巨磁阻效应

合集下载

巨磁电阻效应――GMR模拟传感器的磁电转换特性测量【实验目的】1...

巨磁电阻效应――GMR模拟传感器的磁电转换特性测量【实验目的】1...

巨磁电阻效应――GMR 模拟传感器的磁电转换特性测量【实验目的】1. 掌握GMR 效应的定义;2. 了解GMR 效应的原理;3. 熟悉GMR 模拟传感器的构成;4. 测量GMR 磁阻特性曲线。

【实验仪器】ZKY-JCZ 巨磁电阻效应及应用实验仪、基本特性组件、导线 【实验原理】一、巨磁电阻效应定义及发展过程1、定义2007年10月,科学界的最高盛典—瑞典皇家科学院颁发的诺贝尔奖揭晓了。

本年度,法国科学家阿尔贝·费尔(Albert Fert)和德国科学家彼得·格林贝格尔(Peter Grunberg)因分别独立发现巨磁阻效应而共同获得2007年诺贝尔物理学奖。

瑞典皇家科学院在评价这项成就时表示,今年的诺贝尔物理学奖主要奖励“用于读取硬盘数据的技术,得益于这项技术,硬盘在近年来迅速变得越来越小”。

巨磁阻到底是什么?诺贝尔评委会主席佩尔·卡尔松用比较通俗的语言解答了这个问题。

他用两张图片的对比说明了巨磁阻的重大意义:一台1954年体积占满整间屋子的电脑,和一个如今非常普通、手掌般大小的硬盘。

正因为有了这两位科学家的发现,单位面积介质存储的信息量才得以大幅度提升。

目前,根据该效应开发的小型大容量硬盘已得到了广泛的应用。

“巨磁电阻”效应(GMR ,Giant Magneto Resistance)是指磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象。

也就是说,非常弱小的磁性变化就能导致巨大电阻变化的特殊效应,变化的幅度比通常磁性金属与合金材料的磁电阻数值高10余倍。

2、发展过程人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。

量子力学出现后,德国科学家海森伯(W. Heisenberg)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。

后来发现很多的过渡金属和稀土金属的化合物具有反铁磁(或亚铁磁)有序状态,化合物中的氧离子(或其他非金属离子)作为中介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。

巨磁电阻效应

巨磁电阻效应
ห้องสมุดไป่ตู้
目前,采用SPIN-VALVE材料研制的新一代硬盘读出磁头,已经把存储密 度提高到560亿位/平方英寸,该类型磁头已占领磁头市场的90%~95%。 随着低电阻高信号的TMR的获得,存储密度达到了1000亿位/平方英寸。
2007年9月13日,全球最大的硬盘厂 商希捷科技(Seagate Technology) 在北京宣布,其旗下被全球最多数字 视频录像机(DVR)及家庭媒体中心 采用的第四代DB35系列硬盘,现已达 到1TB(1000GB)容量,足以收录多 达200小时的高清电视内容。正是依靠 巨磁阻材料,才使得存储密度在最近 几年内每年的增长速度达到3~4倍。 由于磁头是由多层不同材料薄膜构成 的结构,因而只要在巨磁阻效应依然 起作用的尺度范围内,未来将能够进 一步缩小硬盘体积,提高硬盘容量。
光信息91 09095005 陈松
法国科学家阿尔贝· 费尔 和德国科学家彼得· 格林 贝格尔因分别独立发现巨 磁阻效应而共同获得 2007年诺贝尔物理学奖。 这项技术用于读取硬盘数 据,得益于这项技术,硬 盘在近年来迅速变得越来 越小。
巨磁阻效应,是指磁性材料的电 阻率在有外磁场作用时较之无外 磁场作用时存在巨大变化的现象。 巨磁阻是一种量子力学效应,它 产生于层状的磁性薄膜结构。这 种结构是由铁磁材料和非铁磁材 料薄层交替叠合而成。当铁磁层 的磁矩相互平行时,载流子与自 旋有关的散射最小,材料有最小 的电阻。当铁磁层的磁矩为反平 行时,与自旋有关的散射最强, 材料的电阻最大。巨磁阻效应被 成功地运用在硬盘生产上,具有 重要的商业应用价值。

巨磁阻效应,霍尔效应原理

巨磁阻效应,霍尔效应原理

霍尔效应的原理 在导体上外加与电流方向 垂直的磁场,会使得导线中的电子与电洞受到 不同方向的劳伦兹力而往不同方向上聚集,在 聚集起来的电子与电洞之间会产生电场,此一 电场将会使后来的电子电洞受到电力作用而平 衡掉磁场造成的劳伦兹力,使得后来的电子电 洞能顺利通过
霍尔效应
不会偏移,此称为霍尔效应。而产生的内建 电压称为霍尔电压。
方便起见,假设导体为一个长方体,长度分别为 a,b,d,磁场垂直ab平面。电流经过ad,电流I = nqv(ad),n为电荷密度。设霍尔电压为VH,导体 沿霍尔电压方向的电压方向的电场为VH / a。设磁 场强度为B。 Fe = Fm qVH/ a = qvB VH / a = BI / (nqad) VH = BI / (nqd)
பைடு நூலகம் 庞磁电阻效应
具有显著磁电阻效应的磁性材料。强磁性材料在受到外加磁场 作用时引起的电阻变化,称为磁电阻效应。不论磁场与电流方 向平行还是垂直,都将产生磁电阻效应。前者(平行)称为纵 磁场效应,后者(垂直)称为横磁场效应。一般强磁性材料的 磁电阻率(磁场引起的电阻变化与未加磁场时电阻之比)在室 温下小于8%,在低温下可增加到10%以上。已实用的磁电阻 材料主要有镍铁系和镍钴系磁性合金。室温下镍铁系坡莫合金 的磁电阻率约1%~3%,若合金中加入铜、铬或锰元素,可使 电阻率增加;镍钴系合金的电阻率较高,可达6%。与利用其 他磁效应相比,利用磁电阻效应制成的换能器和传感器,其装 置简单,对速度和频率不敏感。磁电阻材料已用于制造磁记录 磁头、磁泡检测器和磁膜存储器的读出器等。
霍尔效应 霍尔效应是磁电效应的一种,这一现象是美国物 理学家霍尔(A.H.Hall,1855—1938)于1879年 在研究金属的导电机构时发现的。当电流垂直于 外磁场通过导体时,在导体的垂直于磁场和电流 方向的两个端面之间会出现电势差,这一现象便 是霍尔效应。这个电势差也被叫做霍尔电势差。 (如下图)

巨磁电阻效应ppt课件

巨磁电阻效应ppt课件

巨磁电阻效应的制造工艺问题及解决方案
制造工艺问题
巨磁电阻效应的制造工艺涉及到多个复杂 的步骤,包括薄膜制备、光刻、干法刻蚀 等。这些步骤中的任何错误都可能导致巨 磁电阻器件的性能下降或失效。
VS
解决方案
为了解决制造工艺问题,可以采取一系列 措施,例如通过引入自动化生产线和严格 的质量控制体系来提高生产效率和质量。 此外,可以通过研发新的制造工艺来降低 成本和提高巨磁电阻器件的性能。
巨磁电阻效应的能效问题及解决方案
能效问题
巨磁电阻效应的能效问题也是影响其应用 的重要因素之一。在许多情况下,使用巨 磁电阻器件可能会导致较高的功耗和较低 的能效。
解决方案
为了提高巨磁电阻效应的能效,可以采取 多种措施,例如通过优化巨磁电阻器件的 结构和材料来降低功耗和提高能效。此外 ,可以通过采用新的电路设计和控制策略 来进一步降低功耗和提高能效。
05
巨磁电阻效应的未来展 望
提高巨磁电阻效应的性能
发展新的制备技术
改进制备工艺,提高巨磁电阻 材料的纯度和结晶度,从而提
高其性能。
探索新的物理机制
深入研究巨磁电阻效应的物理机 制,为开发新型材料和优化性能 提供理论支持。
优化结构设计
通过调整巨磁电阻材料的结构,如 纳米结构、多层膜结构等,实现性 能的优化。
03
电子的波粒二象性
在磁场中运动的电子具有 粒子性和波动性两种特性 。
电子散射
在晶体中,电子会受到原 子或离子的散射。
磁矩和自旋
电子在磁场中运动时会受 到磁矩的影响,导致电子 自旋的取向发生变化。
巨磁电阻效应的数学描述
洛伦兹力公式
描述电子在磁场中受到的力。
霍尔效应

巨磁电阻效应实验结论

巨磁电阻效应实验结论

巨磁电阻效应实验结论巨磁电阻效应,这个名字听起来有点高大上,实际上,咱们可以把它简单地想象成一种“磁力开关”,听着是不是有点神奇呢?说白了,它让一些材料在磁场中表现得像小变色龙,嗯,变化多端。

比如说,咱们常见的硬盘,它们可不是普通的存储设备,正是借助这种效应,才让数据读写变得又快又稳。

想象一下,咱们有一天在图书馆翻找一本书,突然发现了那个隐藏的宝藏。

这个时候,有个小朋友跑过来问:“这书怎么能找到的?”你就可以骄傲地说,嘿,我用了巨磁电阻效应!这个效应就像你的小伙伴,它帮助你在数据的海洋里,迅速找到那本稀有的书。

是不是感觉自己就像个科学家,真有点儿酷!来,咱们深入一点。

巨磁电阻效应最早是在1988年被发现的,那时候科学家们就像是在进行一场疯狂的宝藏猎人游戏,他们在各种材料中探索,发现了一些神秘的现象。

材料在磁场中变化的能力让他们大开眼界,啊,真是不可思议。

这就像你打开了一扇通往新世界的门,里面全是奇妙的科学现象和无尽的可能性。

咱们说说这个效应是怎么被应用的。

硬盘、传感器,还有各种电子设备,都在利用这种效果。

你想啊,现在手机里的存储技术,简直让人目瞪口呆,数据就像是飞一般的被读取和写入。

想要在游戏中快速存档?别担心,巨磁电阻效应在帮你忙呢。

那感觉就像是在打游戏时,突然获得了超级道具,分分钟提升战斗力!不仅如此,科学家们还在尝试把这个效应运用到新材料和新技术中。

未来的量子计算机、超导材料,甚至是一些环保的能源技术,都可能与这个效应息息相关。

是不是有点像科幻电影中的情节?科学真的就像魔法,只不过它的法术是通过实验和研究一点一滴积累起来的。

再说说这个效应的原理,简单点儿说,就是材料内部的电子在磁场中受到影响,导致电阻变化。

想象一下你在游乐场,排队的时候突然遇到了个大块头,哎呀,你得绕道而行。

这样一来,你的“通过能力”就变差了,电阻自然就增加了。

反过来说,当大块头离开了,你又可以轻松通过,电阻又降低了。

这种变化让人惊讶,让我们重新认识了材料的性能。

巨磁电阻效应及其应用

巨磁电阻效应及其应用

巨磁电阻效应及其应用巨磁电阻效应(GMR)是指一种材料在外加磁场作用下,其电导率发生改变,从而导致电阻率发生变化的现象。

这一现象最早是在20世纪50年代由Alfred G. Yelon等人在垂直于金属层面的磁场作用下观察到的。

但直到1988年,Prinz等人才发现了铁磁性薄膜间的GMR现象,这也使得GMR效应引起了科学家们的广泛兴趣。

GMR效应在接下来的几年里得到了深入研究,被发现可以用于高密度数据存储和无线通讯等多种应用中。

GMR效应可以由一系列不同的物理机制所产生。

其中,最为常见的是自旋環境杂化(SEH)和直接交换耦合(DEC)。

在SEH机制下,电流通过一条薄膜时会造成电子的自旋极化,这个自旋极化可以将与之相邻的薄膜中的自旋磁矩引起旋转,导致自旋的损失。

因此,在自旋磁矩方向相同的情况下,电阻率会较小,而在自旋反向的情况下,电阻率会较大。

在DEC机制下,自旋子交换能会通过金属层之间的电场作用而引起自旋磁矩的反向。

这也可以导致GMR效应的体现,但其具体机理仍有待深入探究。

GMR效应在很多领域都具有重要的应用。

其中最为广泛的是在数据存储中的应用。

磁头读取硬盘上的数据时,通过读取与保存数据时的自旋方向差异来区分不同的数据信息。

而GMR头比传统头更加灵敏,因此能够更准确地读取数据,同时也能够提高数据存储的密度。

此外,GMR效应还可以应用于磁性传感器中。

例如,GMR平面传感器可以精确地测量磁场的强度和方向,因此被广泛应用于导航、探矿以及科学实验中。

此外,GMR还可以应用于生物医学领域中的诊断和治疗。

比如在生命科学中,GMR传感器可以用于检测药物和蛋白质的相互作用,在诊断和治疗中也具有潜在的应用价值。

总之,GMR效应是一种基于材料电导率随磁场变化的现象。

其重要的应用领域包括数据存储、磁性传感器以及生物医学等领域。

随着技术的进步和理解的不断深入,GMR效应将有更多广阔的应用前景。

巨磁电阻效应

巨磁电阻效应

巨磁电阻效应巨磁电阻效应是一种材料的特殊电学性质,它在磁场的作用下,导致材料电阻发生变化。

这种效应最早于1857年被法国物理学家埃米尔·埃德蒙·皮卡尔发现,并在20世纪80年代得到了进一步的研究和应用。

一、巨磁电阻效应的原理巨磁电阻效应的原理主要基于磁电阻效应和自旋极化效应。

当电流通过材料时,自由电子会受到周围磁场的影响而发生偏转。

当磁场垂直于电流方向时,自由电子的自旋方向和运动方向会发生关联,这也被称为自旋阻尼。

在自旋阻尼的作用下,自由电子的速度和自旋方向会发生变化,导致电子在材料中碰到来自其他自由电子的阻力。

这种阻力会导致材料电阻的增加,从而出现巨磁电阻效应。

二、巨磁电阻效应的应用1. 磁存储技术巨磁电阻效应被广泛应用于磁存储器中,例如硬盘驱动器和磁存储芯片。

在磁存储器中,巨磁电阻效应可以使得读取电路能够更加准确地检测到磁场的变化,从而实现数据的读取和写入。

2. 磁传感器由于巨磁电阻效应的敏感性和可控性,它在磁传感器领域得到了广泛的应用。

磁传感器利用巨磁电阻效应可以测量磁场的强度和方向,广泛应用于导航、车辆安全和医疗设备等领域。

3. 电子设备巨磁电阻效应还被应用于电子设备中,例如磁传感器、扬声器和微波器件等。

这些设备利用巨磁电阻效应可以实现电阻的调节和信号的处理。

三、巨磁电阻效应的优势和展望与传统电阻相比,巨磁电阻效应有以下几个优势:1. 效应大:巨磁电阻效应的变化幅度可达到几十倍甚至上百倍。

2. 快速响应:巨磁电阻效应的响应速度可以达到纳秒级别。

3. 高稳定性:巨磁电阻效应是一种内禀的性质,不受温度和时间的影响。

随着科技的不断进步和应用场景的拓宽,巨磁电阻效应在各个领域都有很大的发展潜力。

未来,随着材料科学和纳米技术的进一步发展,相信巨磁电阻效应将有更加广泛的应用,为人们的生活带来更多便利和创新。

【大学物理实验(含 数据+思考题)】巨磁电阻效应及其应用

【大学物理实验(含 数据+思考题)】巨磁电阻效应及其应用

实验4.21 巨磁电阻效应及其应用一、实验目的(1)了解GMR效应的现象和原理(2)测量GMR的磁阻特性曲线(3)用GMR传感器测量电流(4)了解磁记录与读出的原理和方法二、实验仪器ZKY-JCZ巨磁电阻效应及应用实验仪ZKY-JCZ基本特性组件三、实验原理物质在磁场中电阻发生变化的现象,称为磁阻效应。

磁性金属和合金材料一般都有这种现象。

一般情况下,物质的电阻在磁场中仅发生微小的变化。

在某种条件下,电阻值变动的幅度相当大,比通常情况下高十余倍,称为巨磁阻(Giant magneto resistance,简称GMR)效应。

巨磁阻效应是一种量子力学效应,它产生于层状的磁性薄膜结构。

这种结构是由铁磁材料和非铁磁材料薄层交替叠合而成。

当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻;当铁磁层的磁矩相互反平行时,与自旋有关的散射最强,材料的电阻最大。

根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子发生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规则散射运动的叠加。

电子在两次散射之间走过的平均路程称为电子的平均自由程。

电子散射概率小,则平均自由程长,电阻率低。

一般把电阻定律R=ρl/S中的电阻率ρ视为与材料的几何尺度无关的常数,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约为34nm),可以忽略边界效应。

当材料的几儿何只度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边上的散射概率大大增加,可以明显观察到厚度减小电阻率增加的现象。

电子除携带电荷外,还具有自旋特性。

自旋磁矩有平行和反平行于外磁场两种取向。

英国物理学家诺贝尔奖获得者N.F.Mott指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射概率远小于自旋磁矩与材料的磁场方向反平行的电子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 通常以材料电阻的相对改变量来表示磁电 阻的大小, 即用△R/ R( 0) 表示。 • △ R = R( B) - R ( 0) • 对于传统的铁磁导体, 如Fe、Co 、Ni 及其 合金等, 在大多数情况下, 磁电阻效应很小 ( 约3 %或更低)
2.巨磁阻效应(GMR)
• 在某种条件下,电阻变化的幅度相当大,比 通常磁性金属与合金材料的磁电阻值约高10 余倍,称为“巨磁阻效应”。 • 在磁性材料和非磁性材料相间的多层膜中。
三、巨磁阻效应产生的机制
• 该效应是一种量子力学和凝聚态物理学现 象,物理根源归因于磁性导体中与传导电 子的自旋相关的散射。
1、电子
电子有没有自旋?
2、电子的自旋
• 根据泡利不相容原理(在一个原子中, 不能 有两个或两个以上的电子处在完全相同的 量子态)和以及光谱的精细结构(反常塞 曼效应),在1925年,不到25岁的年轻大 学生乌伦贝克和高斯米提出了电子自旋的 大胆假设,认为电子除了有轨道运动以外, 还存在着由自身属性所决定的固有运动, 称为电子自旋运动。
自旋电子学
在研究巨磁电阻效应的过程中, 迅速发展起来一门新兴的学 科——自旋电子学( Spintronics) 。自旋电子学包括磁电子 学与半导体自旋电子学两个方面。
20 世纪人类最伟大的成就是微电子工业的崛起, 但从物理 的观点来看, 它仅仅是利用了电子具有电荷这一特性。 电子不仅具有电荷,同时又具有自旋!磁电子学所涉及的 主要是与自旋相关的输运性质,自旋极化是磁输运的核心。 磁电子学是用磁场控制载流子自旋的运动。 半导体自旋电子学则研究如何利用半导体的载流子电荷与 自旋这两个自由度, 既用电场又用磁场来控制载流子 的输运。
3. “超巨磁阻效应”(CMR)
•在很强的磁场中某些绝缘体会突然变为导体
• 磁阻效应最初于1856年由开尔文爵士发现。 1、Fe 和N i 放在磁场中, 发现这 些磁性材料在磁场作用下, 沿着 磁场方向测得的电阻增加, 垂直 于磁场方向测得的电阻减小。 2、电阻增加或减小的幅度约在1 %~ 2 %之间。
巨磁电阻效应发现的意义及应用
• 费尔和格鲁伯格的系统因为昂贵和复杂仅适用于 实验室研究;在GMR的工业产品化进程中一位在 美国工作的英国人起了重要作用.他的名字叫斯图 亚特· 帕金,他发现应用相对简单的阴极镀膜方法 构造的GMR系统依然可以很好地工作,而不必构 造完美的纳米膜.应用这种技术,在1997年第一块 GMR硬盘问世,之后GMR磁头迅速成为硬盘生 产的工业标准。巨磁电阻的发现,打开了一扇通 向极具价值的科技领域的大门,其中包括数据存 贮和磁传感器.如今全世界有数以千计的科学家正 致力于磁电子学及其应用的研究.
• 20 世纪70 年代, 固体物理学家应用纳米技 术, 能够制备出不同质地的强磁纳米膜和弱 磁纳米膜 。纳米级的薄膜, 其厚度仅有数个 原子层。
多层磁膜的材料,这种材料是由厚度仅为几个 原子的铁磁纳米材料薄膜与非磁性金属纳米膜 层叠而成。
• 1988 年, 法国巴黎大学的费尔教授所在的研 究小组与德国尤利希研究中心的彼得-格林 贝格尔的研究小组分别意外地发现了非常巨 大的磁电阻效应。
• 格林贝格尔的研究小组在最初的工作中只是 研究了由铁、铬、铁三层材料组成的结构物 质,实验结果显示电阻下降了1.5%。而费 尔的研究小组则研究了由铁和铬组成的多层 材料,使得电阻下降了50%。
• 费尔的实验结果。横坐标为磁化强度,纵坐标为 磁化时电阻与无磁化时电阻的比值;三条曲线分 别显示了三种不同厚度结构的铁、铬薄膜层。
巨磁阻材料简介
高一物理 林炳发
2007年物理诺贝尔奖
法国科学家阿尔贝· 费尔(左)和德国科学 家彼得· 格林贝格尔(右) 先后独立发现了“巨磁电阻”效应。
• 看看你的计算机硬盘存储能力有多大,就知 道他们的贡献有多大了。 • 司空见惯的笔记本电脑、MP3、U盘等消费 品,居然都闪烁着耀眼的科学光芒。 • 诺贝尔奖并不总是代表着深奥的理论和艰涩 的知识,它往往就在我们身边,在我们不曾 留意的日常生活中。
左侧:当一束自旋方向与磁性材料磁化方向都相同的电子 通过时,电子较容易通过两层磁性材料,都呈现小电阻。 当一束自旋方向与磁性材料磁化方向都相反的电子通过时, 电子较难通过两层磁性材料,都呈现大电阻。这是因为电 子的自旋方向与材料的磁化方向相反,产生散射,通过的 电子数减少,从而使得电流减小。体系的总电阻较小
斯特恩-盖拉赫实验 :一束银原子通过非均匀 的磁场,发现银原子分裂为两束。
S
N
S
原子射线
N
通常人们会把自旋理解为电子自身的转动,但这种 图像是不成立的,理由可归纳如下: 1.迄今为止的实验,未发现电子有尺寸的下限,即 电子是没有大小的; 2.如果把电子自旋考虑为刚体绕自身的转动的话, 即假设自旋是某种经典的对应,我们解出的角动 量量子数只能是整数,因此无法解释偶数条条纹; 3.如果把电子自旋设想为有限大小均匀分布电荷球 围绕自身的转动的话,电荷球表面切线速度将超 过光速,与相对论矛盾;
• 英国物理学家N. F. Mot t ( 诺贝尔奖获得者) 指出: 在磁性物质中, 电子和磁性导体中原 子的磁撞几率( 自旋相关的散射) 取决于电 子自旋和磁性原子磁矩的相对取向, 如果电 子的自旋反平行于磁性导体的磁化方向, 其 散射就较强, 这些电子的电阻将比平行自旋 的电子的电阻来得大。
左面和右面的材料 结构相同,两侧是 磁性材料薄膜层 (红色),中间是 非磁性材料薄膜层 (蓝色)
一、什么是巨磁阻效应? 二、它是怎样发现的? 三、产生这种效应的物理机制是什么? 四、 在应用方面有哪些意义和前景?
1.磁电阻效应
• 材料的电阻随着外加磁场的变化而改变的效 应。 • 磁性金属和合金一般都有磁电阻现象。
材料的电阻大小不但受外加磁场大小的影响, 而且受外加磁场与材料中电流之间相对方向 的影响, 故称为各向异性磁电阻( AMR) 效应。
相关文档
最新文档