八年级数学上册期中测试试题4

合集下载

人教版2022--2023学年度第一学期八年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期八年级数学上册期中测试卷及答案
D.如果AD是△ABC的高,那么BD是△ABE的高,故正确,不符合题意.
故选:C.
【点睛】本题考查了三角形的高线,中线,角平分线的定义,掌握以上知识是解题的关键.
8. B
【解析】
【分析】直接根据三角形中线定义解答即可.
【详解】解:∵ 是 的中线, ,
∴BM= ,
故选:B.
【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.
【详解】解:∵△ABF和△BCE均为等边三角形,
∴AB=FB,BC=BE,∠ABF=∠CBE=60°,
∴∠MBN=180°﹣∠ABF﹣∠CBE=60°,
∵∠ABE=∠ABF+∠MBN=60°+60°=120°,
∠FBC=∠CBE+∠MBN=60°+60°=120°,
∴∠ABE=∠FBC,
在△ABE和△FBC中,
21.已知在△ABC中,AC=BC,分别过A,B两点作互相平行的直线AM,BN,过点C的直线分别交直线AM,BN于点D,E.
(1)如图1,若AM⊥AB,求证:CD=CE;
(2)如图2,∠ABC=∠DEB=60°,判断线段AD,DC与BE之间的关系,并说明理由.
22.如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上.
∴BD是∠ADC的角平分线,故⑤正确;
故选:B.
【点睛】本题考查了全等三角形的性质与判定,等边三角形的性质与判定,角平分线的判定定理,综合运用以上知识是解题的关键.
二.填空题(共7小题,满分28分,每小题4分)
11.108°
【解析】
【分析】设∠A=x,然后利用等边对等角表示出各个角的度数,然后利用三角形内角和定理求得x的值后即可求得答案.

湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试题一、单选题1.在94,3b a ,24x y +,1y ,5m n +中,分式的个数是()A .2B .3C .4D .52.若把分式3x x y+中的x 和y 都扩大到原来的2倍,那么分式的值()A .不变B .缩小2倍C .扩大2倍D .扩大4倍3.计算2111242m m m -÷+--结果为()A .0B .12m +C .22m +D .22m m +-4.下列长度的三条线段能组成三角形的是()A .1,1,2B .4,4,9C .3,4,5D .6,16,85.下列语句中是命题的有()个(1)三角形的内角和等于180︒;(2)如果5x =,那么5x =;(3)1月份有30天;(4)作一条线段等于已知线段;(5)一个锐角与一个钝角互补吗?A .2B .3C .4D .56.如图,ABC EFD ≌△△且AB EF =,4CE =,5CD =,则AC =()A .4B .5C .9D .107.如图,//AD BC ,//AB DC ,AC 与BD 相交于点O ,EF 经过点O ,且与边AD 、BC 分别交于E 、F 两点,若BF DE =,则图中的全等三角形有()A .2对B .3对C .4对D .6对8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程()A .100603030=+-x x B .100603030=+-x x C .100603030=-+x x D .100603030=-+x x 9.如图,在△ABC 中,∠B=∠C ,FD ⊥BC ,DE ⊥AB ,∠AFD=158°,则∠EDF 等于()A .58°B .68°C .78°D .32°10.如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是()A .18°B .24°C .30°D .36°二、填空题11.已知3x =-时,分式x b x a ++无意义,4x =-时,此分式的值为0,a b +=________.12.化简:11123x x x++=__________.13.方程:2348x x =--的解是__________.14.等腰三角形的两边长分别是2和5,则这个等腰三角形的周长为_______.15.若关于x 的分式方程355x a x x -=--有增根,则a 的值为__________.16.一个三角形的三个内角度数之比为2:3:5,那这个三角形一定是三角形__________.17.如图ABC 的周长为18,且AB AC =,AD BC ⊥于D ,ACD △的周长为12,那么AD 的长为__________.18.如图,△ABC 中,边AB 的中垂线分别交BC 、AB 于点D 、E ,AE =3cm ,△ADC 的周长为9cm ,则△ABC 的周长是_____cm .三、解答题19.解分式方程:(1)33222x x x -+=--(2)22201x x x+=++20.先化简,再求值:2211y x y y x xy y ⎛⎫+÷ ⎪+--⎝⎭,其中2x =,1y =-.21.在ABC ∆中,90C ∠=︒,DE 垂直平分斜边AB ,分别交AB 、BC 于D E 、.若30CAB B ∠=∠+︒,求AEB ∠.22.甲、乙两单位为爱心基金捐款,其中甲单位捐款4800元,乙单位捐款6000元.已知乙单位捐款人数比甲单位多50人,且两单位人均捐款数相等,问这两单位共有多少人捐款?人均捐款额是多少?23.如图,点D 为码头,A ,B 两个灯塔与码头的距离相等,DA ,DB 为海岸线,一轮船离开码头,计划沿∠ADB 的平分线航行,在航行途中C 点处,测得轮船与灯塔A 和灯塔B 的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.24.观察下面的计算:2241⨯=,2241+=;39322⨯=,39322+=;416433⨯=,416433+=;525544⨯=,525544+=﹔根据上面的计算,你能作出什么猜测?你将用什么方法来判断你的猜想是正确的?25.如图,在等边三角形ABC 中,点D ,E 分别在BC ,AB 上,且BD =AE ,AD 与CE 交于点F(1)求证:AD =CE ;(2)求∠DFC 的度数.26.如图,有一块直角三角板XYZ 置在ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .ABC 中,30A ∠=︒.(1)ABC ACB∠+∠=________.(2)ABX ACX∠+∠=________.(说明理由)参考答案1.B【分析】根据分式的概念进行求解即可.【详解】解:∵315ba y m n+,,的分母中含有字母,∴它们都是分式,而9244x y+,的分母中不含有字母,∴它们不是分式,故选:B.【点睛】本题考查分式的概念,熟练掌握分式的定义是解题关键.2.D【解析】【分析】直接利用分式的性质化简得出答案.【详解】解:将分式3x x y+中的x 和y 都扩大到原来的2倍得:()()333284==222x x x x y x y x y +++∴34x x y +=3x x y+×4,即分式的值扩大4倍故选:D【点睛】此题主要考查了分式的基本性质,正确化简分式是解题关键.3.C【解析】【分析】根据分式的混合运算法则计算.【详解】解:原式=()()()112222m m m m -⨯-+-+=1122m m +++=22m +,故选C .【点睛】本题考查分式的运算,熟练掌握分式的除法法则是解题关键.4.C【解析】【分析】组成三角形的三条线段长度,必须满足“两边之和大于第三边,两边之差小于第三边”.根据逐一判断即可【详解】A .1+l=2,不能组成三角形,故该选项错误;B .4+4<9,不能组成三角形,故该选项错误;C .3+4>5,5-4<3能组成三角形,故该选项正确;D .6+8=14<16不能组成三角形,故该选项错误.故选:C【点睛】本题考查三角形三边关系:解题的关键是掌握三角形“两边之和大于第三边,两边之差小于第三边”.5.B【解析】【分析】判断一件事情的语句叫命题,命题都由题设和结论两部分组成,依此对四个选项进行逐一分析即可.【详解】解:(1)三角形的内角和等于180︒,是命题;(2)如果5x =,那么5x =,是命题;(3)1月份有30天,是命题;(4)作一条线段等于已知线段,不是命题;(5)一个锐角与一个钝角互补吗?不是命题,∴是命题的有3个,故选:B .【点睛】本题考查了命题的概念:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.注意命题是一个能够判断真假的陈述句.6.C【解析】【分析】根据三角形全等的性质可以得到解答.【详解】解:∵△ABC≌△EFD,∴AC=DE=CD+CE=5+4=9,故选C.【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的性质是解题关键.7.D【解析】【分析】先证明四边形ABCD是平行四边形,再根据平行四边形的性质及全等三角形的判定可得图中全等的三角形.【详解】AB DC,解:∵//AD BC,//∴四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠ABC=∠ADC,∠BAD=∠BCD,AO=OC,BO=OD,∵BF=DE,∴CF=AE,∵//AD BC,∴∠EAO=∠FCO,∠EDO=∠FBO,①∵AB=CD,AO=OC,BO=OD,∴△AOB≌△COD(SSS);②∵AD=BC,AO=OC,OD=OB,∴△AOD≌△COB(SSS);③∵AB=CD,∠ABC=∠ADC,AD=BC,∴△ABC≌△CDA(SAS);④∵AB=CD,∠BAD=∠BCD,AD=BC,∴△BAD≌△DCB(SAS);⑤∵AE=CF,∠EAO=∠FCO,AO=OC,∴△AOE≌△COF(SAS);⑥∵DE=BF,∠EDO=∠FBO,BO=OD,∴△FOB≌△EOD(SAS),综上,一共6对全等三角形,故选:D .【点睛】本题考查了平行四边形的判定与性质、平行线的性质、全等三角形的判定,熟练掌握平行四边形的性质和全等三角形的判定是解答的关键.8.A【解析】【分析】根据题目中的等量关系列出分式方程即可.【详解】解:设江水的流速为x 千米/时,100603030x x=+-.故选:A .【点睛】本题主要考查分式方程的实际问题的应用,解题的关键是读懂题目的意思,根据题目给出的条件,设出未知数,分别找出顺水和溺水对应的时间,找出合适的等量关系,列出方程即可.9.B【详解】∵FD ⊥BC ,∠AFD=158°,∴∠CFD=180°﹣∠AFD=180°﹣158°=22°,则∠C=180°﹣∠FDC ﹣∠CFD=180°﹣90°﹣22°=68°.∵∠B=∠C ,DE ⊥AB ,∴∠EDB=180°﹣∠B ﹣∠DEB=180°﹣68°﹣90°=22°,则∠EDC=∠B+∠DEB=∠B+90°.∵∠EDC=∠EDF+90°,∴∠EDF=∠B=68°.故选B .10.A【解析】【分析】先根据等腰三角形的性质求得∠C的度数,再根据三角形的内角和定理求解即可.【详解】解:∵AB=AC,∠A=36°∴∠C=72°∵BD是AC边上的高∴∠DBC=180°-90°-72°=18°故选A.【点睛】题目主要考查等腰三角形的性质,三角形的内角和定理,理解题意,综合运用这些知识点是解题关键.11.7【解析】【分析】根据分式无意义和分式的值为零的条件得出a和b的值,代入a+b即可【详解】解:因为x=﹣3时,分式x bx a++无意义,所以﹣3+a=0,所以a=3,又因为x=﹣4时,此分式的值为0,所以﹣4+b=0,所以b=4,所以a+b=3+4=7.故答案为7【点睛】本题考查分式有意义的条件和分式为0的条件,解题的关键是掌握分式分母的值为0时分式无意义,要使分式的值为0,必须使分式分子的值为0并且分母的值不为0.12.11 6x【解析】【分析】先通分,然后再计算即可.【详解】解:11163223661616x x x x x x x ++=++=.故答案为11 6x.【点睛】本题考查了异分母分式加法,正确的通分是解答本题的关键.13.4x=-【解析】【分析】根据解分式方程的方法和步骤求解.【详解】解:原方程两边同时乘以(x-4)(x-8)得:2(x-8)=3(x-4),解之得:x=-4,经检验,x=-4是原方程的解.故答案为:x=-4.【点睛】本题考查分式方程的求解,熟练掌握分式方程的解法是解题关键.14.12【解析】【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为2时,2+2<5,所以不能构成三角形;当腰为5时,2+5>5,所以能构成三角形,周长是:2+5+5=12.故答案是:12.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.5【解析】【分析】根据分式方程增根的定义可以得解.【详解】解:原方程两边同时乘以(x-5)得:x-3(x-5)=a,由题意,x=5,∴a=5,故答案为:5.【点睛】本题考查分式方程无解的问题,熟练掌握分式方程增根的意义及产生根源是解题关键.16.直角【解析】【分析】若三角形三个内角的度数之比为2:3:5,利用三角形的内角和定理:三角形的内角和为180°,可求出三个内角分别是36°,54°,90°.则这个三角形一定是直角三角形.【详解】解:设三角分别为2x,3x,5x,依题意得2x+3x+5x=180°,解得x=18°.故三个角的度数分别为36°,54°,90°.故答案为:直角.【点睛】此题主要考查了三角形的内角和定理:三角形的内角和为180°,熟练掌握三角形内角和定理是解决本题的关键.17.3【解析】【分析】由已知条件根据等腰三角形三线合一的性质可得到BD=DC,再根据三角形的周长定义求解.【详解】解:∵AB=AC,AD⊥BC,∴BD=DC.∵AB+AC+BC=18,即AB+BD+CD+AC=18,∴AC+DC=9∴AC+DC+AD=12,∴AD=3.故答案为:3.【点睛】本题考查等腰三角形的性质;由已知条件结合图形发现并利用AC+CD是△ABC的周长的一半是正确解答本题的关键.18.15【解析】【分析】根据题意得在△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,根据线段垂直平分线的性质,即可求得AD=BD,AB=2AE,又由△ADC的周长为9cm,即可求得AC+BC的值,继而求得△ABC的周长.【详解】解:∵△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,∴BD=AD,AB=2AE=6cm,∵△ADC的周长为9cm,∴AC+AD+CD=AC+BD+CD=AC+BC=9cm,∴△ABC的周长为:AB+AC+BC=15cm.故答案为:15.【点睛】本题考查线段垂直平分线的性质.解题的关键是注意数形结合思想的应用以及等量代换思想的应用.19.(1)43x=(2)无解【解析】【分析】(1)方程两边同时乘以(x-2)可以去掉分母变成整式方程,解出整式方程后再把解代入x-2检验即可得到解答;(2)方程两边同时乘以x(x+1)可以去掉分母变成整式方程,解出整式方程后再把解代入x(x+1)检验即可得到解答.【详解】解:(1)方程两边同时乘以2x-,则()3223x x-+-=-解得:43 x=又∵20x-≠,∴此方程的解:4 :3 x=(2)方程两边同时乘以()1x x+,则220x+=解得:1x=-又∵10x+=,∴1x=-是此方程的增根,此方程无解.【点睛】本题考查分式方程的求解,熟练掌握分式方程的解法和步骤并检验是解题关键.20.2()x y-+;2-【解析】【分析】先将原式进行化简,然后将x,y代入即可.【详解】解:先化简;2211y x y y x xy y⎛⎫+÷ ⎪+--⎝⎭22()()()y y x y x y x y y --=⋅+-2()x y -=+求值:当2x =,1y =-时22221x y --==-+-【点睛】本题考查了整式的加减−化简求值问题,解题的关键是原式化简.21.120°【解析】【分析】已知DE 垂直平分斜边AB 可求得AE =BE ,∠EAB =∠EBA .易求出∠AEB .【详解】解:∵90C ∠=︒∴90CAB B ∠+∠=︒又∵30CAB B ∠=∠+︒∴3090B B ∠+︒+∠=︒∴30B ∠=︒∵DE 垂直平分BC∴EA EB=∴30EAB B ∠=∠=︒∴180AEB EAB B∠=-∠-∠1803030=︒-︒-︒120=︒.【点睛】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识,三角形内角和定理,解题的关键是注意角与角之间的转换.22.450人;24元【解析】【分析】设甲单位捐款人数为x 人,由题意列出分式方程并解出分式方程后可以得到问题解答.【详解】解:设甲单位捐款人数为x 人,则乙单位捐款人数为()50x +人由题意可得:48006000050x x=+解方程得:200x =经检验,x=200是原方程的解且符合实际情况,所以甲单位捐款人数为200人,从而乙单位捐款人数为250人,人均捐款额为480024200=元答:这两单位有450人捐款,人均捐款额为24元.【点睛】本题考查分式方程的应用,设定合适的未知数并根据题目的数量关系列出方程求解是解题关键.23.轮船航行没有偏离指定航线.理由见解析.【解析】【分析】只要证明轮船与D 点的连线平分∠ADB 就说明轮船没有偏离航线,也就是∠ADC=∠BDC ,证角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【详解】解:轮船航行没有偏离指定航线.理由是:在△ADC 与△BDC 中,∵,,AD BD DC DC AC BC ===,∴ADC BDC SSS ≌(),∴ADC BDC ∠=∠,∴轮船航线DC 即为∠ADB 的角平分线故答案为:轮船航行没有偏离指定航线.【点睛】本题考查了全等三角形的实际应用,解题的关键是读懂题意,建立数学模型.24.11n n n n n n ⨯=+--(n 为大于1的正整数);见解析.【解析】【分析】通过观察题目的几个算式可以得到如下猜测:11n n n n n n ⨯=+--n 为大于1的正整数),然后根据分式的运算法则可以对得到的猜测作出证明.【详解】解:能作出如下的猜测:11n n n n n n ⨯=+--(n 为大于1的正整数)证明猜测:211n n n n n ⨯=--2(1)111n n n n n n n n n -++==---∴11n n n n n n ⨯=+--(n 为大于1的正整数)【点睛】本题考查与实数运算相关的规律探索,在阅读题目所给算式的基础上作出猜测并利用所学知识对得到的猜测给予证明是解题关键.25.(1)见解析;(2)60°【解析】【分析】(1)根据等边三角形的性质,利用SAS 证得△AEC ≌△BDA ,所以AD =CE ,(2)根据全等三角形的性质得到∠ACE =∠BAD ,再根据三角形的外角与内角的关系得到∠DFC =∠FAC +∠ACF =∠FAC +∠BAD =∠BAC =60°.【详解】(1)证明:∵△ABC 是等边三角形,∴∠B =∠BAC =60°,AB =AC .又∵BD =AE∴△ABD ≌△CAE (SAS )∴AD =CE(2)解:由(1)得△ABD ≌△CAE∴∠ACE =∠BAD .∴∠DFC =∠FAC +∠ACE =∠FAC +∠BAD =∠BAC =60°.【点睛】本题利用了等边三角形的性质和三角形外角定理,解题的关键是熟知全等三角形的判定定理及三角形的外角等于与它不相邻的两个内角的和.26.(1)150︒(2)60︒;理由见解析【解析】【分析】(1)根据三角形的内角和定理即可求得答案;(2)先求得XBC XCB ∠+∠=90°,再根据ABX ACX ∠+∠()()ABC ACB XBC XCB =∠+∠-∠+∠即可求得答案.【详解】解:(1)∵180ABC ACB A ∠+∠+∠=︒,30A ∠=︒,∴180ABC ACB A∠+∠=︒-∠18030=︒-︒150=︒,故答案为:150°;(2)60ABX ACX ∠+∠=︒,理由如下:∵180XBC XCB X ∠+∠+∠=︒,90X ∠=︒,∴180XBC XCB X∠+∠=︒-∠18090=︒-︒90=︒,∴ABX ACX∠+∠ABC XBC ACB XCB=∠-∠+∠-∠()()ABC ACB XBC XCB =∠+∠-∠+∠15090=︒-︒60=︒,故答案为:60°.。

2022年秋青岛版数学八年级上册期中测试题(共4套)【含答案】

2022年秋青岛版数学八年级上册期中测试题(共4套)【含答案】

2022年秋青岛版数学八年级上册期中测试题(一)()一、选择题(共10小题,每小题4分,满分40分)1.(4分)下列图形中被虚线分成的两部分不是全等形的是()A.B.C.D.2.(4分)将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.3.(4分)下列各式﹣2a,,,a2﹣b2,,中,分式有()A.1个B.2个C.3个D.4个4.(4分)如图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()A.∠B=∠C B.∠D=∠E C.∠1=∠2D.∠CAD=∠DAC 5.(4分)下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?()A.B.C.D.6.(4分)当△ABC和△DEF具备()条件时,△ABC≌△DEF.A.所有的角对应相等B.三条边对应相等C.面积相等D.周长相等7.(4分)下列分式是最简分式的是()A.B.C.D.8.(4分)若点O是△ABC三边垂直平分线的交点,则有()A.OA=OB≠OC B.OB=OC≠OA C.OC=OA≠OB D.OA=OB=OC 9.(4分)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB 上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°10.(4分)如图,把两个一样大的含30度的直角三角板,按如图方式拼在一起,其中等腰三角形有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题4分,满分24分)11.(4分)化简:(1)=;(2)=.12.(2分)分式、、﹣的最简公分母是.13.(3分)如图所示,在△ABC中,CD是∠ACB的平分线,DE∥BC交AC于E,若DE =7cm,AE=5cm,则AC=cm.14.(3分)如图,已知AB垂直平分CD,AC=6cm,BD=4cm,则四边形ADBC的周长为.15.(4分)如图,四边形ABCD的对角线相交于O点,且有AB∥DC,AD∥BC,则图中有对全等三角形.16.(4分)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.三、解答题(共4小题,满分36分)17.(8分)如图:△ABC和△DBC的顶点A和D在BC的同旁,AB=DC,AC=DB,AC 和DB相交于点O,求证:∠A=∠D.18.(9分)如图,CD=CA,∠1=∠2,EC=BC,与DE相等的线段是哪一条?说明理由.19.(9分)已知:点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF=CE.求证:△ABC是等腰三角形.20.(10分)有这样一道题:“计算÷﹣x的值,其中x=2008”甲同学把“x=2008”错抄成“x=2080”,但他的计算结果也正确,你说这是怎么回事?于是甲同学认为无论x取何值代数式的值都不变,你说对吗?答案一、选择题(共10小题,每小题4分,满分40分)1.(4分)下列图形中被虚线分成的两部分不是全等形的是()A.B.C.D.【考点】K9:全等图形.【分析】根据全等形的概念进行判断即可.解:长方形被对角线分成的两部分是全等形;平行四边形被对角线分成的两部分是全等形;梯形被对角线分成的两部分不是全等形;圆被对角线分成的两部分是全等形,故选:C.2.(4分)将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.【考点】P1:生活中的轴对称现象.【分析】认真观察图形,首先找出对称轴,根据轴对称图形的定义可知只有C是符合要求的.解:观察选项可得:只有C是轴对称图形.故选:C.3.(4分)下列各式﹣2a,,,a2﹣b2,,中,分式有()A.1个B.2个C.3个D.4个【考点】61:分式的定义.【分析】根据分式的定义,可得答案.解:,,,是分式,故选:D.4.(4分)如图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()A.∠B=∠C B.∠D=∠E C.∠1=∠2D.∠CAD=∠DAC 【考点】KB:全等三角形的判定.【分析】已知两边相等,要使两三角形全等必须添加这两边的夹角,即∠BAD=∠CAE,因为∠CAD是公共角,则当∠1=∠2时,即可得到△ABD≌△ACE.解:∵AB=AC,AD=AE,∠B=∠C不是已知两边的夹角,A不可以;∠D=∠E不是已知两边的夹角,B不可以;由∠1=∠2得∠BAD=∠CAE,符合SAS,可以为补充的条件;∠CAD=∠DAC不是已知两边的夹角,D不可以;故选:C.5.(4分)下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的性质对各选项分析判断即可得解.解:A、是轴对称图形,B、不是轴对称图形,C、是轴对称图形,D、是轴对称图形,所以,B与其他三个不同.故选:B.6.(4分)当△ABC和△DEF具备()条件时,△ABC≌△DEF.A.所有的角对应相等B.三条边对应相等C.面积相等D.周长相等【考点】KB:全等三角形的判定.【分析】由SSS证明三角形全等即可.解:∵三条边对应相等的两个三角形全等,∴B选项正确;故选:B.7.(4分)下列分式是最简分式的是()A.B.C.D.【考点】68:最简分式.【分析】根据最简分式的定义分别对每一项进行判断,即可得出答案.解:A、=,不是最简分式,故本选项错误;B、=,不是最简分式,故本选项错误;C、,是最简分式,故本选项正确;D、=,不是最简分式,故本选项错误;故选:C.8.(4分)若点O是△ABC三边垂直平分线的交点,则有()A.OA=OB≠OC B.OB=OC≠OA C.OC=OA≠OB D.OA=OB=OC 【考点】KG:线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质判断即可.解:∵点O是△ABC三边垂直平分线的交点,∴OA=OB,OA=OC,∴OA=OB=OC,故选:D.9.(4分)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB 上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【考点】K7:三角形内角和定理;K8:三角形的外角性质;PB:翻折变换(折叠问题).【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.10.(4分)如图,把两个一样大的含30度的直角三角板,按如图方式拼在一起,其中等腰三角形有()A.1个B.2个C.3个D.4个【考点】KI:等腰三角形的判定.【分析】由于图形是由两个一样大的含30°角的直角三角板按如图的方式拼在一起,故有AB=AE,AD=AC,∠B=∠E=30°,∠ACE=∠ADB=60°,则∠DAE=∠CAB=30°,所以得到等腰三角形△ABE,△ACD,△ACB,△ADE.解:根据题意△ABE,△ACD都是等腰三角形,又由已知∠ACE=∠ADB=60°,∴∠DAE=∠CAB=30°,已知∠B=∠E=30°,∴又得等腰三角形:△ACB,△ADE,所以等腰三角形4个.故选:D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)化简:(1)=;(2)=.【考点】66:约分.【专题】11:计算题.【分析】(1)直接约分即可;(2)先把分子分母因式分解,然后约分即可.解:(1)原式=;(2)原式==.故答案为;.12.(2分)分式、、﹣的最简公分母是abc2.【考点】69:最简公分母.【分析】利用最简公分母的定义求解即可.解:分式、、﹣的最简公分母是abc2.故abc2.13.(3分)如图所示,在△ABC中,CD是∠ACB的平分线,DE∥BC交AC于E,若DE=7cm,AE=5cm,则AC=12cm.【考点】JA:平行线的性质;KH:等腰三角形的性质.【专题】11:计算题.【分析】由CD是角平分线,可得∠ACD=∠BCD,而DE∥BC,则∠BCD=∠EDC,于是∠ACD=∠EDC,再利用等角对等边可求出DE=CE,从而求出AC的长.解:∵CD是∠ACB的平分线,∴∠ACD=∠BCD,又∵DE∥BC,∴∠BCD=∠EDC.∴∠ACD=∠EDC.∴DE=CE.∴AC=AE+CE=5+7=12.故填12.14.(3分)如图,已知AB垂直平分CD,AC=6cm,BD=4cm,则四边形ADBC的周长为20cm.【考点】KG:线段垂直平分线的性质.【分析】先根据线段垂直平分线的性质得出BC=BD,AC=AD,由此可得出结论.解:∵AB垂直平分CD,∴BC=BD,AC=AD.∵AC=6cm,BD=4cm,∴四边形ADBC的周长=AC+AD+BC+BD=2×6+2×4=12+8=20(cm).故20cm.15.(4分)如图,四边形ABCD的对角线相交于O点,且有AB∥DC,AD∥BC,则图中有4对全等三角形.【考点】L6:平行四边形的判定.【分析】根据平行四边形判定方法可以判定四边形ABCD是平行四边形,根据平行四边形性质可得两组对边相等,两组对角相等,对角线互相平分;可得出共有四对全等三角形.解:∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,OB=OD,∠ABC=∠ADC,∠BAD=∠BCD,∴△ABC≌△ADC,△BAD≌△BCD;∵∠AOB=∠COD,∠AOD=∠BOC,∴△AOB≌△COD,△AOD≌△COD.∴图中有四对全等三角形.故4.16.(4分)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是60度.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质.【专题】121:几何图形问题.【分析】根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故60.三、解答题(共4小题,满分36分)17.(8分)如图:△ABC和△DBC的顶点A和D在BC的同旁,AB=DC,AC=DB,AC 和DB相交于点O,求证:∠A=∠D.【考点】KD:全等三角形的判定与性质.【专题】14:证明题.【分析】由△ABC和△DBC的顶点A和D在BC的同旁,AB=DC,AC=DB,利用SSS,即可判定△ABC≌△DCB,继而证得:∠A=∠D.证明:在△ABC和△DCB中,,∴△ABC≌△DCB(SSS),∴∠A=∠D.18.(9分)如图,CD=CA,∠1=∠2,EC=BC,与DE相等的线段是哪一条?说明理由.【考点】KD:全等三角形的判定与性质.【专题】1:常规题型.【分析】先利用∠1=∠2得到∠ACB=∠DCE,然后根据“SAS”证明△ACB≌△DCE,则根据全等三角形的性质得DE=AB.解:DE=AB.理由如下:∵∠1=∠2,∴∠1+ACE=∠2+∠ACE,即∠ACB=∠DCE,在△ABC和△DCE中,,∴△ACB≌△DCE(SAS),∴AB=DE.19.(9分)已知:点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF=CE.求证:△ABC是等腰三角形.【考点】KD:全等三角形的判定与性质;KI:等腰三角形的判定.【分析】欲证△ABC是等腰三角形,又已知DE⊥AC,DF⊥AB,BF=CE,可利用三角形中两内角相等来证等腰.证明:∵D是BC的中点,∴BD=CD,∵DE⊥AC,DF⊥AB,∴△BDF与△CDE为直角三角形,在Rt△BDF和Rt△CDE中,,∴Rt△BFD≌Rt△CED(HL),∴∠B=∠C,∴AB=AC,∴△ABC是等腰三角形.20.(10分)有这样一道题:“计算÷﹣x的值,其中x=2008”甲同学把“x=2008”错抄成“x=2080”,但他的计算结果也正确,你说这是怎么回事?于是甲同学认为无论x取何值代数式的值都不变,你说对吗?【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,根据化简结果即可得出结论.解:对.∵原式=•﹣x=x﹣x=0,∴把x=2008错抄成x=2080,他的计算结果也正确.青岛版八年级数学上册期中测试题(二)()一、选择题(共10小题,每小题4分,满分40分)1.(4分)解分式方程:时,去分母后得()A.3﹣x=4(x﹣2)B.3+x=4(x﹣2)C.3(2﹣x)+x(x﹣2)=4D.3﹣x=42.(4分)方程=的解为()A.﹣1B.1C.﹣3D.33.(4分)关于x的方程的解为x=1,则a=()A.1B.3C.﹣1D.﹣34.(4分)如图,线段AC与BD交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,这个条件不可以是()A.AB=CD B.OB=OD C.∠A=∠C D.∠B=∠D 5.(4分)如图,点P是∠BAC内一点,PE⊥AB,PF⊥AC,PE=PF,则△PEA≌△PF A 的理由是()A.HL B.ASA C.AAS D.SAS6.(4分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组7.(4分)如图,下列图案是我国几家银行的标志,其中不是轴对称图形的是()A.B.C.D.8.(4分)如下书写的四个汉字,其中为轴对称图形的是()A.B.C.D.9.(4分)哪一面镜子里是他的像()A.B.C.D.10.(4分)一个等腰三角形但不是等边三角形,它的角平分线、高线、中线总数共()条.A.9B.7C.6D.3二、填空题(共6小题,每小题3分,满分18分)11.(4分)如图,在△ABC和△DEF中,如果AB=DE,AC=DF,只要再具备条件,就可以证明△ABC≌△DEF.12.(4分)如图,矩形ABCD沿AE折叠,使D点落在BC边上点F处,如果∠BAF=60°,则∠DAE=度.13.(4分)观察下列一组有规律的数:,,,,,…,根据其规律可知:(1)第10个数是;(2)第n个数是.14.(2分)已知,则=.15.(3分)如图所示,△ABC中,AB=AC=5,BC=3,点A和点B关于直线l对称,AC 与l相交于点D,则△BDC的周长为.16.(3分)如图,△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB,垂足为D,如果AC=3cm,那么AE+DE的值为.三、解答题(共5小题,满分42分)17.(4分)“西气东输”是造福子孙后代的创世工程,现有两条高速公路l1、l2和两个城镇A、B(如图),准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇的距离也相等,请你利用直尺和圆规作出中心站P的位置.(作出满足题意的一处位置即可)18.(8分)如图,如果AE平分∠DAC,AE∥BC,那么你能得出AB=AC吗?请简要说明理由.19.(10分)在一次数学课上,王老师在黑板上画出图,如图,并写下了四个等式:①AB=DC,②BE=CE,③∠B=∠C,④∠BAE=∠CDE.要求同学从这四个等式中选出两个作为条件,推出△AED是等腰三角形.请你试着完成王老师提出的要求,并说明理由.(写出一种即可)20.(10分)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?21.(10分)如图所示,已知线段a、b、h(h<b).求作△ABC,使BC=a,AB=b,BC 边上的高AD=h.(要求:写出作法,并保留作图痕迹)答案一、选择题(共10小题,每小题4分,满分40分)1.(3分)解分式方程:时,去分母后得()A.3﹣x=4(x﹣2)B.3+x=4(x﹣2)C.3(2﹣x)+x(x﹣2)=4D.3﹣x=4【考点】B3:解分式方程.【专题】16:压轴题.【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣2和2﹣x互为相反数,可得2﹣x=﹣(x﹣2),所以可得最简公分母为x﹣2,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.解:方程两边都乘以x﹣2,得:3﹣x=4(x﹣2).故选:A.2.(3分)方程=的解为()A.﹣1B.1C.﹣3D.3【考点】B3:解分式方程.【专题】11:计算题.【分析】观察可得方程最简公分母为2x(x﹣2),去分母,化为整式方程求解.解:去分母,得x=3(x﹣2),解得:x=3,经检验:x=3是原方程的解.故选:D.3.(3分)关于x的方程的解为x=1,则a=()A.1B.3C.﹣1D.﹣3【考点】B2:分式方程的解.【专题】11:计算题.【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a的新方程,解此新方程可以求得a的值.解:把x=1代入原方程得,去分母得,8a+12=3a﹣3.解得a=﹣3.故选:D.4.(4分)如图,线段AC与BD交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,这个条件不可以是()A.AB=CD B.OB=OD C.∠A=∠C D.∠B=∠D【考点】KB:全等三角形的判定.【分析】由于OA=OC,加上对顶角相等得∠AOB=∠COD,然后分别添加四个选项中的条件,利用全等三角形的判定方法分别进行判断.解:∵OA=OC,而∠AOB=∠COD,∴当AB=CD时,不能判断△OAB≌△OCD;当OB=OD时,可根据“SAS”判断△OAB≌△OCD;当∠A=∠C时,可根据“ASA”判断△OAB≌△OCD;当∠B=∠D时,可根据“AAS”判断△OAB≌△OCD.故选:A.5.(4分)如图,点P是∠BAC内一点,PE⊥AB,PF⊥AC,PE=PF,则△PEA≌△PF A 的理由是()A.HL B.ASA C.AAS D.SAS【考点】KB:全等三角形的判定.【分析】根据角平分线的性质可得P在∠BAC的角平分线上,可得∠EAP=∠F AP,再加上条件∠PEA=∠PF A=90°和公共边AP=AP可根据AAS证明△PEA≌PF A.解:∵PE⊥AB,PF⊥AC,PE=PF,∴P在∠BAC的角平分线上,∠PEA=∠PF A=90°,∴∠EAP=∠F AP,在△EAP和△F AP中,∴△EAP≌△F AP(AAS),故选:C.6.(4分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【考点】KB:全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.7.(4分)如图,下列图案是我国几家银行的标志,其中不是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念求解.解:A、B、D都是轴对称图形;C、不是轴对称图形.故选:C.8.(4分)如下书写的四个汉字,其中为轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.解:观察书写的四个汉字,只有“善”字是轴对称图形.故选:B.9.(4分)哪一面镜子里是他的像()A.B.C.D.【考点】P4:镜面对称.【分析】物体镜子里的像,与物体成轴对称,结合选项即可作出判断.解:只有选项B的图形与原图形成轴对称.故选:B.10.(4分)一个等腰三角形但不是等边三角形,它的角平分线、高线、中线总数共()条.A.9B.7C.6D.3【考点】KH:等腰三角形的性质.【分析】根据等腰三角形三线合一的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,再结合三角形的角平分线、高线、中线的定义即可求解.解:由于任意一个三角形都有三条角平分线、三条高线、三条中线,而等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,所以一个等腰三角形但不是等边三角形,它的角平分线、高线、中线总数共7条.故选:B.二、填空题(共6小题,每小题3分,满分18分)11.(4分)如图,在△ABC和△DEF中,如果AB=DE,AC=DF,只要再具备条件BC =EF或∠A=∠D,就可以证明△ABC≌△DEF.【考点】KB:全等三角形的判定.【专题】26:开放型.【分析】根据“SSS”判断△ABC≌△DEF,则需添加BC=EF;根据“SAS”判断△ABC≌△DEF,则需添加∠A=∠D.解:∵AB=DE,AC=DF,∴当BC=EF时,可根据“SSS”判断△ABC≌△DEF;当∠A=∠D时,可根据“SAS”判断△ABC≌△DEF.故答案为BC=EF或∠A=∠D.12.(4分)如图,矩形ABCD沿AE折叠,使D点落在BC边上点F处,如果∠BAF=60°,则∠DAE=15度.【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【专题】16:压轴题.【分析】先求得∠DAF=30°,又根据AF是AD折叠得到的(翻折前后的对应角相等),可知∠DAE=∠EAF=15°.解:∵∠BAF=60°,∴∠DAF=30°,又∵AF是AD折叠得到的,∴△ADE≌△AFE,∴∠DAE=∠EAF=∠DAF=15°.故答案为15.13.(4分)观察下列一组有规律的数:,,,,,…,根据其规律可知:(1)第10个数是;(2)第n个数是.【考点】37:规律型:数字的变化类.【分析】由题意可知:分子都是1,分母可以拆成连续两个自然数的乘积,由此得出第n个数是,进一步解决问题即可.解:1)第10个数是=;(2)第n个数是.故;.14.(2分)已知,则=.【考点】4C:完全平方公式;65:分式的基本性质.【专题】11:计算题.【分析】把已知两边平方后展开求出x2+的值,把代数式化成含有上式的形式,代入即可.解:x+=4,平方得:x2+2x•+=16,∴x2+=14,∴原式===.故.15.(3分)如图所示,△ABC中,AB=AC=5,BC=3,点A和点B关于直线l对称,AC 与l相交于点D,则△BDC的周长为8.【考点】KH:等腰三角形的性质;P2:轴对称的性质.【分析】先根据点A和点B关于直线l对称得出直线l是线段AB的垂直平分线,故AD=BD,由此可得出结论.解:∵点A和点B关于直线l对称,∴直线l是线段AB的垂直平分线,∴AD=BD.∵AB=AC=5,BC=3,∴△BDC的周长=BC+(BD+CD)=BC+(AD+CD)=BC+AC=3+5=8.故8.16.(3分)如图,△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB,垂足为D,如果AC=3cm,那么AE+DE的值为3cm.【考点】KF:角平分线的性质.【专题】11:计算题.【分析】由BE为角平分线,且DE垂直于BA,EC垂直于BC,利用角平分线性质得到DE=CE,则AE+DE=AE+CE=AC,由AC的长即可得出所求式子的值.解:∵∠ACB=90°,∴EC⊥BC,又BE平分∠ABC,DE⊥AB,∴DE=CE,又AC=3cm,∴AE+DE=AE+CE=AC=3cm.故3cm.三、解答题(共5小题,满分42分)17.(4分)“西气东输”是造福子孙后代的创世工程,现有两条高速公路l1、l2和两个城镇A、B(如图),准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇的距离也相等,请你利用直尺和圆规作出中心站P的位置.(作出满足题意的一处位置即可)【考点】N4:作图—应用与设计作图.【分析】作出角平分线、线段AB的垂直平分线,交点就是所求.解:作出角平分线、线段AB的垂直平分线各(2分),标出点P得(1分)18.(8分)如图,如果AE平分∠DAC,AE∥BC,那么你能得出AB=AC吗?请简要说明理由.【考点】IJ:角平分线的定义;JA:平行线的性质.【专题】2B:探究型.【分析】只要得出∠B=∠C,就可以证明AB=AC;由AE平分∠DAC得出∠DAE=∠CAE,由两直线平行,内错角、同位角分别相等可以得出∠CAE=∠C,∠DAE=∠B,即可证∠C=∠B,所以AB=AC.解:能得出AB=AC,∵AE平分∠ADC,∴∠DAE=∠CAE;又∵AE∥BC,∴∠CAE=∠C,∠DAE=∠B,即∠DAE=∠CAE=∠C=∠B;∴AB=AC.19.(10分)在一次数学课上,王老师在黑板上画出图,如图,并写下了四个等式:①AB =DC,②BE=CE,③∠B=∠C,④∠BAE=∠CDE.要求同学从这四个等式中选出两个作为条件,推出△AED是等腰三角形.请你试着完成王老师提出的要求,并说明理由.(写出一种即可)【考点】KD:全等三角形的判定与性质;KI:等腰三角形的判定.【专题】26:开放型.【分析】要证明△AED是等腰三角形,既可证明AE=AD,也可证明∠EAD=∠ADE,所以根据这两种途径就可以找到所需要的条件,当然要利用这些首先证明三角形全等,利用对应边相等或对应角相等就可以得到AE=AD或∠EAD=∠ADE.解:已知:①③(或①④,或②③,或②④)证明:在△ABE和△DCE中,∵,∴△ABE≌△DCE,∴AE=DE,即△AED是等腰三角形.20.(10分))一项工程,甲,乙两公司合作,12天可以完成,共需付施工费元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【考点】8A:一元一次方程的应用;B7:分式方程的应用.【分析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=(元);乙公司单独完成此项工程所需的施工费:30×(5000﹣1500)=(元);故甲公司的施工费较少.21.(10分)如图所示,已知线段a、b、h(h<b).求作△ABC,使BC=a,AB=b,BC 边上的高AD=h.(要求:写出作法,并保留作图痕迹)【考点】N3:作图—复杂作图.【分析】根据基本尺规作图的方法,作出不同情况的三角形即可.解:1、作直线PQ,在直线PQ上任取一点D,作DM⊥PQ;2、在DM上截取线段DA=h;3、以A为圆心,b为半径画弧交射线DP于B;4、以B为圆心,a为半径画弧,分别交射线BP和射线BQ于C1和C2;5、连接AC1、AC2,则△ABC1(或ABC2)即为所求.青岛版数学八年级第一学期中测试题(三)()一、选择题(共10小题,每小题3分,满分30分)1.(3分)图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ2.(3分)如图,用∠B=∠D,∠1=∠2直接判定△ABC≌△ADC的理由是()A.AAS B.SSS C.ASA D.SAS3.(3分)如图,AC与BD相交于点E,BE=ED,AE=EC,则△ABE≌△CDE的理由是()A.ASA B.SAS C.AAS D.SSS4.(3分)如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处5.(3分)如图,直线l1、l2、l3分别表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处B.二处C.三处D.四处6.(3分)等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边上的高所在的直线7.(3分)若将分式中的x,y的值变为原来的100倍,则此分式的值()A.不变B.是原来的100倍C.是原来的200倍D.是原来的8.(3分)当a=﹣1时,分式()A.等于0B.等于1C.等于﹣1D.无意义9.(3分)已知,则的值等于()A.6B.﹣6C.D.10.(3分)某化肥厂原计划每天生产化肥x吨,由于采用了新技术,每天比计划多生产3吨,实际生产180吨化肥所用时间与原计划生产120吨化肥所用时间相同,那么适合题意的方程是()A.=B.=C.=D.=二、填空题(共6小题,每小题4分,满分16分)11.(3分)等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是.12.(3分)小明在穿衣镜里看到身后墙上电子钟显示,则此时实际时刻为.13.(3分)已知=,则的值为.14.(3分)如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是.15.(3分)分式,,﹣的最简公分母是.16.(3分)已知线段a,b,c,d成比例线段,且a=4,b=2,c=2,则d的长为.三、解答题(共7小题,满分54分)17.(6分)计算:.18.(8分)计算:()•.19.(6分)先化简,再求值:()+,其中x=6.20.(6分)解方程:.21.(8分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?22.(10分)如图,点B、C、E、F在同一直线上,AB∥DE,∠A=∠D,BF=CE求证:AB=DE.23.(10分)等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ,问△APQ是什么形状的三角形?试说明你的结论.答案一、选择题(共10小题,每小题3分,满分30分)1.(4分)图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ【考点】KB:全等三角形的判定.【分析】仔细观察图形,验证各选项给出的条件是否符合全等的判定方法,符合的是全等的不符合的则不全等,题目中D选项的两个三角形符合SAS,是全等的三角形,其它的都不能得到三角形全等.解:A选项中条件不满足SAS,不能判定两三角形全等;B选项中条件对应边不相等,不能判定两三角形全等;C选项中条件不满足SAS,不能判定两三角形全等;D选项中条件满足SAS,能判定两三角形全等.故选:D.2.(4分)如图,用∠B=∠D,∠1=∠2直接判定△ABC≌△ADC的理由是()A.AAS B.SSS C.ASA D.SAS【考点】KB:全等三角形的判定.【分析】由于∠B=∠D,∠1=∠2,再加上公共边,则可根据“AAS”判断△ABC≌△ADC.解:在△ABC和△ADC中,,∴△ABC≌△ADC(AAS).故选:A.3.(4分)如图,AC与BD相交于点E,BE=ED,AE=EC,则△ABE≌△CDE的理由是()A.ASA B.SAS C.AAS D.SSS【考点】KB:全等三角形的判定.【专题】11:计算题.【分析】由于BE=ED,AE=EC,再加上对顶角相等,则可根据“SAS”判断△ABE≌△CDE.解:在△ABE和△CDE中,,∴△ABE≌△CDE(SAS).故选:B.4.(4分)如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处【考点】KG:线段垂直平分线的性质.【专题】12:应用题.【分析】要求到三小区的距离相等,首先思考到A小区、B小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AB的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在AC,BC两边垂直平分线的交点处.故选:C.5.(4分)如图,直线l1、l2、l3分别表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()。

人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试题一、选择题:每小题4分,共40分1.(4 分)下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.2.(4 分)在下列长度的四根木棒中,能与4cm、9cm 长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm3.(4 分)△ABC 中BC 边上的高作法正确的是()A.B.D.C.4.(4 分)下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形5.(4 分)若一个多边形的内角和是外角和的3 倍,则这个正多边形的边数是()A.10 B.9 C.8 D.66.(4 分)已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F 的度数为()A.30° B.50° C.80° D.100°7.(4 分)在△ABC 中,∠A 与∠B 互余,则∠C 的大小为()A.60° B.90° C.120° D.150°8.(4 分)下列条件中,不能判定△ABC 是等腰三角形的是()A.a=3,b=3,c=4B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:29.(4 分)画∠AOB 的平分线的方法步骤是:①以O 为圆心,适当长为半径作弧,交OA 于M 点,交OB 于N 点;②分别以M、N 为圆心,大于MN 的长为半径作弧,两弧在∠AOB 的内部相交于点C;③过点C 作射线OC.射线OC 就是∠AOB 的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS10.(4 分)如图,△ABC 中,AB=AC,∠A=36°,AB 的垂直平分线DE 交AC 于D,交AB 于E,下述结论:(1)BD 平分∠ABC;(2)AD=BD=BC;(3)△BDC 的周长等于AB+BC;(4)D 是AC 的中点.其中正确结论的个数有()A.4 个B.3 个C.2 个D.1 个二、填空题(本大题共6小题,每小题4分,共24分)11.(4 分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是12.(4 分)已知A(2,a)关于x 轴对称点B(b,﹣4),则a+b=13.(4 分)如图,某登山运动员从营地A 沿坡角为30°的斜坡AB 到达山顶B,如果AB=2000 米,则他实际上升了米..14.(4分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.15.(4分)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:.16.(4分)一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为.三、解答题(本大题共9小题,共66分)17.(12分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′((3)计算△ABC的面积.),B′(),C′()18.(8分)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74°,求:∠D的度数.19.(8分)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.20.(8分)如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是;(2)添加了条件后,证明△ABC≌△EFD.21.(8分)如图,BD=CD,BF⊥AC于F,CE⊥AB于E.求证:点D在∠BAC的角平分线上.22.(8分)已知:如图,在等边△ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.试说明:BD=DE.23.(10分)已知点D在AB上,点E在AC上,AB=AC,∠ABE=∠ACD.(1)如图①,求证:AD=AE;(2)如图②,若BE、CD交于点P,连接BC,求证:PB=PC.24.(12分)(1)如图所示的正多边形的对称轴有几条?把答案写在你图下方的横线上:条条条条条.(2)一个正n边形有条对称轴;(3)①在图①中画出正六边形的一条对称轴l;②在图②中,用无刻度的直尺,准确画出正五边形的一条对称轴l(不写画法,保留画图痕迹)25.(12分)如图1,△ABC和△DBE中,AB=CB,DB=EB,∠ABC=∠DBE=90°,D 点在AB上,连接AE、DC,求证AE=CD,AE⊥CD.证明:延长CD交AE于点F,∵AB=BC,∠ABC=∠DBE=90°,BE=DB∴△AEB≌△CDB(SAS)∴AE=CD,∠EAB=∠DCB∵∠DCB+∠CDB=90°,∠ADF=∠CDB.∴∠ADF+∠DAF=90°∴∠AFD=90°,∴AE⊥CD.类比:若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE、CD之间的数量和位置关系还成立吗?若成立,请给予证明;如不成立,请说明理由.拓展:(直接回答问题结果,不要求写结论过程)若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC=∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问:①图3中的线段AE、CD是否仍然相等?②线段AE、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?参考答案与试题解析一、选择题:每小题4分,共40分1.(4 分)下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.(4 分)在下列长度的四根木棒中,能与4cm、9cm 长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9 符合要求.故选:C.3.(4 分)△ABC 中BC 边上的高作法正确的是()A.B.C.D.【解答】解:为△ABC 中BC 边上的高的是D 选项.故选:D.4.(4 分)下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形【解答】解:A、全等三角形对应角平分线相等,对应边上的高、中线也分别相等,正确;B、全等三角形的周长和面积都相等,正确;C、全等三角形的对应角相等,对应边相等,正确;D、全等三角形是指形状和大小都相等的三角形,故D 说法错误;故选:D.5.(4 分)若一个多边形的内角和是外角和的3 倍,则这个正多边形的边数是()A.10 B.9 C.8 D.6【解答】解:设多边形有n 条边,由题意得:180°(n﹣2)=360°×3,解得:n=8.故选:C.6.(4 分)已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F 的度数为()A.30° B.50° C.80° D.100°【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°∴∠F=180﹣∠D﹣∠E=50°故选:B.7.(4 分)在△ABC 中,∠A 与∠B 互余,则∠C 的大小为()A.60° B.90° C.120° D.150°【解答】解:∵∠A 与∠B 互余,∴∠A+∠B=90°,在△ABC中,∠C=180°﹣(∠A+∠B)=180°﹣90°=90°.故选:B.8.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:2【解答】解:A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A=180°﹣∠B﹣∠C=50°,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∵∠A=∠B,∴AC=BC,∴△ABC是等腰三角形.故选:B.9.(4分)画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS【解答】解:从画法①可知OA=OB,从画法②可知CM=CN,又OC=OC,由SSS 可以判断△OMC≌△ONC,∴∠MOC=∠NOC,即射线OC 就是∠AOB 的角平分线.故选:A.10.(4 分)如图,△ABC 中,AB=AC,∠A=36°,AB 的垂直平分线DE 交AC 于D,交AB 于E,下述结论:(1)BD 平分∠ABC;(2)AD=BD=BC;(3)△BDC 的周长等于AB+BC;(4)D 是AC 的中点.其中正确结论的个数有()A.4 个B.3 个C.2 个D.1 个【解答】解:∵△ABC 中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB 的垂直平分线DE 交AC 于D,交AB 于E,∴AD=BD,∴∠ABD=∠A=36°,∵∠DBC=∠ABC﹣∠ABD=36°=∠ABD,∴BD 平分∠ABC;故(1)正确;∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC=AD,故(2)正确;△BDC的周长等于BD+DC+BC=AD+DC+BC=AC+BC=AB+BC;故(3)正确;∵AD=BD>CD,∴D不是AC的中点,故(4)错误.故选:B.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【解答】解:这样做的道理是利用三角形的稳定性.12.(4分)已知A(2,a)关于x轴对称点B(b,﹣4),则a+b=6.【解答】解:∵点A(2,a)关于x轴的对称点是B(b,﹣4),∴a=4,b=2,∴a+b=6.故答案为6.13.(4分)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000米.【解答】解:过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000.故答案为:1000.14.(4分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.15.(4分)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:K62897.【解答】解:实际车牌号是K62897.故答案为:K62897.16.(4分)一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为70°或40°.【解答】解:(1)当110°角为顶角的外角时,顶角为180°﹣110°=70°;(2)当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°;故填70°或40°.三、解答题(本大题共9小题,共66分)17.(12分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′((3)计算△ABC的面积.),B′(),C′()【解答】解:(1)(2)A′(1,5),B′(1,0),C′(4,3);(3)∵A(﹣1,5),B(﹣1,0),C(﹣4,3),∴AB=5,AB边上的高为3,∴S=.ABC△18.(8分)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74°,求:∠D的度数.【解答】解:∵AB∥CD,∴∠1=∠A,∵∠A+∠1=74°,∴∠1=×74°=37°,∴∠ECD=∠1=37°,∵DE⊥AE,∴∠DEC=90°,∴∠D=90°﹣37°=53°.19.(8分)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.【解答】证明:在△ACB与△DCE中,∵∴△ACB≌△DCE(SAS),∴AB=DE,即DE的长就是A、B的距离.20.(8分)如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是∠B=∠F或AB∥EF或AC=ED;(2)添加了条件后,证明△ABC≌△EFD.【解答】解:(1)∠B=∠F或AB∥EF或AC=ED;(2)证明:当∠B=∠F时在△ABC和△EFD中∴△ABC≌△EFD(SAS).21.(8分)如图,BD=CD,BF⊥AC于F,CE⊥AB于E.求证:点D在∠BAC的角平分线上.【解答】证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°,在△BDE和△CFD中,,∴△BDE≌△CDF(AAS),∴DE=DF,∴点D在∠BAC的平分线上.22.(8分)已知:如图,在等边△ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.试说明:BD=DE.【解答】证明:∵△ABC为等边三角形,BD是AC边的中线,∴BD⊥AC,BD平分∠ABC,∠DBE=∠ABC=30°.∵CD=CE,∴∠CDE=∠E.∵∠ACB=60°,且∠ACB为△CDE的外角,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°,∴∠DBE=∠DEB=30°,∴BD=DE.23.(10分)已知点D在AB上,点E在AC上,AB=AC,∠ABE=∠ACD.(1)如图①,求证:AD=AE;(2)如图②,若BE、CD交于点P,连接BC,求证:PB=PC.【解答】解:(1)在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴AD=AE.(2)∵AB=AC,∴∠ABC=∠ACB,∵∠ABE=∠ACD,∴∠ABC﹣∠ABE=∠ACB﹣∠ACD,∴∠PBC=∠PCB,∴PB=PC.24.(12分)(1)如图所示的正多边形的对称轴有几条?把答案写在你图下方的3条4条5条6条7条.(2)一个正n边形有n条对称轴;(3)①在图①中画出正六边形的一条对称轴l;②在图②中,用无刻度的直尺,准确画出正五边形的一条对称轴l(不写画法,保留画图痕迹)【解答】解:(1)三角形有3条对称轴;正方形有4条对称轴;正五边形有5条对称轴;正六边形有6条对称轴;正七边形有7条对称轴;正八边形有8条对称轴;(2)一个正n边形有n条对称轴;(3)①所作图形如图所示:②所作图形如图所示.故答案为:3,4,5,6,7;n.25.(12分)如图1,△ABC和△DBE中,AB=C B,DB=EB,∠ABC=∠DBE=90°,D点在AB上,连接AE、DC,求证AE=CD,AE⊥CD.证明:延长CD交AE于点F,∵AB=BC,∠ABC=∠DBE=90°,BE=DB∴△AEB≌△CDB(SAS)∴AE=CD,∠EAB=∠DCB∵∠DCB+∠CDB=90°,∠ADF=∠CDB.∴∠ADF+∠DAF=90°∴∠AFD=90°,∴AE⊥CD.类比:若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE、CD之间的数量和位置关系还成立吗?若成立,请给予证明;如不成立,请说明理由.拓展:(直接回答问题结果,不要求写结论过程)若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC=∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问:①图3中的线段AE、CD是否仍然相等?②线段AE、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?【解答】解:类比:AE=CD,AE⊥CD,证明:∠DBE=∠ABC=90°,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD,∠EAB=∠DCB,∵∠DCB+∠COB=90°,∠AOF=∠COB,∴∠FOA+∠FAO=90°,∴∠AFC=90°,∴AE⊥CD;拓展:①AE=CD,∵∠DBE=∠ABC=α,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD;②线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化,∵△AEB≌△CDB,∴∠EAB=∠DCB,∵∠AHF=∠CHB,∴∠AFH=∠ABC=α,∴线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化.始终为α.②线段AE、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?【解答】解:类比:AE=CD,AE⊥CD,证明:∠DBE=∠ABC=90°,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD,∠EAB=∠DCB,∵∠DCB+∠COB=90°,∠AOF=∠COB,∴∠FOA+∠FAO=90°,∴∠AFC=90°,∴AE⊥CD;拓展:①AE=CD,∵∠DBE=∠ABC=α,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD;而发生变化,∵△AEB≌△CDB,∴∠EAB=∠DCB,∵∠AHF=∠CHB,∴∠AFH=∠ABC=α,∴线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化.始终为α.②线段AE、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?【解答】解:类比:AE=CD,AE⊥CD,证明:∠DBE=∠ABC=90°,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD,∠EAB=∠DCB,∵∠DCB+∠COB=90°,∠AOF=∠COB,∴∠FOA+∠FAO=90°,∴∠AFC=90°,∴AE⊥CD;拓展:①AE=CD,∵∠DBE=∠ABC=α,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD;而发生变化,∵△AEB≌△CDB,∴∠EAB=∠DCB,∵∠AHF=∠CHB,∴∠AFH=∠ABC=α,∴线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化.始终为α.②线段AE、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?【解答】解:类比:AE=CD,AE⊥CD,证明:∠DBE=∠ABC=90°,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD,∠EAB=∠DCB,∵∠DCB+∠COB=90°,∠AOF=∠COB,∴∠FOA+∠FAO=90°,∴∠AFC=90°,∴AE⊥CD;拓展:①AE=CD,∵∠DBE=∠ABC=α,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD;而发生变化,∵△AEB≌△CDB,∴∠EAB=∠DCB,∵∠AHF=∠CHB,∴∠AFH=∠ABC=α,∴线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化.始终为α.。

人教版八年级上册数学期中考试试题含答案详解

人教版八年级上册数学期中考试试题含答案详解

人教版八年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。

沪科版八年级上册数学期中考试试卷含答案

沪科版八年级上册数学期中考试试卷含答案

沪科版八年级上册数学期中考试试题一、单选题1.在平面直角坐标系中,点A 的坐标为(-2,3)若线段AB∥y 轴,且AB 的长为4,则点B 的坐标为()A.(-2,-1)B.(-2,7)C.(﹣2,-1)或(-2,7)D.(2,3)2.以下列各组线段为边,能组成三角形的是()A.1cm,2cm,4cm B.4cm,6cm,8cm C.5cm,6cm,12cmD.2cm,3cm,5cm3.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是()A.()1,2-B.()1,2-C.()2,3D.()3,44.下列图形中,正确画出AC 边上的高的是()A.B.C.D.5.如图,在平面直角坐标系中,一次函数y=kx+b 和y=mx+n 相交于点(2,-1)则关于x、y 的方程组kx y b mx n y =-⎧⎨+=⎩的解是()A.-12x y =⎧⎨=⎩B.2-1x y =⎧⎨=⎩C.12x y =⎧⎨=⎩D.21x y =-⎧⎨=⎩6.具备下列条件是△ABC 中,不是直角三角形的是()A.A B C∠+∠=∠B.1123A B C ∠=∠=∠C.∠A:∠B:∠C=1:3:4D.∠A=2∠B=3∠C7.下列命题中,正确的是()A.三角形的一个外角大于任何一个内角B.三角形三条角平分线交点在三角形的外部C.三角形的三条高都在三角形内部D.三角形的一条中线将三角形分成两个面积相等的三角形8.定义:当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“倍角三角形”,其中α称为“倍角”,如果一个“倍角三角形”的一个内角为99°,那么倍角α的度数是()A.99°B.99°或49.5°C.99°或54°D.99°或49.5°或54°9.关于函数y=(k-3)x+k,给出下列结论:①此函数一定是一次函数;②无论k 取什么值,函数图象必经过点(-1,3);③若图象经过二、三、四象限,则k 的取值范围是k <0;④若函数图象与x 轴的交点始终在正半轴可得k<3,其中正确的有()A.1个B.2个C.3个D.4个10.关于一次函数23y x =-+,下列结论正确的是()A.图象过点()1,1-B.图象与x 轴的交点是()0,3C.y 随x 的增大而增大D.函数图象不经过第三象限二、填空题11.命题“如果a+b=0,那么a,b 互为相反数”的逆命题为_________________________.12.一次函数y=kx+6的图象与x 轴交于点A,与y 轴交于点B,S△AOB ═9,则k=_____13.如图,CE 平分∠ACD,∠A=40°,∠B=30°,∠D=104°,则∠BEC=____.14.如图,在Rt△ABC 中,∠ACB=90°,BC=4cm,AC=9cm,点D 在线段CA 上从点C 出发向点A 方向运动(点D 不与点A,点C 重合),且点D 运动的速度为2cm/s,现设运动时间为x(0<x<92)秒时,对应的△ABD 的面积为ycm²,则当x=2时,y=_________;y 与x 之间满足的关系式为_________.15.直线y=12x-4与x 轴的交点坐标是_____,与y 轴的交点坐标是_______.三、解答题16.在△ABC 中,∠A-∠B=30°,∠C=4∠B,求∠A、∠B、∠C 的度数17.如图,在平面直角坐标系中,P(a,b)是三角形ABC 的边AC 上的一点,三角形ABC 经平移后点P 的对应点为P 1(a+6,b+2).(1)请画出经过上述平移后得到的三角形A 1B 1C 1;(2)求线段AC 扫过的面积.18.已知一次函数y=(6+3m)x+n-4(1)m 为何值时,y 随x 的增大而减小;(2)m,n 分别为何值时,函数的图象经过原点.19.设一次函数(,y kx b k =+b 为常数,0)k ≠的图象过()1,3A ,()5,3B --两点.()1求该函数表达式;()2若点()2,21C a a +-在该函数图象上,求a 的值;()3设点P 在x 轴上,若12ABP S = ,求点P 的坐标.20.已知,如图,在△ABC中,AH平分∠BAC交BC于点H,D、E分别在CA、BA的延长线上,DB∥AH,∠D=∠E.(1))求证:DB∥EC;(2)若∠ABD=2∠ABC,∠DAB比∠AHC大5°.求∠D的度数.21.在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路臀购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?22.已知△ABC中,∠ABC=∠ACB,D为线段CB上一点(不与C,B重合),点E为射线CA 上一点,∠ADE=∠AED,设∠BAD=a,∠CDE=β.(1)如图(1),①若∠BAC=50°,∠DAE=40°,则a=____,β=②若∠BAC=58°,∠DAE=42°,则a=_____,β=____③写出a与β的数量关系,并说明理由;(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出a与β的数量关系.23.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值;(2)若函数的图象平行于直线y=3x-3,求m 的值;(3)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.24.如图,在平面直角坐标系中,一次函数y =kx +b 的图象与x 轴交点为A (-3,0),与y 轴交点为B ,且与正比例函数43y x =的图象交于点C(m,4).(1)求点C 的坐标;(2)求一次函数y =kx +b 的表达式;(3)利用图象直接写出当x 取何值时,kx +b>43x .参考答案1.C 【解析】【分析】设点B (),x y ,根据线段与数轴平行可得2x =-,根据线段4AB =,可得34y -=,求解即可得出点的坐标.【详解】解:设点B (),x y ,∵AB y ∥轴,∴A ()2,3-与点B 的横坐标相同,∴2x =-,∵4AB =,∴34y -=,∴34y -=或34y -=-,∴1y =-或7y =,∴点B 的坐标为:()2,1--,()2,7-,故选:C.【点睛】题目主要考查线段与坐标轴平行的点的坐标特点,两点之间的距离,一元一次方程应用等,理解题意,利用绝对值表示两点之间距离是解题关键.2.B 【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能组成三角形;C、5+6<12,不能够组成三角形;D、2+3=5,不能组成三角形.故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.B 【解析】【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k﹤0,A.当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B.当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C.当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D.当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意,故选:B.【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.4.D 【解析】【分析】根据高的定义即可求解.【详解】解:根据锐角三角形和钝角三角形的高线的画法,可得D 选项中,BE 是△ABC 中AC 边长的高,故选:D.【点晴】此题主要考查高的作法,解题的关键是熟知高的定义.5.B 【解析】【分析】根据题意直接利用方程组的解就是两个相应的一次函数图象的交点坐标进行分析解决问题.【详解】解:∵一次函数y kx b =+和y mx n =+相交于点(2,-1),∴关于x、y 的方程组kx y b mx n y=-⎧⎨+=⎩的解为21x y =⎧⎨=-⎩.故选:B.【点睛】本题考查一次函数交点问题与二元一次方程(组)解得关系,理清二者的联系是解题关键.6.D 【解析】【分析】分别求出各个选项中,三角形的最大的内角,即可判断.【详解】解:A、由A B C ∠+∠=∠,可以推出90C ∠=︒,本选项不符合题意.B、由1123A B C ∠=∠=,可以推出90C ∠=︒,本选项不符合题意.C、由::1:3:4A B C ∠∠∠=,可以推出90C ∠=︒,本选项不符合题意,D、由23A B C ∠=∠=∠,推出108011A ⎛⎫∠=︒ ⎪⎝⎭,ABC ∆是钝角三角形,本选项符合题意.故选:D.【点睛】本题考查三角形内角和定理,熟悉相关性质是解题的关键.7.D 【解析】【分析】根据三角形外角的性质、中线的性质、高的性质及角平分线的性质逐一判断可得.【详解】解:A、三角形的一个外角大于任何一个不相邻的内角,故此选项错误,不合题意;B、三角形三条角平分线交点在三角形的内部,故此选项错误,不合题意;C、锐角三角形的三条高在三角形的内部、直角三角形有两条高在边上、钝角三角形有两条高在外部,故此选项错误,不合题意;D、三角形的一条中线将三角形分成两个三角形的底相等、高公共,据此知两个三角形面积相等,故正确,符合题意;故选:D.【点睛】本题考查了命题与定理,解题的关键是熟练掌握三角形外角的性质、中线的性质、高的性质、角平分线的性质.8.C【解析】【分析】根据题意设三角形的三个内角分别是m、n、α且α=2m,由题意得α=99°或m=99°或n=99°,分这三种情况讨论即可.【详解】解:设三角形的三个内角分别是m、n、α且α=2m,当α=99°,则m=49.5°,n=31.5°,当m=99°,则α=2m=198°(舍去),当n=99°,则m+α=180°-n=81°,∴3m=81°,∴m=27°,∴α=2m=54°.综上:倍角α的度数为99°或54°.故选:C.【点睛】本题主要考查三角形内角和定理,熟练掌握三角形内角和定理即三角形内角和是180°是解决本题的关键,注意分类讨论方法的运用.9.B【解析】【分析】①当k﹣3≠0时,函数是一次函数;当k﹣3=0时,该函数是y=3,此时是常数函数,即可求解;②y=(k﹣3)x+k=k(x+1)﹣3x,当x=﹣1时,y=3,过函数过点(﹣1,3),即可求解;③函数y=(k﹣3)x+k经过二,三,四象限,可得30kk-<⎧⎨<⎩,从而可以求得k的取值范围;④当k﹣3=0时,y=3,与x轴无交点;当k≠3时,函数图象与x轴的交点始终在正半轴,即-03kk >-,即可求解.【详解】解:①当k﹣3≠0时,函数是一次函数;当k﹣3=0时,该函数是y=3,此时是常数函数,故①不符合题;②y=(k﹣3)x+k=k(x+1)﹣3x,当x=﹣1时,y=3,过函数过点(﹣1,3),故②符合题意;③函数y=(k﹣3)x+k 经过二,三,四象限,则300k k -<⎧⎨<⎩,解得:k<0,故③符合题意;④当k﹣3=0时,y=3,与x 轴无交点;当k≠3时,函数图象与x 轴的交点始终在正半轴,即﹣03kk >-,解得:0<k<3,故④不符合题;故正确的有:②③,共2个故选B 【点睛】本题考查根据交点坐标确定解析式字母系数的取值及分类讨论思想的运用,一般地,先求出交点坐标,再把坐标满足的条件转化成相应的方程或是不等式进而解决问题.10.D 【解析】【分析】A、把点的坐标代入关系式,检验是否成立;B、把y=0代入解析式求出x,判断即可;C、根据一次项系数判断;D、根据系数和图象之间的关系判断.【详解】解:A、当x=1时,y=1.所以图象不过(1,−1),故错误;B、把y=0代入y=−2x+3,得x=32,所以图象与x 轴的交点是(32,0),故错误;C、∵−2<0,∴y 随x 的增大而减小,故错误;D、∵−2<0,3>0,∴图象过一、二、四象限,不经过第三象限,故正确.故选D.【点睛】本题主要考查了一次函数的图象和性质.常采用数形结合的思想求解.11.如果a,b互为相反数,那么a+b=0【解析】【分析】交换原命题的题设与结论即可得到其逆命题.【详解】解:逆命题为:如果a,b互为相反数,那么a+b=0.故答案为:如果a,b互为相反数,那么a+b=0.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.12.2±【解析】【详解】分析:首先计算出与x轴的交点坐标,与y轴的交点坐标,再利用三角形的面积公式计算出面积即可.详解:∵当x=0时,y=6,∴与y轴的交点B(0,6),∵当y=0时,6 xk =-∴与x轴的交点6,0Ak⎛⎫-⎪⎝⎭,∴△AOB的面积为:1669. 2k⨯⨯-=解得: 2.k=±故答案为 2.±点睛:考查了利用一次函数解析式求直线与坐标轴的交点问题,并借助三角形的面积公式求系数k,属于常见题型.13.57°##57度【解析】【分析】根据四边形外角的性质和角平分线的性质,再结合题意,即可得到答案.【详解】根据四边形外角的性质可得∠D =∠A+∠B+∠DCA,∠D =∠BEC+∠B+∠ECD,则∠DCA =∠D-(∠A+∠B)=34°,因为CE 平分∠ACD,所以∠ECD=123471︒=⨯︒,所以∠BEC=∠D-(∠B+∠ECD)=57°.故答案为57°.【点睛】本题考查四边形外角的性质和角平分线的性质,解题的关键是掌握四边形外角的性质和角平分线的性质.14.10184y x =-【解析】【分析】根据ABDABC BCD S S S =- ,代入数轴求解即可.【详解】解:根据题意得:ABD ABC BCDS S S =- =1122AC BC CD BC⋅-⨯=118242x -⨯⨯=184x -,∴当x=2时,184184210y x =-=-⨯=,故答案为:10,184y x =-.【点睛】本题考查了动点问题的函数关系,根据题意得出解析式是关系.15.(8,0)(0,-4)【解析】【分析】分别根据x、y 轴上点的坐标特点进行解答即可.【详解】解:令0y =,则1042x =-,解得8x =,故直线与x 轴的交点坐标为:(8,0);令0x =,则4y =-,故直线与y 轴的交点坐标为:(0,-4);故答案为(8,0),(0,-4).【点睛】本题考查的是x、y 轴上点的坐标特点,与x 轴相交,0y =,与y 轴相交,0x =.16.55A ∠=︒,25B ∠=︒,100C ∠=︒【解析】【分析】根据三角形内角和定理,以及已知条件列三元一次方程组解方程求解即可【详解】在△ABC 中,180A B C ∠+∠+∠=︒,∠A-∠B=30°,∠C=4∠B,180304A B C A B C B ∠+∠=︒-∠⎧⎪∴∠-∠=︒⎨⎪∠=∠⎩①②③①-②得2150B C ∠=︒-∠④将③代入④解得25B ∠=︒100C ∴∠=︒,55A ∠=︒∴55A ∠=︒,25B ∠=︒,100C ∠=︒【点睛】本题考查了三角形内角和定理,解三元一次方程组,正确的计算是解题的关键.17.(1)见解析;(2)14【解析】【分析】(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位;(2)以A、C、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的2个三角形的面积.【详解】解:(1)如图,各点的坐标为:A(﹣3,2)、C(﹣2,0)、A 1(3,4)、C 1(4,2);(2)如图,连接AA 1、CC 1;∴1117272AC A S =⨯⨯= ;117272AC C S =⨯⨯= ;∴四边形ACC 1A 1的面积为7+7=14.答:线段AC 扫过的面积为14.【点睛】本题考查平移,涉及的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;解题关键是掌握求四边形的面积通常整理为求几个三角形的面积的和.18.(1)当2m <-时,一次函数()634y m x n =++-,y 随x 的增大而减小;(2)当2m ≠-且4n =时,()634y m x n =++-的图象经过原点.【解析】【分析】(1)根据“y 随x 的增大而减小”可得630m +<,由此可求出m 的取值范围;(2)由函数图象经过原点得40n -=,630m +≠,由此求解即可.【详解】解:(1)由一次函数()634y m x n =++-,∵y 随x 的增大而减小,可得:630m +<,∴2m <-;∴当2m <-时,一次函数()634y m x n =++-,y 随x 的增大而减小;(2)由一次函数()634y m x n =++-的图象经过原点,可得:40n -=,解得:4n =,∵630m +≠,2m ≠-,∴当2m ≠-且4n =时,()634y m x n =++-的图象经过原点.【点睛】本题考查了一次函数的性质,解题的关键要熟练掌握一次函数的增减性与图象特点与参数之间的关系.19.(1)2y x =+;(2)5a =;(3)点P 坐标()2,0或()6,0-【解析】【分析】(1)根据一次函数y=kx+b(k,b 是常数,k≠0)的图象过A(1,3),B(-5,-3)两点,可以求得该函数的表达式;(2)将点C 坐标代入(1)中的解析式可以求得a 的值;(3)由题意可求直线y=x+2与x 轴的交点坐标,根据三角形的面积公式可求点P 坐标.【详解】解:()1根据题意得:{353k b k b +=-+=-解得:{12k b ==∴函数表达式为2y x =+()2 点()2,21C a a +-在该函数图象上,2122a a ∴-=++5a ∴=()3设点(),0P m 直线2y x =+与x 轴相交∴交点坐标为()2,0-1123231222ABP S m m =+⨯++⨯-=24m ∴+=2m ∴=或6-∴点P 坐标()2,0或()6,0-【点睛】本题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想解答.20.(1)见解析;(2)50°【解析】【分析】(1)根据平行线的性质可得∠D=∠CAH,根据角平分线的定义可得∠BAH=∠CAH,再根据已知条件和等量关系可得∠BAH=∠E,再根据平行线的判定即可求解;(2)可设∠ABC=x,则∠ABD=2x,则∠BAH=2x,可得∠DAB=180°−4x,可得∠AHC=175°−4x,可得175°−4x=3x,解方程求得x,进一步求得∠D 的度数.【详解】(1)证明:∵DB ∥AH,∴∠D=∠CAH,∵AH 平分∠BAC,∴∠BAH=∠CAH,∵∠D=∠E,∴∠BAH=∠E,∴AH ∥EC,∴DB ∥EC;(2)解:设∠ABC=x,则∠ABD=2x,∠BAH=2x,∴∠DAB=180°−4x,∠DAB 比∠AHC 大5°∴∠AHC=175°−4x,DB ∥AH,∴AHC DBC∠=∠即:175°−4x=3x,解得x=25°,则∠D=∠CAH=∠BAH=∠ABD=2x=50°.【点睛】考查了三角形内角和定理,平行线的判定与性质,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.21.(1)柏树的单价为100元,杉树的单价为80元;(2)①2012000w x =+,112.5150x ≤<且x 为整数;②要使此次费用最少,柏树购买113棵,杉树37棵,最少费用为14260元.【解析】【分析】(1)设柏树的单价为m 元,杉树的单价为n 元,根据题意列出二元一次方程组求解即可;(2)①根据单价、数量与费用的关系列出一次函数即可;再由题意本次购买柏树和杉树共150棵,且两种树都必须购买,可得不等式组,柏树的棵树不少于杉树的3倍,列出相应不等式求解,综合即可得x 的取值范围;②根据一次函数的增减性质可得w 随x 的增大而增大,由x 的取值范围代入求解即可.【详解】解:(1)设柏树的单价为m 元,杉树的单价为n 元,根据题意可得:234403380m n m n +=⎧⎨+=⎩,解得:10080m n =⎧⎨=⎩,答:柏树的单价为100元,杉树的单价为80元;(2)①设本次活动中购买柏树x 棵,则杉树()150x -棵,由(1)及题意可得:()100801502012000w x x x =+-=+,∵本次购买柏树和杉树共150棵,且两种树都必须购买,即:01500x x >⎧⎨->⎩,∴0150x <<,∵柏树的棵树不少于杉树的3倍,∴()3150x x ≥-,解得:112.5x ≥,综合可得:2012000w x =+,112.5150x ≤<且x 为整数;②由①可得:2012000w x =+,∵200>,∴w 随x 的增大而增大,∵112.5150x ≤<,∴当113x =时,w 最小,此时,201131200014260w =⨯+=(元),15011337-=(棵),∴要使此次费用最少,柏树购买113棵,杉树37棵,最少费用为14260元.【点睛】题目主要考查二元一次方程组、不等式组及一次函数的应用,理解题意,列出相应方程是解题关键.22.(1)①10︒,5︒;②16︒,8︒;③2αβ=,理由见详解;(2)2180αβ=-︒,理由见详解.【解析】【分析】(1)①先根据角的和与差求α的值,根据等腰三角形的两个底角相等及顶角可得:70ADE AED ∠=∠=︒,同理可得:65ACB ABC ∠=∠=︒,,根据外角性质列式:706510β︒+=︒+︒,即可得β的度数;②先根据角的和与差求α的值,根据等腰三角形的两个底角相等及顶角可得:69ADE AED ∠=∠=︒,同理可得:61ACB ABC ∠=∠=︒,,根据外角性质列式:696116β︒+=︒+︒,即可得β的度数;③设设BAC x ∠=,DAE y ∠=,则x y α=-,分别求出ADE ∠和B ∠,根据ADC B α∠=∠+列式,可得结论;(2)根据图形,设E x ∠=,则2DAC x ∠=,根据ADC B BAD ∠=∠+∠,列式代入化简可得结论.【详解】解:(1)①∵40DAE ∠=︒,∴140ADE AED ∠+∠=︒,∴70ADE AED ∠=∠=︒,∵50BAC ∠=︒,∴504010BAC DAE α=∠-∠=︒-︒=︒,∴180652BACACB ABC ︒-∠∠=∠==︒,∵ADC B α∠=∠+,∴706510β︒+=︒+︒,∴5β=︒;故答案为10︒,5︒;②∵42DAE ∠=︒,∴138ADE AED ∠+∠=︒,∴69ADE AED ∠=∠=︒,∵58BAC ∠=︒,∴584216α=︒︒=︒﹣,∴180612BACACB B ︒-∠∠=∠==︒,∵ADC B α∠=∠+,∴696116β︒+=︒+︒,∴8β=︒;故答案为16︒,8︒;③2αβ=,理由是:如图(1),设BAC x ∠=,DAE y ∠=,则x y α=-,∵ACB ABC ∠=∠,∴1802xACB ︒-∠=,∵ADE AED ∠=∠,∴1802y AED ︒-∠=,∴ADE ABC βα+∠=+∠,18018022y x βα︒-︒-+=+,化简可得:2αβ=;(2)2180αβ=-︒,理由是:由图象可得,设E x ∠=,则2DAC x ∠=,∴2BAC BAD DAC x α∠=∠+∠=+,∴18022xB ACB α︒--∠=∠=∵ADC B BAD ∠=∠+∠,∴18022x x αβα︒---=+,∴2180αβ=-︒.【点睛】题目主要考查等腰三角形的性质、三角形内角和定理、三角形外角的性质,熟练掌握等腰三角形的性质及运用类比的方法解决问题是解题关键.23.(1)m=3;(2)m=1;(3)m<﹣12【解析】【分析】(1)把原点坐标(0,0)代入函数关系式,即可求得m 的值;(2)根据图象平行的一次函数的一次项系数相同即可得到关于m 的方程,解出即可;(3)根据一次函数的性质即可得到关于m 的不等式,解出即可.【详解】解:(1)由题意得,30m -=,解得:3m =;(2)由题意得,213m +=,解得:1m =;(3)由题意得,210m +<,12m <-.【点睛】解答本题的关键是熟练掌握一次函数的性质:当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.24.(1)(3,4);21(2)223y x =+;(3)3x <时.【解析】【分析】(1)把点C(m,4)代入正比例函数43y x =即可得到答案;(2)把点A 和点C 的坐标代入y kx b =+求得k,b 的值即可;(3)根据图象判断.【详解】解:(1)∵点C(m,4)在正比例函数43y x =上,∴443m =,∴3m =,即点C 坐标为(3,4)(2)∵一次函数y kx b =+经过A(-3,0)、点C(3,4)∴3034k b k b -+=⎧⎨+=⎩,解之得:232k b ⎧=⎪⎨⎪=⎩,∴一次函数的表达式为:223y x =+;(3)由图象可知一次函数223y x =+与正比例函数43y x =的交点是点C,并且当3x <时,43kx b x +>.。

八年级上册数学期中测试题及答案

八年级上册数学期中测试题及答案

八年级上册数学期中测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 如果一个数的平方等于9,那么这个数可能是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 以上都不对答案:C4. 一个数的立方等于-8,那么这个数是:A. 2C. 8D. -8答案:B5. 下列哪个选项是不等式3x - 5 > 7的解集?A. x > 4B. x < 4C. x > 2D. x < 2答案:A6. 计算 (-2)^3 的结果是:A. -8B. 8C. -6D. 6答案:A7. 一个角是90°,那么它的补角是:A. 90°B. 180°C. 270°D. 360°答案:B8. 一个数的倒数是1/2,那么这个数是:B. 1/2C. 1D. 0答案:A9. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A10. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于16,这个数是______。

答案:±42. 如果一个角的补角是120°,那么这个角是______。

答案:60°3. 一个数的绝对值是5,这个数可以是______。

答案:±54. 一个数的立方等于27,这个数是______。

答案:35. 一个数的倒数是1/3,那么这个数是______。

答案:3三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 8。

答案:x = 52. 已知一个角是45°,求它的补角。

北师大版八年级上册数学期中考试试卷含答案

北师大版八年级上册数学期中考试试卷含答案

北师大版八年级上册数学期中考试试题一、单选题1.下列各数中,无理数是()B.πC.﹣13D.52.已知点A的坐标为(﹣4,﹣3),则点A在()A.第一象限B.第二象限C.第三象限D.第四象限3.分别以下列四组线段为三边,能构成直角三角形的是()A.0.3,0.4,0.5B.1,1,2C.1,2,3D.9,16,254.若y=mx|m﹣1|是正比例函数,则m的值是()A.0B.1C.2D.0或﹣2的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.如图所示,在正方形网格中有A,B,C三个点,若建立平面直角坐标系后,点A的坐标为(2,1),点B的坐标为(1,﹣2),则点C的坐标为()A.(1,1)B.(﹣2,1)C.(﹣1,﹣2)D.(﹣2,﹣1)7.如图,有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,则蚂蚁沿圆柱侧面爬行的最短路程是()A.15cm B.17cm C.18cm D.30cm 8.在正比例函数y=kx中,y的值随着x值的增大而减小,则一次函数y=kx+k在平面直角坐标系中的图象大致是()A.B.C.D.9.点P(3,﹣4)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m二、填空题的立方根是________.11.2712.如果一个数的平方根是2x+1和x﹣7,那么这个数是___.13.已知点A(﹣2,y1),B(3,y2)在一次函数y=2x﹣3的图象上,则y1___y2(填“>”,“<”或“=”).14.长方形ABCD在平面直角坐标系中的位置如图所示,若AD=5,点B的坐标为(﹣3,3),则点C的坐标为___.15.如图,在△ABC中,∠ACB=90°,AB=10,BC=6,CD⊥AB于点D,则CD的长为___.16.如图,正方形ABCD是由9个边长为1的小正方形组成的,点E,F均在格点(每个小正方形的顶点都是格点)上,连接AE,AF,则∠EAF的度数是___.17.如图,在平面直角坐标系xOy中,点A1,A2,A3,…分别在x轴上,点B1,B2,B3,…分别在直线y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,则点A2019的坐标为_____.18.若实数x,y满足5x-5x-+8,则2x﹣y=___.三、解答题19.计算:38﹣(π﹣3.14)0218182﹣1)(3)5-7)5+75220.如图,在△ABC中,D是BC边上的一点,若AB=5,BD=3,AD=4,AC=8,求CD的长.21.在弹性限度内,弹簧的长度与所挂物体质量满足一次函数关系,某数学兴趣小组通过实验发现弹簧的长度y(cm)与所挂物体质量x(kg)之间的关系如下表:x/kg0123⋯y/cm14.51515.516⋯(1)根据上表数据求出y与x之间的关系式;(2)求当所挂物体的质量为6千克时弹簧的长度.22.如图,在平面直角坐标中,△ABC各顶点都在小方格的格点上.(1)画出△ABC关于x轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.23.甲、乙两商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原价收费,其余每件优惠20%;乙商场的优惠条件是:每件优惠25%.设所买商品为x(x>1)件,甲商场收费为1y元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当所买商品为5件时,选择哪家商场更优惠?请说明理由.24.如图,在Rt△ABC中,∠B=90°,AB=9,BC=12,D为BC上一点,连接AD,将△ABC沿AD折叠,使点B恰好落在边AC上的点B'处,求DB'的长度.25.如图,直线y=kx+4与x轴相交于点A,与y轴相交于点B,且(1)求点A的坐标;(2)求k的值;(3)C为OB的中点,过点C作直线AB的垂线,垂足为D,交x轴正半轴于点P,试求点P的坐标及直线CP的函数表达式.26.甲、乙两人分别从同一公路上的A,B两地同时出发骑车前往C地,两人行驶的路程y (km)与甲行驶的时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)A,B两地相距km;乙骑车的速度是km/h;(2)请分别求出甲、乙两人在0≤x≤6的时间段内y与x之间的函数关系式;(3)求甲追上乙时用了多长时间.参考答案1.B【解析】【分析】根据无理数的概念“无限不循环的小数”结合算术平方根可进行排除选项.【详解】,313、5;故选B.【点睛】本题主要考查无理数及算术平方根,熟练掌握无理数的概念是解题的关键.2.C【解析】【分析】根据平面直角坐标系象限的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-)可直接进行求解.【详解】解:∵点A的坐标为(﹣4,﹣3),∴点A在第三象限;故选C.【点睛】本题主要考查平面直角坐标系象限的符号,熟练掌握平面直角坐标系象限的符号特点是解题3.A 【解析】【分析】根据勾股定理的逆定理:若a、b、c 为三角形的三边长,满足222+=a b c ,那么这个三角形就是直角三角形,由此进行求解即可.【详解】解:A、∵2220.30.40.5+=,∴能构成直角三角形,故此选项符合题意;B、∵2221122+=≠,∴不能构成直角三角形,故此选项不符合题意;C、∵2221253+=≠,∴不能构成直角三角形,故此选项不符合题意;D、∵22291633725+=≠,∴不能构成直角三角形,故此选项不符合题意;故选A.【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握勾股定理的逆定理.4.C 【解析】【分析】根据正比例函数的概念:形如y=kx,其中k≠0的函数,可知11,0m m -=≠,进而求解即可.【详解】解:由题意得:11,0m m -=≠,∴2m =;【点睛】本题主要考查正比例函数的概念,熟练掌握正比例函数的概念是解题的关键.5.B【解析】【分析】利用4<5<91的范围.【详解】∵4<5<9,故选:B.【点睛】本题主要考查了无理数的估算,估算无理数的基本方法是“两边夹”,即判断所要估算的无理数在哪两个连续的整数之间,则可得到这个无理数的整数部分,从而估算出这个无理数大小.6.D【解析】【分析】根据点A的坐标为(2,1),点B的坐标为(1,﹣2)可建立坐标系,进而问题可求解.【详解】解:由点A的坐标为(2,1),点B的坐标为(1,﹣2)可建立如下坐标系:∴点C的坐标为(﹣2,﹣1);故选D.【点睛】本题主要考查平面直角坐标系,解题的关键是根据点A、B的坐标建立平面直角坐标系.7.A【分析】如图把圆柱体展开,连接AB,然后可知AC=9cm,BC=12cm,进而可由两点之间,线段最短可知AB即为所求.【详解】解:如图所示:∵圆柱的高等于12cm,底面上圆的周长等于18cm,∴AC=9cm,BC=12cm,∴2215cmAB AC BC=+=,∴蚂蚁沿圆柱侧面爬行的最短路程是15cm;故选A.本题主要考查利用勾股定理求最短路径,熟练掌握利用勾股定理求最短路径是解题的关键.8.D【解析】【分析】根据正比例函数y=kx中,y的值随着x值的增大而减小,可得k<0,从而可以判断一次函数图像经过第二、三、四象限,由此求解即可.【详解】解:∵正比例函数y=kx中,y的值随着x值的增大而减小,∴k<0,∴一次函数y=kx+k与y轴的交点在y轴的负半轴,∴一次函数y=kx+k的图像经过第二、三、四象限,故选D.【点睛】本题主要考查了正比例函数的性质,一次函数的性质,解题的关键在于能够求出k<0.9.D【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:∵3>0,﹣4<0,∴点P(3,﹣4)所在的象限是第四象限.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.C【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:C..【点睛】本题主要考查了勾股定理的应用,关键是熟练掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.11.-3【解析】【分析】根据立方根的定义求解即可.【详解】解:-27的立方根是-3,故答案为:-3.【点睛】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.12.25或225【解析】【分析】根据一个正数的两个平方根互为相反数或相等,可知2x+1+x-7=0或2x+1=x-7,求解x,进而问题可求解.【详解】解:由题意得:2x+1+x-7=0或2x+1=x-7,解得:x=2或x=-8,∴这个正数为()222125⨯+=或(-15)²=225,故答案为25或225.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.13.<【解析】【分析】根据题意易得k=2>0,则有y 随x 的增大而增大,再由点A(﹣2,y 1),B(3,y 2)在一次函数y=2x﹣3的图象上可进行求解.【详解】解:由题意得:k=2>0,∴y 随x 的增大而增大,∵点A(﹣2,y 1),B(3,y 2)在一次函数y=2x﹣3的图象上,∴12y y <;故答案为<.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.14.(2,3)【解析】【分析】由题意易证BC∥AD,则有点B 与点C 的纵坐标相等,然后根据两点距离公式可进行求解.【详解】解:在长方形ABCD 中,BC∥AD,∴点B 与点C 的纵坐标相等,设点(),3C x ,∵AD=5,∴BC=5,∴352x =-+=,∴C(2,3);故答案为(2,3).15.4.8【分析】先利用勾股定理求出AC 的长,再由三角形面积公式11=22ABC S AC BC AB CD ⋅=⋅△得到AC BC CD AB⋅=,由此即可得到答案.【详解】解:∵在△ABC 中,∠ACB=90°,AB=10,BC=6,∴8AC ==,∵CD⊥AB,∴11=22ABC S AC BC AB CD ⋅=⋅△,∴ 4.8AC BC CD AB⋅==,故答案为:4.8.16.45°【分析】如图,连接EF,由题意易得△AHE≌△EGF,则有∠AEH=∠EFG,AE=EF,然后可得∠AEH+∠FEG=90°,则有△AEF 是等腰直角三角形,进而问题可求解.【详解】解:如图,连接EF,∵AH=EG=2,∠AHE=∠EGF=90°,EH=FG=1,∴△AHE≌△EGF,∴∠AEH=∠EFG,AE=EF,∵∠EFG+∠FEG=90°,∴∠AEH+∠FEG=90°,∴∠AEF=90°,∴△AEF是等腰直角三角形,∴∠EAF=45°;故答案为45°.【点睛】本题主要考查全等三角形的性质与判定及等腰直角三角形的性质与判定,熟练掌握全等三角形的性质与判定及等腰直角三角形的性质与判定是解题的关键.17.(22018,0)【分析】根据OA1=1,△OA1B1是等腰直角三角形,得到A1和B1的横坐标为1,根据点A1在直线y=x上,得到点B1的纵坐标,结合△B1A1A2为等腰直角三角形,得到A2和B2的横坐标为1+1=2,同理:A3和B3的横坐标为2+2=4=22,A4和B4的横坐标为4+4=8=23,…依此类推,即可得到点A2019的横坐标,即可得到答案.【详解】根据题意得:A1和B1的横坐标为1,把x=1代入y=x得:y=1B1的纵坐标为1,即A 1B 1=1,∵△B 1A 1A 2为等腰直角三角形,∴A 1A 2=1,A 2和B 2的横坐标为1+1=2,同理:A 3和B 3的横坐标为2+2=4=22,A 4和B 4的横坐标为4+4=8=23,…依此类推,A 2019的横坐标为22018,纵坐标为0,即点A 2019的坐标为(22018,0),故答案为:(22018,0).【点睛】此题考查了一次函数的性质,等腰直角三角形的性质;此题是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用等腰直角三角形的性质是解本题的关键.18.2【分析】根据根式有意义的条件可知5x =,然后可知y=8,进而代入求解即可.【详解】解:∵实数x,y 满足50,50x x -≥-≥,∴50x -=,解得:5x=,∴y=8,∴22582x y -=⨯-=,故答案为2.19.(1)3(2)2;(3)1-【分析】(1)根据零次幂、立方根及绝对值可直接进行求解;(2)先对二次根式进行化简,然后再进行二次根式的加减运算;(3)利用乘法公式进行二次根式的混合运算即可.【详解】解:(1)原式=2123-+=-(2)原式=22=;(3)原式=207591--+=.【点睛】本题主要考查二次根式的混合运算及零次幂,熟练掌握二次根式的混合运算及零次幂是解题的关键.20.CD =【解析】【分析】由题意可知222AB BD AD =+,则有90ADB ADC ∠=∠=︒,然后根据勾股定理可求解.【详解】解:∵AB=5,BD=3,AD=4,∴22225,9,16AB BD AD ===,∴222AB BD AD =+,∴90ADB ADC ∠=∠=︒,在Rt△ADC 中,AC=8,∴DC ==.【点睛】本题主要考查勾股定理及其逆定理,熟练掌握勾股定理及其逆定理是解题的关键.21.(1)()0.514.50y x x =+≥;(2)当所挂物体的质量为6千克时弹簧的长度为17.5cm【解析】【分析】(1)设弹簧的长度与所挂物体质量满足一次函数关系式为y kx b =+,然后根据表格中的数据把(0,14.5),(1,15)代入求解即可;(2)令6x =,求出此时y 的值即为弹簧的长度.【详解】解:设弹簧的长度与所挂物体质量满足一次函数关系式为y kx b =+,由题意得:14.515b k b =⎧⎨+=⎩,∴0.514.5k b =⎧⎨=⎩,∴一次函数关系式为()0.514.50y x x =+≥;(2)当当所挂物体的质量为6千克时,即6x =,∴0.5614.517.5y =⨯+=,∴当所挂物体的质量为6千克时弹簧的长度为17.5cm.【点睛】本题主要考查了一次函数的应用,解题的关键在于能够熟练掌握求一次函数解析式.22.(1)图见详解,()()()1112,3,3,2,1,1A B C ------;(2)图见详解,()0,1P【解析】【分析】(1)分别作出点A、B、C 关于x 轴的对称点,然后顺次连接即可,最后根据图象得到点的坐标即可;(2)作点A 关于y 轴的对称点D,然后连接DB 1,交y 轴于点P,此时点P 即为所求,进而求出直线DB 1的函数解析式即可求解点P 的坐标.【详解】解:(1)如图所示,由图象可知()()()1112,3,3,2,1,1A B C ------;(2)作点A 关于y 轴的对称点D,然后连接DB 1,交y 轴于点P,由轴对称的性质可知AP PD =,则有PA+PB 1的最小值即为1DB 的长,∴设直线DB 1的函数解析式为y kx b =+,把点()()12,3,3,2D B --代入得:2332k b k b +=⎧⎨-+=-⎩,解得:11k b =⎧⎨=⎩,∴直线DB 1的函数解析式为1y x =+,令x=0时,则有y=1,∴()0,1P .【点睛】本题主要考查坐标与图形、轴对称的性质及最短路径问题,熟练掌握坐标与图形、轴对称的性质及最短路径问题是解题的关键.23.(1)()124006001y x x =+>,()222501y x x =>;(2)当所买商品为5件时,选择乙商场更优惠,理由见解析【解析】【分析】(1)根据两家商场的优惠方案分别求出对应的关系式即可;(2)根据关系式分别求出x=5时的两个商场的收费,即可得解.【详解】解:(1)由题意得:()()()1300030001120%24006001y x x x =+--=+>,()()23000125%22501y x x x =⨯-=>;(2)当5x =时,12400560012600y =⨯+=,22250511250y =⨯=,∴12y y >,∴当所买商品为5件时,选择乙商场更优惠.【点睛】本题考查了列函数关系式和代数式求值,读懂题目信息,理解两家商场的优惠方案是解题的关键.24.92【解析】【分析】由折叠的性质可得9AB AB '==,9DB DB '==,90AB D B '==o ∠∠,先利用勾股定理求出15AC ==,即可得到6B C AC AB ''=-=,设DB DB x '==,则12DC BC BD x =-=-,在直角三角形B CD '中:222CD DB B C ''=+,则()222126x x -=+,解方程即可.【详解】解:由折叠的性质可得9AB AB '==,9DB DB '==,90AB D B '==o ∠∠,∴=180=90CB D AB D ''-o o∠∠∵∠B=90°,AB=9,BC=12,∴15AC ==,∴6B C AC AB ''=-=,设DB DB x '==,则12DC BC BD x =-=-,在直角三角形B CD '中:222CD DB B C ''=+,∴()222126x x -=+,解得92x =,∴92DB '=.【点睛】本题主要考查了折叠的性质,勾股定理,解题的关键在于能够熟练掌握折叠的性质与勾股定理.25.(1)()2,0A -;(2)2k =;(3)()4,0P ,直线CP 的解析式为122y x =-+【解析】【分析】(1)由题意可把x=0代入直线解析式求得点B 的坐标,则有OB=4,然后根据勾股定理可得OA=2,则可得点A 的坐标;(2)由(1)可把点A 的坐标代入解析式求解即可;(3)由题意易得OC=OA=2,然后可证△AOB≌△COP,进而可得OP=OB=4,最后问题可求解.【详解】解:(1)把x=0代入直线y=kx+4可得:y=4,∴()0,4B ,∴OB=4,在Rt△AOB2OA ==,∴()2,0A -;(2)由(1)可把点()2,0A -代入直线y=kx+4得:240k -+=,解得:2k =;(3)∵点C 为OB 的中点,OB=4,∴2OC =,∴OC OA =,∵90AOB COP ∠=∠=︒,DP AB ⊥,∴90BAO ABO BAO CPO ∠+∠=∠+∠=︒,∴ABO CPO ∠=∠,又∵∠AOB=∠COP=90°,∴△AOB≌△COP(AAS),∴OP=OB=4,∴()4,0P ,设直线CP 的解析式为y ax c =+,则把点()4,0P ,()0,2C 代入得:∴240c a c =⎧⎨+=⎩,解得:212c a =⎧⎪⎨=-⎪⎩,∴直线CP 的解析式为122y x =-+.【点睛】本题主要考查一次函数与几何的综合及勾股定理,熟练掌握一次函数与几何的综合及勾股定理是解题的关键.26.(1)20;5;(2)甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为10y x =,520y x =+;(3)甲追上乙用了4小时的时间【解析】【分析】(1)根据图象可直接求出A、B 两地的相距距离,然后由图象可知乙行驶10km 所需的时间为2小时,由此问题可求解;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,然后把点()()()6,60,2,30,0,20代入求解即可;(3)由题意可联立(2)中的两个函数关系式进行求解即可.【详解】解:(1)由图象可知:A、B 两地的相距20km;乙骑车的速度为(30-20)÷2=5km/h;故答案为20;5;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,则由图象可把点()6,60代入甲的函数关系式得:660k =,解得:10k =,∴甲的函数关系式为10y x =;把点()()2,30,0,20代入乙的函数关系式得:23020a b b +=⎧⎨=⎩,解得:520a b =⎧⎨=⎩,∴乙的函数关系式为520y x =+;(3)由(2)可联立关系式得:10520y x y x =⎧⎨=+⎩,解得:440x y =⎧⎨=⎩,∴甲追上乙用了4小时的时间.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学期中试题4
(总分为120分,考试时间为120分钟)
一、选择题.(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.把符合题目要求的选项前的字母填在题后相应的括号内.) 1. 一个数的平方根与这个数的算术平方根相等,这个数是( ) A 、1 B 、-1 C 、0 D 、1或0
2. 在下列实数中: , ,|-3|, ,0.8080080008…, 无理数的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个
3.52-绝对值是 ( )
A .52-
B .25-
C .52+
D .±(52-

4. 平行四边形ABCD 中,BC,AD 的长分别为(x+2)cm 和(3-x )cm,则x 的值为( ) A .2 B .1 C .
2
1 D .2
1-
5. 下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( )
A B C D
6. 同学们曾经玩过“万花筒”,它是由三个等宽等长的玻璃片围成的。

如下图是“万花筒”的一个图案,图中所有的小三角形均是全等的等边三角形,其中菱形AEFG 可以看成是把菱形ABCD 以A 为中心按( )
A 、顺时针旋转60°得到;
B 、顺时针旋转120°得到;
C 、逆时针旋转60°得到;
D 、逆时针旋转120°得到.
7. 如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是(
A 、2
11 B 、1.4 C 、3 D 、
2
8.如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) A. 25 B. 12.5 C. 9 D. 8.5
9. 如图,延长正方形ABCD 的一边BC 至E ,使CE =AC ,连结AE 交CD 于F ,则∠AFC 的度数是
A 、112.5°
B 、120°
C 、122.5°
D 、135°
10. 如图,把长为8cm 的矩形沿虚线对折,按图中的虚线剪出一个直角梯形,
打开得到一个等腰梯形,剪掉部分的一个三角形的面积为6cm 2
,则打开后梯形的周长是( )。

A 、

10+132)cm
B 、(
10+13)cm C 、20cm D 、22cm 二、填一填.(本大题共8个小题,每小题3分,共24分)
11. 一个三角形的三边之比为3:4:5,则这个三角形是 三角形(按角区分) 12. 比较大小:
2
317-
2
1;(用“>”或“<”填空)
13. 矩形是轴对称图形,它的对称轴共有 条。

14. 正方形的面积是2cm 2,则其对角线长为 cm 。

15一组对边平行,另一组对边相等的四边形,可以是平行四边形,还可以是 形。

16、若实数a 、b 满足(a -2)2+a b 2-=0,则b-a= . 17、满足52<
<-
x 的整数x 是 。

18、如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,正方形A 、B 、C 、D 的面积的和是642
cm ,则最大的正方形的边长为 cm , 19.算一算.(本题共4个小题,每小题4分,共16分)
(1)、
243
2
83
+⨯
- (2)、2
2
)53()53(+
--
C
A D F E
C
B
⑶ 40)52(2
-
+ ⑷ )23)(2332(+-
20.(本题8分)
木工师付只用一把刻度尺就能确定他所做的门是不是矩形,请你用所学的知识说说确定的步骤和原理。

21.(本小题满分8分)
已知12+=x ,求
2
)1()1(--+x x 的值
22. 作图题(本小题满分8分) 请将下右图中的“小鱼”向左平移5格。

23(本小题满分8分)
如图,在平行四边形ABCD 中,点E 、F 在对角线BD 上,且BE=DF ,四边形AECF 是平行四
边形吗?为什么?
24.(本小题满分8分)
如图所示,折叠长方形一边AD ,点D 落在BC 边的点F 处,已知BC=10厘米,AB=8厘米,求FC 和EF 的长。

25.(本小题满分10分)
等腰△ABC中,AB =AC ,D 为BC 上的一动点,DE∥AC ,DF∥AB,分别交 AB 于E,AC 于F, 则DE +DF 是否随D 点变化而变化?请说明理由。

26.(本小题满分10分)
如图,正方形ABCD 的对角线AC,BD 交于点O ,将一三角尺的直角顶点放在点O 处,让其绕点O 旋转,三角尺的直角边与正方形ABCD 的两边交于点E 和F 。

通过观察或测量OE,OF

A
B
D
C
E F
长度,你发现了什么?试说明理由。

D
参考答案和评分标准
一 、
二、11. 直角; 12.>; 13.两; 14.2; 15.等腰梯形;16、2。

;17、-1,0,1,2。

18。

8。

三、19.(每小题4分)
1、
243
2
83
+⨯
-
=623
6
2+⨯
-………………2分
=
63
4………………4分 2
2
)53()53(+
--
=2222)5(563)5(563---+-………………2分 =512-………………4分 (3)、原式=102)5(522)2(2
2-+⨯+………………2分
=10251022-++ =7………………4分
)23)(2332(+
-
=223323232332⨯-⨯-⨯+⨯………………2分
=663626--+ =6-
……………………4分
20. 每问4分
步骤:1.分别测量门的两组对边长度,若相等则是平行四边形。

2.再测量门的对角线的长度,若相等则是矩形。

原理:1是两组对边分别相等的四边形是平行四边形。

2是对角线相等的平行四边形是矩形 21. 解:22)1()1(--+x x =121222-+-++x x x x =x 4……………………4分 把12+=
x 代入上式,得
原式=424)12(4+=+⨯……………………8分 22. 解:如图所示,如右图
23. 解:四边形AECF
理由是:在平行四边形ABCD 中,AB ∥CD,AB=CD ∴∠ABE=∠CDF 在△ABE 和△CDF 中 AB=CD ∠ABE=∠CDF BE=DF
△ABE ≌△CDF (SAS )
∴AE=CF …………………………………………(6分) 同理可得△ADF ≌△CBE (SAS ) ∴AF=CE
∴四边形AECF 是平行四边形(两组对边分别相等的四边形是平行四边形) …………………………………………(8分) 24.共8分.
解:
折叠长方形一边AD,点D落在BC边的点F处,
所以AF=AD=BC=10厘米………(2分)
在Rt△ABF中,AB=8厘米,AF=10厘米,由勾股定理,得AB2+BF2=AF2
∴82+BF2=102
∴BF=6(厘米)
∴FC=10-6=4(厘米) ………(4分)
设EF=x,由折叠可知DE=EF=x
由由勾股定理,得EF2=FC2+EC2
∴x2=42+(8-x)2
解得x=5(厘米)
答:FC和EF的长分别为4厘米和5厘米。

………(8分)25.解:不变化……………(1分)
∵DE∥AC ,DF∥AB,
∴四边形AEDF为平行四边形
∴DF=AE(平行四边形的对边相等) ……………(3分)
又∵AB=AC,
∴∠B=∠C(等边对等角)
∵DE∥AC
∴∠EDC=∠C
∴∠EDC=∠B(等量代换) ……………(8分)
∴DE=EB(等角对等边)
∴DE+DF= AE+ EB=AB
……………(10分)
26、解:OE=OF…………………………(2分)
正方形ABCD的对角线AC,BD交于点O
∴OA=OB,∠OAB=∠OBE=45°,AC⊥BD
∵∠AOF+∠FOB=∠EOB+∠FOB=90°
∴∠AOF=∠EOB…………………………(5分)A
B
D C
E
F
在△AOF 和△BOE 中 ∠OAB=∠OBE OA=OB, ∠AOF=∠EOB
∴△AOF ≌△BOE (ASA )
∴OE=OF
…………………………(10分)
试卷说明
本套试题主要考查八年级上册《勾股定理》,《实数》,《图形的平移与旋转》,《四边形性质探索》的内容。

共有26个题,选择题10道,填空题8道,解答题8道。

试题依据初中数学新课程标准内容的要求,结合学生的实际水平,既重视了学生的基础知识与基本技能考查,又考查了学生分析问题与解决问题的能力,以及学生的实践能力与创新
D
E。

相关文档
最新文档