高三物理高考第一轮专题复习——电磁场(含答案详解)

合集下载

带电粒子在交变电磁场中的周期性运动(答案含解析)—高三物理一轮复习课时练

带电粒子在交变电磁场中的周期性运动(答案含解析)—高三物理一轮复习课时练

一课一练60:带电粒子在交变电磁场中的周期性运动分析:主要是电磁场周期性变化导致带电粒子周期性运动,对运动轨迹的处理以及规律的归纳是难点。

1.如图甲所示,偏转电场的两个平行极板水平放置,板长L=0.08 m,板间距足够大,两板的右侧有水平宽度l=0.06 m、竖直宽度足够大的有界匀强磁场.一个比荷为qm=5×107 C/kg的带负电粒子以速度v0=8×105 m/s从两板中间沿与板平行的方向射入偏转电场,若从该粒子进入偏转电场时开始计时,板间场强恰好按图乙所示的规律变化,粒子离开偏转电场后进入匀强磁场并最终垂直磁场右边界射出.不计粒子重力,求:(1)粒子在磁场中运动的速率v;(2)粒子在磁场中运动的轨道半径R和磁场的磁感应强度B.2.回旋加速器的工作原理如图甲所示,置于真空中的D形金属盒半径为R,两盒间狭缝的间距为d,磁感应强度为B的匀强磁场与盒面垂直,被加速粒子的质量为m,电荷量为+q,加在狭缝间的交变电压如图乙所示,电压值的大小为U0,周期2mTqBπ=.一束粒子在0~2T时间内从A处均匀地飘入狭缝,其初速度视为0.现考虑粒子在狭缝中的运动时间,假设能够射出的粒子每次经过狭缝均做加速运动,不考虑粒子间的相互作用力.求:(1)出射粒子的动能;(2)粒子从飘入狭缝至动能达到E k所需的总时间.3.小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d的平行金属极板M、N,板M位于x轴上,板N在它的正下方.两板间加上如图2所示的幅值为U0的交变电压,周期2 =TmqB.板M上方和板N下方有磁感应强度大小均为B、方向相反的匀强磁场.粒子探测器位于y轴处,仅能探测到垂直射入的带电粒子.有一沿x轴可移动、粒子射出的初动能可调节的粒子发射源,沿y轴正方向射出质量为m、电荷量为q(q>0)的粒子.t=0时刻,发射源在(x,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.(1)若粒子只经磁场偏转并在y=y0处被探测到,求发射源的位置和粒子的初动能;(2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x与被探测到的位置y之间的关系.4.如图甲所示,直角坐标系xOy 中,第二象限内有沿x 轴正方向的匀强电场,第一、四象限内有垂直坐标平面的匀强交变磁场,磁场方向垂直纸面向外为正方向.第三象限内有一发射装置(没有画出)沿y 轴正方向射出一个比荷=100 C/kg qm的带正电的粒子(可视为质点且不计重力),该粒子以v 0=20 m/s 的速度从x 轴上的点A (-2 m ,0)进入第二象限,从y 轴上的点C (0,4 m)进入第一象限.取粒子刚进入第一象限的时刻为0时刻,第一、四象限内磁场的磁感应强度按图乙所示规律变化,g=10 m/s 2.(1)求第二象限内电场的电场强度大小; (2)求粒子第一次经过x 轴时的位置坐标.5.在某一真空空间内建立xOy 坐标系,从原点O 处向第 Ⅰ 象限发射一比荷为1×104 C/kg 的带正电的粒子(重力不计),速度大小v 0=103 m/s 、方向与x 轴正方向成30°角.(1)若在坐标系y 轴右侧加有匀强磁场,在第Ⅰ象限,磁场方向垂直xOy 平面向外;在第Ⅳ象限,磁场方向垂直xOy 平面向里;磁感应强度均为B =1 T ,如图甲所示,求粒子从O 点射出后,第2次经过x 轴时的坐标x 1.(2)若将上述磁场改为如图乙所示的匀强磁场.在t =0到t =2π3×10-4 s 时,磁场方向垂直于xOy 平面向外;在t=2π3×10-4 s到t=4π3×10-4 s时,磁场方向垂直于xOy平面向里,此后该空间不存在磁场。

(完整版)高中物理电磁学总复习

(完整版)高中物理电磁学总复习

高三物理总复习电磁学复习内容:高二物理(第十三章 电场、第十四章 恒定电流、第十五章 磁场、第十六章 电磁感应、第十七章 变交电流、第十八章 电磁场与电磁波)复习范围:第十三章~第十八章电磁学§.1 第十三章 电场1. (1)电荷守恒定律:电荷既不能创造,也不能消灭,只能从一个物体转移给另一个物体或者从物体的一部分转移到另一部分。

(2)应用起电的三种方式:摩擦起电(前提是两种不同的物质发生摩擦)、感应起电(把电荷移近不带电的导体(不接触导体),使导体带电)、接触带电.注意:①电荷量e 称为元电荷电荷量C 1060.119-⨯=e ;②电子的电荷量e 和电子的质量m 的比叫做电子的比荷C/kg 1076.111⨯=em e。

③两个完全相同的带电金属小球接触时................电荷量分配规律:原带异种电荷的先中和后平分;原带同种电荷的总电荷量平分.2. 库仑定律。

⑴适用对象:点电荷。

注意:①带电球壳可等效点电荷。

当带电球壳均匀带电时,我们可等效在球心处有一个点电荷;球壳不均匀带电荷时,则等效点电荷就靠近电荷多的一侧。

②库仑力也是电场力,它只是电场力的一种。

⑵公式:221r Q Q k F ⋅=(k 为静电力常量等于229/c m N 109.9⋅⨯).3.(1)电场:只要有电荷存在,电荷周围就存在电场(电场是描述自身的物理量...........),电场的基本性质是它对放入其中的电荷有力的作用,这种力叫做电场力. (2)ⅰ。

电场强度(描述自身的物理量........): E = F / q 这个公式适用于一切电场,电场强度E 是矢量,物理学中规定电场中某点的场强方向跟正电荷在该点的电场力的方向相同,即正电荷受的电场力方向,即E 的方向为负电荷受的电场力的方向的反向。

此外F = Eq 与221r Q Q k F ⋅=不同就在于前者适用任何电场,后者只适用于点电荷.注意:①对检验电荷(可正可负)的要求:一是电荷量应当充分小;二是体积也要小。

高三物理备考资料——带电粒子在电磁场中运动的应用实例分析

高三物理备考资料——带电粒子在电磁场中运动的应用实例分析

带电粒子在电磁场中运动的应用1、电视机电视机的显像管中,电子束的偏转是用磁偏转技术实现的。

电子束经过电压为U 的加速电场后,进入一圆形匀强磁场区。

磁场方向垂直于圆面。

磁场区的中心为O ,半径为r 。

当不加磁场时,电子束将通过O 点而打到屏幕的中心M 点。

为了让电子束射到屏幕边缘P ,需要加磁场,使电子束转一已知角度θ,此时磁场的磁感应强度B 应为多少?解析: 电子在磁场中沿圆弧运动,如图所示,圆心为O ′,半径为R 。

以v 表示电子进入磁场时的速度,m 、e 分别表示电子的质量和电量,则221mv eU = R mv evB 2= Rr tg =2θ 由以上各式解得 221θtg e mU r B = 2、电磁流量计电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积)。

为了简化,假设流量计是如图所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a 、b 、c ,流量计的两端与输送液体的管道相连接(图中虚线)。

图中流量计的上下两面是金属材料,前后两面是绝缘材料,现于流量计所在处加磁感强度为B 的匀强磁场,磁场方向垂直于前后两面。

当导电液体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R 的电流表的两端连接,I 表示测得的电流值。

已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为 A. )(ac bR B I ρ+ B. )(c b aR B I ρ+ C. )(b a cR B I ρ+ D. )(abc R B I ρ+ 答案: A3、质谱仪下图是测量带电粒子质量的仪器工作原理示意图。

设法是某有机化合物的气态分子导入图中所示的容器A 中,使它受到电子束轰击,失去一个电子变成正一价的分子离子。

分子离子从狭缝s 1以很小的速度进入电压为U 的加速电场区(初速不计),加速后,再通过狭缝s 2、s 3射入磁感强度为B 的匀强磁场,方向垂直于磁场区的界面PQ 。

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)试题部分一、选择题:A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动2. 下列关于电磁感应现象的描述,错误的是:A. 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流B. 感应电流的方向与磁场方向有关C. 感应电流的大小与导体运动速度成正比D. 感应电流的大小与导体长度成正比A. 电势能减小B. 电势能增加C. 电势增加D. 电势减小A. 电容器充电时,电场能转化为磁场能B. 电容器放电时,电场能转化为磁场能C. 电感器中的电流增大时,磁场能转化为电场能D. 电感器中的电流减小时,磁场能转化为电场能A. 电磁波在真空中传播速度为3×10^8 m/sB. 电磁波的传播方向与电场方向垂直C. 电磁波的传播方向与磁场方向垂直D. 电磁波的波长与频率成正比A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动A. 洛伦兹力的方向垂直于带电粒子的速度方向B. 洛伦兹力的大小与带电粒子的速度成正比C. 洛伦兹力的大小与磁感应强度成正比D. 洛伦兹力的方向与磁场方向垂直8. 一个闭合线圈在磁场中转动,下列关于感应电动势的说法,正确的是:A. 感应电动势的大小与线圈面积成正比B. 感应电动势的大小与磁场强度成正比C. 感应电动势的大小与线圈转速成正比D. 感应电动势的方向与磁场方向平行A. 变化的电场会产生磁场B. 变化的磁场会产生电场C. 静止的电荷会产生磁场D. 静止的磁场会产生电场A. 电场强度与磁场强度成正比B. 电场强度与磁场强度成反比C. 电场强度与电磁波频率成正比D. 电场强度与电磁波波长成正比二、判断题:1. 带电粒子在电场中一定受到电场力的作用。

()2. 电磁波在传播过程中,电场方向、磁场方向和传播方向三者相互垂直。

()3. 在LC振荡电路中,电容器充电完毕时,电场能最大,磁场能为零。

高三物理牛顿运动定律与电磁学综合试题答案及解析

高三物理牛顿运动定律与电磁学综合试题答案及解析

高三物理牛顿运动定律与电磁学综合试题答案及解析1.如图所示,一个质量为m、带正电荷的物块在水平电场E=kt(t为时间,k为大于零的常数)的作用下被压在绝缘的竖直墙面上.若电场空间和墙面均足够大,从t=0时刻开始,物块所受的摩擦力的大小F随时间t变化的关系图是()f【答案】C【解析】滑动摩擦力小于重力时,物块做加速运动;当滑动摩擦力等于重力时,物块速度达最大,=μqkt;停止运动后,然后摩擦力继续增大,物块做减速运动,直至停止.下滑过程中,摩擦力Ff=mg.摩擦力Ff2.(19分)如图,在区域I(0≤x≤d)和区域II(d≤x≤2d)内分别存在匀强磁场,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面。

一质量为m、带电荷量q(q>0)的粒子a于某时刻从y轴上的P点射入区域I,其速度方向沿x轴正向。

已知a在离开区域I时,速度方向与x轴正方向的夹角为30°;此时,另一质量和电荷量均与a相同的粒子b也从p点沿x轴正向射入区域I,其速度大小是a的1/3。

不计重力和两粒子之间的相互作用力。

求(1)粒子a射入区域I时速度的大小;(2)当a离开区域II时,a、b两粒子的y坐标之差。

【答案】(1)(2)【解析】(1)设粒子a在I内做匀速圆周运动的圆心为C(在y轴上),半径为R,粒子速率a1,运动轨迹与两磁场区域边界的交点为,如图。

由洛仑兹力公式和牛顿第二定律得为va(1)由几何关系得(2)(3)式中由(1)(2)(3)式得(4)(2)设粒子在II区内做圆周运动的的圆心为,半径为,射出点为(图中末画出轨迹)由洛仑兹力分式和牛顿第二定律得(5)由(1)(5)式得:(6)C,和三点共线,且由(6)式知必位于(7)的平面上,由对称性知纵坐标相同,即(8)式中h是C点的Y坐标设b在I中运动的轨道半径为,由洛仑兹力公式和牛顿第二定律得(9)设a到达点时,b位于点,转过的角度为α。

如果b没有飞出I,则(10)(11)式中,t是a在区域II中运动的时间,而(12)(13)由⑤⑨⑩(11)(12)(13)式得(14)由①③⑨(14)式可见,b没有飞出I。

2025版高考物理一轮总复习第13章交变电流电磁振荡和电磁波传感器第33讲电磁振荡与电磁波课件

2025版高考物理一轮总复习第13章交变电流电磁振荡和电磁波传感器第33讲电磁振荡与电磁波课件
1 (2)频率f=_2_π__L__C__。
二、电磁场与电磁波 1.麦克斯韦电磁场理论:变化的磁场产生__电__场____,变化的电场 产生___磁__场___(如图所示)。
2.电磁场:变化的电场和磁场总是相互联系的,形成一个 __不__可__分__割____统一的电磁场。
3.电磁波
(1)产生:变化的电场和磁场由近及远地向周围传播,形成了电磁
(麦克斯韦电磁场理论的应用)(多选)如图所示,在内壁光滑、
水平放置的玻璃圆环内,有一直径略小于玻璃圆环内径的带正电的小
球,正以速率v0沿逆时针方向匀速转动。若在此空间突然加上方向竖直 向上、磁感应强度B随时间成正比例增加的变化磁场,设运动过程中小
球所带电荷量不变,那么( CD ) A.小球对玻璃圆环的压力不断增大 B.小球受到的磁场力不断增大 C.小球先沿逆时针方向做减速运动,过一段
3 电磁波的特点及应用
(基础考点·自主探究)
1.几种电磁波的产生机理、主要特性和用途
电磁波谱 无线电波 红外线
波长
大于 760~1× 1 mm 106 nm
可见光 400~ 760 nm
紫外线 5~
370 nm
X射线 波长 更短
γ射线 波长 最短
宏观 产生 机理
LC振 荡电路
一切物体 都不停地 发射红外 线
3.电磁波与机械波的比较 (1)电磁波和机械波都遵循波长、波速、频率的关系公式 λ=vf ,电磁 波进入介质遵循公式 n=vc。 (2)机械波的传播需要介质,电磁波的传播不需要介质。 (3)电磁波只能是横波,而机械波可以是横波,也可以是纵波。
【跟踪训练】
(电磁波的产生与传播)关于电磁波,下列说法正确的是( B ) A.只要空间某处的电场或磁场发生变化,就会在其周围产生电磁 波 B.电磁波在真空中自由传播时,其传播方向与电场强度、磁感应 强度均垂直 C.利用电磁波传递信号可以实现无线通信,但电磁波不能通过电 缆、光缆传输 D.电磁波可以由电磁振荡产生,若波源的电磁振荡停止,空间的 电磁波随即消失

高三物理磁场基本性质常见磁场试题答案及解析

高三物理磁场基本性质常见磁场试题答案及解析

高三物理磁场基本性质常见磁场试题答案及解析1.如图,两根平行长直导线相距2l,通有大小相等、方向相同的恒定电流:a、b、c是导线所在平面内的三点,左侧导线与它们的距离分别为、l和3l。

关于这三点处的磁感应强度,下列判断正确的是A.a处的磁感应强度大小比c处的大B.b、c两处的磁感应强度大小相等C.a、c两处的磁感应强度方向相同D.b处的磁感应强度为零【答案】AD【解析】由右手定则可以判断,a、c两处的磁场是两电流在a、c处产生的磁场相加,但a距离两导线比c近,故a处的磁感应强度大小比c处的大,A对;b、c与右侧电流距离相同,故右侧电流对此两处的磁场要求等大反向,但因为左侧电流要求此两处由大小不同、方向相同的磁场,故b、c两处的磁感应强度大小不相等,B错;由右手定则可知,a处磁场垂直纸面向里,c处磁场垂直纸面向外,C错;b与两导线距离相等,故两磁场叠加为零,D对。

【考点】磁场叠加、右手定则2.彼此绝缘、相互垂直的两根通电直导线与闭合线圈共面,下图中穿过线圈的磁通量可能为零的是【答案】AB【解析】由安培定则可以判断,A中I1在线圈位置产生的磁场方向垂直纸面向里,I2在线圈位置产生的磁场方向向外,穿过线圈的磁通量可能为零,同理可以判断B中,I1在线圈位置产生的磁场方向垂直纸面向外,I2在线圈位置产生的磁场方向垂直纸面向里,穿过线圈的磁通量可能为零,A、B正确;C中I1、I2在线圈位置产生的磁场方向都垂直纸面向里,D中I1,I2在线圈位置产生的磁场方向都垂直纸面向外,C、D中穿过线圈的磁通量不可能为零.【考点】通电直导线周围磁场的方向。

3.如图所示,两根长直导线m、n竖直插在光滑绝缘水平桌面上的小孔P、Q中,O为P、Q连线的中点,连线上a、b两点关于O点对称,导线中通有大小、方向均相同的电流I.下列说法正确的是A.O点的磁感应强度为零B.a、b两点磁感应强度的大小Ba >BbC.a、b两点的磁感应强度相同D.n中电流所受安培力方向由P指向Q【答案】A【解析】根据安培右手定则,m在O点产生的磁场方向垂直ab连线向里,n在O点产生的磁场方向垂直ab连线向外,根据对称性,磁感应强度大小相等,磁场矢量和等于0,选项A对。

高三物理电磁波试题答案及解析

高三物理电磁波试题答案及解析

高三物理电磁波试题答案及解析1.下列关于电磁波的说法正确的是 ( )A.变化的磁场能够在空间产生电场B.电磁波在真空和介质中传播的速度相同C.电磁波既可能是横波,也可能是纵波D.电磁波的波长.波速.周期的关系为【答案】A【解析】变化的电场产生磁场,变化的磁场产生电场,这是麦克斯韦电磁场理论的两大支柱,A 正确;电磁波在真空和介质中传播的速度不相同,在真空中传播的速度最大,B错误;在传播方向的任一点,电场与磁场互相垂直,而且二者均与波的传播方向垂直,电磁波是横波,C错误;电磁波的波长.波速.周期的关系为,D错误。

2.过量接收电磁辐射有害人体健康.按照有关规定,工作场所受到的电磁辐射强度(单位时间内垂直通过单位面积的电磁辐射能量)不得超过某一临界值W。

若某无线电通讯装置的电磁辐射功率为P,则符合规定的安全区域到该通讯装置的距离可能为( )A.B.C.D.【答案】CD【解析】由题意知,不符合规定的区域与安全区域的临界面为一球面,设其半径为R,则有球面积,,所以。

思路分析:利用球面辐射,能量以球面的形式向外释放,总能量除以表面积即为单位面积接收到的电磁辐射。

试题点评:考查电磁波的吸收、球面辐射的计算3.(9分)如图所示,一艘海轮用船上天线D向海岸边的信号接收器A发送电磁波脉冲信号。

信号接收器和船上天线的海拔高度分别为AB=H和CD=h。

船上天线某时刻发出一个电磁波脉冲信号,接收器接收到一个较强和一个较弱的脉冲,前者是直接到达的信号,后者是经海平面反射后再到达的信号,两个脉冲信号到达的时间间隔为△t,电磁波的传播速度为c,求船上天线发出此信号时海轮与海岸的距离L。

【答案】【解析】如图所示,从船上天线D向接收器发出的电磁脉冲信号,一方面沿直线DA直接传到A,另一方面经过海面E点反射沿折线DEA传播到A,前者较强,后者较弱。

由反射定律可知,延长AE交DC的延长线与F,过A做AG平行于BC,交CD的延长线与G,则有DE=EF,GD=H-h,GF="H+h" (2分),设信号接收器接收到沿直线DA和折线DEA传播的电磁脉冲信号需要的时间分别为t1和t2,则有(2分) (2分)根据题意有(1分) 联立解得 (2分).【考点】本题考查电磁波的传播,需要先把电磁波的传播路径画出来再结合几何关系求解.4.关于生活中遇到的各种波,下列说法正确的是()A.电磁波可以传递信息,声波不能传递信息B.手机在通话时涉及的波既有电磁波又有声波C.太阳光中的可见光和医院“B超”中的超声波传递速度相同D.遥控器发出的红外线波长和医院CT中的X射线波长相同【答案】B【解析】A:一切波都可以传播能量和信息,声波作为机械波可以传递信息,A选项错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三物理第一轮专题复习——电磁场例1. (高考题)在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。

一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。

(1)请判断该粒子带何种电荷,并求出其比荷q/m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ’,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ’多大?此次粒子在磁场中运动所用时间t 是多少?例2.(调研)电子自静止开始经M 、N 板间(两板间的电压为U )的电场加速后从A 点垂直于磁场边界射入宽度为d 的匀强磁场中, 电子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.求匀强磁 场的磁感应强度.(已知电子的质量为m ,电量为e )例3.(高考)如图所示,abcd 为一正方形区域,正离子束从a 点沿ad 方向以0 =80m/s的初速度射入,若在该区域中加上一个沿ab 方向的匀强电场,电场强度为E ,则离子束刚好从c 点射出;若撒去电场,在该区域中加上一个垂直于abcd 平面的匀强磁砀,磁感应强度为B ,则离子束刚好从bc 的中点e 射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算:(1)所加磁场的方向如何?(2)E 与B 的比值B E /为多少? 例4.(北京市西城区)在高能物理研究中,粒子回旋加速器起着重要作用,如图甲为它的示意图。

它由两个铝v 0dab c · e制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。

两个D 型盒处在匀强磁场中并接有高频交变电压。

图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。

在磁场力的作用下运动半周,再经狭缝电压加速。

如此周而复始,最后到达D 型盒的边缘,获得最大速度,由导出装置导出。

已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 型盒的半径为R 。

每次加速的时间很短,可以忽略不计。

正离子从离子源出发时的初速度为零。

(1)为了使正离子每经过窄缝都被加速,求交变电压的频率; (2)求离子能获得的最大动能;(3)求离子第1次与第n 次在下半盒中运动的轨道半径之比。

如图甲所示,图的右侧MN 为一竖直放置的荧光屏,O 为它的中点,OO’与荧光屏垂直,且长度为l 。

在MN 的左侧空间内存在着方向水平向里的匀强电场,场强大小为E 。

乙图是从甲图的左边去看荧光屏得到的平面图,在荧光屏上以O 为原点建立如图的直角坐标系。

一细束质量为m 、电荷为q 的带电粒子以相同的初速度v 0从O’点沿O’O 方向射入电场区域。

粒子的重力和粒子间的相互作用都可忽略不计。

(1)若再在MN 左侧空间加一个匀强磁场,使得荧光屏上的亮点恰好位于原点O 处,求这个磁场的磁感强度的大小和方向。

(2)如果磁感强度的大小保持不变,但把方向变为与电场方向相同,则荧光屏上的亮点位于图中A 点处,已知A 点的纵坐标 l y 33,求它的横坐标的数值。

空间分布着有理想边界的匀强电场和匀强磁场。

左侧匀强电场的场强大小为E 、方向水平向右,电场宽度为L ;中间区域匀强磁场的磁感应强度大小为B ,方向垂直纸面向里。

一个质量为m 、电量为q 、不计重力的带正电的粒子从电场的左边缘的O 点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O 点,然后重复上述运动过程。

求: (1)中间磁场区域的宽度d ;(2)带电粒子从O 点开始运动到第一次回到O 点所用时间t 。

BBlO 甲乙a b c d FB 甲v 0 Bc a bd 乙 例7.(高考模拟)如下图所示,PR 是一块长为L= 4m 的绝缘平板,固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向里的匀强磁场B ,一个质量为0.1Kg ,带电量为0.5C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右作匀加速直线运动,进入磁场后恰能作匀速运动,当物体碰到板R 端竖直绝缘挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC=4L,物体与平板间的动摩擦因数μ=0.4,(g=10m/s 2)求: (1)判断物体带正电还是带负电以及电场强度E 的方向(说明理由); (2)物体与挡板碰撞后的速度V 2和磁感应强度B 的大小; (3)物体与挡板碰撞前的速度V 1和电场强度E 的大小。

例8.两根水平平行固定的光滑金属导轨宽为L ,足够长,在其上放置两根长也为L 且与导轨垂直的金属棒ab 和cd ,它们的质量分别为2m 、m ,电阻阻值均为R (金属导轨及导线的电阻均可忽略不计),整个装置处在磁感应强度大小为B 、方向竖直向下的匀强磁场中。

(1)现把金属棒ab 锁定在导轨的左端,如图甲,对cd 施加与导轨平行的水平向右的恒力F ,使金属棒cd 向右沿导轨运动,当金属棒cd 的运动状态稳定时,金属棒cd 的运动速度是多大? 此时拉力F 瞬时功率多大? (2)若当金属棒cd 的速度为最大速度的一半时,金属棒cd 的加速度多大?(3)若对金属棒ab 解除锁定,如图乙,使金属棒cd 获得瞬时水平向右的初速度v 0,当它们的运动状态达到稳定的过程中,流过金属棒ab 的电量q 是多少?整个过程中ab 和cd 相对运动的位移s 是多大?整个过程中回路中产生的焦耳热Q 是多少?O F b O ′ O 1’ O 1 a RMP B N Q d 0d 例9.如图,光滑平行的水平金属导轨MN 、PQ 相距l ,在M 点和P 点间接一个阻值为R 的电阻,在两导轨间OO 1O 1′O ′矩形区域内有垂直导轨平面竖直向下、宽为d 的匀强磁场,磁感强度为B 。

一质量为m ,电阻为r 的导体棒ab ,垂直搁在导轨上,与磁场左边界相距d 0。

现用一大小为F 、水平向右的恒力拉ab 棒,使它由静止开始运动,棒ab 在离开磁场前已经做匀速直线运动(棒ab 与导轨始终保持良好的接触,导轨电阻不计)。

求: (1)棒ab 在离开磁场右边界时的速度; (2)棒ab 通过磁场区的过程中整个回路所消耗的电能;(3)试分析讨论ab 棒在磁场中可能的运动情况。

例10.(江苏高考)如图12所示,两互相平行的水平金属导轨MN 、PQ 放在竖直平面内,相距为L =0.4m ,左端接平行板电容器,板间距离为d =0.2m ,右端接滑动变阻器R (R 的最大阻值为2Ω),整个空间有水平匀强磁场,磁感应强度为B =10T ,方向垂直于导轨所在平面。

导体棒CD 与导轨接触良好,棒的电阻为r =1Ω,其它电阻及摩擦均不计,现用与导轨平行的大小为F =2N 的恒力作用,使棒从静止开始运动,取g =10m/s 2。

求:(1)导体棒处于稳定状态时,拉力的最大功率是多大?(2)导体棒处于稳定状态时,当滑动触头在滑动变阻器中点时,一带电小球从平行板电容器左侧沿两极板的正中间入射,在两极板间恰好做匀速直线运动;当滑动触头在滑动变阻器最下端时,该带电小球以同样的方式和速度入射,在两极间恰好能做匀速圆周运动,求圆周的半径是多大?例11.(北京朝阳区)如图1所示,abcd 是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m ,电阻为R 。

在金属线框的下方有一匀强磁场区域, MN 和M ′N ′是匀强磁场区域的水平边界,并与线框的bc 边平行,磁场方向与线框平面垂直。

现金属线框由距MN 的某一高度从静止开始下落,图2是金属线框由开始下落到完全穿过匀强磁场区域瞬间的速度-时间图象,图像中坐标轴上所标出的字母均为已知量。

求: (1)金属框的边长; (2)磁场的磁感应强度; (3)金属线框在整个下落过程中所产生的热量。

图12 0 t 1 t 2 t 3 t 413v 2v N ′ M N M ′b cd图1图2MN 、PQ 相距l ,其框架平面与水平面成θ角,在M 点和P 点间接一R 的电阻,在两导轨间OO 1O 1′O ′矩形区域内有垂直导轨平面向下、宽为d 的匀强磁场,磁感应强度为B 。

一质量为m 、电阻为r 的导体棒ab ,垂直搁置于导轨上,与磁场上边界相距d 0,现使它由静止开始运动,在棒ab 离开磁场前已经做匀速直线运动(棒ab 与导轨始终保持良好的接触,导轨电阻不计)。

求: ⑴棒ab 在离开磁场下边界时的速度; ⑵棒ab 通过磁场区的过程中整个电路所消耗的电能。

15甲所示,空间存在着一个范围足够大的竖直向下的匀强磁场,磁场的磁感强度大小为B 。

边长为l 的正方形金属框abcd (下简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的U 型金属框架MNPQ (下简称U 型框),U 型框与方框架之间接触良好且无摩擦。

两个金属框每条边的质量均为m ,每条边的电阻均为r 。

(1)将方框固定不动,用力拉动U 型框使它以速度v 0垂直NP 边向右匀速运动,当U 型框的MQ 端滑至方框的最右侧(如图所示)时,方框上的bc 两端的电势差为多大?此时方框的热功率为多大?(2)若方框不固定,给U 型框垂直NP 边向右的初速度v 0,如果U 型框恰好不能与方框分离,则在这一过程中两框架上产生的总热量为多少?(3)若方框不固定,给U 型框垂直NP 边向右的初速度v (v >v 0),U 型框最终将与方框分离。

如果从U 型框和方框不再接触开始,经过时间t 方框最右侧和U 型框最左侧距离为s 。

求两金属框分离时的速度各为多大?图15 甲乙QQ例14.如图所示,导体棒ab 质量为100g,用绝缘细线悬挂后,恰好与宽度为50cm的光滑水平导轨MN、PQ 良好接触,导轨上放有质量为200g的另一导棒cd,整个装置处于竖直向上的磁感强度B = 0.2T的匀强磁场中,现将ab棒拉起0.8m高后无初速释放。

当ab棒第一次摆到最低点与导轨瞬间接触后还能向左摆到0.45m高处,(取g = 10m/s2)求:(1)cd棒获得的速度大小(2)瞬间通过ab棒的电量(3)此过程中回路中产生的焦耳热例15.如图7所示,水平的平行虚线间距为d=50cm,其间有B=1.0T的匀强磁场。

一个正方形线圈边长为l=10cm,线圈质量m=100g,电阻为R=0.020Ω。

开始时,线圈的下边缘到磁场上边缘的距离为h=80cm。

将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时的速度相等。

取g=10m/s2,求:⑴线圈进入磁场过程中产生的电热Q。

相关文档
最新文档