第3章脉冲多普勒雷达

合集下载

脉冲多普勒雷达matlab

脉冲多普勒雷达matlab

脉冲多普勒雷达matlab脉冲多普勒雷达是一种广泛应用于军事、民用和科学研究领域的雷达系统。

它可以通过测量目标的速度和距离来实现目标检测和跟踪。

而matlab作为一种强大的数学计算软件,可以帮助我们更加高效地进行雷达信号处理和分析。

一、脉冲多普勒雷达的原理脉冲多普勒雷达的工作原理是通过发射一系列短脉冲信号,然后接收反射回来的信号,并通过信号处理来提取目标的速度和距离信息。

其中,多普勒效应是实现速度测量的关键。

当目标相对于雷达运动时,反射回来的信号会发生多普勒频移,通过测量这个频移可以得到目标的速度信息。

二、matlab在脉冲多普勒雷达中的应用matlab作为一种强大的数学计算软件,可以帮助我们更加高效地进行雷达信号处理和分析。

在脉冲多普勒雷达中,matlab可以用于以下方面:1. 信号处理脉冲多普勒雷达接收到的信号通常包含噪声和杂波,需要进行信号处理来提取目标信息。

matlab提供了丰富的信号处理工具箱,可以帮助我们进行滤波、去噪、谱分析等操作,从而提高信号的质量和可靠性。

2. 目标检测和跟踪脉冲多普勒雷达需要对接收到的信号进行目标检测和跟踪。

matlab提供了多种目标检测和跟踪算法,如CFAR、MTI、MUSIC等,可以帮助我们实现自动化目标检测和跟踪。

3. 数据可视化matlab可以帮助我们将雷达接收到的信号进行可视化,以便更好地理解和分析数据。

通过matlab的绘图工具,我们可以绘制出目标的距离-速度图、功率谱密度图等,从而更加直观地了解目标的特征和运动状态。

三、结语脉冲多普勒雷达是一种重要的雷达系统,它在军事、民用和科学研究领域都有广泛的应用。

而matlab作为一种强大的数学计算软件,可以帮助我们更加高效地进行雷达信号处理和分析。

通过matlab的信号处理工具、目标检测和跟踪算法以及数据可视化功能,我们可以更加准确地提取目标信息,从而实现更加精确的目标检测和跟踪。

脉冲多普勒雷达

脉冲多普勒雷达

脉冲多普勒雷达(pulse Doppler Radar)学习笔记1:PD雷达简介PD雷达的广泛定义应为:能实现对雷达信号脉冲串频谱单根谱线滤波(频域滤波),具有对目标进行速度分辨能力的雷达PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。

通常工作在一组较高的脉冲频率上,并采用主振放大链型的信号源和距离门窄带滤波器链的信号处理器. 它具有较高的速度分辨能力,从而可以更有效的解决抑制极强的地杂波干扰的问题。

PD 雷达有多种工作模式,下图给出了PD雷达的各种工作模式。

它们各具特点,分别适用不同的环境。

低重PD雷达测距不会产生模糊,旁瓣杂波电平较低,但测速模糊。

高重PD雷达与之相反,测距产生模糊,旁瓣杂波由于距离重叠效应,电平比较高,但测速是清晰的。

中重PD雷达的距离和多普勒频移都产生模糊,通过辅助方法可以解测距和测速模糊。

1:测速原理雷达对目标速度的测量主要利用电磁波照射在运动目标上时产生的多普勒效应来进行。

对雷达而言,当雷达与目标之间存在相对运动时,多普勒效应体现在回波信号的频率与发射信号的频率不相等。

雷达发射电磁波信号后,当遇到一个向着雷达运动的目标时,由于多普勒效应,雷达接收到从这个目标返回的电磁波信号的频率将高于雷达的发射频率。

而当雷达发射的电磁波遇到一个在远离雷达方向运动的目标时,则雷达收到的是低于雷达发射频率的电磁波信号。

多普勒雷达正是利用两者频率之间的差值,即多普勒频移df来实现对目标速度的测量。

2:距离模糊产生原因雷达的最大单值测距范围由其脉冲重复周期T r(PRT)决定。

为保证单值测距, 通常应R max选取T R>2CR max为被测目标的最大作用距离。

有时雷达重复频率的选择不能满足单值测距的要求, 例如在脉冲多普勒雷达或远程雷达, 这时目标回波对应的距离R为R=c2(m×T r+t r)式中,t r为测得的回波信号与发射脉冲间的时延。

这时将产生测距模糊, 为了得到目标的真实距离R, 必须判明式(2.1.7)中的模糊值m。

SQ-雷达系统(第三章)脉冲多普勒雷达

SQ-雷达系统(第三章)脉冲多普勒雷达

PD雷达的应用
强杂波背景下检测动目标的雷达系统
应用
要求
机载或空间监视
探测距离远;距离数据精确
战场监视(低速目标检测) 中等探测距离;距离和速度数据精确
导弹告警
探测距离近;非常低的虚警率
2
2020/12/8
第三章 脉冲多普勒雷达
3.1 脉冲多普勒(PD)雷达基本概念 3.2 脉冲多普勒雷达的杂波 3.3 PD雷达典型框图与原理 3.4 PD雷达的距离性能
措施:
① 降低天线副瓣 杂波功率谱 提高相对强度
② 提高载机飞行高度 fc max
18
2020/12/8
第三章 脉冲多普勒雷达
3.1 脉冲多普勒(PD)雷达基本概念 3.2 脉冲多普勒雷达的杂波 3.3 PD雷达典型框图与原理 3.4 PD雷达的距离性能
19
2020/12/8
机载PD雷达典型框图与原理
3
2020/12/8
机载PD雷达下视几何关系
天线主瓣
天线旁瓣
机载下视雷达的地面杂波被分为:
主瓣杂波区 -> 天线波束主瓣照射区的地面杂波 旁瓣杂波区 -> 视角范围宽广的天线旁瓣照射的杂波 高度线杂波区 -> 雷达正下方的地面回波
杂波的多普勒频率分布取决于: ① 雷达平台速度(速度和方向) ② 平台相对地面照射点的几何关系
主瓣杂波
主瓣杂波强度:最大
主瓣杂波多普勒中心频率:
fM Bfd(0)2vRcos0
主瓣杂波宽度: fM B fd (0 2 B ) fd (0 2 B ) 2 v RB s in0
8
2020/12/8
旁瓣杂波
旁瓣杂波强度:较大
旁瓣波束与地面的夹角为 ,其多普勒频率为:

脉冲多普勒雷达系统 频段

脉冲多普勒雷达系统 频段

脉冲多普勒雷达系统频段
脉冲多普勒雷达系统是一种常见的雷达技术,广泛应用于军事和民用领域。

它利用脉冲信号和多普勒效应来实现对目标的探测和跟踪。

在不同的频段下,脉冲多普勒雷达系统具有不同的特点和应用。

在S波段,脉冲多普勒雷达系统具有较高的分辨率和较小的波束宽度,适用于需要高精度探测的场景。

例如,在航空领域,S波段脉冲多普勒雷达系统可以用于飞机的导航和防撞系统,能够精确测量飞机与其他目标的距离和速度,提供可靠的飞行安全保障。

而在X波段,脉冲多普勒雷达系统具有较长的探测距离和较强的透穿能力,适用于对地面目标的探测。

比如,X波段脉冲多普勒雷达系统可以用于地质勘探和环境监测,可以探测到地下水和地表变形等信息,为资源开发和环境保护提供重要参考。

K波段和Ka波段的脉冲多普勒雷达系统具有较高的抗干扰能力和较强的穿透能力,适用于复杂的电磁环境和恶劣的天气条件下的探测任务。

例如,在天气预报和气象监测领域,K波段和Ka波段脉冲多普勒雷达系统可以用于测量降水粒子的速度和方向,实现对降雨量和暴风雨等极端天气的准确预测和警报。

脉冲多普勒雷达系统在不同频段下具有不同的特点和应用。

通过选择合适的频段,可以最大程度地满足不同领域的需求,实现对目标的精确探测和跟踪。

脉冲多普勒雷达系统的发展将进一步推动雷达
技术在军事、民用和科研等领域的广泛应用。

脉冲多普勒雷达的总结

脉冲多普勒雷达的总结

脉冲多普勒雷达的总结1、 适用范围脉冲多普勒(PD )雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。

这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。

2、 PD 雷达的定义及其特征(1) 定义:PD 雷达是一种利用多普勒效应检测目标信息的脉冲雷达。

(2) 特征:①具有足够高的脉冲重复频率(简称PRF ),以致不论杂波或所观测到的目标都没有速度模糊。

②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。

③PRF 很高,通常对所观测的目标产生距离模糊。

3、 PD 雷达的分类图1 PD 雷达的分类图① MTI 雷达(低PRF ):测距清晰,测速模糊 ② PD 雷达(中PRF ):测距模糊,测速模糊,是机载雷达的最佳波形选择 ③ PD 雷达(高PRF ):测距模糊,测速清晰4、 机载下视PD 雷达的杂波谱分析机载下视PD 雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。

表15、PRF的选择(1)高、中、低脉冲重复频率的选择①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。

②迎面攻击时高PRF优于中PRF。

尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。

③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方法。

(2)高PRF时重复频率的选择①使迎面目标谱线不落人旁瓣杂波区中:②为了识别迎面和离去的目标:A、当接收机单边带滤波器对主瓣杂波频率固定时:B、当接收机单边带滤波器相对发射频率是固定时:注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。

6、PD雷达的信号处理系统PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。

2014脉冲多普勒雷达

2014脉冲多普勒雷达
脉冲多普勒雷达基本概念
中 晰 糊 单 单 低 模 模 复 复 高 中 良 中 良 糊 糊 杂 杂 模 清 复 复 最
高 糊 晰 杂 杂 高 高 优 大 优
清 模 简 简 很 低 差 小 差
4
脉冲多普勒雷达的杂波
研究PD雷达的杂波的重要意义
脉冲多普勒杂波
① PD雷达的基本特点之一:在频域-时域分布相当广 且功率相当强的背景杂波中检测出有用信号。 ② 杂波频谱的形状和强度决定了雷达对具有不同多 普勒频率的目标的检测能力。
脉冲多普勒雷达
本章内容
脉冲多普勒(PD)雷达基本概念 脉冲多普勒雷达的杂波 PD雷达典型框图与原理 PD雷达的距离性能
1
脉冲多普勒雷达基本概念
20世纪60年代,为了解决机载下视雷达强地杂波的干扰, 研制了脉冲多普勒体制雷达,即PD雷达。
脉冲多普勒雷达(Pulse Doppler Radar, PD Radar) 在动目标显示雷达基础上发展的新体制雷达。具 有脉冲雷达的距离分辨力和连续波雷达的速度分 辨力,有更强的抑制杂波的能力,能在较强的杂 波背景中分辨出动目标回波。
脉冲多普勒雷达基本概念
PD雷达的特点
利用多普勒效 应检测目标信 息
具有足够高的脉冲重复频率,没有速度模糊; 能对脉冲串频谱单根谱线作多普勒滤波; 高PRF导致目标距离模糊。
广义定义:
能实现对雷达信号脉冲串频谱单根谱线滤波(频
域滤波),具有对目标的速度分辨能力的雷达。
脉冲多普勒雷达基本概念
2
PD雷达的应用
脉冲多普勒雷达的杂波
9
高度线杂波
机载下视PD雷达地杂波中 f d 0 位置上的杂波 高度线杂波与发射机泄漏相重合,高度线杂波距离雷达最 近,加之垂直反射强。所以在任何时候,在零多普勒频率 位置处总有一个较强的“杂波”。

脉冲多普勒雷达原理

脉冲多普勒雷达原理

脉冲多普勒雷达原理
脉冲多普勒雷达是一种利用脉冲信号来测量目标距离和速度的雷达系统。

它通过发射脉冲信号并接收目标反射的信号来实现目标的探测和跟踪。

脉冲多普勒雷达具有较高的测速精度和抗干扰能力,因此在军事、民用航空等领域得到了广泛的应用。

脉冲多普勒雷达的工作原理主要包括脉冲信号的发射和接收、目标回波信号的处理以及速度测量等几个方面。

首先,当脉冲多普勒雷达工作时,会发射一系列的脉冲信号。

这些脉冲信号会以一定的重复频率被发射出去,然后在空间中传播。

当这些脉冲信号遇到目标时,会被目标反射回来,形成回波信号。

接着,雷达系统会接收这些回波信号,并进行信号处理。

在信号处理过程中,脉冲多普勒雷达会对接收到的回波信号进行时域和频域的分析。

通过时域分析,可以测量目标与雷达之间的距离,即目标的径向距离。

而通过频域分析,可以测量目标的速度。

这是因为目标的运动会导致回波信号的多普勒频移,通过测量多普勒频移的大小,可以计算出目标的速度信息。

除了距离和速度测量外,脉冲多普勒雷达还可以实现目标的探测和跟踪。

当目标被探测到后,雷达系统会不断地追踪目标,并根据目标的运动状态进行预测。

这样可以实现对目标的持续跟踪,从而满足实际应用中对目标监测的需求。

总的来说,脉冲多普勒雷达是一种能够实现目标距离和速度测量的雷达系统。

它通过发射脉冲信号、接收目标回波信号并进行信号处理,实现了对目标的探测和跟踪。

在实际应用中,脉冲多普勒雷达具有较高的测速精度和抗干扰能力,因此在军事、民用航空等领域有着广泛的应用前景。

脉冲多普勒雷达matlab

脉冲多普勒雷达matlab

脉冲多普勒雷达matlab脉冲多普勒雷达是一种广泛应用于军事、天文、大气科学、气象等领域的电磁波测量技术。

它通过发送一定频率的脉冲信号,并对返回信号进行处理,可以获取目标的信息,如位置、速度、加速度等。

本文将介绍脉冲多普勒雷达的原理和在MATLAB中的实现。

一、脉冲多普勒雷达的原理脉冲多普勒雷达是一种主动雷达,它通过发送脉冲信号,利用目标回波信号的时间差和频率差来测量目标的距离、速度和加速度等信息。

其信号处理过程主要包括以下几个步骤:1. 发送脉冲信号脉冲多普勒雷达发送的脉冲信号通常是一段短时间内的高功率信号,一般情况下可以用正弦函数表示,即:s(t) = A·sin(2πfct)其中,A表示信号的幅度,fc为信号的载频,t为时间。

2. 接收回波信号经过一段时间后,脉冲信号会被目标反射,形成回波信号并被多普勒雷达接收。

多普勒雷达接收到的回波信号会包含有目标的信息,但由于信号在传输过程中会受到一些干扰和衰减,因此需要对信号进行处理,以得到目标信息。

首先,通过信号处理技术可以提取出回波信号中的目标信号,即目标的距离信息。

然后,可以利用多普勒效应来提取目标的速度信息。

多普勒效应是指当观察者和目标相对运动时,目标回波信号的频率会发生变化。

具体来说,当目标朝着多普勒雷达运动时,回波信号的频率高于原始信号的频率;而当目标远离多普勒雷达时,回波信号的频率低于原始信号的频率。

因此,在脉冲多普勒雷达中,可以通过测量回波信号的频率差来计算目标的速度。

对于进行速度测量,一般会采用FFT变换的方法进行频域处理,即把回波信号转换到频域,然后通过计算频率谱来得到目标的速度信息。

频率谱可以使用MATLAB中的fft函数快速计算得到。

4. 计算目标加速度除了可以得到目标的距离和速度信息外,通过对速度信号再次求导,可以得到目标的加速度信息。

因此,可以通过进一步处理速度信号来计算目标的加速度。

在MATLAB中,可以使用diff函数对速度信号进行差分计算,得到相邻速度值之间的差异,再次差分求得目标的加速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.脉冲多普勒雷达的跟踪 (1)单目标跟踪系统 (1-1)角度跟踪系统 根据角度,距离和速度信息,用伺服系统始终跟踪目标。 补充:常规雷达单目标跟踪方式:圆锥扫描,单脉冲体制。 回波 扫描角度
目标 扫描轨迹
回波
扫描角度 图3.8 圆锥扫描示意
βx 波程差l y x 图3.9 单脉冲跟踪示意 目标方位βx与波程差l和信号相位差θ的关系: (3-9)
2.PD雷达的分类 PD雷达的分类 1.高重频脉冲多普勒雷达 2.中重频脉冲多普勒雷达 3.低重频脉冲多普勒雷达 三种雷达的性能见下表: 表3-1 性能 PRF 低 测距 清晰 测速 模糊 测距设备、信号处理 简单 测速精度 旁瓣杂波电平 主瓣杂波抑制 允许方位扫描角 发现地面动目标 低 低 差 小 差
f c ,max =
2v R cos ψ λ
角度变化范围是0-360度,所以,旁瓣多普勒频率范围是... 当PD雷达不动是主瓣杂波与旁瓣杂波在频域上是重合的 (3)垂直(高度线)杂波。 雷达副瓣垂直照射地面,地面反射较强,回波中存在一个较强的" 零频"杂波. (4)无杂波区 适当选择雷达脉冲重复频率使地面杂波不连续不重叠,形成无杂波 区.在无杂波区域,只有接收机噪声,没有地面杂波,有利于发 现该区域的运动目标.
fd =
2v 2vf 0 = λ c
如果直接接收运动物体产生的波,多普勒频移为:
v vf 0 fd = = λ c
对回波进行频谱分析就可计算出目标相对速度。物体向着接收机运 动,fd >0;物体离开接收机,fd<0。
2. 脉冲雷达与连续波雷达 脉冲雷达发射微波脉冲,在两个脉冲间隙期间接收回波,根据接收 到的回波相对于发射脉冲的延迟时间τ计算目标径向距离R。目前普 遍使用的警戒雷达、航管雷达等均为脉冲雷达。 脉冲雷达的最大特点是发射脉冲与接收回波在时间上是分开的。 连续波雷达发射的是连续波,发射脉冲的时候同时接收回波。主要 用于测速。设发射信号频率为f0,目标运动产生的多普勒频率为fd, 电路框图为: 连续波 产生器 发射机 +fd 接收机 相参 检波器 fd
中 模糊 模糊 复杂 高 中 良 中 良
高 模糊 清晰 复杂 最高 高 优 大 优
§3.2脉冲多普勒雷达的杂波
PD雷达通常为机载雷达,在频域-时域分布范围广、功率强的背景 杂波中检测出有用的信号。背景杂波主要是地杂波,相对于飞机, 它是运动杂波,称之为脉冲多普勒杂波。 机载下视PD PD雷达的杂波谱 1.机载下视PD雷达的杂波谱 由于天线方向图和下视PD雷达与地面之间的相对运动使地面杂波复 杂了。
τ= α 1 1 = = Ω 6 × 360 / 60 36
PPR ≥
N = 36 × 5 = 185 τ
雷达脉冲重复频率至少应为185Hz。如果其他条件 不变,天线扫描速度改为12周/秒,则雷达脉冲重复频率 应为370Hz以上。典型数据:fPR为280Hz、300Hz。 关于距离模糊:考察下图:
第二章 小结 1.虚警概率、发现概率、虚警时间 2.最佳判决准值 3.匹配滤波器 4.检波器,包络检波、相干检波 5.脉冲积累 6.动目标显示 7.恒虚警处理
第三章 脉冲多普勒雷达
1.多普勒效应 运动物体的回声具有频移,这种频移现象就是多普勒效应。 设声波或电磁波的波长为λ,频率为f0,速度为c,运动物体的径向速 度为v,回波多普勒频移为fd,则:
λ
∆f MB θ θ 2v = f d ψ 0 − B − f d ψ 0 + B ≈ R θ B sin ψ 0 2 2 λ
fd =
2v R
cosψ 0
(3-7)
机载PD雷达的主瓣杂波强度与下列因数有关: 发射机功率,天线增益,地物反射特性,雷达距地面高度等.具体强 度可以比雷达接收机的噪声高70-90分贝. (2)旁瓣杂波 · 雷达天线总是存在若干副瓣(旁瓣),通过旁瓣产生旁瓣杂 波. · 旁瓣与主瓣是由不同的地物产生的 · 旁瓣杂波的频率为:
§3.1脉冲多普勒雷达的基本概念
脉冲多普勒雷达简称PD雷达,特点: 具有脉冲雷达的距离分辨能力 具有连续波雷达的速度分辨率 有强的杂波抑制能力
1.PD雷达的定义 雷达的定义 20世纪70年代初的定义 (1)具有足够高的PRF,使观测范围内的目标、杂波时 均没有速度模糊。 (2)能对脉冲串频谱单根谱线滤波。 (3)对观测目标的距离有一定的模糊。 上世纪70年代中期,制造出中重频PD雷达,既有距离 模糊又有速度模糊。而将原来的定义称为高重频PD雷达。 最后,不管雷达的重复频率,只要满足上述定义第二条, 就可称为PD雷达,是一个广义定义。
6.恒虚警处理 现在恒虚警处理均在零中频上进行。 7.线性调频频谱变换(p91) 进行频谱分析最简单的方法就是进行傅立叶 变换。我们也可以用若干滤波器组成滤波器组进 行频谱分析。得益于CCD器件和SAW器件的发 展。 §3.4脉冲多普勒雷达数据处理 数据处理的目的:最大限度提取雷达目标的 坐标信息。内容:解测距模糊,解测速模糊和目 标跟踪。
T τ
P1
s1
P2 s2 P3 图3.4 脉冲雷达距离模糊图解
s3
t
图中,P1-P3为雷达发射脉冲,s1-s3为回波脉冲,T 为发射脉冲重复周期,τ为回波延迟时间。
所谓距离模糊,指回波延迟时间大于T,比如对应于P1 的回波在s2位置,我们不能判断延迟时间为τ还是T+τ。 又设脉冲宽度为δ,雷达最大不模糊距离Rm为:
l = x sin β xlθ=来自λ× 360(度)
( 3-10) ( 3-11)
λθ β x = arcsin 360 x
同样可以求得y方向的方位角βy。 在PD雷达中实现单脉冲体制是非常困难的:性能优良的杂波滤波器 极点多,相位特性变化陡,要使四个接收通道的相位特性一致是 非常困难的。解决途径: a. 用圆锥扫描体制。 b. 用单脉冲合并通道技术。 (1-2)速度跟踪系统 实际上跟踪多普勒频率。用锁频或锁相方式跟踪。 (1-3)距离跟踪系统 常规雷达是用距离门跟踪方式: R 图3.10 距离门跟踪示意
2.脉冲重复频率的选择 根据技术要求和用途(如要求雷达在无杂波区检测目标还是满足无模糊测速), 也可以根据战术要求选择高,中,低脉冲重复频率段. 结果:
旁瓣杂波
适用 情况
在距离上重 叠情况
在频域上重 叠情况
低 PRF 中 PRF 高 PRF
很少 部分 无
严重 部分 无
低速目 标 机载 机载
雷达能改变PRF最好. 如美国:p85
主瓣 旁瓣 -180 0 180 度 图3.5 天线方向图 vR
垂直杂波 旁瓣杂波 主瓣杂波 地面 ψ ψ0 图3.6 机载PD雷达下视情况
机载雷达共有3种杂波: 主瓣杂波,旁瓣杂波,垂直杂波。
(1)主瓣杂波 主波束中心与地平面有一个锐角ψ0,多普勒频移为: (3-6) 主波束增益最高,杂波也最强。主波束有一定的立体角,在该 立体角中不同方位回波的多普勒频移也是不同的.设主波束宽度为θB, 主瓣杂波的边沿位置间的最大多普勒频率差为:
P4 R2
P5 R3
P6 R4
(a)发射脉冲串与回波脉冲串
(b)回波实际延迟时间 说 明 : Pi 为 发 射 脉 冲 Ri为回波信号
(c)显示器显示情况 图3.11 测距模糊的产生
由于目标回波的延迟时间可能大于脉冲重复周 期,使收发脉冲的对应关系发生了混乱,同一距离读数 对应的目标真实距离有多种可能值的现象叫做测距模糊。 未经解模糊肯定的读数距离叫做模糊距离。如果雷达的 最大探测距离小于模糊距离,就不存在距离模糊的问题。 PD雷达和部分警戒雷达的最大探测距离大于模糊距离, 需要解模糊。 关于速度模糊。目标径向速度与多普勒频移成 正比,研究速度模糊与研究多普勒频率模糊是等价的。 采样信号的频谱关系如图3.12。
在PD雷达中,距离跟踪采用距离门和速度联合的方法 (2)四维分辨跟踪系统 对速度、距离、方位角、俯仰角联合跟踪。 (3)多目标跟踪 采用边扫描边跟踪方式。相控阵体制可进行多波束跟踪。
上节课
2.测距和测速模糊的解算
(1)测距和测速模糊的基本概念 为了提高检测性能,PD雷达采用高PRF信号,以便在频域获得 足够宽的无杂波区。发射一个脉冲之后,回波可能隔几个周期才回 来,但接收时不能判断该回波对应于哪一个发射脉冲,于是发生了 测距模糊。读出的目标距离误差是:
§3.3脉冲多普勒雷达信号处理
PD雷达充分利用多普勒信息,能从强的地物杂波背景中检测出运动 目标. 1.电路框图
接收机 混频 中放 发射机 脉冲抑制 距离 选通 单边带 滤波
收发开关 发射机 多普勒 滤波 主瓣杂 波滤波 滤波 滤波 器组 显示
2.单边带滤波器 该滤波器是在中频上进行的,单独滤出一根谱线, 形成连续波,因而距离跟踪应事先完成.单边带滤波可 以改善目标频谱混叠. 3.主瓣杂波抑制滤波器 目的是滤除强地杂波,相当于一个白化滤波器,幅 频特性应为主瓣杂波频谱包络的倒数.主瓣杂波抑制滤 波器是一个频率自适应滤波器。 4.高度杂波的滤除 高度杂波比漫反射杂波强得多,与发射机泄露的功 率谱重叠,在零频附近.高度杂波滤波器是一个零频滤 波器。 5.多普勒滤波器组 多普勒滤波器组由若干窄带滤波器组成。
图3-1 连续波雷达测速原理图
调频连续波雷达一般用于测量雷达高度
测高雷达 f1 发射 接收 t 地面 ∆f t 图3.2测高雷达示意 图3.3测高雷达频率关系
连续波雷达的最大特点是发射和接收是同时进行的。
3.雷达脉冲重复频率PRF与雷达模糊距离
雷达脉冲重复频率PRF的选择与下列因素有关: 最大不模糊距离、脉冲积累数、MTI滤波器级数、天线扫描速度、 波束宽度等。 例:设波束宽度为1o,扫描速度为6周/分钟,每个目标至少有5 个回波。计算雷达脉冲重复频率。 解:设天线扫描每次照射目标的时间为τ,天线扫描速度 ,波束宽度 α,雷达脉冲重复频率fPR,每次目标回波数N,则:
相关文档
最新文档