人教版九年级数学上册教案:22.2 用函数观点看一元二次方程(2)
人教版九年级数学上册22.2.1《二次函数与一元二次方程》说课稿

人教版九年级数学上册22.2.1《二次函数与一元二次方程》说课稿一. 教材分析《二次函数与一元二次方程》是人教版九年级数学上册第22章的第2节,这一节内容是在学生已经学习了函数、方程等基础知识的基础上进行讲解的。
二次函数和一元二次方程是中学数学中的重要内容,也是高考的必考内容。
本节内容主要介绍了二次函数的定义、性质以及一元二次方程的解法。
通过本节内容的学习,使学生能够掌握二次函数和一元二次方程的基本概念和性质,能够运用一元二次方程解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于函数、方程等概念已经有了初步的认识。
但是,对于二次函数和一元二次方程的性质和应用可能还不是很清楚。
因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握二次函数和一元二次方程的概念和性质。
三. 说教学目标1.知识与技能:理解二次函数的定义和性质,掌握一元二次方程的解法,能够运用二次函数和一元二次方程解决实际问题。
2.过程与方法:通过观察、实验、探究等方法,培养学生的动手能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 说教学重难点1.教学重点:二次函数的定义和性质,一元二次方程的解法。
2.教学难点:二次函数和一元二次方程的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、教学模具、实物模型等辅助教学。
六. 说教学过程1.导入:通过一个实际问题,引入二次函数和一元二次方程的概念。
2.讲解:讲解二次函数的定义和性质,演示一元二次方程的解法。
3.实践:让学生动手操作,进行实验和探究,加深对二次函数和一元二次方程的理解。
4.应用:通过解决实际问题,运用二次函数和一元二次方程的知识。
5.总结:对本节内容进行总结,强化学生的记忆。
七. 说板书设计板书设计要简洁明了,能够突出二次函数和一元二次方程的概念和性质。
人教版数学九年级上册《22.2二次函数与一元二次方程(第2课时)》教案

22.2二次函数与一元二次方程第2课时教学目标:1.复习巩固用函数y=ax2+bx+c的图象求方程ax2+bx+c=0的解。
2.让学生体验函数y=x2和y=bx+c的交点的横坐标是方程x2=bx+c的解的探索过程,掌握用函数y=x2和y=bx+c图象交点的方法求方程ax2=bx+c的解。
重点难点:重点;用函数图象法求方程的解以及提高学生综合解题能力是教学的重点。
难点:提高学生综合解题能力,渗透数形结合的思想是教学的难点。
教学过程:一、复习巩固1.如何运用函数y=ax2+bx+c的图象求方程ax2+bx+c=0的解?2.完成以下两道题:(1)画出函数y=x2+x-1的图象,求方程x2+x-1=0的解。
(精确到0.1)(2)画出函数y=2x2-3x-2的图象,求方程2x2-3x-2=0的解。
二、探索问题问题1:(问题4)育才中学初三(3)班学生在上节课的作业中出现了争论:求方程x2=错误!未定义书签。
x十3的解时,几乎所有学生都是将方程化为x2-错误!未定义书签。
x-3=0,画出函数y=x2-错误!未定义书签。
x-3的图象,观察它与x轴的交点,得出方程的解。
唯独小刘没有将方程移项,而是分别画出了函数y=x2和y=错误!未定义书签。
x+2的图象,如图(3)所示,认为它们的交点A、B的横坐标-错误!和2就是原方程的解.提问: 1. 这两种解法的结果一样吗?2.小刘解法的理由是什么?3.函数y=x2和y=bx+c的图象一定相交于两点吗?你能否举出例子加以说明?4,函数y=x2和y=bx+c的图象的交点横坐标一定是一元二次方程x2=bx+c的解吗?5.如果函数y=x2和y=bx+c图象没有交点,一元二次方程x2=bx+c的解怎样?三、做一做利用图4,运用小刘方法求下列方程的解,并检验小刘的方法是否合理。
(1)x2+x-1=0(精确到0.1); (2)2x2-3x-2=0。
四、综合运用已知抛物线y1=2x2-8x+k+8和直线y2=mx+1相交于点P(3,4m)。
九年级数学: 22.2用函数观点看一元二次方程(二)说课稿

22.2用函数观点看一元二次方程(二)大家好,今天我说课的题目是《用函数观点看一元二次方程》一、教材分析1、地位和作用本节课是新人教版九年级下册第22章二次函数的第二节,是学生在学习和掌握了二次函数的图象和性质以及一元二次方程的基础上来研究二次函数与一元二次方程的关系。
本节课和八年级上册第十一章一次函数中的第三节:用函数观点看方程(组)与不等式比较类似,因此学生对函数与方程之间的联系已不再陌生。
通过本节课的学习,学生可以进一步加深对二次函数的图象和性质的理解,是后面学习二次函数与实际问题的基础,同时让学生进一步体会数形结合思想,也是以后高中学习一元二次不等式的基础。
2、教材内容在这节课中,首先通过小球飞行高度问题展示二次函数与一元二次方程的联系,然后进一步举例说明,从而得出二次函数与一元二次方程的关系,最后通过例题介绍用函数的图象求一元二次方程的根的方法。
二、学情分析根据学生现状,在八年级时已接触过用函数观点看方程(组)与不等式,因此学生对函数与方程之间的联系已不再陌生,且二次函数和一元二次方程是初中数学的难点问题。
因此,在教学中,我抓住这些特点,从学生已学的知识入手,引导学生在充分理解函数和一元二次方程关系的基础上,体会数形结合的思想。
三、教学目标四、教学重点难点知识技建立一元二次方程与二次函数的关系,通过图象,体会数与形的完美结合.五、教学设计说明二次函数为一元二次方程的求解提供了一个强有力的工具,寻找一元二次方程与二次函数的关系,是解二次方程的关键.本节课从实际问题出发,利用二次函数及图象特征探讨一元二次方程根的问题.这样设计,既激发了学生学习热情,同时使学生积极主动地投入到探究活动中.在探究一元二次方程与二次函数的关系中,教师引导学生,帮助学生建立数与形的结合,体会数形结合的思想.通过例题巩固用函数图象判断方程根的情况,提高学生的解题能力,激发他们对问题的探索精神,并且体会函数在方程中的应用.最后师生共同总结归纳,加深对二次函数与一元二次方程的理解与应用,提高应用数学的能力.以学生为主体,通过学生自主探索和合作交流,真正理解和掌握二次函数与一元二次方程之间的关系。
《22.2二次函数与一元二次方程》说课稿

22.2 二次函数与一元二次方程》说课稿一、教材分析1、教材的地位和作用《二次函数与一元二次方程》是人教版九年级上册第22 章第二节的教学内容.它既是一次函数与一元一次方程关系的延续. 又为高中数学求一元二次不等式的解集以及三个“二次” 的关系进一步探讨奠定基础.2、重难点的确点重点:从数和形两个角度理解二次函数与一元二次方程的关系;掌握二次函数与一元二次方程的互相转化问题.难点:灵活运用二次函数与一元二次方程的关系解决问题;利用函数的图象求一元二次方程的近似解.二、目标分析知识与技能:掌握二次函数与一元二次方程的联系.数学思考:运用类比、猜想的数学方法解决实际问题.解决问题:经历探索二次函数与一元二次方程关系的过程,认识到事物的互相联系与转化.情感态度:让学生在合作探究中培养学生合作学习的良好意识和团结协作的精神.三、学情分析已形成的:1、能理解二次函数的性质、图象,有一定看图识图能力,并能画一次函数、二次函数的草图.2、能熟练求解一元一次方程与一元二次方程的根.有待形成、提升的:1、由特殊到一般的归纳总结能力.2、理解二次函数与一元二次方程的联系和研究时互相转化的数学思想及数形结合思想.3、用函数的观点解决问题的应用意识.四、教法学法分析1、教法分析在本节课中我采用情景教学法,观察发现法和探讨法为主,多媒体演示为辅的教学方法进行教学. 以学生活动为主线,引导学生在观察、操作、合作、交流等具体过程中突破本节课的难点,在学习活动中,尽量让每一位学生积极参与,最终让他们学会学习.2、学法分析通过观察发现、合作交流、归纳总结完成本节课的教学.五、教学过程(一)复习引入活动1:问题1:一次函数与一元一次方程有怎样的联系?师生活动:老师引导,学生回答,最后分别从数与形这两个角度得出一次函数与一元一次方程的关系.问题2:类比猜想一下二次函数与一元二次方程的联系?师生活动:老师展示问题,学生回答.得出当二次函数y=aX+bx+c(a工的函数值y=0时,则得到了一个一元二次方程ax2+bx+c=0(a工;0若把一元二次方程ax2+bx+c=0(a丰0)中的常量0变为变量y,则得到二次函数y=ax2+bx+c(a工.0)设计的意图:在学生已有的数学基础上,采用类比的学习方法,探索新知.(二)探究新知活动2:4问题:如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线. 如果不考虑空气阻力,小球的飞行高度h(单位:m)飞行时间t(单位:s)2之间具有函数关系:h= 20t-5t 2问:(1)小球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)小球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5 m ?4 小球从飞出到落地要用多少时间?师生活动:第(1)问师生共同分析,先用代数的方法解答,然后引导学生用图象法对此问进行解释和分析. 第(2)问由学生分析并展示过程,同时让学生用图象演示为什只有一个时间小球的飞行高度达到20m?接着老师又引导学生从二次函数的性质(即二次函数的最大值)来说明为什么只有一个时间?剩下的学生独立完成,学生代表分析并展示过程.设计的意图:让学生用数与形这两种不同的方法解决实际问题.活动3:小组合作问题:根据刚才例题的讲解,类比一次函数与一元一次方程的联系,现在以小组为单 位对二次函数与 x 轴的交点的横坐标与一元二次方程的根的关系进行讨论,并请代表展示 结果•二次函数的图象与 x 轴交点横坐标与一元二次方程根的关系:(1)"数”:二次函数y=ax 2+bx+c ( 0)的函数值y=0时相应的自变量的值即为一元二次方 程 ax 2+bx+c=0 (0)的根;(2) "形”:二次函数 y=ax 2+bx+c ( a * 0)的图象与 x 轴交点的横坐标.即为一元二次方程 ax 2+bx+c=0 (a丰 0)的根.设计的意图:通过学生合作交流, 得出二次函数y=ax 2+bx+c(a 丰0)的图象和x 轴交点的 横坐标与一元二次方程 ax 2+bx+c=0(a 丰0)的根的关系,同时培养学生合作学习的能力•活动4:观察发现(1 )观察二次函数①y=x 2+x-2,②y=x 2-6x+9,③y=x 2-x+1的图象,回答下列问题: 函数与x 轴的交点的个数是:① ______________ 个② _________ 个③ _________ 个• 函数与x 轴交点的横坐标为:① _________________② ____________ ③x 2+x-2=0,② X 2-6X +9=0,③ x 2-x+1=0,则元二次方程根的情况: ①厶_0,有_根 ②' _0,有_根,③△ _0,有 _______________________ 根. 一元二次方程的解是:① ___________ ,②, ③ •思考:二次函数y=a/+bx+c(a 工与)x 轴交点情况与一元二次方程 ax 2+bx+c=0(a 却的根的情况有怎样的联系?师生活动: 老师展示问题,学生观察填空•通过观察(1)与(2)的结果,对思考问题进行合作讨论设计意图:通过学生讨论、观察,得出判别式和二次函数与 系.并让学生掌握特殊到一般的学习方法 •(三) 归纳新知(2)已知一元二次方程①x 轴交点个数的情况的关 -2 -1^*11 2 X-2设计意图:培养学生语言表述能力,及用表格法归纳知识的能力。
2022年人教版九年级数学上册第二十二章二次函数教案 二次函数与一元二次方程

22.2 二次函数与一元二次方程一、教学目标【知识与技能】了解二次函数与一元二次方程之间的联系,掌握二次函数图象与x轴的位置关系可由对应的一元二次方程的根的判别式进行判别,了解用图象法确定一元二次方程的近似解的方法.【过程与方法】通过对实际问题情境的思考感受二次函数与对应的一元二次方程的联系,体会用函数的观点看一元二次方程的思想方法.【情感态度与价值观】进一步增强学生的数形结合思想方法,增强学生的综合解题能力.二、课型新授课三、课时1课时四、教学重难点【教学重点】二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0之间的联系,利用二次函数的图象求一元二次方程的近似解.【教学难点】一元二次方程根的情况与二次函数图象与x轴位置关系的联系.五、课前准备课件、三角尺、铅笔等.六、教学过程(一)导入新课出示课件2:以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m )与飞行时间t(单位:s)之间具有函数关系h=20t-5t2.(1)小球的飞行高度能否达到15m?如果能,需要多少飞行时间?(2)小球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)小球的飞行高度能否达到20.5m?为什么?(4)小球从飞出到落地要用多少时间?(二)探索新知探究一二次函数与一元二次方程的关系出示课件5:⑴小球的飞行高度能否达到15m?如果能,需要多少飞行时间?学生板演:解:15=20t-5t2,t2-4t+3=0,解得t1=1,t2=3.∴当球飞行1s或3s时,它的高度为15m.教师问:你能结合图形,指出为什么在两个时间求的高度为15m吗?学生独立思考.出示课件6:(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?学生板演:解:20=20t-5t2,t2-4t+4=0,解得t1=t2=2.故当球飞行2秒时,它的高度为20米.教师问:你能结合图形,指出为什么只在一个时间球的高度为20m?学生独立思考.出示课件7:(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?学生板演:解:20.5=20t-5t2,t2-4t+4.1=0,因为(-4)2-4×4.1<0,所以方程无解.即球的飞行高度达不到20.5米.教师问:你能结合图形指出为什么球不能达到20.5m的高度?学生独立思考.出示课件8:(4)球从飞出到落地要用多少时间?学生板演:解:小球飞出时和落地时的高度均为0m,0=20t-5t2,t2-4t=0,解得t1=0,t2=4.当球飞行0秒和4秒时,它的高度为0米.即0秒时球地面飞出,4秒时球落回地面.教师问:从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?(出示课件9)学生答:一般地,当y取定值且a≠0时,二次函数为一元二次方程.教师举例说明:二次函数与一元二次方程关系.(出示课件10)例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,可以解一元二次方程-x2+4x=3(即x2-4x+3=0).反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4x+3 的值为0,求自变量x的值.出示课件12:例已知二次函数:y=2x2-3x-4的函数值为1,求自变量x的值,可以看作解一元二次方程.反之,解一元二次方程2x2-3x-5=0,又可以看作已知二次函数的函数值为0时自变量x的值.学生答:2x2-3x-4=1;y=2x2-3x-5解之得:x1=-1,x2=2.5出示课件13:练一练:1.二次函数y=x2-3x+2,当x=1时,y= ;当y=0时,x= .2.抛物线y=4x2-1与y轴的交点坐标为;与x轴的交点坐标为.学生自主思考后口答:1.0;1或22.(0,-1);(0.5,0)和(-0.5,0)探究二:利用二次函数与x轴的交点讨论一元二次方程的根的情况教师问:观察思考下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(出示课件14)(1)y=x2+x-2;(2)y=x2-6x+9;(3)y=x2-x+1.学生自主思考后,教师加以指导:先画出函数图象---图象与x轴交点横坐标是多少--对应一元二次方程的根是多少.(出示课件15)教师问:由上述问题,你可以得到什么结论呢?(出示课件16)学生思考后,师生共同总结:方程ax2+bx+c=0的解就是抛物线y=ax2+bx+c与x 轴公共点的横坐标.当抛物线与x轴没有公共点时,对应的方程无实数根.反过来,由一元二次方程的根的情况,也可以确定相应的二次函数的图象与x轴的位置关系.出示课件19:观察图象,完成下表:生观察后,独立完成表格.答案:0个;无;x2-x+1=0无解1个;3;x2-6x+9=0,x1=x2=32个;-2,1;x2+x-2=0,x1=-2,x2=1师生共同总结:二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系(出示课件20)出示课件21:例1 已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).(1)求证:此抛物线与x轴总有交点;(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值.师生共同解决如下:解:(1)证明:∵m≠0,∴Δ=[-(m+2)]2-4m×2=m2+4m+4-8m=(m-2)2.∵(m-2)2≥0,∴Δ≥0,因此抛物线与x轴总有两个交点;(2)令y=0,则(x-1)(mx-2)=0,即x-1=0或mx-2=0,解得x1=1,x2=2.当mm为正整数1或2时,x2的值为整数,因为当m为2时,Δ=0,抛物线与x轴只有一个交点,所以正整数m的值为1.出示课件22:已知抛物线y=kx2+2x-1与x轴有两个交点,则k的取值范围是.学生自主解决.221=0kx x +-函数与轴有两个交点,即有两个不相等的实数根x20024(101)00.k k k k k ∴∆>≠-⨯->≠>-≠且,即且则且,出示课件23-26:例2 如图,丁丁在扔铅球时,铅球沿抛物线268-10105x y x =++运行,其中x 是铅球离初始位置的水平距离,y 是铅球离地面的高度.(1)当铅球离地面的高度为2.1m 时,它离初始位置的水平距离是多少? (2)铅球离地面的高度能否达到2.5m,它离初始位置的水平距离是多少? (3)铅球离地面的高度能否达到3m ?为什么?学生自主思考后,师生共同解决.解:⑴由抛物线的表达式得2682.1-,10105x x =++即2650.x x -+= 解得12=1=5.x x ,即当铅球离地面的高度为2.1m 时,它离初始位置的水平距离是1m 或5m.⑵由抛物线的表达式得2682.5-,10105x x =++即2690x x -+=. 解得x 1=x 2=3.即当铅球离地面的高度为2.5m 时,它离初始位置的水平距离是3m.⑶由抛物线的表达式得2683-,10105x x =++即26140.x x -+=因为2=-6-41140∆⨯⨯<(),所以方程无实根.所以铅球离地面的高度不能达到3m.出示课件28:如图设水管AB 的高出地面2.5m,在B 处有一自动旋转的喷水头,喷出的水呈抛物线状,可用二次函数y=-0.5x 2+2x+2.5描述,在所示的直角坐标系中,求水流的落地点D 到A 的距离是多少?教师分析:根据图象可知,水流的落地点D 的纵坐标为0,横坐标即为落地点D 到A 的距离.即y=0 .学生独立解答:根据题意得 -0.5x 2+2x+2.5=0, 解得x 1=5,x 2=-1(不合题意舍去). 答:水流的落地点D 到A 的距离是5m. 探究三:利用二次函数求一元二次方程的近似解出示课件29:求一元二次方程的根的近似值(精确到0.1).教师分析:一元二次方程x ²-2x-1=0 的根就是抛物线 y=x ²-2x-1 与x 轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x 轴的交点的横坐标,这种解一元二次方程的方法叫做图象法.师生共同解答.0122=--x x出示课件30,31:解:画出函数y=x²-2x-1 的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器进行探索,见下表:观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与-0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这时取x=-0.4或x=-0.5都符合要求.但当x=-0.4时更为接近0.故x1≈-0.4.同理可得另一近似值为x2≈2.4.教师总结归纳:一元二次方程的图象解法(出示课件32)利用二次函数的图象求一元二次方程2x2+x-15=0的近似根.(1)用描点法作二次函数y=2x2+x-15的图象;(2)观察估计二次函数y=2x2+x-15的图象与x轴的交点的横坐标,由图象可知,图象与x轴有两个交点,其横坐标一个是-3,另一个在2与3之间,分别约为-3和2.5(可将单位长再十等分,借助计算器确定其近似值);(3)确定方程2x2+x-15=0的解;由此可知,方程2x2+x-15=0的近似根为:x1≈-3,x2≈2.5.出示课件33:根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.26学生口答:C(三)课堂练习(出示课件34-41)1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0 B.2a+b<0C.3a+c<0 D.ax2+bx+c﹣3=0有两个不相等的实数根2.已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c =0的近似根为( )A.x1≈-2.1,x2≈0.1 B.x1≈-2.5,x2≈0.5C.x1≈-2.9,x2≈0.9 D.x1≈-3,x2≈13.若二次函数y=-x 2+2x+k 的部分图象如图所示,且关于x 的一元二次方程-x 2+2x+k=0的一个解x 1=3,则另一个解x 2= .4.一元二次方程3x 2+x -10=0的两个根是x 1=-2,x 2=53,那么二次函数 y= 3x 2+x -10与x 轴的交点坐标是 .5.若一元二次方程20x mx n -+=无实根,则抛物线2y x mx n =-+图象位于( )A.x 轴上方B.第一、二、三象限C.x 轴下方D.第二、三、四象限6.二次函数y =kx 2-6x +3的图象与x 轴有交点,则k 的取值范围是( )A .k<3B .k<3且k ≠0C .k ≤3D .k ≤3且k ≠07.已知函数y =(k -3)x ²+2x +1的图象与x 轴有交点,求k 的取值范围.8.某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时距地面209米,与篮框中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮框距地面3米.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?参考答案:1.C2.B3.-14.(-2,0)(5,0)35.A6.D7.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0. ∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0.∴k≤4且k≠3.综上所述,k的取值范围是k≤4.8.解:(1)由条件可得到出手点、最高点和篮框的坐标分别为A(0,20),B(4,4),C(7,3),其中B是抛物线的顶点.9(x 设二次函数关系式为y=a(x﹣h)2+k,将点A、B的坐标代入,可得y=﹣19﹣4)2+4.(7﹣4)2+4=3,左边=右边,即点将点C的坐标代入上式,得左边=3,右边=﹣19C在抛物线上.所以此球一定能投中.⑵将x=1代入函数关系式,得y=3.因为3.1>3,所以盖帽能获得成功.(四)课堂小结1.抛物线y=ax2+bx+c与一元二次方程ax2+bx+c=0有何关联?你能不画出抛物线y=ax2+bx+c而了解此抛物线与x轴的交点情况吗?你是怎样做的?2.你能利用抛物线来确定相应的方程的根的近似值吗?从中你有哪些体会?(五)课前预习预习下节课(22.3第1课时)的相关内容.七、课后作业1.教材习题22.2第1、2、3、4、6题.2.配套练习册内容八、板书设计:九、教学反思:本课时教学首先通过具体情况让学生感受用方程思想方法来解决函数问题的思路,然后通过图象来探究一元二次方程的根和二次函数与x轴交点之间的关联.这样整个教学过程充分利用了学生已形成的方程、函数间的关系来类比引导挖掘、探索二次函数与一元二次方程的关系.此外,通过观察图象直观理解、解答练习以及实际观察分析都是必经的途径与方法,重在让学生自主体会.。
人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》

人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》一. 教材分析人教版数学九年级上册第22.2节《二次函数与一元二次方程》是本册教材的重要内容,主要介绍了二次函数与一元二次方程之间的关系。
通过本节课的学习,学生能够理解二次函数的图像与一元二次方程的解法,从而更好地解决实际问题。
二. 学情分析九年级的学生已经学习了函数和方程的基础知识,对于函数的概念、图像和性质有一定的了解。
但是,对于二次函数与一元二次方程之间的联系,以及如何运用二次函数的性质解决实际问题,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解二次函数与一元二次方程之间的关系,并通过实例演示如何运用二次函数解决实际问题。
三. 教学目标1.理解二次函数的图像与一元二次方程的解法之间的关系。
2.学会运用二次函数的性质解决实际问题。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.二次函数的图像与一元二次方程的解法之间的关系。
2.如何运用二次函数的性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索、发现、总结二次函数与一元二次方程之间的关系。
2.运用多媒体课件辅助教学,直观展示二次函数的图像和一元二次方程的解法,帮助学生更好地理解知识点。
3.结合实际例子,让学生亲自动手操作,运用二次函数解决实际问题。
4.采用小组讨论、合作交流的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的多媒体课件和教学素材。
2.准备一些实际问题,用于让学生运用二次函数解决。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何运用数学知识解决实际问题。
例如,假设一个物体从静止开始做匀加速直线运动,已知初速度为0,加速度为2m/s²,求物体运动5秒后的位移。
2.呈现(10分钟)呈现二次函数y=ax²+bx+c的图像,同时呈现相应的一元二次方程ax²+bx+c=0的解法。
人教版数学九年级上册22.2《用函数观点看一元二次方程(1)》教学设计

人教版数学九年级上册22.2《用函数观点看一元二次方程(1)》教学设计一. 教材分析人教版数学九年级上册第22.2节《用函数观点看一元二次方程(1)》的内容,是在学生学习了函数和一元二次方程的基础上进行的。
本节课的主要内容是引导学生从函数的观点来认识和理解一元二次方程,让学生通过观察、分析和探究,体会一元二次方程与二次函数之间的关系,提高学生解决问题的能力。
二. 学情分析九年级的学生已经学习过函数和一元二次方程的知识,对二次函数的图像和性质有一定的了解。
但在运用函数的观点来解决实际问题时,还需要进一步的引导和培养。
因此,在教学过程中,要注重激发学生的学习兴趣,引导学生主动参与,培养学生的观察能力、分析能力和解决问题的能力。
三. 教学目标1.让学生理解一元二次方程与二次函数之间的关系,会用函数的观点来认识和解决一元二次方程问题。
2.培养学生的观察能力、分析能力和解决问题的能力。
3.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:引导学生从函数的观点来认识和理解一元二次方程。
2.难点:如何引导学生运用函数的观点来解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、分析和探究,发现一元二次方程与二次函数之间的关系。
2.运用案例教学法,让学生在实际问题中体会和运用函数的观点解决问题。
3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的一元二次方程和二次函数的案例,用于引导学生分析和讨论。
2.准备多媒体教学设备,用于展示和分析一元二次方程和二次函数的图像。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生从函数的观点来认识和理解一元二次方程。
例如,展示一些二次函数的图像,让学生观察图像与一元二次方程之间的关系。
2.呈现(10分钟)教师展示一些一元二次方程,让学生尝试用函数的观点来解释和解决这些问题。
教师引导学生观察一元二次方程的解与二次函数的零点之间的关系。
人教版九年级数学上册22.2.1《二次函数与一元二次方程》教学设计

人教版九年级数学上册22.2.1《二次函数与一元二次方程》教学设计一. 教材分析人教版九年级数学上册第22.2.1节《二次函数与一元二次方程》是整个初中数学的重要内容,也是难点内容。
本节主要介绍二次函数的性质,以及如何从二次函数图像上找到一元二次方程的根。
教材通过实例引导学生探究二次函数与一元二次方程之间的关系,培养学生的动手操作能力和抽象思维能力。
二. 学情分析九年级的学生已经掌握了函数和方程的基础知识,具备一定的逻辑思维能力和探究能力。
但是对于二次函数与一元二次方程之间的联系,还需要通过实例和操作来进一步理解和掌握。
学生在学习过程中可能对一些概念和性质的理解存在困难,需要教师耐心引导和讲解。
三. 教学目标1.理解二次函数的性质,掌握二次函数与一元二次方程之间的关系。
2.能够从二次函数图像上找到一元二次方程的根。
3.培养学生的动手操作能力和抽象思维能力。
四. 教学重难点1.二次函数的性质和图像。
2.二次函数与一元二次方程之间的关系。
3.如何从二次函数图像上找到一元二次方程的根。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究二次函数与一元二次方程之间的关系。
2.利用多媒体课件和实物模型,直观展示二次函数的图像和性质。
3.采用小组合作学习的方式,让学生在讨论和操作中掌握知识。
六. 教学准备1.多媒体课件和实物模型。
2.练习题和答案。
3.小组合作学习的指导方案。
七. 教学过程1.导入(5分钟)利用多媒体课件展示二次函数的图像,引导学生观察和描述二次函数的性质。
2.呈现(10分钟)提出问题:二次函数与一元二次方程之间有什么关系?如何从二次函数图像上找到一元二次方程的根?3.操练(10分钟)让学生分组操作,利用实物模型和多媒体课件进行探究,尝试解答问题。
4.巩固(10分钟)教师引导学生总结二次函数的性质和一元二次方程的解法,加深学生对知识的理解。
5.拓展(10分钟)出示一些有关二次函数与一元二次方程的应用题,让学生小组合作解决问题,提高学生的应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.2 用函数的观点看一元二次方程(2)
教学目标:
1.复习巩固用函数y =ax 2+bx +c 的图象求方程ax 2+bx +c =0的解。
2.让学生体验函数y =x 2和y =bx +c 的交点的横坐标是方程x 2=bx
+c 的解的探索过程,掌握用函数y =x 2和y =bx +c 图象交点的方法求方
程ax 2=bx +c 的解。
重点难点:
重点;用函数图象法求方程的解以及提高学生综合解题能力是教学的重点。
难点:提高学生综合解题能力,渗透数形结合的思想是教学的难点。
教学过程:
一、复习巩固
1.如何运用函数y =ax 2+bx +c 的图象求方程ax 2+bx +c=0的解?
2.完成以下两道题:
(1)画出函数y =x 2+x -1的图象,求方程x 2+x -1=0的解。
(精确到
0.1)
(2)画出函数y =2x 2-3x -2的图象,求方程2x 2-3x -2=0的解。
二、探索问题
问题1:(问题4)育才中学初三(3)班学生在上节课的作业中出现了争
论:求方程x 2=12
x 十3的解时,几乎所有学生都
是将方程化为x 2-12x -3=0,画出函数y =x 2-12
x -3的图象,观察它与x 轴的交点,得出方程的解。
唯独小刘没有将方程移项,而是分别画出了函数y
=x 2和y =12
x +2的图象,如图(3)所示,认为它们的交点A 、B 的横坐标-32
和2就是原方程的解. 提问: 1. 这两种解法的结果一样吗? 2.小刘解法的理由是什么?
3.函数y =x 2和y =bx +c 的图象一定相交于两点吗?你能否举出例子
加以说明?
4,函数y =x 2和y =bx +c 的图象的交点横坐标一定是一元二次方程
x 2=bx +c 的解吗?
5.如果函数y =x 2和y =bx +c 图象没有交点,一元二次方程x 2=bx
+c 的解怎样?
三、做一做
利用图4,运用小刘方法求下列方程的解,并检验小刘的方法是否合理。
(1)x 2+x -1=0(精确到0.1); (2)2x 2-3x -2=0。
四、综合运用
已知抛物线y1=2x 2-8x +k +8和直线y2=mx +1相交于点P(3,4m)。
(1)求这两个函数的关系式;
(2)当x 取何值时,抛物线与直线相交,并求交点坐标。
解:(1)因为点P(3,4m)在直线y2=mx +1上,所以有4m =3m +1,解得m =1
所以y1=x +1,P(3,4)。
因为点P(3,4)在抛物线y1=2x 2-8x
+k +8上,所以有
4=18-24+k +8 解得 k =2 所以y1=2x 2-8x +10
(2)依题意,得⎩⎨⎧y =x +1y =2x2-8x +10 解得⎩⎨⎧x1=3y1=4 ⎩⎨⎧x2=1.5y2=2.5
所以抛物线与直线的两个交点坐标分别是(3,4),(1.5,2.5)。
五、小结: 1.如何用画函数图象的方法求方程韵解?
2.你能根据方程组:⎩⎨⎧y =x2y =bx +c
的解的情况,来判定函数y =x 2
与y =bx +c 图象交点个数吗?请说说你的看法。
六、作业:
1. 利用函数的图象求下列方程的解:(1)x 2+x -6=0; (2)2x 2-3x -5
=0 2.利用函数的图象求下列方程的解。
(1)、⎩⎪⎨⎪⎧y =x2y =12
x +3 , (2)、⎩⎨⎧y =x2+x y =5x -4 3.填空。
(1)抛物线y =x 2-x -2与x 轴的交点坐标是______,与y 轴的交点坐
标是______。
(2)抛物线y =2x 2-5x +3与y 轴的交点坐标是______,与x 轴的交点
坐标是______。
4.已知抛物线y =x 2+x -k 与直线y =-2x +1的交点的纵坐标为3。
(1)求抛物线的关系式;
(2)求抛物线y =x 2+x -k 与直线y =-2x +1的另一个交点坐标.
5.已知抛物线y =ax 2+bx +c 与直线y =x -2相交于(m ,-2),(n ,
3)两点,且抛物线的对称轴为直线x =3,求函数的关系式。
教后反思:。