吉林省长春2016-2017学年高二下学期期末考试数学试题-含答案
中学2016-2017学年高二下期末考试数学试卷含解析

2016学年第二学期高二数学期末考试一、填空题(本大题满分54分)本大题共有12题,其中第1题至第6题每小题4分,第7题至第12题每小题5分,考生应在答题纸上相应编号的空格内直接填写结果,否则一律得零分.1. 的展开式中项的系数为______.【答案】【解析】的展开式的通项公式为,令,求得,可得展开式中项的系数为,故答案为10.2. 已知直线经过点且方向向量为,则原点到直线的距离为______.【答案】1【解析】直线的方向向量为,所以直线的斜率为,直线方程为,由点到直线的距离可知,故答案为1.3. 已知全集,集合,,若,则实数的值为___________.【答案】2【解析】试题分析:由题意,则,由得,解得.考点:集合的运算.4. 若变量满足约束条件则的最小值为_________.【答案】【解析】由约束条件作出可行域如图,联立,解得,化目标函数,得,由图可知,当直线过点时,直线在y轴上的截距最小,有最小值为,故答案为. 点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5. 直线上与点的距离等于的点的坐标是_____________.【答案】或.【解析】解:因为直线上与点的距离等于的点的坐标是和6. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_______.【答案】【解析】设“这名学生在上学路上到第二个路口首次遇到红灯”为事件,则所求概率为,故答案为.7. 某学校随机抽取名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.则该校学生上学所需时间的均值估计为______________.(精确到分钟).【答案】34................点睛:本题考查频率分布直方图,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,本题考查了识图的能力;根据直方图求平均值的公式,各个小矩形的面积乘以相应组距的中点的值,将它们相加即可得到平均值.8. 一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种________.【答案】186【解析】试题分析:设取红球个,白球个,则考点:古典概型.9. 如图,三棱锥满足:,,,,则该三棱锥的体积V的取值范围是______.【答案】【解析】由于平面,,在中,,要使面积最大,只需,的最大值为,的最大值为,该三棱锥的体积V的取值范围是.10. 是双曲线的右支上一点,分别是圆和上的点,则的最大值等于_________.【答案】9【解析】试题分析:两个圆心正好是双曲线的焦点,,,再根据双曲线的定义得的最大值为.考点:双曲线的定义,距离的最值问题.11. 棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为___________.【答案】【解析】试题分析:.考点:几何体的表面积.12. 在直角坐标平面中,已知两定点与位于动直线的同侧,设集合点与点到直线的距离之差等于,,记,.则由中的所有点所组成的图形的面积是_______________.【答案】【解析】过与分别作直线的垂线,垂足分别为,,则由题意值,即,∴三角形为正三角形,边长为,正三角形的高为,且,∴集合对应的轨迹为线段的上方部分,对应的区域为半径为1的单位圆内部,根据的定义可知,中的所有点所组成的图形为图形阴影部分.∴阴影部分的面积为,故答案为.二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 已知为实数,若复数是纯虚数,则的虚部为()A. 2B. 0C. -2D. -2【答案】C【解析】∵复数是纯虚数,∴,化为,解得,∴,∴,∴的虚部为,故选C.14. 已知条件:“直线在两条坐标轴上的截距相等”,条件:“直线的斜率等于”,则是的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】B【解析】当直线过原点时,直线在两条坐标轴上的截距相等,斜率可以为任意数,故不成立;当直线的斜率等于,可设直线方程为,故其在两坐标轴上的截距均为,故可得成立,则是的必要非充分条件,故选B.15. 如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()A. 该三棱柱主视图的投影不发生变化;B. 该三棱柱左视图的投影不发生变化;C. 该三棱柱俯视图的投影不发生变化;D. 该三棱柱三个视图的投影都不发生变化.【答案】B【解析】A、该三棱柱主视图的长度是或者在轴上的投影,随点得运动发生变化,故错误;B、设是z轴上一点,且,则该三棱柱左视图就是矩形,图形不变.故正确;C、该三棱柱俯视图就是,随点得运动发生变化,故错误.D、与矛盾.故错误;故选B.点睛:本题考查几何体的三视图,借助于空间直角坐标系.本题是一个比较好的题目,考查的知识点比较全,但是又是最基础的知识点;从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,根据图中C点对三棱柱的结构影响进一步判断.16. 如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:①到、、、四点的距离之和为定值;②曲线关于直线、均对称;③曲线所围区域面积必小于.上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】对于①,若点在椭圆上,到、两点的距离之和为定值、到、两点的距离之和不为定值,故错;对于②,两个椭圆,关于直线、均对称,曲线关于直线、均对称,故正确;对于③,曲线所围区域在边长为6的正方形内部,所以面积必小于36,故正确;故选C.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. 已知复数满足,(其中是虚数单位),若,求的取值范围.【答案】或【解析】试题分析:化简复数为分式的形式,利用复数同乘分母的共轭复数,化简为的形式即可得到,根据模长之间的关系,得到关于的不等式,解出的范围.试题解析:,,即,解得或18. 如图,直四棱柱底面直角梯形,,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1)(2)见解析【解析】试题分析:(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,,10分,.又,平面. 12分考点:(1)异面直线所成的角;(2)线面垂直.19. 如图,圆锥的顶点为,底面圆心为,线段和线段都是底面圆的直径,且直线与直线的夹角为,已知,.(1)求该圆锥的体积;(2)求证:直线平行于平面,并求直线到平面的距离.【答案】(1)(2)【解析】试题分析:(1)利用圆锥的体积公式求该圆锥的体积;(2)由对称性得,即可证明直线平行于平面,到平面的距离即直线到平面的距离,由,求出直线到平面的距离.试题解析:(1)设圆锥的高为,底面半径为,则,,∴圆锥的体积;(2)证明:由对称性得,∵不在平面,平面,∴平面,∴C到平面的距离即直线到平面的距离,设到平面的距离为,则由,得,可得,∴,∴直线到平面的距离为.20. 阅读:已知,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数,,求证:.【答案】(1)9(2)18(3)见解析【解析】试题分析:本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2),7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分考点:阅读材料问题,“1”的代换,基本不等式.21. 设椭圆的长半轴长为、短半轴长为,椭圆的长半轴长为、短半轴长为,若,则我们称椭圆与椭圆是相似椭圆.已知椭圆,其左顶点为、右顶点为.(1)设椭圆与椭圆是“相似椭圆”,求常数的值;(2)设椭圆,过作斜率为的直线与椭圆仅有一个公共点,过椭圆的上顶点为作斜率为的直线与椭圆仅有一个公共点,当为何值时取得最小值,并求其最小值;(3)已知椭圆与椭圆是相似椭圆.椭圆上异于的任意一点,求证:的垂心在椭圆上.【答案】(1)或;(2)当时,取得最小值.(3)见解析【解析】试题分析:(1)运用“相似椭圆”的定义,列出等式,解方程可得s;(2)求得的坐标,可得直线与直线的方程,代入椭圆的方程,运用判别式为,求得,再由基本不等式即可得到所求最小值;(3)求得椭圆的方程,设出椭圆上的任意一点,代入椭圆的方程;设的垂心的坐标为,运用垂心的定义,结合两直线垂直的条件:斜率之积为,化简整理,可得的坐标,代入椭圆的方程即可得证.试题解析:(1)由题意得或,分别解得或.(2)由题意知:,,直线,直线,联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ①联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ②由①②得:.所以,此时,即.(3)由题意知:,所以,且.设垂心,则,即. 又点在上,有,. 则,所以的垂心在椭圆上.。
吉林省长春市吉大附中实验学校2023-2024学年高二下学期期末考试数学试题(含答案)

吉大附中实验学校2023-2024学年高二下学期期末考试数学学科试卷考试时间:120分钟 试卷满分:150分本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考试结束后,将答题卡交回.注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不得折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列函数中是增函数的为( )A. B. C. D.2. 命题“”的否定为( )A.B.C.D.3. “”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 已知二项式系数和为256,则的展开式中常数项为( )A. 1120B. C. 70D. 5. 函数的图象大致是( )的()f x x=-()23xf x ⎛⎫= ⎪⎝⎭()2f x x=()f x =0m ∃∈N N m ∀∉N Nm ∀∈N N0m ∃∈N N0m ∃∉N N0x y >>11x y x y->-12nx x ⎛⎫- ⎪⎝⎭12nx x ⎛⎫- ⎪⎝⎭1120-70-()2221x xf x x--=-A. B.C. D.6. 原核生物大肠杆菌存在于人和动物的肠道内,在适宜的环境和温度下会迅速繁殖导致肠道内生态环境失衡从而引发腹泻等症状,已知大肠杆菌是以简单的二分裂法进行无性繁殖,在适宜的条件下分裂一次(1个变为2个)需要约24分钟,那么在适宜条件下1个大肠杆菌增长到1万个大肠杆菌至少需要约( )(参考数据:)A. 4小时B. 5小时C. 6小时D. 7小时7. 某电子竞技队伍由1名队长、1名副队长与3名队员构成,按需要担任第1至5号位的任务,由于队长需要分出精力指挥队伍,所以不能担任1号位,副队长是队伍输出核心,必须担任1号位或2号位,则不同的位置安排方式有( )A. 36种B. 42种C. 48种D. 52种8. 已知,是定义域为R 的函数,且是奇函数,是偶函数,满足,若对任意的,都有成立,则实数a 的取值范围是( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 甲箱中有个红球和个白球,乙箱中有个红球和个白球(两箱中的球除颜色外没有其他区别),lg20.3≈()f x ()g x ()f x ()g x ()()22f x g x ax x +=++1212x x <<<()()12123g x g x x x ->--[)0,∞+3,04⎡⎤-⎢⎥⎣⎦3,4∞⎛⎫-+ ⎪⎝⎭3,4∞⎡⎫-+⎪⎢⎣⎭3222先从甲箱中随机取出一球放入乙箱,分别用事件和表示从甲箱中取出的球是红球和白球;再从乙箱中随机取出两球,用事件表示从乙箱中取出的两球都是红球,则( )A B. C. D. 10. 已知,且,则下列不等式成立的是( )A. B.C.D. 11. 已知偶函数的定义域为,为奇函数,且在上单调递增,则下列结论正确的是( )A. B. C. D. 三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合,若集合恰有两个元素,则实数的取值范围是________.13. 某校数学建模兴趣小组收集了一组恒温动物体重(单位:克)与脉搏率(单位:心跳次数/分钟)的对应数据,根据生物学常识和散点图得出与近似满足(为参数).令,,计算得,,.由最小二乘法得经验回归方程为,则的值为___________;为判断拟合效果,通过经验回归方程求得预测值,若残差平方和,则决定系数___________.(参考公式:决定系数).1A 2A B 13()5P A =11()50P B =()1950P B A =22()11P A B =0,0a b >>21a b +=18ab ≤218a b+≤≤3a b +≤()f x R 112f x ⎛⎫+ ⎪⎝⎭()f x []0,1302f ⎛⎫⎪⎝⎭-<403f ⎛⎫>⎪⎝⎭(3)0f <202403f ⎛⎫>⎪⎝⎭{}{}22230,0,M x x x N x x ax x =--<=-<∈Z M N ⋂a W f (,)(1,2,...,8)i i W f i =f W kf cW =,c k ln i i x W =ln i i y f =8x =5y =821214ii y==∑ 7.4y bx=+ k µi y (1,2,...,8)i =µ()8210.28i ii y y =-≈∑2R ≈µ()()221211==-=--∑∑ni ii n ii y y R y y14. 设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是_____四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 甲、乙两人进行知识答题比赛,每答对一题加20分,答错一题减20分,且赛前两人初始积分均为60分,两人答题相互独立.已知甲答对每题的概率均为,乙答对每题的概率均为,且某道题两人都答对的概率为,都答错的概率为.(1)求,的值;(2)乙回答3题后,记乙的积分为,求的分布列和期望.16. 数列满足.(1)求通项公式;(2)若,求的前项和.17. 设函数两个极值点分别为.(1)求实数的取值范围;(2)若不等式恒成立,求正数的取值范围(其中为自然对数的底数).18. 如图,在四棱锥中,底面是直角梯形,,,且,.(1)若为的中点,证明:平面平面;(2)若,,线段上的点满足,且平面与平面,求实数的值.的的()f x R (2)2()f x f x -=[)2,0x ∈-()2(2)f x x x =-+[),x m ∈+∞3()4f x ≤m p ()01q p q <<<31015p q X X ()E X {}n a 321212222n n a a a a n -+++⋯+={}n a n nnb a ={}n b n n T ()21ln 2f x x x x ax =--()1212,x x x x <a ()12a x x λ<+λe 271828= .P ABCD -ABCD AB CD P 90ABC ∠=︒PA PD AD ==PC PB =O AD POC ⊥ABCD 60CDA ∠=︒112AB CD ==PD M DM DP λ= PCB ACM λ19. 已知椭圆:()的半长轴的长度与焦距相等,且过焦点且与轴垂直的直线被椭圆截得的弦长为3.(1)求椭圆的方程;(2)已知直线:与椭圆交于,两点,过点的直线交椭圆于,两点(在靠近的一侧)(ⅰ)求的取值范围;(ⅱ)在直线上是否存在一定点,使恒成立?若存在,求出点坐标;若不存在,请说明理由.C 22221x y a b+=0a b >>x C 0l 220x y +-=C A B ()2,3P C E F E P PE PF0l M EMA FMA ∠=∠M吉大附中实验学校2023-2024学年高二下学期期末考试数学学科试卷答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】A【5题答案】【答案】C【6题答案】【答案】C【7题答案】【答案】B【8题答案】【答案】D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】ABD【10题答案】【答案】AC【11题答案】【答案】BD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】①. ②. 【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1),(2)分布列略,【16题答案】【答案】(1) (2)【17题答案】【答案】(1) (2)【18题答案】【答案】(1)证明略 (2)【19题答案】【答案】(1)(2)(ⅰ);(ⅱ)存,在(2,)+∞0.3-0.983[,)2+∞12p =35q =()72E X =2n n a =222n nn T +=-10,e ⎛⎫ ⎪⎝⎭(]0,22322143x y +=1,13PEPF ⎡⎫∈⎪⎢⎣⎭43,55M ⎛⎫ ⎪⎝⎭。
2023-2024学年吉林省长春市部分校高二下学期期末测试数学试卷(含答案)

2023-2024学年吉林省长春市部分校高二下学期期末测试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设x ∈R ,则“1<x <2”是“|x−2|<1”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.已知集合A ={x|log 2x ≥1},B ={x|1<x <3},则A ∪B =( )A. [2,3)B. (1,+∞)C. [2,+∞)D. (0,+∞)3.命题“∃x ∈R,−x 2+ax−1>0”是假命题,则实数a 的取值范围是( ).A. (−∞,2]B. (−2,2)C. [−2,2]D. [2,+∞)4.已知函数f(x)=2e x ,则lim Δx→0f(1+Δx)−f(1)−3Δx =( )A. −2e3B. −2eC. 2e −3D. 2e5.曲线f(x)=3x 3−1x 在点(1,f(1))处的切线的方程为( )A. 10x +y−8=0B. 10x−y−8=0C. 8x−y−6=0D. 8x +y−6=06.若a =30.5,b =log 0.53,c =0.32,则a ,b ,c 的大小关系为( )A. b <a <cB. c <b <aC. c <a <bD. b <c <a7.定义在R 上的奇函数f (x ),满足f (x +3)=f (1−x ),x ∈[0,2]时,f (x )=me x −1,则f (31)=( )A. e +1B. e−1C. 1−eD. −e8.已知函数y =f (x )是定义在R 上的奇函数,f ′(x)是f (x )的导函数,且当x ∈(−∞,0)时,xf′(x )<2f (x ),f(−1)=0,则不等式f (x 2)>0的解集为( )A. (−∞,−1)∪(0,1) B. (−1,a )∪(0,1)C. (−1,0)∪(1,+∞)D. (−∞,−1)∪(1,+∞)二、多选题:本题共3小题,共15分。
2022-2023学年吉林省长春市高二下学期基础教育质量监测能力抽测数学试题【含答案】

2022-2023学年吉林省长春市高二下学期基础教育质量监测能力抽测数学试题一、单选题1.已知复数(其中i 是虚数单位),则z 在复平面内对应的点的坐标是( )1i iz +=A .(1,1)B .(1,-1)C .(-1,1)D .(-1,-1)【答案】B【分析】利用复数的除法求得复数,然后利用几何意义求得z 在复平面内对应的点的坐标.z 【详解】复数,1i i z +=()21i i 1ii +==-则z 在复平面内对应的点的坐标是(1,-1),故选:B.2.幂函数的图象过点,则( )()f x x α=12⎛ ⎝(2)f =AB .C .D212【答案】A【解析】先求得,然后求得的值.α()2f 【详解】由于幂函数的图象过点,所以,()f x x α=12⎛ ⎝12111222αα⎛⎫⎛⎫==⇒= ⎪ ⎪⎝⎭⎝⎭所以,所以()12f x x=()1222f ==故选:A3.下列函数定义域为且在定义域内单调递增的是 ()0,∞+()A .B .C .D .xy e=1πy log x=-y =12y log x=【答案】B【分析】根据题意,依次分析选项中函数的定义域以及单调性,即可得答案.【详解】解:根据题意,依次分析选项:对于A ,,为指数函数,其定义域为R ,不符合题意;xy e =对于B ,,为对数函数,定义域为且在定义域内单调递增,符合题意;1ππy log x log x=-=()0,∞+对于C ,,不符合题意;y =[)0,∞+对于D ,,为对数函数,定义域为且在定义域内单调递减,不符合题意;12y log x=()0,∞+故选B .【点睛】本题考查函数的定义域以及单调性的判定,涉及对数函数的性质,属于基础题.4.若集合,,则下列结论正确的是( ){}21A x x =-<{}(1)(4)0B x x x =--≥A .B .C .D .A B ⋂=∅A B =R A B ⊆R B A⊆ 【答案】A【分析】解不等式求得集合A 、B ,然后逐一验证所给选项即可.【详解】,{}{}{}2112113A x x x x x x =-<=-<-<=<<,,{}{}(1)(4)014B x x x x x x =--≥=≤≥或{}R14B x x =<< ,选项A 正确;A B ⋂=∅,选项B 错误;{}34A B x x x ⋃=<≥或不是的子集,选项C 错误;A B ,选项D 错误.R A B⊆ 故选:A .5.为不断满足人民日益增长的美好生活需要,实现群众对舒适的居住条件、更优美的环境、更丰富的精神文化生活的追求,某大型广场正计划进行升级改造.改造的重点工程之一是新建一个长方形音乐喷泉综合体,该项目由长方形核心喷泉区(阴影部分)和四周绿化带组成.规1111D C B A ABCD 划核心喷泉区的面积为,绿化带的宽分别为和(如图所示).当整个项目占地ABCD 21000m 2m 5m 面积最小时,则核心喷泉区的长度为( )1111D C B A BCA .B .C .D .20m 50m 100m【答案】B【解析】设,得到的值,进而求得矩形面积的表达式,利用基本不等式求得面BC x =CD 1111D C B A 积的最小值,,而根据基本不等式等号成立的条件求得此时的长.BC【详解】设,则,所以BC x =1000CD x =11111000(10)(4)A B C D S x x=++,100001040(4x x =++10401440≥+=当且仅当,即时,取“”号,100004x x =50x ==所以当时,最小.50x =1111A B C D S 故选:B .【点睛】本小题主要考查矩形面积的最小值的计算,考查利用基本不等式求最值,属于基础题.6.将函数的图象向右平移单位后,所得图象对应的函数解析式为( )24y x π⎛⎫=+ ⎪⎝⎭12πA .B .5212y x π⎛⎫=- ⎪⎝⎭5212y x π⎛⎫=+ ⎪⎝⎭C .D .212y x π⎛⎫=- ⎪⎝⎭212y x π⎛⎫=+ ⎪⎝⎭【答案】D【分析】先将函数中x 换为x-后化简即可.24y x π⎛⎫+ ⎪⎝⎭12π【详解】化解为2(124y x ππ⎛⎫-+ ⎪⎝⎭212y x π⎛⎫=+ ⎪⎝⎭故选D【点睛】本题考查三角函数平移问题,属于基础题目,解题中根据左加右减的法则,将x 按要求变换.7.设是直线,是两个不同的平面,那么下列判断正确的是( )l αβ、A .若,则.B .若,则.,∥∥l l αβαβ∥,l l αβ⊥∥αβ⊥C .若,则.D .若,则.,l αβα⊥⊥l β ,l αβα⊥∥l β 【答案】B【分析】根据各选项中线面、面面的位置关系,结合平面的基本性质判断线面、面面关系即可.【详解】对于A ,若,,则可能平行、相交,A 错误;//l αl //β,αβ对于B ,若,过的平面且,则,而即,又,则,B //l αl γm γα= //l m l β⊥m β⊥m α⊂αβ⊥正确;对于C ,若,,则或,C 错误;αβ⊥l α⊥l //βl β⊂对于D ,若,,则或或线面相交,D 错误.αβ⊥//l αl //βl β⊂故选:B 8.已知向量,,则下列说法正确的是( )()2,1a =()3,1b =-A .B .向量在向量上的投影向量是//a ba bC .D .与向量方向相同的单位向量是24a b += a【答案】D【分析】利用向量平行的坐标表示判断A ;根据投影向量定义求向量在向量上的投影向量判断a bB ;应用向量数量积运算律求判断C ;由单位向量定义求与向量方向相同的单位向量判断2a b+ a D.【详解】A :由,故不成立,错;211(3)⨯≠⨯-//a bB :由,错;1||cos ,2||||||b a b b a a b bb b b ⋅⋅=⋅=-C :,则,错;2222445204025a b a a b b +=+⋅+=-+=25a b += D :与向量方向相同的单位向量是,对.a||a a = 故选:D9.如图,已知六棱锥P -ABCDEF 的底面是正六边形,PA ⊥平面ABC ,则下列结论正确的是A .PB ⊥ADB .平面PAB ⊥平面PBC C .直线BC ∥平面PAED .直线CD ⊥平面PAC【答案】D【分析】由题意,分别根据线面位置关系的判定定理和性质定理,逐项判定,即可得到答案.【详解】因为AD 与PB 在平面ABC 内的射影AB 不垂直,所以A 答案不正确.过点A 作PB 的垂线,垂足为H ,若平面PAB ⊥平面PBC ,则AH ⊥平面PBC ,所以AH ⊥BC.又PA ⊥BC ,所以BC ⊥平面PAB ,则BC ⊥AB ,这与底面是正六边形不符,所以B 答案不正确.若直线BC ∥平面PAE ,则BC ∥AE ,但BC 与AE 相交,所以C 答案不正确.故选D.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.10.已知函数若方程f (x )=m 有4个不同的实根x 1,x 2,x 3,x 4,且()()22log 113816,3x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩x 1<x 2<x 3<x 4,则()(x 3+x 4)=( )1211+x x A .6B .7C .8D .9【答案】C【分析】画出f (x )的图象,由对称性可得x 3+x 4=8,对数的运算性质可得x 1x 2=x 1+x 2,代入要求的式子,可得所求值.【详解】作出函数f (x )的图象如图,()221138163log x x x x x ⎧-≤⎪=⎨-+⎪⎩,<,>f (x )=m 有四个不同的实根x 1,x 2,x 3,x 4且x 1<x 2<x 3<x 4,可得x 3+x 4=8,且|log 2(x 1﹣1)|=|log 2(x 2﹣1)|,即为log 2(x 1﹣1)+log 2(x 2﹣1)=0,即有(x 1﹣1)(x 2﹣1)=1,即为x 1x 2=x 1+x 2,可得()(x 3+x 4)=x 3+x 4=8.1211x x +故选C .【点睛】本题考查分段函数的图象和应用,考查图象的对称性和对数的运算性质,属于中档题.二、填空题11.求值:______.sin 75cos 75︒⋅︒=【答案】.14【详解】分析:直接应用正弦函数的二倍角公式即可.详解: sin75cos75︒⋅︒=011sin150.24=故答案为.14点睛:本题主要考查同角三角函数的基本关系、二倍角的正弦公式的应用,属于基础题.一般,,这三者我们成为三姐妹,结合,可以知sin cos sin cos αααα+-,sin *cos αα22sin cos 1αα+=一求三.12.有一道数学难题,在半小时内,甲、乙能解决的概率都是,丙能解决的概率是,若3人试1213图独立地在半小时内解决该难题,则该难题得到解决的概率为___.【答案】56【分析】根据独立事件的乘法公式和概率的性质求解.【详解】设“在半小时内,甲、乙、丙能解决该难题”分别为事件A ,B ,C ,“在半小时内解该难题得到解决”为事件D ,则,,,表示事件“在半小时内没有解决该难题”,1()()2P A P B ==1()3P C =D A B C = D ,D ABC =所以,1121()()(((2236P D P ABC P A P B P C ====;5()1(6P D P D =-=故答案为:.5613,则这个圆锥的外接球体积为______________.【答案】【分析】由圆锥的侧面积得出圆锥的底面半径,设出球的半径,根据题意得出关系式求出球的半径,进而得出球的体积.【详解】解:设圆锥的底面半径为,r ,侧面积,解得,r=r =所以,圆锥的高h =设球半径为R ,球心为,其过圆锥的轴截面如图所示,O 由题意可得,,即,解得222()R h R r-+=22)3R R +=R =所以,.34R 3V π==故答案为:.三、双空题14.直线:截圆的弦为,则的最小值为l 10mx y -+=224640x y xy ++-+=MN MN __________,此时的值为__________.m 【答案】21【分析】设圆心到直线的距离为,则l dd然后由MN =MN ==进而利用均值不等式可求解【详解】可化简为,224640xy x y ++-+=22(2)(3)9x y ++-=设圆心到直线的距离为,则l d dMN====,当时,有最小值,当时,没===m>MNm<MN有最小值,所以,当且仅当时,等号成立,此时,1=mm1m=故答案为:①2;②1【点睛】关键点睛:解题关键在于求出MN==答案,属于中档题四、解答题15.某校对100名高一学生的某次数学测试成绩进行统计,分成五组,得到如图所示频率分布直方图.[50,60),[60,70),[70,80),[80,90),[90,100](1)求图中a的值;(2)估计该校高一学生这次数学成绩的众数和平均数;(3)估计该校高一学生这次数学成绩的75%分位数.【答案】(1)0.01a=(2)众数为,平均数为7575.5(3)84【分析】(1)由频率分布直方图的性质,列出方程,即可求解;可得,()0.020.0250.035101a a++++⨯=(2)根据频率分布直方图的中众数的概念和平均数的计算公式,即可求解;(3)因为50到80的频率和为0.65,50到90的频率和为0.9,结合百分数的计算方法,即可求解.【详解】(1)解:由频率分布直方图的性质,可得,()0.020.0250.035101a a ++++⨯=解得.0.01a =(2)解:根据频率分布直方图的中众数的概念,可得众数为,75平均数为.0.1550.2650.35750.25850.19575.5⨯+⨯+⨯+⨯+⨯=(3)解:因为50到80的频率和为0.65,50到90的频率和为0.9,所以75%分位数为.0.75(0.10.20.35)8010840.25-+++⨯=16.在中,ABC222.b c a +=(1)求的值;cos A (2)若,,求的值.2B A=b =a 【答案】(1)2).cos A =2【分析】(1)利用余弦定理可求得的值;cos A (2)利用二倍角的正弦公式求出的值,然后利用正弦定理可求得的值.sin B a 【详解】(1)因为在中,,所以,ABC 222b c a +=222c 2os b ca A cb =+=-=(2)由(1)知,,所以02A π<<sin A ==因为,所以2B A=sin sin 22sin cos 2B A A A ====又因为,由正弦定理,可得B =sin sin a bA B =sin 2.sin b Aa B===17.设为奇函数,a 为常数.131()log 1axf x x -=-(1)求a 的值.(2)若,不等式恒成立,求实数m 的取值范围.[2,4]x ∀∈1()3xf x x m⎛⎫+>+ ⎪⎝⎭【答案】(1);(2).1a =-89m <【解析】(1)由奇函数的性质,代入运算后可得,代入验证即可得解;()()0f x f x -+=1a =±(2)转化条件为对于恒成立,令131log 113xx x m x +<⎛⎫- ⎝+⎪⎭-[2,4]x ∀∈,结合函数的单调性求得即可得解.()[]131log ,2,4113xx g x x x x ⎛⎫-+=+⎝⎭∈- ⎪()min g x 【详解】(1)因为为奇函数,131()log 1axf x x -=-则1113331111()()log log log 1111ax ax ax ax f x f x x x x x +-⎡+-⎤⎛⎫⎛⎫-+=+= ⎪⎪⎢⎥------⎝⎭⎝⎭⎣⎦,()21231log 01ax x -==-则,所以即,()22111ax x -=-21a =1a =±当时,,不合题意;1a =()11331()log log 11xf x x -==--当时,,由可得或,满足题意;1a =-131()log 1x f x x +=-101xx +>-1x >1x <-故;1a =-(2)由可得,1()3xf x x m⎛⎫+>+ ⎪⎝⎭131log 113xx x m x ⎛⎫>+ +⎪⎭+⎝-则对于恒成立,131log 113xx x m x +<⎛⎫- ⎝+⎪⎭-[2,4]x ∀∈令,()[]131log ,2,4113xx g x x x x ⎛⎫-+=+⎝⎭∈- ⎪因为函数在上单调递减,12111x y x x +==+--[2,4]所以函数在上单调递增,131log 1xy x +=-[2,4]所以在上单调递增,所以,()g x [2,4]()()1min 32log 182993g x g -===+所以.89m <【点睛】关键点点睛:解决本题的关键是将恒成立问题转化为求函数的最值.18.如图,在正方体中,棱长为2.1111ABCD A B C D -(1)证明:;1AC BD ⊥(2)求二面角的平面角的余弦值.1D AC B --【答案】(1)证明见解析;(2)【分析】(1)连结交于点O ,证明平面,利用线面垂直的性质定理即可证明BD AC AC ⊥1BDD ;1AC BD ⊥(2)连结,证明是二面角的平面角.利用由余弦定理求出的111AD CD OD 、、1BOD ∠1D AC B --1BOD ∠大小即可.【详解】(1)连结交于点O ,在正方形中,,BD AC ABCD AC BD ⊥平面,平面,1DD ⊥ ABCD AC ⊂ABCD ,,,平面,1AC DD ∴⊥1DD BD D = 1DD BD ⊂1BDD 平面,又平面,.AC ∴⊥1BDD 1BD ⊂ 1BDD 1AC BD ∴⊥(2)连结.111AD CD OD 、、在正方体中,,O 是线段的中点,,1111ABCD A B C D -11AD CD =AC 1D O AC ⊥在中,,,ABC AB BC =BO AC ⊥是二面角的平面角.1BOD ∴∠1D AC B --在中,1BOD △2BD BO ====1BD ===1OD ===由余弦定理得:1cos BOD ∴∠==即二面角的平面角的余弦值为1D AC B --。
二项式定理(1)

x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。
2016-2017 学年第二学期高等数学AII 期末试卷(试卷+A3排版+解析)

¨D
¨D
(C) [f (x) + g(y)] d x d y = 0
13.
设由方程组
y + xyz
z+x =1
=
0
确定的隐函数
y
=
y(x)
及
z
=
z(x),求
dy dx ,
dz dx
.
14.
设连续函数
f (x)
满足方程
f (x)
=
ˆ
3x
f
() t d t + e2x,
求
f (x).
¨(
0
3
)
(
)
15. 计算曲面积分 I = x2 − yz d y d z + y2 − zx d z d x + 2z d x d y, 其中 Σ
xOy ydx
平面上一条简单光滑的正向闭曲线,原点在其所围闭区域之外,则
=
【】
C x2 + 4y2
(A) 4π
(B) 0
(C) 2π
(D) π
6. 微分方程 xy′′ − y′ = 0 满足条件 y′(1) = 1, y(1) = 0.5 的解为
【】
(A) y = x2 + 1 44
(B) y = x2 2
1,
√ − ¨x
⩽
y
⩽
√x},则正确的选x 项为
¨
【】
(A) f (y)g(x) d x d y = 0
(B) f (x)g(y) d x d y = 0
¨D
¨D
(C) [f (x) + g(y)] d x d y = 0
2016届吉林省长春市十一中高二下学期期末考试(2014.07)

吉林省长春市十一中高二下学期期末考试语文试题【全品试卷综析】本次试题为长春市十一高中2013-2014学年度高二下学期期末考试语文试题,作为期末试题,该卷有以下特色:本试卷共分基础、阅读、写作三部分。
基础题涉及成语、实词和教材部分,不管是哪一部分都紧扣教材内容,大部分完全来自教材内容。
阅读部分分为文言文阅读和现代文阅读,题目设置仿照高考题型。
只是现代文阅读出了《公主与美洲狮》《老八样》两篇小说阅读,明显为了考查高二小说的掌握情况。
作文难度不大,关键是立意,角度选好应该不难下笔。
作为高二期末考试试题,题目难度不大,但容量很大,与教材联系紧密,充分考查了考生的学习情况。
在题型的设置上不够全面,比如改错、表达题都未涉及。
总之,这是一份分量较重的期末检测题。
试题说明:本试卷共基础、阅读、写作三部分,满分150分,考试时间150分钟。
请将客观试题答案填涂在答题纸相应位置处;主观试题答案誊写到答题纸相应位置处,串位置及超出答题区域答题均不给分。
第Ⅰ部分基础知识(30分)一、成语部分。
(10分,每小题1分)1.下列加点的成语,使用不正确的一项是()A.2014巴西世界杯期间,为了方便人们按图索骥....,不遗漏每一场比赛的观看,报纸特别登出了转播时间表。
B.西昌是攀西地区的交通枢纽和物资集散地,也是攀西资源综合开发的重点区域,不.言而喻...,这里开发潜力巨大,具有广阔的发展前景。
C.现在少数媒体放着有重要新闻价值的素材不去挖掘,反倒抓住某些明星的一点逸闻就笔走龙蛇....,这种做法真是令人费解。
D.这些人简直不可理喻....,没有票硬要进来,终于被工作人员赶出去了。
【全品知识点】本题考查考生正确使用成语的能力,能力层次为E级(表达应用)。
【全品答案解析】答案:C 解析: A项“按图索骥”意为“索,找;骥,良马。
按照画像去寻求好马。
比喻墨守成规办事;也比喻按照线索去寻求”。
B项“不言而喻”意为“喻,了解,明白。
2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长春外国语学校2016-2017学年第二学期期末考试高二年级数学试卷(文科)出题人 : 陈怡安 审题人:孟艳萍本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
考试结束后,将答题卡交回。
注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A =( )A .{1,3, 5,6}B .{2,3,7}C .{2,4,7}D .{2,5,7} 2.i 是虚数单位,复数ii-131-=( ) A .i +2 B .i -2 C .i 21+- D .i 21--3.函数)35lg(lg x x y -+=的定义域是 ( )A . C .4. 下列函数中,在区间(0,+∞)上为增函数的是 ( ) A .y =ln(+2) B .y =1+-x C .y =x )21( D .x x y 1+=5.下列关系式中,成立的是 ( )A .4log 5110log 3031>⎪⎭⎫⎝⎛>B . 10log 514log 3103>⎪⎭⎫⎝⎛>C .03135110log 4log ⎪⎭⎫⎝⎛>>D .0331514log 10log ⎪⎭⎫⎝⎛>>6 有下列四个命题:(1)若0x y += , 则,x y 互为相反数”的逆命题; (2)全等三角形的面积相等”的否命题;(3)“若1q ≤ ,则220x x q ++=有实根”的逆否命题; (4)不等边三角形的三个内角相等”逆命题; 其中真命题为( ) A (1)(2)B (2)(3)C (1)(3)D (3)(4)7.函数2)(-+=x e x f x的零点所在的一个区间是 ( ) A . )1,2(--B .)0,1(-C . )1,0(D .)2,1(8.已知函数)(x f 满足)()()(b f a f b a f +=⋅且,)3(,)2(q f p f ==则)36(f 等于( ) A. )(2q p + B. )(q p p + C. 22q p D. 22q p + 9.函数y =)1cos sin +x x (的导数是 ( )A .x x cos 2cos -B .x x sin 2cos +C .x x cos 2cos +D .x x cos cos 2+ 10.曲线xy e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( )A.294eB. 22eC. 2eD. 22e11.若偶函数f ()在(-∞,0)内单调递减,则不等式f (-1)<f (lg )的解集是 ( )A .)(10,0B )(10,101 C )(+∞,101 D ),10(1010+∞ ),(12.函数f ()=2+ln 2的图象大致为( )第Ⅱ卷二、填空题:本题共4小题,每小题5分。
13.函数()1,(0)()(2),0x x f x f x x +≥⎧=⎨+<⎩,则)3(-f _________.14.若=4+3i ,则z|z |= . 15.圆的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数,0≤θ<2π),若Q (-2,23)是圆上一点,则对应的参数θ的值是 .16.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 . 三、解答题:共6小题,共70分.解答应写出必要证明过程或演算步骤.17. (本小题满分10分) 已知命题),0(012:,64:22>≥-+-≤-a a x x q x p 若非p 是q 的充分不必要条件,求a 的取值范围18.(本小题满分12分)已知)(x f 为定义在[]2,2- 上的奇函数,当[]0,2-∈x 时,函数解 析式a x x x f +-=23)(2)(R a ∈. (1)写出f ()在[]2,0上的解析式; (2)求f ()在[]2,2-上的值域.19. (本小题满分12分)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (1)求a 、b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.20. (本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否在犯错误的概率不超过0.01的前提下认为该地区的老年人需要志愿者提供帮助与性别有关? 附:))()()((22d b c a d c b a bc ad n K ++++-=()21. (本小题满分12分)在直角坐标系Oy 中,l 是过定点P (4,2)且倾斜角为α的直线;在 极坐标系(以坐标原点O 为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为θρcos 4=.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程; (2)若曲线C 与直线相交于不同的两点M ,N ,求|PM |+|PN |的取值范围.22. (本小题满分12分) 已知函数)(ln 21)(2R a x a x x f ∈+=. (1)若()x f 在[]e ,1上是增函数,求a 的取值范围; (2)若e x a a ≤≤=,1,证明:332)(x x f <.长春外国语学校2016-2017学年第二学期高二年级期中考试数学试卷(文科)参考答案一、选择题第二部分 13. 2 14.i 5354- 15.32π 16.034=--y x 第三部分17. 解:{}:46,10,2,|10,2p x x x A x x x ⌝->><-=><-或或{}22:2101,1,|1,1q x x a x a x a B x x a x a -+-≥≥+≤-=≥+≤-,或记或而,p q A⌝⇒∴B ,即12110,030a a a a -≥-⎧⎪+≤∴<≤⎨⎪>⎩18.解 (1)∵f ()为定义在[]2,2-上的奇函数,且f ()在=0处有意义,∴f (0)=0,即f (0)=a =0.∴a =0. 设∈,则-∈.∴f (-)=x x 23)2+-(. 又∵f (-)=-f (),∴-f ()=x x 232+.∴f ()=x x 232--.= (2)当∈,f ()=169432322—)(-=x x x -,∴1)2()(max ==f x f∵是奇函数)(x f ,[]1,1)(-的值域为x f . 19.解:(1)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(2)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>.所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<,解得 1c <-或9c >, 因此c 的取值范围为(1)(9)-∞-+∞,,.20.解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%.(2)由列联表中数据,得2观测值为 =-2200×300×70×430≈9.967.由于9.967>6.635,所以在犯错误的概率不超过0.01的前提下认为该地区的老年人需要志愿者提供帮助与性别有关. 21.解 (1)直线l 的参数方程为⎩⎪⎨⎪⎧x =4+t cos αy =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,所以C :2+y 2=4.(2)直线l 的参数方程为⎩⎪⎨⎪⎧x =4+t cos αy =2+t sin α(t 为参数),代入C :2+y 2=4,得t 2+4(sin α+cos α)t +4=0,则有⎩⎪⎨⎪⎧Δ=α+cos α2-16>0,t 1+t 2=-α+cos α,t 1·t 2=4,∴sin α·cos α>0,又α∈.22.解:(1)∵x a x x f +=)(' ,且在上是增函数,∴xax x f +=)('≥0恒成立, 即2x a -≥在上恒成立, ∴a≥1 (2)证明:当a=1时,xax x f +=)(' ∈. 令F()=22232ln 2132(x x x x x f -+=-),∴0)21)(1(21)(22≤++-=-+=xx x x x x x x F ,∴F() 在上是减函数, ∴F()≤F(1)03221<=- ∴∈时,232)(x x f < .。