九上数学试卷1
北京市九年级(上)第一次月考数学试卷(1)

北京市九年级(上)第一次月考数学试卷(1)一、选择题(每题2分,共16分)1.如图四个图形中,是中心对称图形的是()A.B.C.D.2.一元二次方程2x2+x﹣5=0的二次项系数、一次项系数、常数项分别是()A.2,1,5B.2,1,﹣5C.2,0,﹣5D.2,0,53.把抛物线y=x2向上平移3个单位,得到的抛物线是()A.y=(x﹣3)2B.y=(x+3)2C.y=x2﹣3D.y=x2+34.在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是()A.(2,﹣3)B.(﹣2,3)C.(3,2)D.(﹣2,﹣3)5.在平面直角坐标系xOy中,下列函数的图象经过点(0,0)的是()A.y=x+1B.y=x2C.y=(x﹣4)2D.6.用配方法解方程x2+4x=1,变形后结果正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=5D.(x+2)2=5 7.把长为2m的绳子分成两段,使较长一段的长的平方等于较短一段的长与原绳长的积.设较长一段的长为xm,依题意,可列方程为()A.x2=2(2﹣x)B.x2=2(2+x)C.(2﹣x)2=2x D.x2=2﹣x8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有四个推断:①抛物线开口向下;②当x=﹣2时,y取最大值;③当m<4时,关于x的一元二次方程ax2﹣bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时k的取值范围是﹣4<x<0.其中推断正确的是()A.①②B.①③C.①③④D.②③④二、填空题(每题3分,共24分)9.抛物线y=﹣3(x﹣1)2+2的顶点坐标是.10.请写出一个开口向上,并且与y轴交于点(0,﹣2)的抛物线解析式.11.若点A(﹣1,y1),B(2,y2)在抛物线.y=2x2上,则y1,y2的大小关系为:y1y2.(选填“>”“<或“=”)12.若关于x的方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围为.13.如图,在平面直角坐标系xOy中,点A(﹣2,0),点B(0,1).将线段BA绕点B旋转180°得到线段BC,则点C的坐标为.14.如图,将△ABC绕点A顺时针旋转30°得到△ADE,点B的对应点D恰好落在边BC 上,则∠ADE=.15.如图,在边长为2的正方形ABCD中,E,F分别是边DC,CB上的动点,且始终满足DE=CF,AE,DF交于点P,则∠APD的度数为;连接CP,线段CP的最小值为.16.野兔跳跃时的空中运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,通过对某只野兔一次跳跃中水平距离x(单位:m)与竖直高度y(单位:m)进行的测量,得到以下数据:水平距离x/m00.41 1.42 2.4 2.8竖直高度y/m00.480.90.980.80.480根据上述数据,回答下列问题:①野兔本次跳跃的最远水平距离为m,最大竖直高度为m;②已知野兔在高速奔跑时,某次跳跃最远水平距离为3m,最大竖直高度为1m.若在野兔起跳点前方2m处有高为0.8m的篱笆,则野兔此次跳跃(填“能”或“不能”)跃过篱笆.三、解答题(17题8分,18-21题每题5分,22-24题每题6分,25-26题7分)17.解方程:(1)x2﹣2x﹣8=0;(2)2x2﹣4x+1=0.18.已知a是方程2x2﹣7x﹣1=0的一个根,求代数式a(2a﹣7)+5的值.19.在平面直角坐标系xOy中,抛物线y=a(x﹣3)2﹣1经过点(2,1).(1)求该抛物线的表达式;(2)将该抛物线向上平移个单位后,所得抛物线与x轴只有一个公共点.20.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,将线段CA绕点C逆时针旋转60°,得到线段CD,连接AD,BD.(1)依题意补全图形;(2)若BC=1,求线段BD的长.21.如图,在平面直角坐标系xOy中,抛物线y=ax2+2x+c的部分图象经过点A(0,﹣3),B(1,0).(1)求该抛物线的解析式;(2)结合函数图象,直接写出y<0时,x的取值范围.22.已知关于x的一元二次方程x2+(2﹣m)x+1﹣m=0.(1)求证:方程总有两个实数根;(2)若m<0,且此方程的两个实数根的差为3,求m的值.23.为了改善小区环境,某小区决定在一块一边靠墙(墙长为25m)的空地上修建一个矩形小花园ABCD.小花园一边靠墙,另三边用总长40m的栅栏围住,如图所示.设矩形小花园AB边的长为xm,面积为ym2.(1)求y与x之间的函数关系式;(2)当x为何值时,小花园的面积最大?最大面积是多少?24.在平面直角坐标系xOy中,点(4,3)在抛物线y=ax2+bx+3(a>0)上.(1)求该抛物线的对称轴;(2)已知m>0,当2﹣m≤x≤2+2m时,y的取值范围是﹣1≤y≤3.求a,m的值;(3)在(2)的条件下,是否存在实数n,使得当n﹣2<x<n时,y的取值范围是3n﹣3<y<3n+5.若存在,直接写出n的值;若不存在,请说明理由.25.如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP 绕点A顺时针旋转60°得到AP',连接PP',BP'.(1)用等式表示BP'与CP的数量关系,并证明;(2)当∠BPC=120°时,①直接写出∠P'BP的度数为;②若M为BC的中点,连接PM,用等式表示PM与AP的数量关系,并证明.26.在平面直角坐标系xOy中,对于第一象限的P,Q两点,给出如下定义:若y轴正半轴上存在点P',x轴正半轴上存在点Q',使PP'∥QQ',且∠1=∠2=α(如图1),则称点P 与点Q为α﹣关联点.(1)在点Q1(3,1),Q2(5,2)中,与(1,3)为45°﹣关联点的是;(2)如图2,M(6,4),N(8,4),P(m,8)(m>1).若线段MN上存在点Q,使点P与点Q为45°﹣关联点,结合图象,求m的取值范围;(3)已知点A(1,8),B(n,6)(n>1).若线段AB上至少存在一对30°﹣关联点,直接写出n的取值范围.。
九年级上册数学试卷

九年级上册数学试卷九年级上册数学试卷一、选择题(每小题3分,共30分)在每小题的括号内选出一个能够完成或解答题目要求的正确答案。
1. 下列选项中,哪一个是一个正整数?A. -5B. 0C. 2/3D. √92. 在下列几个数中,不能化成小数的是:A. 1/4B. 2/5C. 1/3D. 1/73. 下列哪个数与-9/7相等?A. -9/7B. 9/7C. 1/7D. 7/94. 对于数a与b来说,下列哪个式子是成立的?A. a + b = b + aB. a - b = b - aC. a × b =b × a D. a ÷ b = b ÷ a5. 根号2与根号3的大小关系是:A. 根号2 < 根号3B. 根号2 > 根号3C. 根号2 = 根号3D. 无法比较6. 一个圆的直径是10厘米,那么它的半径是:A. 10厘米B. 15厘米C. 5厘米D. 20厘米7. 一辆车以每小时80千米的速度行驶,那么这辆车行驶了多少千米,才用时2小时?A. 160千米B. 40千米C. 80千米D. 120千米8. 一块矩形地面的长为8米,宽为5米,那么它的面积是多少平方米?A. 40平方米B. 13平方米C. 45平方米D.64平方米9. 如果一辆车每小时行驶75千米,那么它在3小时内行驶了多少千米?A. 225千米B. 75千米C. 150千米D. 325千米10. 若三角形的三边长分别为7厘米、8厘米和9厘米,那么这个三角形周长为多少厘米?A. 24厘米B. 22厘米C. 21厘米D.25厘米二、填空题(每小题4分,共40分)根据题目的要求,将答案填入括号内。
11. 3 × 4 + 7 ________ ( )12. 半径为5厘米的圆的面积是________平方厘米( )13. 三角形有________个角 ( )14. 在数轴上右移两个单位的点的坐标是________ ( )15. 右边的等式中,x应该取________ ( )三、解答题(每小题10分,共40分)根据题目的要求,写出完整的解答步骤和答案。
人教版九年级上册数学试卷

人教版九年级上册数学试卷一、选择题(每题3分,共30分)1. 一元二次方程x^2 - 4 = 0的解是()A. x = 2B. x=-2C. x = ±2D. x=±42. 二次函数y = x^2+2x - 3的顶点坐标是()A. (-1,-4)B. (1,-4)C. (-1,4)D. (1,4)3. 已知关于x的一元二次方程(m - 1)x^2+2x + 1 = 0有实数根,则m的取值范围是()A. m≤slant2且m≠1B. m≥slant2且m≠1C. m≤slant2D. m≥slant24. 抛物线y = -2(x - 3)^2+5的对称轴是()A. x = 3B. x=-3C. x = 5D. x=-55. 把二次函数y = 3x^2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是()A. y = 3(x + 2)^2+1B. y = 3(x - 2)^2+1C. y = 3(x + 2)^2-1D. y = 3(x - 2)^2-16. 若关于x的方程x^2-kx - 12 = 0的一个根为3,则k的值为()A. -1B. 1C. -5D. 5.7. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正五边形D. 圆。
8. 在同一坐标系中,一次函数y = ax + c和二次函数y = ax^2+c的图象大致为()(此处给出四个选项的图象组合)9. 已知二次函数y = ax^2+bx + c(a≠0)的图象如图所示,对称轴为直线x = 1,下列结论中正确的是()(此处给出一个二次函数图象)A. ac>0B. 当x>1时,y随x的增大而增大。
C. 2a + b = 0D. b^2-4ac<010. 对于二次函数y = -x^2+2x,有下列四个结论:它的对称轴是直线x = 1;设y_1=-x_1^2+2x_1,y_2=-x_2^2+2x_2,则当x_1时,y_1>y_2;它的图象与x轴的两个交点是(0,0)和(2,0);④当0 < x < 2时,y>0。
九上初中数学试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. √3C. πD. -1/2答案:D2. 已知 a < b < 0,则下列不等式中正确的是()A. a > bB. -a > -bC. a^2 < b^2D. a^3 < b^3答案:B3. 若 m,n 是方程 x^2 - 3x + 2 = 0 的两个根,则 m + n 的值为()A. 1B. 2C. 3D. 4答案:B4. 在直角坐标系中,点 P(2, -3) 关于 x 轴的对称点的坐标是()A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A5. 已知 a,b 是方程 x^2 - 5x + 6 = 0 的两个根,则下列结论正确的是()A. a + b = 5B. ab = 6C. a^2 + b^2 = 11D. a^2 + b^2 = 25答案:B6. 已知函数 y = 2x + 1,则下列各点中,在函数图象上的是()A. (1, 3)B. (2, 5)C. (3, 7)D. (4, 9)答案:B7. 在等腰三角形 ABC 中,AB = AC,AD 是底边 BC 的中线,则下列结论正确的是()A. ∠BAD = ∠BACB. ∠BAD = ∠CADC. ∠BAC = ∠CADD. ∠BAD = ∠BDC答案:C8. 若 sin A = 1/2,则 A 的度数是()A. 30°B. 45°C. 60°D. 90°答案:A9. 已知等腰三角形 ABC 中,AB = AC,AD 是底边 BC 的中线,则下列结论正确的是()A. ∠BAD = ∠BACB. ∠BAD =∠CADC. ∠BAC = ∠CADD. ∠BAD = ∠BDC答案:C10. 已知函数 y = -x^2 + 2x,则下列各点中,在函数图象上的是()A. (1, 1)B. (2, 2)C. (3, 3)D. (4, 4)答案:B二、填空题(每题3分,共30分)11. 已知 a,b 是方程 x^2 - 3x + 2 = 0 的两个根,则 a + b = _______,ab = _______。
初中九上好的数学试卷

1. 下列各数中,绝对值最小的是()A. -3B. 3C. -3/2D. 3/22. 下列方程中,解为正数的是()A. 2x - 3 = 0B. x^2 + 1 = 0C. 3x - 4 = 0D. x^2 - 1 = 03. 下列函数中,是奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = x^44. 在△ABC中,∠A = 30°,∠B = 45°,则∠C = ()A. 105°B. 120°C. 135°D. 150°5. 下列不等式中,恒成立的是()A. x > 2B. x < 2C. x ≥ 2D. x ≤ 26. 已知数列{an}中,a1 = 1,an = an-1 + 2(n ≥ 2),则数列{an}的通项公式是()A. an = nB. an = n - 1C. an = n + 1D. an = 2n7. 下列命题中,正确的是()A. 平行四边形的对边相等B. 等腰三角形的底角相等C. 直角三角形的斜边最长D. 直角三角形的两个锐角互余8. 下列函数中,是反比例函数的是()A. y = x^2B. y = 1/xC. y = x + 1D. y = x^39. 下列方程中,解为x=2的是()A. 2x - 3 = 0B. 3x + 2 = 0C. 2x + 3 = 0D. 3x - 2 = 010. 下列命题中,正确的是()A. 平行四边形的对角线相等B. 等腰三角形的底角相等C. 直角三角形的斜边最长D. 直角三角形的两个锐角互余11. 若a > b,则a - b > 0。
12. 已知数列{an}中,a1 = 1,an = an-1 + 2(n ≥ 2),则a3 = 。
13. 在△ABC中,∠A = 30°,∠B = 45°,则AB = 。
9年级上册数学试卷【含答案】

9年级上册数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是正比例函数?()A. y = 3xB. y = x/2C. y = 5D. y = 4x 13. 在直角坐标系中,点(3, -4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 若一个三角形的两边长分别为5cm和12cm,那么第三边的长度可能是()A. 7cmB. 17cmC. 8cmD. 10cm5. 下列哪一个数是无理数?()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)1. 两个负数相乘的结果是正数。
()2. 所有的偶数都是2的倍数。
()3. 在直角三角形中,斜边是最长的一边。
()4. 任何一个整数都是有理数。
()5. 一元二次方程的解一定是两个实数根。
()三、填空题(每题1分,共5分)1. 平方根定义:如果一个数的平方等于a,这个数就叫做a的______。
2. 一次函数的图像是一条______。
3. 在三角形中,一个外角等于它不相邻的两个内角的______。
4. 两个点之间的距离公式是______。
5. 一元二次方程的标准形式是______。
四、简答题(每题2分,共10分)1. 解释什么是算术平方根。
2. 简述坐标轴上的点的特征。
3. 什么是相似三角形?给出一个判定相似三角形的条件。
4. 请列出勾股定理的内容。
5. 什么是函数?给出一个函数的例子。
五、应用题(每题2分,共10分)1. 一个长方形的周长是18cm,长是宽的两倍,求长方形的长和宽。
2. 已知一个等腰三角形的底边长为10cm,腰长为13cm,求这个三角形的面积。
3. 解方程:2(x 3) = 3(x + 1)。
4. 如果一个正方形的对角线长为10cm,求这个正方形的面积。
5. 某商品原价为200元,打8折后售价是多少?六、分析题(每题5分,共10分)1. 证明:如果一个三角形的两边长分别是3cm和4cm,那么这个三角形不可能是直角三角形。
苏科版九年级上数学期中试卷一(含答案及解析)

苏科版九年级(上)数学期中试卷一一、选择题(本大题共6 小题,每小题 2 分,共12 分)1.(2分)下列方程中,是关于x的一元二次方程的是()A.x2﹣2x=x2+1B.x2+=1C.(x﹣1)2=2D.2x2+y﹣1=02.(2分)已知2x=3y(y≠0),则下面结论成立的是()A.=B.=C.=D.=3.(2分)用因式分解法解方程x2+px﹣6=0,若将左边分解后有一个因式是x+3,则p的值是()A.﹣1 B.1 C.﹣5 D.54.(2分)一元二次方程4x2﹣4x+1=0的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根5.(2分)如图,AB、BC、CD、DA都是⊙O的切线,已知AD=2,BC=5,则AB+CD的值是()A.14 B.12 C.9 D.76.(2分)若将半径为12cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.2cm B.3cm C.4cm D.6cm二、填空题(本大题共10 小题,每小题 2 分,共20 分)7.(2分)将方程x2﹣2=7x化成x2+bx+c=0的形式,则b=.8.(2分)数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90 分、100 分、90 分,则小红一学期的数学平均成绩是分.9.(2分)方程x2﹣1=0的解为.10.(2分)若三角形ABC的两边长分别是方程x2﹣5x+4=0的两个解,则这个等腰三角形的周长是.11.(2分)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是.12.(2分)已知扇形的面积为2π,半径为3,则该扇形的弧长为(结果保留π).13.(2分)在一个不透明的袋子中共装有白球、红球和蓝球200个,这些球除颜色外都相同.小明每次从中任意摸出一个球,记下颜色后将球放回并搅匀,通过多次重复试验,算得摸到红球的频率是25%,则估计这只袋子中有红球个.14.(2分)如图,P为⊙O外一点,PA切⊙O于A,若PA=3,∠APO=45°,则⊙O的半径是.15.(2分)⊙O的半径是2,弦AB=2,点C为⊙O上的一点(不与点A、B重合),则∠ACB的度数为.16.(2分)如图,矩形ABCD中,AD=4,AB=2.点E是AB的中点,点F是BC边上的任意一点(不与B、C重合),△EBF沿EF翻折,点B落在B'处,当DB'的长度最小时,BF的长度为.三、解答题(本大题共11 小题,共88 分)17.(6分)解下列方程:(1)x2﹣2x﹣3=0(2)(x+1)(x﹣2)+2(2﹣x)=018.(8分)一组数据:2,6,7,7,8(1)求这组数据的平均数;(2)求这组数据的方差.19.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?20.(8分)如图,已知△ABC内接于⊙O,D是⊙O上一点,连接BD、CD、AC、BD交于点E.(1)请找出图中的相似三角形,并加以证明;(2)若∠D=45°,BC=2,求⊙O 的面积.21.(8分)某校在七年级、八年级开展了阅读文学名著知识竞赛.该校七、八年级各有学生400人,各随机抽取20名学生进行了抽样调查,获得了他们知识竞赛成绩(单位:分),并对数据进行整理、描述和分析.下面给出了部分信息.a.七年级学生知识竞赛成绩的平均数、中位数、众数、优秀率(80 分及以上)如下表所示:年级平均数中位数众数优秀率七年级84.2 77 74 45%b.八年级学生知识竞赛成绩的扇形统计图如图(数据分为5 组,A:50≤x≤59;B:60≤x≤69;C:70≤x≤79;D:80≤x≤89;E:90≤x≤100)c.八年级学生知识竞赛成绩在D 组的是:87 88 88 88 89 89 89 89根据以上信息,回答下列问题:(1)八年级学生知识竞赛成绩的中位数是分;(2)请你估计该校七、八年级所有学生中达到“优秀”的有多少人?(3)下列结论:①八年级成绩的众数是89 分;②八年级成绩的平均数可能为86 分;③八年级成绩的极差可能为50 分.其中所有正确结论的序号是.22.(8分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=40°,BT交⊙O于点C,E是AB上一点,延长CE 交⊙O 于点D.(1)如图1,求∠T 和∠CDB 的度数;(2)如图2,当BE=BC 时,求∠CDO 的度数.23.(8分)已知关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0(m为实数).(1)若方程有两个不相等的实数根,求m 的取值范围;(2)若m 是整数,且方程有两个不相等的整数根,求m 的值.24.(6分)用两种方法证明“圆的内接四边形对角互补”.已知:如图①,四边形ABCD 内接于⊙O.求证:∠B+∠D=180°.证法1:如图②,作直径DE 交⊙O 于点E,连接AE、CE.∵DE 是⊙O 的直径,∴.∵∠DAE+∠AEC+∠DCE+∠ADC=360°,∴∠AEC+∠ADC=360°﹣∠DAE﹣∠DCE=360°﹣90°﹣90°=180°.∵∠B 和∠AEC 所对的弧是,∴.∴∠B+∠ADC=180°.请把证法1 补充完整,并用不同的方法完成证法2.证法2:25.(8分)如图,在△ABC中,∠ACB=90°,以点B为圆心,BC的长为半径画弧,交线段AB于点D,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E,设BC=a,AC=b.(1)请你判断:线段AD 的长度是方程x2+2ax﹣b2=0 的一个根吗?说明理由;(2)若线段AD=EC,求的值.26.(10分)如图,以矩形ABCD的边CD为直径作⊙O,点E是AB的中点,连接CE交⊙O于点F,连接AF 并延长交BC 于点H.(1)若连接AO,试判断四边形AECO 的形状,并说明理由;(2)求证:AH 是⊙O 的切线;(3)若AB=6,CH=2,则AH 的长为.27.(10分)如图(1),在△ABC中,如果正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC 上,那么我们称这样的正方形为“三角形内接正方形”小波同学按数学家波利亚在《怎样解题》中的方法进行操作:如图(2),任意画△ABC,在AB上任取一点P′,画正方形P′Q′M′N′,使Q′,M′在BC 边上,N′在△ABC 内,连结BN′并延长交AC 于点N,画NM⊥BC 于点M,NP⊥ NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN,小波把线段BN称为“波利亚线”,请帮助小波解决下列问题:(1)四边形PQMN 是否是△ABC 的内接正方形,请证明你的结论;(2)若△ABC 为等边三角形,边长BC=6,求△ABC 内接正方形的边长;(3)如图(3),若在“波利亚线”BN上截取NE=NM,连结EQ,EM.当时,猜想∠QEM 的度数,并说明你的理由.苏科版九年级(上)数学期中试卷一参考答案与试题解析一、选择题1.【解答】解:A、由已知方程得到1+2x=0,属于一元一次方程,故本选项不符合题意.B、该方程不是整式方程,故本选项不符合题意.C、该方程符合一元二次方程的定义,故本选项符合题意.D、该方程中含有两个未知数,属于二元二次方程,故本选项不符合题意.故选:C.2.【解答】解:A、两边都除以2y,得=,故A 符合题意;B、两边除以不同的整式,故B 不符合题意;C、两边都除以2y,得=,故C 不符合题意;D、两边除以不同的整式,故D 不符合题意;故选:A.3.【解答】解:根据题意知x2+px﹣6=(x+3)(x﹣2),则x2+px﹣6=x2+x﹣6,∴p=1,故选:B.4.【解答】解:∵a=4,b=﹣4,c=1,∴△=b2﹣4ac=(﹣4)2﹣4×4×1=0∴方程有两个相等的实数根故选:B.5.【解答】解:∵AB、BC、CD、DA 都是⊙O 的切线,∴可以假设切点分别为E、H、G、F,∴AF=AE,BE=BH,CH=CG,DG=DF,∴AD+BC=AF+DF+BH+CH=AE+BE+DG+CG=AB+CD,∵AD=2,BC=5,∴AB+CD=AD+BC=7,故选:D.6.【解答】解:圆锥的侧面展开图的弧长为2π×12÷2=12π(cm),∴圆锥的底面半径为12π÷2π=6(cm),故选:D.二、填空题7.【解答】解:x2﹣2=7x,整理得x2﹣7x﹣2=0,则b=﹣7,故答案为:﹣7.8.【解答】解:根据题意得:=93(分),答:小红一学期的数学平均成绩是93 分;故答案为:93.9.【解答】解:x2﹣1=0,(x+1)(x﹣1)=0,x﹣1=0,x+1=0,x1=1,x2=﹣1,故答案为:x1=1,x2=﹣1.10.【解答】解:x2﹣5x+4=0,(x﹣1)(x﹣4)=0,所以x1=1,x2=4,当 1 是腰时,三角形的三边分别为1、1、4,不能组成三角形;当4 是腰时,三角形的三边分别为4、4、1,能组成三角形,周长为4+4+1=9.故答案是:9.1.【解答】解:由题意可得,50(1﹣x)2=32,故答案为:50(1﹣x)2=32.12.【解答】解:设扇形的弧长为l,由题意,得l×3=2π,解得l=.故答案为π.13.【解答】解:设袋中有x 个红球.由题意可得:=25%,解得:x=50,故答案为:50.14.【解答】解:连接OA,∵PA 切⊙O 于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=3,故答案为:3.15.【解答】解:如图,连接OA,OB.∵AO=BO=2,AB=2,∴△ABO 是等边三角形,∴∠AOB=60°.若点C 在优弧上,则∠BCA=30°;若点C 在劣弧上,则∠BCA=(360°﹣∠AOB)=150°;综上所述:∠BCA 的度数为30°或150°.故答案为30°或150°.16.【解答】解:如图,连接DE,∵DB′≥DE﹣EB′,DE===,EB′=1,∴DB′≥﹣1,∴当D,B′,E 共线时,DB′的值最小,不妨设此时点B′落在DE 上的点B″处,设BF′=F′ B″=x,∵F′D2=CD2+F′C2=B″D2+B″F′2,∴22+(4﹣x)2=(﹣1)2+x2,解得x=故答案为三、解答题17.【解答】解:(1)(x﹣3)(x+1)=0,x﹣3=0 或x+1=0,所以x1=3,x2=﹣1;(2)(x+1)(x﹣2)﹣2(x﹣2)=0,(x﹣2)(x+1﹣2)=0x﹣2=0 或x+1﹣2=0,所以x1=2,x2=1.18.【解答】解:(1)∵一组数据:2,6,7,7,8,∴这组数的平均数:=6,(2)这组数据的方差=[(2﹣6)2+(6﹣6)2+(7﹣6)2+(7﹣6)2+(8﹣6)2]=4.419.【解答】解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1=,x2=10.当x=10 时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm 时,所得长方体盒子的侧面积为200cm2.20.【解答】解:(1)结论:△ABE∽△DCE,证明:在△ABE 和△DCE 中,∵∠A=∠D,∠AEB=∠DEC,∴△ABE∽△DCE.(2)作⊙O 的直径BF,连接CF,∴∠F=∠D=45°,∠BCF=90°.∴△BCF 是等腰直角三角形.∵FC=BC=2,∴BF=2 .∴OB=.∴S⊙O=OB2•π=2π.21.【解答】解:(1)∵A,B,C三个组的人数为20×(10%+10%+15%)=7,D组的人数为8,∴八年级学生知识竞赛成绩的中位数是=88,故答案为:88;(2)400×45%+400×(40%+25%)=180+260=440 人.答:估计该校七、八年级所有学生中达到“优秀”的有440 人;(3)∵①八年级成绩的众数不确定;②八年级成绩的平均数不确定;③八年级成绩的极差可能为50 分;故正确结论的序号是③.故答案为:③.22.【解答】解:(1)如图①,连接AC,∵AT 是⊙O 切线,AB 是⊙O 的直径,∴AT⊥AB,即∠TAB=90°,∵∠ABT=40°,∴∠T=90°﹣∠ABT=50°,由AB 是⊙O 的直径,得∠ACB=90°,∴∠CAB=90°﹣∠ABC=50°,∴∠CDB=∠CAB=50°;(2)如图②,连接AD,在△BCE 中,BE=BC,∠EBC=40°,∴∠BCE=∠BEC=70°,∴∠BAD=∠BCD=70°,∵OA=OD,∴∠ODA=∠OAD=70°,∵∠ADC=∠ABC=40°,∴∠CDO=∠ODA﹣∠ADC=70°﹣40°=30°.23.【解答】解:(1)由题意得:m﹣1≠0且△>0,m﹣1≠0,解得:m≠1,∵△=(m﹣2)2﹣4(m﹣1)×(﹣1)=m2,∴m2>0,∴m≠0,∴m 的取值范围为:m≠0 且m≠1;(2)(m﹣1)x2+(m﹣2)x﹣1=0,解得:x=,∴x1=﹣1,x2=,∵m 为m≠0 且m≠1 的整数,且方程有两个不相等的整数根,∴m=2.24.【解答】解:证法1:如图②,作直径DE 交⊙O 于点E,连接AE、CE.∵DE 是⊙O 的直径,∴∠DAE+∠DCE=180°.∵∠DAE+∠AEC+∠DCE+∠ADC=360°,∴∠AEC+∠ADC=360°﹣∠DAE﹣∠DCE=360°﹣90°﹣90°=180°.∵∠B 和∠AEC 所对的弧是,∴∠AEC=∠B.∴∠B+∠ADC=180°.故答案为:∠DAE=∠DCE=180°,∠AEC=∠B;证法2:如图①,连接OA、OC,∵∠B、∠1 所对的弧是,∠D、∠2 所对的弧是,∴∠B=∠1,∠D=∠2,∵∠1+∠2=360°,∴∠B+∠D=(∠1+∠2)=×360°=180°.25.【解答】解:(1)∵在△ABC中,∠ACB=90°,∴AB2=AC2+BC2,∵BC=a,AC=b.∴AB2=a2+b2,方程x2+2ax﹣b2=0 变形为:x2+2ax+a2=a2+b2,∴(x+a)2=AB2,∵BD=BC=a,∴(x+BD)2=AB2,∴线段AD 的长度是方程x2+2ax﹣b2=0 的一个根;(2)∵AD=EC,∴AC=2AD=2AE=b,∴AD=b,∴AB=a+ b,∵AB2=AC2+BC2,∴(a+ b)2=a2+b2整理得a=b,∴=.26.【解答】(1)解:连接AO,四边形AECO 是平行四边形.∵四边形ABCD 是矩形,∴AB∥CD,AB=CD.∵E 是AB 的中点,∴AE=AB.∵CD 是⊙O 的直径,∴OC=CD.∴AE∥OC,AE=OC.∴四边形AECO 为平行四边形.(2)证明:由(1)得,四边形AECO 为平行四边形,∴AO∥EC∴∠AOD=∠OCF,∠AOF=∠OFC.∵OF=OC∴∠OCF=∠OFC.∴∠AOD=∠AOF.∵在△AOD 和△AOF 中,AO=AO,∠AOD=∠AOF,OD=OF ∴△AOD≌△AOF(SAS).∴∠ADO=∠AFO.∵四边形ABCD 是矩形,∴∠ADO=90°.∴∠AFO=90°,即AH⊥OF.∵点F 在⊙O 上,∴AH 是⊙O 的切线.(3)∵CD 为⊙O 的直径,∠ADC=∠BCD=90°,∴AD,BC 为⊙O 的切线,又∵AH 是⊙O 的切线,∴CH=FH,AD=AF,设BH=x,∵CH=2,∴BC=2+x,∴BC=AD=AF=2+x,∴AH=AF+FH=4+x,在Rt△ABH 中,∵AB2+BH2=AH2,∴62+x2=(4+x)2,解得x=.∴.故答案为:.27.【解答】解:(1)四边形PQMN是△ABC的内接正方形,理由是:如图2 中,由画图可知∠QMN=∠PQM=∠MNP=∠BM′N′=90°,∴四边形PNMQ 是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴同理可得:,∴∵M′N′=P′N′,∴MN=PN,∴四边形PQMN 是正方形,即四边形PQMN 是△ABC 的内接正方形;(2)如图1,过A 作AD⊥BC 于D,交PN 于E,设正方形PNMQ 的边长为x,∵△ABC 为等边三角形,边长BC=6,∴高线AD=3,∵四边形PNMQ 是正方形,∴PN∥MQ,∴,即,解得:x=12 ﹣18,答:△ABC 内接正方形的边长是12﹣18;(3)如图3 中,结论:∠QEM=90°.理由:设MN=3k,BM=4k,则BN=5k,BQ=k,BE=2k,∴=,,∴,∵∠QBE=∠EBM,∴△BQE∽△BEM,∴∠BEQ=∠BME,∵NE=NM,∴∠NEM=∠NME,∵∠BME+∠EMN=90°,∴∠BEQ+∠NEM=90°,∴∠QEM=90°.。
人教版九年级(上)期末数学试卷(含答案)

人教版九年级(上)期末数学试卷第I卷(选择题)一、选择题(本大题共16小题,共48.0分。
在每小题列出的选项中,选出符合题目的一项)1.一元二次方程x2+6x+5=0的常数项是( )A. 0B. 1C. 5D. 都不对2.如图所示图形中是中心对称图形的是( )A. 正三角形B. 等腰三角形C. 直角三角形D. 圆3.如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是( )A. ∠D=∠BB. ∠E=∠CC. ADAB =AEACD. ADAB =DEBC4.将抛物线y=−3x2平移,得到抛物线y=−3(x−1)2−2,下列平移方式中,正确的是( )A. 先向左平移1个单位,再向上平移2个单位B. 先向左平移1个单位,再向下平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1个单位,再向下平移2个单位5.如图,在△ABC中,DE//BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为( )A. 23B. 12C. 34D. 356.下列事件中,是随机事件的是( )第2页,共18页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………A. 太阳从西边升起B. △ABC 中,AB 与AC 的和比BC 大C. 两个负数相乘,积为正D. 两个数相加,和大于其中的一个加数7. 如图,在一块宽为20m ,长为32m 的矩形空地上,修筑宽相等的两条小路,两条路分别与矩形的边平行,如图,若使剩余(阴影)部分的面积为560m 2,问小路的宽应是多少?设小路的宽为xcm ,根据题意得( )A. 32x +20x =20×32−560B. 32×20−20x ×32x =560C. (32−x)(20−x)=560D. 以上都不正确8. 一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是( )A. 摸到红球是必然事件B. 摸到黄球是不可能事件C. 摸到白球与摸到黄球的可能性相等D. 摸到红球比摸到黄球的可能性小9. 如图,已知⊙O 的半径为4,则它的内接正方形ABCD 的边长为( )A. 1B. 2C. 4√2D. 2√210. 如图,在平面直角坐标系xOy 中,点P 为函数y =4x(x <0)图象上任意一点,过点P 作PA ⊥x 轴于点A ,则△PAO 的面积是( )A. 8B. 4C. 2D. −211. 如图,PA ,PB 是⊙O 的切线,A ,B 是切点,若∠P =70°,则∠ABO =( )A. 30°B. 35°C. 45°D. 55°12.下列关于二次函数y=2x2的说法正确的是( )A. 它的图象经过点(−1,−2)B. 它的图象的对称轴是直线x=2C. 当x<0时,y随x的增大而减小D. 当x=0时,y有最大值为013.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC= 150cm,CD=800cm,则树高AB等于( )A. 300cmB. 400cmC. 550cmD. 都不对14.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有白球( )A. 10B. 15C. 20D. 都不对15.如图,若△ABC与△A1B1C1是位似图形,则位似中心的坐标为( )A. (1,0)B. (0,1)C. (−1,0)D. (0,−1)16.如图,△ABC和阴影三角形的顶点都在小正方形的顶点上,则与△ABC相似的阴影三角形为( )A. B. C. D.第II卷(非选择题)二、填空题(本大题共3小题,共12.0分)17.二次函数y=2(x−1)2−5的开口方向______,最小值是______.18.如图,△ABC∽△A′B′C′,AD和A′D′分别是△ABC和△A′B′C′的高,若AD=2,A′D′=3,则△ABD与△A′B′D′的周长之比为______.△ABC与△A′B′C′的面积之比为______.第4页,共18页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………19. 已知一次函数y 1=kx +m(k ≠0)和二次函数y 2=ax 2+bx +c(a ≠0)部分自变量与对应的函数值如下表x … −1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…−159…当y 2=y 1时,自变量x 的取值是______,当y 2>y 1时,自变量x 的取值范围是______.三、解答题(本大题共7小题,共66.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上学期期未考试试卷 共 10页 第1页 九年级数学上学期期未考试试卷 共10页 第2页九年级数学期未试卷一、填空题(每题3分,共30分)1.已知一元二次方程ax 2+x-b=0的一根为1,则a-b 的值是____________. 2、写出一个无理数使它与32+的积是有理数3.中任取其中两个数相乘.积为有理数的概率为 。
4.直线y =x +3上有一点P (m -5,2m ),则P 点关于原点的对称点P ′为______. 5.若式子xx+1有意义,则x 的取值范围是 . 6.7、如图同心圆,大⊙O 的弦AB 切小⊙O 于P且AB=6,则圆环的面积为 。
8.如图,P 是射线y =53x(x >0)上的一点,以圆心的圆与y 轴相切于C 点,与x A 、B 两点,若⊙P 的半径为5,则A 点坐标是9.在半径为2的⊙O 中,弦AB 的长为2,则弦AB 所对的圆周角的度数为 。
10、如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是__________(结果保留π)二、选择题(每题3分,共18分)11. 下列成语所描述的事件是必然发生的是( ).A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖 12.如图,点A 、C 、B 在⊙O 上,已知∠AOB =∠ACB = a . 则a 的值为( ).A. 135°B. 120°C. 110°D. 100°13.圆心在原点O ,半径为5的⊙O ,则点P (-3,4)与⊙O 的位置关系是( ). A. 在OO 内 B. 在OO 上 C. 在OO 外 D. 不能确定14、已知两圆的半径是方程01272=+-x x 两实数根,圆心距为8,那么这两个圆的位置关系是( )A.内切B.相交C.外离D.外切15.一个均匀的立方体骰子六个面上标有数1,2,3,4,5,6,若以连续掷两次骰子得到的数m n 和作为点P 的坐标,则点P 落在反比例函数6y x=图象与坐标轴所围成区域内(含落在此反比例函数的图象上的点)的概率是( )A. 18B. 29C. 1118D. 71816、三角形三边垂直平分线的交点是三角形的( )A .外心 B.内心 C.重心 D.垂心三、解答题(共3小题,第17小题6分,第18、19小题各7分)17.计算: 12-13-⎛ ⎝⎭+)13(3--20080-23-18.已知a 、b 、c 均为实数,且2-a +︳b+1︳+ ()23+c =0 求方程02=++c bx ax 的根。
xx 53=九年级数学上学期期未考试试卷 共 10页 第3页 九年级数学上学期期未考试试卷 共10页 第4页19.已知a 、b 、c 是三角形的三条边长,且关于x 的方程0)()(2)(2=-+-+-b a x a b x b c 有两个相等的实数根,试判断三角形的形状.。
四、解答题(共2小题,每小题8分,共16分)20、在一次晚会上,大家围着飞镖游戏前。
只见靶子设计成如图形式.已知从里到外的三个圆的半径分别为l ,2。
3,并且形成A ,B ,C 三个区域.如果飞镖没有停落在最大圆内或只停落在圆周上,那么可以重新投镖. (1)分别求出三个区域的面积;(2)雨薇与方冉约定:飞镖停落在A 、B 区域雨薇得1分,飞镖落在C 区域方冉得1分.你认为这个游戏公平吗? 为什么? 如果不公平,请你修改得分规则,使这个游戏公平.21.如图。
⊙O 上有A 、B 、C 、D 、E 五点,且已知AB = BC = CD = DE ,AB ∥ED .(1)求∠A 、∠E 的度数;(2)连CO 交AE 于G 。
交AE ⌒ 于H ,写出四条与直径CH 有关的正确结论.(不必证明)五、解答题(共2小题,第22小题8分,第23小题9分,共17分)22.(本题满分8分)如图,P 为正比例函数32y x =图像上一个动点,⊙P 的半径为3,设点P 的坐标为(x ,y ).(1)求⊙P 与直线x =2相切时点P 的坐标;(2)请直接写出⊙P 与直线x =2相交、相离时x 的取值范围.23、(本题满分9分) 如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A 、B 、C ,请在网格中进行下列操作:(1) 请在图中确定该圆弧所在圆心D 点的位置,D 点坐标为________;(2) 连接AD 、CD ,求⊙D 的半径(结果保留根号)及扇形ADC 的圆心角度数; (3) 若扇形DAC 是某一个圆锥的侧面展开图,求该圆锥的底面半径 (结果保留根号).HCCB A五、解答题(共2小题,第24小题9分,第25小题10分,共19分)24.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称_________,________;(2)如图,已知格点(小正方形的顶点)(00)O,,(30)A,,(04)B,,请你写出所有以格点为顶点,OA OB,为勾股边且对角线相等的勾股四边形OAMB的顶点M 的坐标;(3)如图,将ABC△绕顶点B按顺时针方向旋转60 ,得到DBE△,连结AD DC,,30DCB=∠.求证:222DC BC AC+=,即四边形ABCD是勾股四边形.25.如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为2-1,直线l: y=-X-2与坐标轴分别交于A,C两点,点B的坐标为(4,1) ,⊙B与X轴相切于点M.。
(1)求点A的坐标及∠CAO的度数;(2) ⊙B以每秒1个单位长度的速度沿X轴负方向平移,同时,直线l绕点A顺时针匀速旋转.当⊙B第一次与⊙O相切时,直线l也恰好与⊙B第一次相切.问:直线AC 绕点A每秒旋转多少度?(3)如图2.过A,O,C三点作⊙O1 ,点E是劣弧AO⌒上一点,连接EC,EA.EO,当点E在劣弧AO⌒EAEC-的值是否发生变化?如果不变,求其值,温馨提示:恭喜,你已经解答完所有问题,请再仔细检查一次,预祝你取得好成绩!A九年级数学上学期期未考试试卷共10页第5页九年级数学上学期期未考试试卷共10页第6页九年级数学上学期期未考试试卷 共 10页 第7页 九年级数学上学期期未考试试卷 共10页 第8页2007—2008年度上学期九年级期未数学试卷答案一填空题:(1)、—1 (2)、如2—3 不唯一 (3)、61(4)、 (7,4) (5)、X ≥—1且X ≠0 (6)、2+1 (7)、π9 (8)、 (1,0) (9)、 300 或1500 (10)、4—98π二、选择题11、 D 12、B 13、B 14、C 15、 D 16、A 三、解答题:17.解:原式=23—3+3—3—1+3—2 …….算对每项1分,共5分 =3 ………… ……………6分 18、解:a = 2 b = —1 c = —3 ................... 3分 2X 2—X —3=0( 2X —3)(X+1)=0 ......................... 6分X 1=23X 2= —1 ...................... 7分19、解:由已知条件得[]0))((4)(22=----=∆b a b c a b ...............2分整理为0))((=--c a b a ........................................................5分 ∴ c a b a ==或 ............................................... 6分 ∵ b c b c ≠≠-则0∴ 这个三角形是等腰三角形. ............................ 7分20.解:(1)S A =π·12=π,S B =π·22-π·12=3π,S C =π·32-π·22=5π ……3分(2)P(A)=π9π=91,P(B)= π93π=93,P(C)= π95π=95…………………4分P(雨薇得分)= 91×1+93×1=94,P(方冉得分)= 95×1=95……………5分∵P(雨薇得分)≠P(方冉得分)∴这个游戏不公平. …………………6分修改得分规则:飞镖停落在A 区域得2分,飞镖停落在B 区域、C 区域得1分,这样游戏就公平了. …………………8分 21.解:(1)∵AB=BC=CD=DE∴AB ⌒=BC ⌒=CD ⌒=DE ⌒∴BCDE ⌒=ABCD ⌒………2分 ∴∠A=∠E ………3分 又∵AB ∥ED∴∠A+∠E=180°∴∠A=∠E=90° ………4分 (2) ①CH 平分∠BCD ②CH ∥BA ③CH ∥DE ④CH ⊥AE⑤AH ⌒=EH ⌒⑥AG=EG 等(写出其中4条即可,每条1分) …8分22、解:(1).P 1 (—1, --23 ) P 2(5, 215) ...................4分 (2).相交 -- 23<X <215...........................................6分相离 -- 23>215或 X <—1 ........ 8分23、解:(1).D(2, 0) ............................................ 2分(2).R=25 …………................ 1分 圆心角度900 ............2分 (3).r=25................................4分 24、解:(1).长方形 .,正方形........................................... 2分(2). M 1(3, 4) M 2(4, 3) …………................ 4分 (3).证明:;连结EC ……………………5分 ∵⊿ABC ≌⊿DBE ………6分 ∴BC=BE AC=DE 又∵∠CBE=600∴⊿CBE 是等边三角形 ………7分九年级数学上学期期未考试试卷 共10页 第10页∴∠BCE=600 BC=EC又∵∠DCB=300∴∠BCE+∠DCB=900即∠DCE=900 ........8分 DC 2+EC 2=AC 2222DC BC AC += ..... ...9分25、解:(1)、A (-2,0) ∵C (0,-2),∴OA=OC 。