序列分析的基本原理是利用过去的数据来预测未来的发展趋势。
在时间序列分析中,常用的方法包括趋势分析、周期性分析、季节性分析和不规则波动分析。
趋势分析主要用来观察时间序列数据的长期变化趋势,周期性分析则是研究数据是否存在固定长度的周期性波动,季节性分析则是研究数据是否呈现出固定的季节性变化规律,而不规则波动分析则是研究一些随机因素对数据的影响。
三、时间序列分析的方法时间序列分析的方法有很多种,其中常用的包括移动平均法、指数平滑法、回归分析法、ARIMA模型等。
移动平均法通过计算连续几个期间的平均值来平滑数据,达到去除数据波动的目的;指数平滑法则是通过计算加权平均来对数据进行平滑处理,使得预测值更加准确;回归分析法则是通过建立经济模型来研究时间序列数据之间的关系,进行预测和分析;ARIMA模型则是一种时间序列的自回归与移动平均模型,可以对时间序列数据进行拟合和预测。
四、时间序列分析的应用时间序列分析在经济学、金融学、管理学等领域有着广泛的应用。
在经济学中,时间序列分析可以用来研究经济增长、通货膨胀、失业等经济现象的发展趋势;在金融学中,时间序列分析可以用来预测股票价格、汇率、利率等金融变量的变化情况;在管理学中,时间序列分析可以用来制定企业的生产计划和销售策略,提高企业的运营效率。
计量经济学中的时间序列分析

计量经济学中的时间序列分析计量经济学是应用经济学中比较基础的分支,主要研究经济学中的定量分析和增长趋势。
其中,时间序列分析作为计量经济学重要的一部分,被广泛运用于宏观经济学中的经济周期、经济增长率、通货膨胀以及个人收入等诸多领域。
时间序列分析是计量经济学中一种基本的研究方法,主要使用统计学技术处理时间序列数据,得出未来预测、检验理论假设和描述历史趋势等信息。
时间序列数据的重要性在于,它们反映了一个经济变量随着时间推移的变化规律。
这些数据可以被用来研究经济变量展现的时间趋势和季节性变化等。
因此,时间序列分析在宏观经济的长期趋势研究、短期波动分析、周期特征查验和经济结构变革判断等方面有重要的应用。
在时间序列分析中,经济变量随着时间的推移体现的规律通常被归纳为趋势、季节性、循环、随机波动四个方面。
趋势是一个时间序列中最为基本的成分,反映一项宏观经济变量的长期变化趋势,其普遍存在的原因可能是技术进步、人口变动、自然要素影响等等因素。
而季节性则是一项经济变量随着时间的相对固定的短期变化,反映的是因为季节性因素的影响而生的波动现象。
循环则是周期波动的一种体现,代表着长达数年的经济波动和周期性变化。
随机波动是时间序列中不可预测的无法被规律分析的随机性波动成分。
这种波动通常受到一些令人难以预测的特殊事件的影响,比如自然灾害、政府重大决策等。
时间序列分析方法有很多种,其中包括经典的时间序列分析方法,如白噪声检验、趋势分析、季节性分析、循环分析等。
同时也包括新兴的技术,如自回归移动平均模型(ARMA)、广义自回归条件异方差模型(GARCH)、立方样条获取非线性趋势和神经网络等。
这些方法涉及的内容比较复杂,因此初学者在学习中需要认真掌握这些方法和工具,并理解它们在数据处理和预测中的应用和限制。
总结而言,计量经济学中的时间序列分析是经济变量随时间推移表现出来的一种基本变化规律的统计学分析方法。
在宏观经济分析、政策研究、市场营销等方面有着广泛的应用。
计量经济学例题
一、解:(1)首先计算实际GDP ,RGDP=GDP/INDEX ,得到如下数据:表1用log-lin 模型:log(RGDP)=b0+b1*year ,采用eviews 软件对表1中的数据进行回归分析,得到结果如表2所示表2Variable Coefficient Std. Error t-Statistic Prob.C -135.6453 7.229830 -18.76189 0.0000 YEAR 0.070307 0.003637 19.33267 0.0000R-squared 0.951623 Mean dependent var 4.126043 Adjusted R-squared 0.949077 S.D. dependent var 0.447198 S.E. of regression 0.100915 Akaike info criterion -1.658687 Sum squared resid 0.193492 Schwarz criterion -1.559208 Log likelihood 19.41621 F-statistic 373.7523 Durbin-Watson stat 0.248783 Prob(F-statistic) 0.000000得到模型为:log()135.64530.070307RGDP year =−+(18.76189)(19.3326)−结果表明:在1978—1998年间,Ln (RGDP )的变化的95.1%可由year 的变化来解释。
在5%的显著性水平下,自由度n-k-1=19的t 统计量0.025(19) 2.093t =()00.02518.76189 2.09319t t =>= ()10.02519.3326 2.09319t t =>=,因此所有变量的参数显著不为零,并且年均增长率10.0703071b =<,经济意义是合理的。
计量经济学-第21章 时间序列计量经济学基础Ⅰ--平稳性、单位跟与协整
其中a是常数,ut 是平稳的,比如 E(ut ) 0,var(ut ) 2 ,
则这样的 Yt 过程叫做DSP
可见一个平稳时间序列可以用一个TS过程作为它的 模型,而一个非平稳时间序列则代表一个DS过程
对于存在随机趋势的时间序列的关系的分析需要做 协整以及非平稳性检验
在做PCE对PDI的回归时可以加进趋势变量t,消去PCE和PDI的时间趋 势。
当时我们曾经强调,只有当趋势变量是确定性的(deterministic),而不 是随机(stochastic)时,才可以这样做。
如果一个时间序列有一个单位根,则不能使用加进趋势变量t的方法来去 除趋势。
趋势平稳过程(trend-stationary process,简记为TSP),在下面的回归 中:
考虑一下模型
(21.3.4)
其中 ut 是均值为零,恒定方差且序列不相关的随 机误差项,即 ut 是white noise。
这是一个一阶自回归模型,Yt-1的系数为1,{Yt} 序列存在一个单位根。也就是说,{Yt}是一个非 平稳序列。
有一个单位根的时间序列叫做随机游走(时间序 列)。随机游走(random walk)是非平稳时间 序列的一个例子。
其中,n—样本容量,m—滞后长度 Q近似地(即在大样本中)服从m个自由度的
分布。
则拒绝全部 同时为零的虚拟 假设。也就是说,至少有一个(或一些) 是非零的。
设。
则不拒绝全部 为零的虚拟假
杨—博克斯(Ljung Box)构造的统计量是对博克 斯—皮尔斯(Box-Pierce)Q统计量的一种改进。
LB统计量比Q统计量具有更好的小样本性质。 图21.8中的例子,基于25期滞后的Q统计量为793, LB统计量为891,两者都是高度显著的,得到 值的P值几乎为零。
计量经济学EIVEWS实验步骤和案例
一元线性回归检验个人的收入与消费是密不可分的,为了考察城镇居民可支配收入和其人均消费支出的关系,利用计量经济学的方法进行回归。
1990-2011年城镇居民可支配收录和人均消费支出数据如表1.1所示表1.1 城镇居民可支配收录和人均消费支出图2-1数据来源:《中国民政统计年鉴2012》作城镇居民可支配收录(X)和人均消费支出(Y)的散点图图2. 2从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立的计量经济模型为如下线性模型:12i i i Y X u ββ=++三、估计参数假定所建模型及随机扰动项i u 满足古典假定,可以用OLS 法估计其参数。
运用计算机软件EViews 作计量经济分析十分方便。
利用EViews 作简单线性回归分析的步骤如下:1、建立工作文件首先,双击EViews 图标,进入EViews 主页。
在菜单一次点击File\New\Workfile图2-3选择数据类型和起止日期。
时间序列提供起止日期(年、季度、月度、周、日),非时间序列提供最大观察个数。
本例中在Start Data 里输入1990,在End data 里输入2011,见图2-3。
单击OK 后屏幕出现Workfile 工作框,如图2-4所示。
图2-4二、输入和编辑数据建立或调入工作文件以后,可以输入和编辑数据。
在主菜单上单击Quick→Empty Group(见图2-5)图2-5再用方向键将光标移到每一列的顶部之后,输入各个变量名,回车后输入数据(见图2-7)。
另外数据还可以从Excel中直接复制到空组。
然后为每个时间序列取序列名。
单击数据表中的SER01,在数据组对话框中的命令窗口输入该序列名称,如本例中输入X,回车后Yes。
采用同样的步骤修改序列名Y(见图2-8)。
数据输入操作完成。
图2-8数据输入完毕,单击工作文件窗口工具条的Save或单击菜单兰的File→Save将数据存入磁盘。
计量经济学第十章 时间序列计量经济模型
H0
第三步:对一阶差分序列作单位根检验得到序列的单整阶数 为了得到人均可支配收入(SR)序列的单整阶数,在单位根检 验(Unit Root Test)对话框(图10.3)中,指定对一阶差分序 列作单位根检验,选择带截距项(intercept),滞后差分项 (Lagged differences)选2阶,点击OK,得到估计结果,见表 10.5。
t(t T )
举例:
1、连续性随机过程:心电图,用 Y t 表示。
2、离散型随机过程:GDP,DPI等,用 Y1 , Y2 ,...,Yt 表示。记住,这 些Y中的每一个都是一个随机变量,而这些随机变量按时间编排形 成的集合就是一个随机过程。
讨论:如何理解GNP是一个随机过程呢?
理论上讲,某一年的GNP数字可能是任何一个数字,取决 于当时的政治与经济环境。某个数字只是所有这些可能性 中的一个特定的实现,也可以看成是某年GNP所有可能值 得均值。因此,我们可以说,GNP是一个随机过程,而我 们在某个时期期间所观测到的实际值只是这个过程的一个 特定实现(即样本)。与我们利用截面数据中的样本数据 对总体进行推断一样,在时间序列中,我们利用这些实现 对其背后的随机过程加以推断。
-0.7791体现了对偏离的修正,上一期偏离越远,本 期修正的量就越大,即系统存在误差修正机制。
第十章 时间序列计量经济模型
本章主要讨论:
时间序列的基本概念
时间序列平稳性的单位根检验 协整
第一节 时间序列基本概念
本节基本内容:
●伪回归问题 ●随机过程的概念 ●时间序列的平稳性
一、伪回归问题
传统计量经济学模型的假定条件:序列的平稳性、正态性。
所谓“伪回归”,是指变量间本来不存在相依关系,但回归 结果却得出存在相依关系的错误结论。即表现在:两个本来没 有任何因果关系的变量,却有很高的相关性(有较高的R2)。 例如:用美国人口数和中国GDP回归,也可能会得到很高的 可决系数。 20世纪70年代,Grange、Newbold 研究发现,造成“伪回归” 的根本原因在于时序序列变量的.,Ytn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Variable C
Coefficient 201.1071
Std. Error 14.88514
t-Statistic 13.51060
Prob. 0.0000
GDPP.0000
R-squared
0.992709
Adjusted R-squared 0.992362
23 .72 14 10 (40 .1 1 38 .5 3 )223
17 .7 2 5 .38 06 ( 1
)
2 2 3 23 (2 1 3 ) 96.4 4410
=1758.786.57
或 (1672.1, 1845.3)
整理ppt
6
二、时间序列问题
上述实例表明,时间序列完全可以进行类似 于截面数据的回归分析。
年份 人均居民消费
人均GDP
年份
人均居民消费
人均GDP
CONSP
GDPP
CONSP
GDPP
1978
395.8
675.1
1990
797.1
1602.3
1979
437.0
716.9
1991
861.4
1727.2
1980
464.1
763.7
1992
966.6
1949.8
1981
501.9
792.4
1993
1048.6
2187.9
1982
533.5
851.1
1994
1108.7
2436.1
1983
572.8
931.4
1995
1213.1
2663.7
1984
635.6
1059.2
1996
1322.8
2889.1
1985
716.0
1185.2
1997
1380.9
3111.9
1986
746.5
1269.6
1998
1、建立模型
拟建立如下一元回归模型
CO C N G S D PPP
采用Eviews软件进行回归分析的结果见下表
整理ppt
3
表 2.5.2 中国居民人均消费支出对人均 GDP 的回归(1978~2000)
LS // Dependent Variable is CONSP Sample: 1978 2000 Included observations: 23
2001年实测的CONSP(1990年价):1782.2元,
相对误差: -1.32%。
整理ppt
5
2001年人均居民消费的预测区间 人均GDP的样本均值与样本方差:
E(GDPP)=1823.5 Var(GDPP)=982.042=964410.4
在95%的置信度下,E(CONSP2001)的预测区间为:
S.E. of regression 33.26711
Sum squared resid 23240.71
Log likelihood -112.1945
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic
1460.6
3323.1
1987
788.3
1393.6
1999
1564.4
3529.3
1988
836.4
1527.0
2000
1690.8
3789.7
1989
779.7
1565.9
整理ppt
2
该两组数据是1978~2000年的时间序列数据 (time series data);
前述收入-消费支出例中的数据是截面数据 (cross-sectional data)。
4
2、模型检验
R2=0.9927 T值:C:13.51, GDPP:53.47
临界值: t0.05/2(21)=2.08 斜率项:0<0.3862<1,符合绝对收入假说
3、预测
2001年:GDPP=4033.1(元)(90年不变价) 点估计:CONSP2001=201.107 + 0.38624033.1 = 1758.7(元)
然而,在时间序列回归分析中,有两个需注 意的问题:
第一,关于抽样分布的理解问题。
能把表2.5.1中的数据理解为是从某个总体中 抽出的一个样本吗?
整理ppt
7
第二,关于“伪回归问题”(spurious regression problem)。
可决系数R2,考察被解释变量Y的变化中可由 解释变量X的变化“解释”的部分。
这里“解释”能否换为“引起”?
在现实经济问题中,对时间序列数据作回归, 即使两个变量间没有任何的实际联系,也往往会 得到较高的可决系数,尤其对于具有相同变化趋 势(同时上升或下降)的变量,更是如此。
这种现象被称为“伪回归”或“虚假回归”。
整理ppt
8
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
§2.5 实例:时间序列问题
一、中国居民人均消费模型 二、时间序列问题
整理ppt
1
一、中国居民人均消费模型
例2.5.1 考察中国居民收入与消费支出的关系。
GDPP: 人均国内生产总值(1990年不变价)
CONSP:人均居民消费(以居民消费价格指数(1990=100)缩减)。
表 2.5.1 中国居民人均消费支出与人均 GDP(元 /人)
905.3331 380.6428 7.092079 7.190818 2859.235
Durbin-Watson stat 0.550288
Prob(F-statistic)
0.000000
一般可写出如下回归分析结果:
(13.51) (53.47)
R2=0.9927 F整=2理8p5pt9.23 DW=0.5503
17 .7 2 5 .38 02 63 .72 ( 1 1 4 (0 40 .1 1 38 .3 5 )2) 23 2 3 2 23 (2 1 3 ) 96.4 4410
=1758.740.13
或: (1718.6,1798.8)
同样地,在95%的置信度下,CONSP2001的预测区间为: