2007年高考文科数学试题及参考答案(四川卷)
2007年全国高考文科数学试卷及答案-全国2-推荐下载

设等比数列{an}的公比 q 1 ,前 n 项和为 Sn .已知 a3 2,S4 5S2 ,求{an}的通项公
式. 18.(本小题满分 12 分)
在 △ABC 中,已知内角 A ,边 BC 2 3 .设内角 B x ,周长为 y .
(1)求函数 y f (x) 的解析式和定义域;
C. 5
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2007年高考文科数学试题及参考答案(四川卷)

章贡区水西镇第一保育院2011—2012学年
第二学期小二班庆“三八”活动家长感言
3月8日下午,在小二班的教室里小朋友齐声唱起“世上只有妈妈好”,唱完后小朋友在老师的带领下用他们粉嫩的小手给妈妈捶捶背,做了手工项链作为礼物送给妈妈们,让我沉醉其中,想一想幼儿园里孩子们在老师的教育下从呀呀学语到如今这么乖巧懂事,真是辛苦这些勤劳的园丁了。
非常感谢小二班的老师们为我们家长提供了“三八节”与自己的孩子在幼儿园里亲密接触的机会,让我们家长能够通过这次有意义的活动进一步了解孩子的园内生活,并且对培养孩子与家长之间的亲子关系起到了很积极的作用,这些都让我深深体会到幼儿园对孩子成长和教育的高度重视以及为此做出的各种努力,我对此深为感动和感激。
我们都知道,幼儿园的教育对孩子的成长影响深远,是良好性格的形成和培育的关键时期。
现在看到孩子在幼儿园期间变得越来越懂事了,这种体贴人、关心人的品格其实比学到的书本知识更有意义。
真的希望这样的活动能举办的更多一些。
真的希望对孩子的感恩教育能一如继往的坚持下去。
先学做人,再学知识。
小二班:钟自清妈妈。
2007年高考文科数学试题及参考答案(四川卷)

2008年普通高等学校招生全国统一考试 (四川卷)文科数学能力测试一、选择题(51260''⨯=)1.设集合{1,2,3,4,5},{1,2,3},{2,3,4}U A B ===,则()U C A B = ________ A.{2,3} B.{1,4,5} C.{4,5} D.{1,5}2.函数1ln(21)()2y x x =+>-的反函数是_____________A.11()2x y e x R =-∈B.21()x y e x R =-∈C.1(1)()2x y e x R =-∈ D.21()xy e x R =-∈3.设平面向量(3,5),(2,1),2______==--=则a b a b A .(7,3) B.(7,7) C.(1,7) D.(1,3)4.2(tan cot )cos ______+=x x x A.tan x B.sin x C.cos x D.cot x5.不等式2||2x x -<的解集为_______A.(1,2)-B.(1,1)-C.(2,1)-D.(2,2)-6.将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为_________ A.1133y x =-+ B. 113y x =-+ C.33y x =- D.31y x =+7.ABC ∆的三内角A 、B 、C 的对边长分别为a b c 、、,若,2a A B ==,则cos _____B =B. C. D.8.设M 是球O 半径OP 的中点,分别过M 、O 作垂直于OP 的平面,截球面得两个圆,则这两个圆的面积比值为_________A.14B. 12C. 23D. 349.函数()f x 满足()(2)13f x f x ⋅+=,若(1)2f =,则(99)_____f =A.13B.2C.132D.21310.直线l α⊂平面,经过α外一点A 与l α、都成30︒角的直线有且只有______ A.1条 B.2条 C.3条 D.4条11.已知双曲线22:1916x y C -=的左右焦点分别为12,F F P 、为C 的右支上一点,且212||||PF F F =,则12PF F ∆的面积为_____A.24B.36C.48D.9612.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60︒的菱形,则该棱柱的体积等于______B. C. D. 二、填空题(4416''⨯=)13.34(12)(1)x x +-展开式中x 的系数为__________14.已知直线:40l x y -+=与圆22:(1)(1)2C x y -+-=,则C 上各点到l 距离的最小值为_______15.从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有________种16.设数列{}n a 中,112,1n n a a a n +==++,则通项n a =_________________ 三、解答题 17.(12分)求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值 18.(12分)设进入某商场的每一位顾客购买甲种商品的概率位0.5,购买乙种商品的概率为0.6,且购买甲种商品与乙种商品相互独立,各顾客之间购买商品是相互独立的. ⑴求进入该商场的1位顾客购买甲、乙两种商品中的一种的概率⑵求进入该商场的3位顾客中,至少有2位顾客既未购买甲种也未购买乙种商品的概率19.(12分) 如图:平面ABEF ABCD ⊥平面,四边形ABEF 与ABCD 都是直角梯形,90BAD FAB ∠=∠=︒,BC12AD ,BE 12FA ,G 、H 分别为FA 、FD 的中点⑴证明:四边形BCHG 是平行四边形 ⑵C 、D 、F 、E 四点是否共面?为什么? ⑶设AB =BE ,证明:平面ADE CDE ⊥平面.20.(12分)设1x =和2x =是函数53()1f x x ax bx =+++的两个极值点. ⑴求a 和b 的值⑵求()f x 的单调区间.21.(12分)设数列{}n a 的前n 项和22n n n S a =- ⑴求14,a a⑵证明:1{2}n n a a +-是等比数列 ⑶求{}n a 的通项公式.22.(14分)设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12F F 、,离心率e =,点2F 到右准线l 的⑴求a 、b 的值;⑵设M 、N 是l 上的两个动点,120F M F N ⋅= ,证明:当||MN 取最小值时,F F F M F N ++=21220.参考答案一、选择题:BCADA ABDCB CB二、填空题:2;140;(1)12n n ++ 三、解答题17.242274sin cos 4cos 4cos 72sin 24cos sin y x x x x x x x =-+-=-+22 72sin 2sin 2(sin 21)6x x x =-+=-+ 1sin 21x -≤≤min max sin 216sin 2110x y x y ∴===-=当时,;当时,18.⑴所求概率为10.5(10.6)(10.5)0.60.5P =⨯-+-⨯=⑵进入商场的1位顾客既未购买甲种商品也未购买乙种商品的概率为:0.50.40.2⨯= 故所求概率为223230.20.80.20.104P C =⨯⨯+= 19.⑴G 、H 分别为AF 、DF 的中点∴GH 12AD ,又BC 12AD∴GHBC ,所以四边形BCHG 为平行四边形 ⑵C 、D 、F 、E 四点共面 理由:BE GF ⇒EF BG又由⑴知:BG CH ∴EF ∥CHE F H G ∴、、、四点共面,又D ∈直线FH 故C 、D 、F 、E 四点共面(法二:证EF 、AB 、DC 三线共点) ⑶连EGBE AG ⇒四边形ABEG 为平行四边形,又AB =BE ∴四边形ABEG 为菱形,所以BG ⊥AE又90BAD FAB ∠=∠=︒,所以AD ⊥平面ABEF ⇒AD ⊥AE BG AED ∴⊥平面,又BG ∥CH CH AED ∴⊥平面由⑵知:F ∈平面CED ,所以CH ⊂平面CED 故平面ADE CDE ⊥平面 法二:AB 、AD 、AF 两两垂直故建立如图所示的空间直角坐标系A -xyz 设AB =a ,BC =b ,BE =c ,由题意得: A(0,0,0)B(a,0,0)C(a,b,0)D(0,2b,0)、、、 E(a,0,c)G(0,0,c)H(0,b,c)F(0,0,2c)、、、 ⑴GH (0,,0),BC (0,,0)GH BC b b ∴==⇒=又G 不在BC 上,所以四边形BCHG 为平行四边形 ⑵(,0,),(,0,)EF a c CH a c EF CH C EF E C H F =-=-⇒=∉⇒,又、、、四点共面又D ∈直线FH ,故C 、D 、F 、E 四点共面 ⑶(,0,),(0,2,0),(,0,)AE a c AD b CH a c ===-,且a c =0,0AE CH AD CH CH ADE ∴⋅=⋅=⇒⊥平面 又CH ⊂平面CED ,所以平面ADE CDE ⊥平面20.⑴5342()1()53f x x ax bx f x x ax b '=+++⇒=++1x =和2x =是函数53()1f x x ax bx =+++的两个极值点 (1)35025,20(2)128003f a b a b f a b '=++=⎧∴⇒=-=⎨'=++=⎩⑵42()52520f x x x '=-+由()012f x x '==±±得:、由图知:()f x ∞∞在(-,-2)和(-1,1)及(2,+)上单调递增;在(-2,-1)和(1,2)上单调递减 21.⑴11111222,2a S a a S ==-⇒==1111111222222n n n n n n n n n n n n a S a S a S a S +++++++=+⇒=+=++⇒=+2212332344326,8 216,24 240a S S a S S a S ∴=+===+===+= ⑵1122(2)2n n n n n n n a a S S ++-=+-+=∴1{2}n n a a +-是以2122a a -=为首项,2为公比的等比数列⑶211112211(2)2(2)2(2)2(1)22(1)2n n n n n n n n n n a a a a a a a a n n ------=-+-+⋅⋅⋅+-+=-⋅+=+⋅22.⑴依题意:22c a c c a a c=-===,又222b a c =-,所以b =⑵12( F F l x =、准线的方程为故设12))M y N y 、12121212))606F M F N y y y y y y ⋅=⋅=+=⇒=-||MN=21116||||y y y y y -=+≥= 所以当||MN取最小值时,12y y =-21221212())(0,)F F F M F N y y y y ++=-++=+=。
2007年高考文科数学试题及参考答案(四川卷)

目录一、专业工程概况与特点二、工程监理依据三、监理过程的控制四、质量控制流程图五、监理方法和手段六、土方工程的质量检查和评定一、工程概况:1、建设单位:宁波东部新城开发投资有限公司2、设计单位:宁波中鼎建筑设计研究院3、勘察单位(围护设计):浙江省工程勘察院3、监理单位:宁波市天正工程咨询有限公司4、施工单位:宁波建工股份有限公司5、工程名称:东部新城邱隘安置房C1-2-1地块工程6、质量要求:一次性合格本工程位于宁波市鄞州区邱隘镇(宁波东部新城内),地块东至陈郎桥江,南至C1-2-2地块,西至规划支路,北至通途路。
总建筑面积约110907平方米,地下室开挖面积约26500平方米,基坑周长约729米,开挖深度6.1~7米为主,局部坑边电梯井深度8.5~9.4米,地质情况以淤泥粘土为主。
二、工程监理依据:1、国家、宁波市市有关法律法规、条例和规章;2、国家及有关部门颁布的工程施工技术标准、规程、规范和工程质量检验评定标准;3、上级主管部门批准的设计文件和批文;4、经审查的施工图纸、资料及说明;5、工程施工承包合同及有关文件、附件;6、监理合同及有关文件、附件;7、招标人提供的其它文件和资料。
三、监理过程的控制:1、事前控制:(1)掌握施工单位人员素质的基本情况,重点核实施工单位的主要技术负责人的技术状况,了解其完成同类项目的土方工程质量情况;(2)做好施工图会审技术交底,熟悉施工方案,使设计技术要求及施工范围具体化,保证土方施工方案准确无误;(3)了解施工单位的施工进度;(4)核定施工单位施工机械设备的进场计划;(5)检验并审核进场机械设备的相关资料;(6)掌握土方施工质量的控制要求;(7)掌握项目特定内容的施工验收规范。
2、事中控制:(1)控制好土方工程的施工质量控制要点、部位;(2)旁站监理土方工程挖土、回填土工作,严禁擅自超挖;(3)慎重处理工程变更和设计修改工作,做好工程费用的控制;(4)严格质量检验,报验制度,不合格不得进行下道工序施工;(5)定期对照工程施工总进度计划,当实际施工进度与总进度计划不符时,要求施工单位及时对进度计划进行调整,并将调整后的进度计划方案报送监理部备查;3、事后控制:(1)对于相关的工程索赔,要认真分析责任单位,正确处理有关索赔问题;(2)及时填写好验收报告、隐蔽记录,对不符合要求的部位及时要求施工单位进行返工;(3)认真审查竣工验收资料;(4)及时进行监理阶段的小结和分析。
2007年高考文科数学试题及参考答案(四川卷)

2007年普通高等学校招生 全国统一考试(四川卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(一、选择题(1)设集合M ={4,5,6,8},集合N ={3,5,7,8}那么M ∪N = (A){3,4,5,6,7,8}(B){5,8}(C){3,5,7,8}(D){4,5,6,8}(2)函数f (x )=1+log 2x 与g (x )=2-x+1在同一直角坐标系下的图象大致是(3)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是(A)150.2克(B)149.8克 (C)149.4克(D)147.8克(4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1 (B)AC 1⊥BD(C)AC 1⊥平面CB 1D 1 (D)异面直线AD 与CB 所成的角为60°(5)如果双曲线2422y x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是(A)364(B)362(C)62 (D)32(6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且二面角B-OA-C 的大小是3π,则从A 点沿球面经B 、C两点再回到A 点的最短距离是(A)67π(B)45π (C)34π(D)23π(7)等差数列{a n }中,a 1=1,a 3+a 5=14,其降n 项和S n =100,则n = (A)9(B)10(C)11(D)12(8)设A (a,1),B(2,b),C(4,5)为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为A.4a-5b=3B.5a-4b=3C.4a+5b=14D.5a+4b=12(9)用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有A.48个B.36个C.24个D.18个 (10)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32D.42 (11)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确提财投资后,在两个项目上共可获得的最大利润为A.36万元B.31.2万元C.30.4万元D.24万元(12)如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2与l 3同的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 A.23 B.364 C. 473- D.3212- 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题横线上.(13).1nx x ⎛⎫- ⎪⎝⎭的展开式中的第5项为常数项,那么正整数n 的值是 .14、在正三棱柱111ABC A B C -中,侧棱长为2,底面三角形的边长为1,则1BC 与侧面11ACC A 所成的角是____________15、已知O 的方程是2220x y +-=,'O 的方程是228100x y x +-+=,由动点P 向O 和'O 所引的切线长相等,则运点P 的轨迹方程是__________________16、下面有5个命题:①函数44sin cos y x x =-的最小正周期是π; ②终边在y 轴上的角的集合是{|,}2k k Z παα=∈; ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有3个公共点;④把函数3sin(2)3y x π=+的图象向右平移6π得到3sin 2y x =的图象;⑤角θ为第一象限角的充要条件是sin 0θ>其中,真命题的编号是___________(写出所有真命题的编号)三、解答题:本大题共6小题。
四川2007年全国各地高考文科数学试题及参考答案

2007年全国各地高考(四川卷)文科数学(含详细解析)一、选择题:本大题共12小题,每小题5分,共60分. 1、设集合{4,5,6,8}M =,集合{3,5,7,8}N =,那么M N =( )(A){3,4,5,6,7,8} (B){5,8}(C){3,5,7,8}(D){4,5,6,8}M =解析:选A.2、函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )解析:选C.3、某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是( )(A)150.2克 (B)149.8克 (C)149.4克 (D)147.8克 解析:选B.4、如图,1111ABCD A BC D -为正方体,下面结论错误..的是( ) (A)//BD 平面11CB D (B)1AC BD ⊥ (C)1AC ⊥平面11CB D(D)异面直线AD 与1CB 所成的角为60° 解析:选D.5、如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( )(C) (D)解析:选A.由点P 到双曲线右焦点的距离是2知P 在双曲线右支上.又由双曲线的第二定义知点P 到双曲线右准线的距离是,双曲线的右准线方程是x =,故点P 到y 轴的距离是3.6、设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且二面角B OA C --的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是( )(A)76π(B)54π(C)43π(D)32π解析:选C.42323d AB BC CA ππππ=++=++=.本题考查球面距离.7、等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n =( ) (A)9 (B)10 (C)11 (D)12 解析:选B.8、设(,1)A a ,(2,)B b ,(4,5)C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为( )(A)453a b -= (B)543a b -= (C)4514a b += (D)5414a b += 解析:选A.由OA 与OB 在OC 方向上的投影相同,可得OA OC OB OC ⋅=⋅4585a b +=+,453a b -=.9、用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )(A)48个 (B)36个 (C)24个 (D)18个解析:选B.个位是2的有33318A =个,个位是4的有33318A =个,所以共有36个.10、已知抛物线23y x =-+上存在关于直线0x y +=对称的相异两点A 、B ,则AB 等于( )(A)3 (B)4 (C) (D)解析:选C.设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出AB ==本题考查直线与圆锥曲线的位置关系.自本题起运算量增大.11、某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )(A)36万元 (B)31.2万元 (C)30.4万元 (D)24万元解析:选B.对甲项目投资24万元,对乙项目投资36万元,可获最大利润31.2万元.因为对乙项目投资获利较大,故在投资规划要求内(对项目甲的投资不小于对项目乙投资的32倍)尽可能多地安排资金投资于乙项目,即对项目甲的投资等于对项目乙投资的32倍时可获最大利润.这是最优解法.也可用线性规划的通法求解.注意线性规划在高考中以应用题型的形式出现. 12、如图,1l 、2l 、3l 是同一平面内的三条平行直线,1l 与2l 间的距离是1,2l 与3l 间的距离是2,正三角形ABC 的三顶点分别在1l 、2l 、3l 上,则⊿ABC 的边长是( )(A)23 (B)364解析:选 D.过点C作2l 的垂线4l ,以2l 、4l 为x 轴、y 轴建立平面直角坐标系.设(,1)A a 、(,0)B b 、(0,2)C -,由AB BC AC ==知2222()149a b b a -+=+=+=边长,检验A:222()14912a b b a -+=+=+=,无解;检验B:22232()1493a b b a -+=+=+=,无解;检验D:22228()1493a b b a -+=+=+=,正确.本题是把关题.在基础中考能力,在综合中考能力,在应用中考能力,在新型题中考能力全占全了.是一道精彩的好题.可惜区分度太小.二、填空题:本大题共4小题,每小题4分,共16分;把答案填在题中的横线上.13、1()n x x-的展开式中的第5项为常数项,那么正整数n 的值是 .解析:8n =.14、在正三棱柱111ABC A B C -中,侧棱长为,底面三角形的边长为1,则1BC 与侧面11ACC A 所成的角是____________解析:1BC =点B 到平面11ACC A 的距离为2,∴1sin 2θ=,30θ=︒.15、已知O 的方程是2220x y +-=,'O 的方程是228100x y x +-+=,由动点P 向O 和'O 所引的切线长相等,则运点P 的轨迹方程是__________________解析:O :圆心(0,0)O ,半径r ='O :圆心'(4,0)O ,半径'r =设(,)P x y ,由切线长相等得222x y +-=22810x y x +-+,32x =. 16、下面有5个命题:①函数44sin cos y x x =-的最小正周期是π; ②终边在y 轴上的角的集合是{|,}2k k Z παα=∈; ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有3个公共点; ④把函数3sin(2)3y x π=+的图象向右平移6π得到3sin 2y x =的图象; ⑤角θ为第一象限角的充要条件是sin 0θ>其中,真命题的编号是___________(写出所有真命题的编号)解析:①4422sin cos sin cos 2y x x x x cos x =-=-=-,正确;②错误;③sin y x =,tan y x =和y x =在第一象限无交点,错误;④正确;⑤错误.故选①④.三、解答题:本大题共6小题,共74分;解答应写出文字说明,证明过程或演算步骤. 17、(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这些产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4种进行检验,求至少要1件是合格产品的概率.(Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,来进行检验,只有2件产品合格时才接收这些产品,否则拒收,分别求出该商家计算出不合格产品为1件和2件的概率,并求该商家拒收这些产品的概率。
2007年普通高等学校招生全国统一考试文科数学试卷及答案-全国1

2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kn n P k C p p n n -=-= ,,,, 一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T = ( )A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( ) A.513B.513-C.512 D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A.221412x y -= B.221124x y -= C.221106x y -= D.221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种 C.96种 D.192种 (6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02),B.(20)-,C.(02)-,D.(20),(7)如图,正四棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A.15B.25C.35D.45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) B.2C.D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件 B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( ) A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭,D.ππ2⎛⎫ ⎪⎝⎭,(11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19B.29C.13D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( )1A1D1C 1BDC A。
2007年普通高等学校招生全国统一考试四川卷

2007年普通高等学校招生全国统一考试(四川卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一、选择题(1)设集合M ={4,5,6,8},集合N ={3,5,7,8}那么M ∪N = (A){3,4,5,6,7,8} (B){5,8} (C){3,5,7,8}(D){4,5,6,8}(2)函数f (x )=1+log 2x 与g (x )=2-x+1在同一直角坐标系下的图象大致是(3)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是 (A)150.2克 (B)149.8克 (C)149.4克 (D)147.8克 (4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1 (B)AC 1⊥BD(C)AC1⊥平面CB 1D 1 (D)异面直线AD 与CB 所成的角为60°(5)如果双曲线2422y x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是(A)364 (B)362 (C)62 (D)32 (6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且二面角B-OA-C 的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是(A)67π (B)45π (C)34π (D)23π(7)等差数列{a n }中,a 1=1,a 3+a 5=14,其降n 项和S n =100,则n = (A)9 (B)10 (C)11 (D)12(8)设A (a,1),B(2,b),C(4,5)为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为A.4a-5b=3B.5a-4b=3C.4a+5b=14D.5a+4b=12 (9)用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有 A.48个 B.36个 C.24个 D.18个(10)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32D.42(11)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确提财投资后,在两个项目上共可获得的最大利润为A.36万元B.31.2万元C.30.4万元D.24万元(12)如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2与l 3同的距离是2, 正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 A.23 B.364 C. 473- D.3212- 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题横线上.(13).1nx x ⎛⎫- ⎪⎝⎭的展开式中的第5项为常数项,那么正整数n 的值是 .14、在正三棱柱111ABC A B C -,底面三角形的边长为1,则1BC 与侧面11ACC A 所成的角是____________15、已知O 的方程是2220x y +-=,'O 的方程是228100x y x +-+=,由动点P 向O 和'O 所引的切线长相等,则运点P 的轨迹方程是__________________16、下面有5个命题:①函数44sin cos y x x =-的最小正周期是π; ②终边在y 轴上的角的集合是{|,}2k k Z παα=∈; ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有3个公共点; ④把函数3sin(2)3y x π=+的图象向右平移6π得到3sin 2y x =的图象; ⑤角θ为第一象限角的充要条件是sin 0θ>其中,真命题的编号是___________(写出所有真命题的编号)三、解答题:本大题共6小题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年普通高等学校招生全国统一考试(四川卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π= n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k k n n P P C k P --=)1()(一、选择题(1)设集合M ={4,5,6,8},集合N ={3,5,7,8}那么M ∪N =(A){3,4,5,6,7,8} (B){5,8} (C){3,5,7,8} (D){4,5,6,8}(2)函数f (x )=1+log 2x 与g (x )=2-x+1在同一直角坐标系下的图象大致是(3)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是(A)150.2克 (B)149.8克 (C)149.4克 (D)147.8克(4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误的是(A )BD ∥平面CB 1D 1 (B)AC 1⊥BD(C)AC 1⊥平面CB 1D 1 (D)异面直线AD 与CB 所成的角为60°(5)如果双曲线2422y x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是 (A)364 (B)362 (C)62 (D)32 (6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的 球面距离都是2π,且二面角B-OA-C 的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是 (A)67π (B)45π (C)34π (D)23π (7)等差数列{a n }中,a 1=1,a 3+a 5=14,其降n 项和S n =100,则n =(A)9 (B)10 (C)11 (D)12(8)设A (a,1),B(2,b),C(4,5)为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为A.4a-5b=3B.5a-4b=3C.4a+5b=14D.5a+4b=12(9)用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有A.48个B.36个C.24个D.18个(10)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42(11)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确提财投资后,在两个项目上共可获得的最大利润为A.36万元B.31.2万元C.30.4万元D.24万元(12)如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2与l 3同的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 A.23 B.364 C. 473- D.3212- 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题横线上.(13).1nx x ⎛⎫- ⎪⎝⎭的展开式中的第5项为常数项,那么正整数n 的值是 .14、在正三棱柱111ABC A B C -,底面三角形的边长为1,则1BC 与侧面11ACC A 所成的角是____________15、已知O 的方程是2220x y +-=,'O 的方程是228100x y x +-+=,由动点P 向O 和'O 所引的切线长相等,则运点P 的轨迹方程是__________________16、下面有5个命题:①函数44sin cos y x x =-的最小正周期是π;②终边在y 轴上的角的集合是{|,}2k k Z παα=∈; ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有3个公共点; ④把函数3sin(2)3y x π=+的图象向右平移6π得到3sin 2y x =的图象; ⑤角θ为第一象限角的充要条件是sin 0θ> 其中,真命题的编号是___________(写出所有真命题的编号)三、解答题:本大题共6小题。
共74分,解答应写出文字说明。
证明过程或运算步骤(17)(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家对一般产品致冷商家的,商家符合规定拾取一定数量的产品做检验,以决定是否验收这些产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.3,从中任意取出4种进行检验,求至少要1件是合格产品的概率.(Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,来进行检验,只有2件产品合格时才接收这些产品,否则拒收,分别求出该商家计算出不合格产品为1件和2件的概率,并求该商家拒收这些产品的概率。
(18)(本小题满分12分)已知cos α=71,cos(α-β)=1413,且0<β<α<2π, (Ⅰ)求tan2α的值;(Ⅱ)求β.(19) (本小题满分12分)如图,平面PCBM ⊥平面ABC ,∠PCB =90°,PM ∥BC ,直线AM 与直线PC 所成的角为60°,又AC =1,BC =2PM =2,∠ACB =90°(Ⅰ)求证:AC ⊥BM ;(Ⅱ)求二面角M -AB -C 的大小;(Ⅲ)求多面体PMABC 的体积.(20)(本小题满分12分)设函数f (x )=ax 3+bx +c (a ≠0)为奇函数,其图象在点(1,f (1))处的切线与直线x -6y -7=0垂直,导函数f '(x )的最小值为-12.(Ⅰ)求a ,b ,c 的值;(Ⅱ)求函数f (x )的单调递增区间,并求函数f (x )在〔-1,3〕上的最大值和最小值.(21)(本小题满分12分)求F1、F2分别是横线2214xy+=的左、右焦点.(Ⅰ)若r是第一象限内该数轴上的一点,221254PF PF+=-,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于同的两点A、B,且∠ADB为锐角(其中O为作标原点),求直线l的斜率k的取值范围.(22)(本小题满分14分)已知函数f(x)=x2-4,设曲线y=f(x)在点(x n,f(x n))处的切线与x轴的交点为(x n+1,u)(u,N +),其中为正实数.(Ⅰ)用x x表示x n+1;(Ⅱ)若a1=4,记a n=lg22nnxx+-,证明数列{a1}成等比数列,并求数列{x n}的通项公式;(Ⅲ)若x1=4,b n=x n-2,T n是数列{b n}的前n项和,证明T n<3.2007年普通高等学校招生全国统一考试(四川卷)文科数学参考答案(含详细解析)一、选择题:本大题共12小题,每小题5分,共60分.1、设集合{4,5,6,8}M =,集合{3,5,7,8}N =,那么MN =( ) (A ){3,4,5,6,7,8} (B ){5,8} (C ){3,5,7,8}(D ){4,5,6,8}M =解析:选A .2、函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )解析:选C .3、某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是( )(A )150.2克 (B )149.8克 (C )149.4克 (D )147.8克解析:选B.4、如图,1111ABCD A B C D -为正方体,下面结论错误的是( )(A )//BD 平面11CB D(B )1AC BD ⊥(C )1AC ⊥平面11CB D(D )异面直线AD 与1CB 所成的角为60°解析:选D.5、如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( )(A (B (C ) (D )解析:选A .由点P 到双曲线右焦点的距离是2知P 在双曲线右支上.又由双曲线的第二定义知点P ,双曲线的右准线方程是x =,故点P 到y 轴的距离是3. 6、设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且二面角B OA C --的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是( )(A )76π (B )54π (C )43π (D )32π 解析:选C .42323d AB BC CA ππππ=++=++=.本题考查球面距离. 7、等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n =( )(A )9 (B )10 (C )11 (D )12解析:选B.8、设(,1)A a ,(2,)B b ,(4,5)C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为( )(A )453a b -= (B )543a b -= (C )4514a b += (D )5414a b += 解析:选A .由OA 与OB 在OC 方向上的投影相同,可得:OA OC OB OC ⋅=⋅即4585a b +=+,453a b -=.9、用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )(A )48个 (B )36个 (C )24个 (D )18个解析:选B.个位是2的有33318A =个,个位是4的有33318A =个,所以共有36个.10、已知抛物线23y x =-+上存在关于直线0x y +=对称的相异两点A 、B ,则AB 等于( )(A )3 (B )4 (C ) (D )解析:选C .设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出AB ==本题考查直线与圆锥曲线的位置关系.自本题起运算量增大.11、某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )(A )36万元 (B )31.2万元 (C )30.4万元 (D )24万元 解析:选B .对甲项目投资24万元,对乙项目投资36万元,可获最大利润31.2万元.因为对乙项目投资获利较大,故在投资规划要求内(对项目甲的投资不小于对项目乙投资的32倍)尽可能多地安排资金投资于乙项目,即对项目甲的投资等于对项目乙投资的32倍时可获最大利润.这是最优解法.也可用线性规划的通法求解.注意线性规划在高考中以应用题型的形式出现.12、如图,1l 、2l 、3l 是同一平面内的三条平行直线,1l 与2l 间的距离是1,2l 与3l 间的距离是2,正三角形ABC 的三顶点分别在1l 、2l 、3l 上,则⊿ABC 的边长是( )(A )23 (B )364(C )4(D 解析:选D .过点C作2l 的垂线4l ,以2l 、4l 为x 轴、y 轴建立平面直角坐标系.设(,1)A a 、(,0)B b 、(0,2)C -,由AB BC AC ==知2222()149a b b a -+=+=+=边长,检验A :222()14912a b b a -+=+=+=,无解;检验B :22232()1493a b b a -+=+=+=,无解;检验D :22228()1493a b b a -+=+=+=,正确.本题是把关题.在基础中考能力,在综合中考能力,在应用中考能力,在新型题中考能力全占全了.是一道精彩的好题.可惜区分度太小.二、填空题:本大题共4小题,每小题4分,共16分;把答案填在题中的横线上.13、1()nx x -的展开式中的第5项为常数项,那么正整数n 的值是 .解析:8n =.14、在正三棱柱111ABC A B C -,底面三角形的边长为1,则1BC 与侧面11ACC A 所成的角是____________解析:1BC =B 到平面11ACC A 1sin 2θ=,30θ=︒. 15、已知O 的方程是2220x y +-=,'O 的方程是228100x y x +-+=,由动点P 向O 和'O 所引的切线长相等,则运点P 的轨迹方程是__________________解析:O :圆心(0,0)O ,半径r ='O :圆心'(4,0)O ,半径'r =设(,)P x y ,由切线长相等得 222x y +-=22810x y x +-+,32x =. 16、下面有5个命题: ①函数44sin cos y x x =-的最小正周期是π;②终边在y 轴上的角的集合是{|,}2k k Z παα=∈; ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有3个公共点; ④把函数3sin(2)3y x π=+的图象向右平移6π得到3sin 2y x =的图象; ⑤角θ为第一象限角的充要条件是sin 0θ> 其中,真命题的编号是___________(写出所有真命题的编号) 解析:①4422sin cos sin cos 2y x x x x cos x =-=-=-,正确;②错误;③sin y x =,tan y x =和y x =在第一象限无交点,错误;④正确;⑤错误.故选①④.三、解答题:本大题共6小题,共74分;解答应写出文字说明,证明过程或演算步骤.17、(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这些产品. (Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4种进行检验,求至少要1件是合格产品的概率.(Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,来进行检验,只有2件产品合格时才接收这些产品,否则拒收,分别求出该商家计算出不合格产品为1件和2件的概率,并求该商家拒收这些产品的概率。