2011-2012概率论与数理统计课件2.1

合集下载

《概率论与数理统计》课件-第2章随机变量及其分布 (1)

《概率论与数理统计》课件-第2章随机变量及其分布 (1)
则称X服从参数为λ的泊松分布, 记为 X ~ P() .
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
泊松分布的应用
“稠密性”问题(一段时间内,电话交换中心接到的呼叫次 数,公共汽车车站候车的乘客数,售票窗口买票的人数, 原子放射的粒子数,保险公司在一定时期内被索赔的次 数等)都服从泊松分布.
随机变量的分布函数
1.定义: 设X为一随机变量, x为任意实数, 称函数 F(x)=P{X≤x}为X的分布函数.
注: ① F(x)是一普通函数, 其定义域为 ,; ② F x的值为事件X x的概率; ③ F x可以完全地描述随机变量取值的规律性.
例如: Pa X b PX b PX a
连续型随机变量及概率密度函数
1.定义: 设X ~ F(x), 若存在一个非负可积的函数 f (x),
使 x R, 有
F ( x)
PX
x
x
f
(t)dt
,
则称X为连续型随机变量, f (x) 称为X的概率密度函数或
分布密度函数.
2.几何意义:
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
二、随机变量的概念
定义: 设试验E的样本空间为 , 若对于每个样本
点 , 均有一个实数 X ()与之对应, 这样就得
到一个定义在 上的单值函数 X X () , 称X为随
机变量.
X
样本空间
实数
注: ① 随机变量是一个定义在样本空间上的实函数, 它取值的随机性是由样本点的随机性引起的;
x 1
x0
0 x x
不是 (不满足规范性)

概率论与数理统计课件第2章

概率论与数理统计课件第2章

X0
1
pk 03.5
0.25
4
625
0.0625
X的分布函数为
2 0.125
0
x0
0.5
0 x1
F
(
x)
0.75 0.875
1 x 2 2 x3
0.9375 3 x 4
Байду номын сангаас
1
x4
0.0
分布函数 是累计概率
例3 有人对随机变量X的分布列表述如下:
X -1
0 12 3
P
a 0.16
a2 2a 0.3
第2章 随机变量及其分布
2.1 随机变量及其分布函数 2.2 离散型随机变量及其分布律 2.3 几种常见的离散型分布 2.4 连续型随机变量及其密度函数 2.5 正态分布 2.6 随机变量函数及其分布
2.1 随机变量及其分布函数
一、随机变量 二、随机变量的分布函数
信息管理学院 徐晔
一、随机变量

包含出现1点
包含出现1,2点
包含出现1,2,3点
包含出现1,2,3,4 点 包含出现1,2,3,4,5 点包含出现1,2,3,4,5,6 点
分布函数的性质
F(x) P(X x), ( x )
(1) F x 在 , 上是一个不减函数 ,
即对 x1 , x2 , 且 x1 x2 ,都有 F x1 F x2 ;
样本点
1, 4, 5 2, 3, 4 2, 3, 5 2, 4, 5 3, 4, 5
黑球数 X
1 2 2 1 1
由上表可以看出,该随机试验的每一个结果都对应
着变量 X 的一个确定的取值,因此变量 X 是样本空
间Ω上的函数:

概率论与数理统计课件第2章

概率论与数理统计课件第2章

2
2.2.1 随机变量 • 注意: 注意:
(1)随机变量定义于抽象的样本空间上,不是普 )随机变量定义于抽象的样本空间上, 通的实函数。 通的实函数。 (2)随机事件可以通过随机变量的各种取值状态 )随机事件可以通过随机变量的各种取值状态 取值范围来表示 来表示。 和取值范围来表示。
3
2.1.2 随机变量的分布函数 • 既然随机事件可以通过随机变量的各种取值状态和取值 范围来表示, 范围来表示,研究随机现象的统计规律性就转化为研究 随机变量取值的规律性,即取值的概率。 随机变量取值的规律性,即取值的概率。但概率是集合 函数,随机变量定义于抽象空间上,都不便于处理。 函数,随机变量定义于抽象空间上,都不便于处理。 • 能不能找到一种方法,使得我们研究随机变量取值的规 能不能找到一种方法, 律性可以转化为研究普通的实函数? 律性可以转化为研究普通的实函数?
2.1 随机变量及其分布函数 在前面的讨论中,只是孤立地考虑一些事件的概率, 在前面的讨论中,只是孤立地考虑一些事件的概率, 这种研究方法缺乏一般性, 这种研究方法缺乏一般性,而且不便于分析数学工具的引 为了这一目的,随机变量的引入具有非常重要的意义。 入,为了这一目的,随机变量的引入具有非常重要的意义。 随机变量的引入是概率论发展史上的重大事件。 随机变量的引入是概率论发展史上的重大事件。它使得研 究概率论的数学工具更丰富有力,从此, 究概率论的数学工具更丰富有力,从此,概率论的研究进 入一个崭新的天地。 . 入一个崭新的天地。
P{ X ≥ 1} = 5 / 9 ,求p =
x≤0 , 0 < x ≤1 x >1
,概率 P{0 ≤ X ≤ 0.25} =


X |< 0.5} ;2)分布函数 分布函数F(x) 分布函数

概率论与数理统计--第二章PPT课件

概率论与数理统计--第二章PPT课件
由概率的可列可加性得X的分布函数为
F(x) pk xk x
分布函数F(x)在x xk , 其跳跃值为pk P{X
对k 所1,有2,满足处x有k 跳 x跃的,k求和。
xk }
第26页/共57页
第四节 连续型随机变量及其概率密度
定义 对于随机变量X的分布函数F(x),如果存在非 负函数f (x),使对于任意实数有
售量服从参数为 10的泊松分布.为了以95%以上的
概率保证该商品不脱销,问商店在月底至少应进该商 品多少件? 解 设商店每月销售该种商品X件,月底的进货量为n件,
按题意要求为 PX n 0.95
由X服附从录的泊1松0的分泊布松表分知布k,140 1则k0!k有e1k0n01k00!k.9e1160 6
可以用泊松分布作近似,即
n
k
pk
1
p
nk
np k
k!
enp , k
0,1, 2,
.
例 4 为保证设备正常工作,需要配备一些维修工.如果各台设备
发生故障是相互独立的,且每台设备发生故障的概率都是 0.01.
试求在以下情况下,求设备发生故障而不能及时修理的概率.
(1) 一名维修工负责 20 台设备.
于是PX I P(B) Pw X (w) I.
随机变量的取值随试验的结果而定,而试验的各个 结果出现有一定的概率,因而随机变量的取值有一 定的概率.
按照随机变量可能取值的情况,可以把它们分为两 类:离散型随机变量和非离散型随机变量,而非离 散型随机变量中最重要的是连续型随机变量.因此, 本章主要研究离散型及连续型随机变量.
x
x
4. F(x 0) F(x) 即F(x)是右连续的
第23页/共57页

《概率论与数理统计》第二章 随机变量及其分布

《概率论与数理统计》第二章 随机变量及其分布

两点分布或(0-1)分布
对于一个随机试验,如果它的样本空间只包含两个
元素,即Ω={ω1,ω2},我们总能在Ω上定义一个服从 (0-1)分布的随机变量
来描述这个随机X试验X的(结)果 。10,,当当
1, 2.
例如,对新生婴儿的性别进行登记,检查产品的质量 是否合格,某车间的电力消耗是否超过负荷以及前面多 次讨论过的“抛硬币”试验等都可以用(0-1)分布的随 机变量来描述。(0-1)分布是经常遇到的一种分布。
设随机变量X只可能取0与1两个值,它的分布律是 P{X=k}=pk(1-p)1-k,k=0,1 (0<p<1), 则称X服从(0-1)分布或两点分布。
(0-1)分布的分布律也可写成
X
0
1
pk
1-p
p
二项分布与伯努利试验
考虑n重伯努里试验中,事件A恰出现k次的概率。 以X表示n重伯努利试验中事件A发生的次数,X是一个 随机变量,我们来求它的分布律。X所有可能取的值为o, 1,2,…,n.由于各次试验是相互独立的,故在n次试 验中,事件A发生k次的概率为
X
x1
x2

xn

pk
p1
p2

pn

在离散型随机变量的概率分布中,事件 “X=x1”, “X=x2”....“X=xk”,...构成一个完备事件 组。因此,上述概率分布具有以下两个性质:
(1) pk 0, k 1, 2,L
(2) pk 1
k
满足上两式的任意一组数 pk , k 1, 2,L 都可以成为 离散型随机变量的概率分布。对于集合xk , k 1, 2,L
P{ X
k}
20 k
(0.2)k

概率论与数理统计第二章

概率论与数理统计第二章

的球若干, 例2:设袋中有编号为 ,2,3,4的球若干,从中任意取出 :设袋中有编号为1, , , 的球若干 一个,假设取到球的概率与球上的号码成反比,求取到球 一个,假设取到球的概率与球上的号码成反比,求取到球 的号码X的分布 的分布。 的号码 的分布。 解:X可以取值为 ,2,3,4。 可以取值为1, , , 。 可以取值为
P { X = 1} = 5 %
X P
0 95%
1 5%
两点分布:只有两个可能取值的随机变量所服从的分布。 两点分布:只有两个可能取值的随机变量所服从的分布。 随机变量所服从的分布 概率函数: 概率函数:P{X=xk}=pk k=1,2 0-1分布:只有 和1两个值的随机变量所服从的分布。 - 分布 只有0和 两个值的随机变量所服从的分布 分布: 两个值的随机变量所服从的分布。 概率函数: 概率函数:P{X=k}=pk(1-p) 1-k k=0,1
用随机变量表示事件 例1:某时间段内寻呼台收到的寻呼次数记作 。“收到 次 :某时间段内寻呼台收到的寻呼次数记作X。 收到20次 寻呼” 寻呼” 可写成 {X=20}。 。 “收到的寻呼次数介于30到100之间”可写作{30<X<100}。 收到的寻呼次数介于 到 之间”可写作 } 之间 例2:从一大批产品中随机抽取一件,记该产品的寿命为 :从一大批产品中随机抽取一件, Y(小时 则{Y>1500}表示“产品的寿命大于 小时),则 表示“ 小时” 小时 表示 产品的寿命大于1500小时”。 小时
−∞
−∞
0
2
∴ A= 3 . 8
(2)用概率密度函数定义求 用概率密度函数定义求
3 3 2 1 P(0≤ X<1) = ∫0 f ( x)dx = ∫0 ( 2 x− 4 x )dx = 2 ,

概率论与数理统计第二章随机变量及其分布

概率论与数理统计第二章随机变量及其分布

设随机变量X服从参数为 分布,即 例2.3.1.设随机变量 服从参数为 的0-1分布 即: 设随机变量 服从参数为0.3的 分布 X P 0 1 ,求X的分布函数 求 的分布函数 的分布函数.
i
0.3 0.7
解:(1) 当x<0时,F(x)=P{X≤x}= 时
∑P{X = x }=0 (2)当0≤x<1时,F(x)=P{X≤x}= ∑P{X = x } =P{x=0}=0.3 当 时 (3)当1≤x时,F(x)=P{X≤x}= ∑P{X = x } 当 时
xi ≤x xi ≤x i xi ≤x i
=P{X=0}+P{X=1}=1 F(x) 分布函数图形如下 1 0.3 0 1 x
3.离散型随机变量 的分布函数的性质 离散型随机变量X的分布函数的性质 离散型随机变量 (1)分布函数是分段函数 分段区间是由 的取值点划分成的 分布函数是分段函数,分段区间是由 分布函数是分段函数 分段区间是由X的取值点划分成的 左闭右开区间; 左闭右开区间 (2)函数值从 到1逐段递增 图形上表现为阶梯形跳跃递增 函数值从0到 逐段递增 图形上表现为阶梯形跳跃递增; 逐段递增,图形上表现为阶梯形跳跃递增 函数值从 (3)函数值跳跃高度是 取值区间中新增加点的对应概率值 函数值跳跃高度是x取值区间中新增加点的对应概率值 函数值跳跃高度是 取值区间中新增加点的对应概率值; F(x) (4)分布函数是右连续的 分布函数是右连续的; 分布函数是右连续的 1 (5) P{X=xi}=F(xi)-F(xi-0) 0.3
记为 X~B(n,p)
m P X = m) = Cn pm(1− p)n−m (
m=0,1,2,...,n
随机变量X所服从的分布称为二项分布,n为实验次数 注:(1)随机变量 所服从的分布称为二项分布 为实验次数 随机变量 所服从的分布称为二项分布 为实验次数; (2)该实验模型称为 次独立重复实验模型或 重Bernoulli实验模型 该实验模型称为n次独立重复实验模型或 实验模型; 该实验模型称为 次独立重复实验模型或n重 实验模型 (3)若A和Ac是n重Bernoulli实验的两个对立结果 成功”可以指二 若 和 实验的两个对立结果,“成功 重 实验的两个对立结果 成功” 者中任意一个,p是 成功”的概率 者中任意一个 是“成功”的概率. 例如:一批产品的合格率为 有放回地抽取 有放回地抽取4次 每次一件 每次一件, 例如 一批产品的合格率为0.8,有放回地抽取 次,每次一件 取得合格 一批产品的合格率为 品件数X,以及取得不合格品件数 服从分布为二项分布 品件数 以及取得不合格品件数Y服从分布为二项分布 以及取得不合格品件数 服从分布为二项分布, X对应的实验次数为 对应的实验次数为n=4, “成功”即取得合格品的概率为 成功” 对应的实验次数为 成功 即取得合格品的概率为p=0.8,

概率论与数理统计第2章随机变量及其分布

概率论与数理统计第2章随机变量及其分布

1 4
)0
(
3 4
)10
C110
(
1 4
)(
3 4
)9
0.756.
(2)因为
P{X
6}
C160
(
1)6 4
(
3 4
)4
0.016
,
即单靠猜测答对 6 道题的可能性是 0.016,概率很小,所
以由实际推断原理可推测,此学生是有答题能力的.
二项分布 b(n, p) 和 (0 1) 分布 b(1, p ) 还有一层密切关
P{X 4} P(A1 A2 ) P(A1)P(A2 ) 0.48 ,
P{X 6} P(A1A2 ) P(A1)P(A2 ) 0.08 , P{X 10} P(A1A2 ) P(A1)P(A2 ) 0.32 , 即 X 的分布律为
X 0 4 6 10
P 0.12 0.48 0.08 0.32
点 e, X 都有一个数与之对应. X 是定义在样本空间 S 上的
一个实值单值函数,它的定义域是样本空间 S ,值域是实数
集合 {0,1,2},使用函数记号将 X写成
0, e TT , X=X (e) 1, e HT 或TH ,
2, e HH.

例2.2 测试灯泡的寿命.

样本空间是 S {t | t 0}.每一个灯泡的实际使用寿命可
(2)若一人答对 6 道题,则推测他是猜对的还是有答 题能力.
解 设 X 表示该学生靠猜测答对的题数,则
X
~
b(10,
1) 4
.
(1) X 的分布律为
P{X
k}
C1k0
(
1)k 4
(
3 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从 而 F ( x1 ) F ( x 2 ) 。
F ( x) F (a) ; (3) F ( x ) 右连续,即 xlim a

( 4) lim F ( x ) 1 , lim F ( x ) 0 。
x x
3 引入分布函数 F ( x ) 的意义:
(1) 完 整 刻 画 随 机 变 量 X 的 统 计 特 性 。
P(W 2 2) 1 / 3 ; P (W 5) 5 / 6 ; P(W 6) 1 ;
二.分布函数
Distribution function 定义 2-2 设 X 为一随机变量, x R ,令
F ( x ) P{ X ( , x ]} P{ X x}
§2.1 随机变量及其分布函数
为研究随机现象,我们做随机试验,试验所有可能 的结果称之为样本空间。里面的元素(试验结果)可 能是数字形式的,也可能是非数字形式的。
A:数字形式
[引例 1] 120 急救中心接到的呼叫次数。
{0,1, 2,..., n ,...}
[引例 2] 掷一枚骰子,观察出现的点数。
(1)把样本空间数量化。 (2)用随机变量的取值来描述随机事件。 (3)用随机变量表示试验结果。
总之,随机变量将形形色色的样本空间、样本点统 一化、数量化,使之与数轴上的集合或点对应。 就可以用微积分等数学工具对随机事件的概率进行数
学推理与计算,完成对随机试验规律的研究!
[ 引 例 ] 设 W (e) 表 示 掷 骰 子 的 点 数 , 则 有 P(W 10) 0 ; P(W 3) 0 ; P (W 2) 1 6 ;
同样完成了结果和数字之间的对应。 1, e b Y (e) 0, e g
2, 3, 4, 5, 6} 。 [ 引 例 2] 掷 骰 子 试 验 , {1, W (e) ( e e 1,, 2 3,,,) 456
定义 2-1 设 E 是随机试验,它的样本空间为 {e} , 如果对于每一个 e ,都有一个实数 X ( e ) 和它对应,且 对于任何实数 x , {X (e) x}具有确定的概率,则称 X ( e) (简记为 X )为随机变量。
当 a b 时 , P{a X b} F ( b ) F ( a )
事 实 上 , 由 于 {a X b} {X b} {X a} ,
而 {X b} {X a} , 故
P {a X b} P { X b} P { X a } F ( b ) F ( a )
2 2 ( B) a 3 , b 3 1 3 ( D) a 2 , b 2
第二章 随机变量及其分布
§2.1 随机变量及其分布函数 §2.2 离散型随机变量及概率分布 §2.3 连续型随机变量及概率分布 §2.4 多维随机变(向)量及其分布 §2.5 随机变量的独立性
§2.6 随机变量函数的分布
基 本 要 求





基 本 要 求
1 2 3 4 5 理解随机变量、分布函数概念及性质。 理解概率分布的概念及其性质。 会利用概率分布及分布函数计算事件概率。 掌握六种常用分布,会查泊松、正态分布表。 了解多维随机变量的概念、联合分布函数及其性质; 了解联合概率分布及其性质,并会用它们计算有关事 件的概率。 6 熟悉边缘分布及与联合分布的关系,了解条件分布。 7 理解随机变量独立性的概念及应用独立性进行计算。 8 会求简单随机变量函数的概率分布及两个随机变量的 函数(和、最大值、最小值)的分布。
若 e H , 则 记 数 字 1;若 e T , 则 记 数 字 0。
这样就完成了结果和数字之间的对应。 1, e H X (e) 0, e T [ 引例 6] 新婚夫妇,样本空间 {b, g } 。
若 e b , 则 记 数 字 1 ;若 e g , 则 记 数 字 0 。
则称 F ( x ) 为 r v X 的分布函数。
2 性质: ( 1) 0 F ( x ) 1; ( 2) F ( x ) 是 一 个 单 调 不 降 函 数 ; 事 实 上 , 若 x1 x 2 , 则
F ( x 2 ) F ( x1 ) P { x号 : X , Y , Z , , , X 1 , X 2 ,... X n ,... 。
注 1:把样本空间数量化。 注 2:和普通函数的异同是什么?
(1)都有确定的对应法则。 (2)定义域不同。
(3)随机变量的取值具有不确定性,取到某个值具 有一定的概率。
注 3:引入随机变量的意义是什么?
[ 引 例 3] 从 一 批 灯 泡 抽 一 只 , 测 其 寿 命 。
{t t 0}
{1, 2,..., 6}
[引例 4] 今天来听课的学生数。
{1, 2,...120}
B:非数字形式
[引例 5] 掷一枚均匀的硬币一次,观察正反面出现的 情况。 {H , T }





1.随机变量的分布函数概念 及性质。 2.概率分布(离散型随机变量 的分布律,连续型随机变量的概 率密度)的概念及性质。 3.概率分布与分布函数的关系 及正态分布的有关计算。 4.二维随机变量的边缘分布以 及与联合分布的关系。 5.随机变量独立性及应用。 6.简单随机变量函数的分布。
1.随机变量的分布函 数、概率分布及其关 系。 2.二维随机变量的条 件分布及计算。 3.随机变量函数的分 布及两个独立随机变 量的函数的分布。
(2)过渡作用。 X F ( x ) 数学工具




1.设 F1 ( x ) 与 F2 ( x) 分别为随机变量 X 1 与 X 2 的分布 函数,为使
F ( x) aF1 ( x) bF2 ( x )
是某一随机变量的分布函数,在下列给定的各组数 值中应取 (A)
3 2 ( A) a 5 , b 5 1 3 ( C) a 2 , b 2
[引例 6] 新婚夫妇的第一个孩子。
{b , g }
[引例 7] 从一批产品中抽一只,测其质量。
{合格,废品} 数学是从数量上来反映客观世界的。 为了利用已知
的数学工具来研究随机现象, 需要把样本空间数量化,
把样本空间中的元素和数字联系起来。
[ 引 例 5] 掷 硬 币 试 验 , 样 本 空 间 { H , T }
相关文档
最新文档