高中物理动量守恒定律解题技巧(超强)及练习题(含答案)及解析

合集下载

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)及解析

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)及解析

22
2
2
联立①③④解得:R= v02 64g
点睛:该题考查动量守恒定律的应用,要求同学们能正确分析物体的运动情况,列出动量
守恒以及能量转化的方程;注意使用动量守恒定律解题时要规定正方向.
8.如图,两块相同平板 P1、P2 置于光滑水平面上,质量均为 m=0.1kg.P2 的右端固定一 轻质弹簧,物体 P 置于 P1 的最右端,质量为 M=0.2kg 且可看作质点.P1 与 P 以共同速度 v0=4m/s 向右运动,与静止的 P2 发生碰撞,碰撞时间极短,碰撞后 P1 与 P2 粘连在一起,P 压缩弹簧后被弹回(弹簧始终在弹性限度内).平板 P1 的长度 L=1m ,P 与 P1 之间的动摩擦 因数为 μ=0.2,P2 上表面光滑.求:
(1)P1、P2 刚碰完时的共同速度 v1; (2)此过程中弹簧的最大弹性势能 Ep. (3)通过计算判断最终 P 能否从 P1 上滑下,并求出 P 的最终速度 v2. 【答案】(1)v1=2m/s (2)EP=0.2J (3)v2=3m/s 【解析】
【分析】
【详解】
(1)P1、P2 碰撞过程,由动量守恒定律 mv0 2mv1
由动量守恒得:2mV2=mv1(1 分)
损失的动能为:ΔE′=
1 2
mv
2 1

1 2
×2mV
2 2
(2
分)
联立解得:ΔE′= 1 (1 3 ) × 22
mv
2 0
因为 ΔE′=f·x(1 分),
可解得射入第二钢板的深度 x 为:
(2 分)
子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以 系统为研究对象由能量守恒列式求解
高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)及解析

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)及解析

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)及解析

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.3.(16分)如图,水平桌面固定着光滑斜槽,光滑斜槽的末端和一水平木板平滑连接,设物块通过衔接处时速率没有改变。

高中物理动量守恒定律解题技巧(超强)及练习题(含答案)

高中物理动量守恒定律解题技巧(超强)及练习题(含答案)

高中物理动量守恒定律解题技巧(超强)及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)【答案】25m/s【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:()20120M v M m M v +=++共,解得5m /s v =共以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得25m /s v =考点:考查了动量守恒定律的应用【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解2.牛顿的《自然哲学的数学原理》中记载,A 、B 两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B 对A 的速度,接近速度是指碰撞前A 对B 的速度.若上述过程是质量为2m 的玻璃球A 以速度v 0碰撞质量为m 的静止玻璃球B ,且为对心碰撞,求碰撞后A 、B 的速度大小. 【答案】v 0v 0【解析】设A 、B 球碰撞后速度分别为v 1和v 2 由动量守恒定律得2mv 0=2mv 1+mv 2 且由题意知=解得v 1=v 0,v 2=v 0视频3.氡是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氡气会随气体进入肺脏,氡衰变时放出α射线,这种射线像小“炸弹”一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.若有一静止的氡核22286Rn 发生α衰变,放出一个速度为0v 、质量为m 的α粒子和一个质量为M 的反冲核钋21884Po 此过程动量守恒,若氡核发生衰变时,释放的能量全部转化为α粒子和钋核的动能。

高中物理动量守恒定律解题技巧(超强)及练习题(含答案)

高中物理动量守恒定律解题技巧(超强)及练习题(含答案)

高中物理动量守恒定律解题技巧( 超强 ) 及练习题 ( 含答案 )一、高考物理精讲专题动量守恒定律1.如下图,质量分别为m1和 m2的两个小球在圆滑水平面上分别以速度v1、 v2同向运动,并发生对心碰撞,碰后 m2被右边墙壁原速弹回,又与 m1碰撞,再一次碰撞后两球都静止.求第一次碰后 m1球速度的大小 .【答案】【分析】设两个小球第一次碰后m1和 m2速度的大小分别为和,由动量守恒定律得:( 4 分)两个小球再一次碰撞,(4 分)得:( 4 分)本题考察碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态依据动量守恒的公式列式可得2.如下图,圆滑水平直导轨上有三个质量均为m的物块 A、 B、 C,物块 B、 C 静止,物块 B 的左边固定一轻弹簧(弹簧左边的挡板质量不计);让物块 A 以速度 v0朝 B 运动,压缩弹簧;当A、 B 速度相等时, B 与 C 恰巧相碰并粘接在一同,而后持续运动.假定 B 和 C 碰撞过程时间极短.那么从 A 开始压缩弹簧直至与弹簧分别的过程中,求.(1) A、 B 第一次速度同样时的速度大小;(2) A、 B 第二次速度同样时的速度大小;(3)弹簧被压缩到最短时的弹性势能大小【答案】( 1) v0( 2) v0(3)【分析】试题剖析:( 1)对 A、B 接触的过程中,当第一次速度同样时,由动量守恒定律得,mv0=2mv 1,解得 v1=v0(2)设 AB 第二次速度同样时的速度大小v2,对 ABC 系统,依据动量守恒定律:mv0=3mv2解得 v2= v0(3) B 与 C接触的瞬时, B、 C 构成的系统动量守恒,有:解得 v3= v0系统损失的机械能为当 A、 B、C 速度同样时,弹簧的弹性势能最大.此时v2= v0依据能量守恒定律得,弹簧的最大弹性势能考点:动量守恒定律及能量守恒定律【名师点睛】本题综合考察了动量守恒定律和能量守恒定律,综合性较强,重点合理地选择研究的系统,运用动量守恒进行求解。

高中物理动量守恒定律解题技巧分析及练习题(含答案)及解析

高中物理动量守恒定律解题技巧分析及练习题(含答案)及解析

高中物理动量守恒定律解题技巧分析及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s2.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.3.如图,质量分别为m 1=1.0kg 和m 2=2.0kg 的弹性小球a 、b ,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v 0=0.10m/s 沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t =5.0s 后,测得两球相距s =4.5m ,则刚分离时,a 球、b 球的速度大小分别为_____________、______________;两球分开过程中释放的弹性势能为_____________.【答案】①0.7m/s, -0.2m/s ②0.27J 【解析】试题分析:①根据已知,由动量守恒定律得联立得②由能量守恒得代入数据得考点:考查了动量守恒,能量守恒定律的应用【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒定律与能量守恒定律分析解题4.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.5.一轻质弹簧一端连着静止的物体B ,放在光滑的水平面上,静止的物体A 被水平速度为v 0的子弹射中并且嵌入其中,随后一起向右运动压缩弹簧,已知物体A 的质量是物体B 的质量的34,子弹的质量是物体B 的质量的14,求:(1)物体A 被击中后的速度大小; (2)弹簧压缩到最短时B 的速度大小。

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。

某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2m∆ 的压缩气体,每级总质量均为2M,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。

喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。

【答案】116.54m【解析】对模型甲: ()00M m v mv =-∆-∆甲21085=200.5629v h m m g =≈甲甲对模型乙第一级喷气: 10022m mM v v ∆∆⎛⎫=-- ⎪⎝⎭乙 解得: 130m v s=乙2s 末: ‘11=10m v v gt s-=乙乙22111'=402v v h m g-=乙乙乙对模型乙第一级喷气:‘120=)2222M M m m v v v ∆∆--乙乙( 解得: 2670=9mv s 乙 22222445=277.10281v h m m g =≈乙乙可得: 129440+=116.5481h h h h m m ∆=-≈乙乙甲。

2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图,足够大的光滑水平面上固定着一竖直挡板,挡板前L 处静止着质量m 1=1kg 的小球A ,质量m 2=2kg 的小球B 以速度v 0运动,与小球A 正碰.两小球可看作质点,小球与小球及小球与挡板的碰撞时间忽略不计,且碰撞中均没有机械能损失.求(1)第1次碰撞后两小球的速度;(2)两小球第2次碰撞与第1次碰撞之间的时间; (3)两小球发生第3次碰撞时的位置与挡板的距离. 【答案】(1)043v 013v 方向均与0v 相同 (2)065L v (3)9L【解析】 【分析】(1)第一次发生碰撞,动量守恒,机械能守恒;(2)小球A 与挡板碰后反弹,发生第2次碰撞,分析好位移关系即可求解;(3)第2次碰撞过程中,动量守恒,机械能守恒,从而找出第三次碰撞前的初始条件,分析第2次碰后的速度关系,位移关系即可求解. 【详解】(1)设第1次碰撞后小球A 的速度为1v ,小球B 的速度为2v ,根据动量守恒定律和机械能守恒定律:201122m v m v m v =+222201122111222m v m v m v =+ 整理得:210122m v v m m =+,212012m m v v m m -=+解得1043v v =,2013v v =,方向均与0v 相同. (2)设经过时间t 两小球发生第2次碰撞,小球A 、B 的路程分别为1x 、2x ,则有11x v t =,22x v t =由几何关系知:122x x L += 整理得:065Lt v =(3)两小球第2次碰撞时的位置与挡板的距离:235x L x L =-=以向左为正方向,第2次碰前A 的速度043A v v =,B 的速度为013B v v =-,如图所示.设碰后A 的速度为A v ',B 的速度为B v '.根据动量守恒定律和机械能守恒定律,有1212A B A B m v m v m v m v ''+=+; 2222121211112222A B AB m v m v m v m v ''+=+ 整理得:12212()2A B A m m v m v v m m -+'=+,21112()2B A B m m v m v v m m -+'=+解得:089A v v '=-,079B v v '=设第2次碰后经过时间t '发生第3次碰撞,碰撞时的位置与挡板相距x ',则B x x v t '''-=,A x x v t '''+=整理得:9x L '=4.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。

高考物理动量守恒定律解题技巧(超强)及练习题(含答案)及解析

高考物理动量守恒定律解题技巧(超强)及练习题(含答案)及解析

高考物理动量守恒定律解题技巧(超强)及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.2.如图,质量分别为m 1=1.0kg 和m 2=2.0kg 的弹性小球a 、b ,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v 0=0.10m/s 沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t =5.0s 后,测得两球相距s =4.5m ,则刚分离时,a 球、b 球的速度大小分别为_____________、______________;两球分开过程中释放的弹性势能为_____________.【答案】①0.7m/s, -0.2m/s ②0.27J 【解析】试题分析:①根据已知,由动量守恒定律得联立得②由能量守恒得代入数据得考点:考查了动量守恒,能量守恒定律的应用【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒定律与能量守恒定律分析解题3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.牛顿的《自然哲学的数学原理》中记载,A 、B 两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B 对A 的速度,接近速度是指碰撞前A 对B 的速度.若上述过程是质量为2m 的玻璃球A 以速度v 0碰撞质量为m 的静止玻璃球B ,且为对心碰撞,求碰撞后A 、B 的速度大小. 【答案】v 0v 0【解析】设A 、B 球碰撞后速度分别为v 1和v 2 由动量守恒定律得2mv 0=2mv 1+mv 2 且由题意知=解得v 1=v 0,v 2=v 0视频5.[物理─选修3-5] (1)天然放射性元素23994Pu 经过 次α衰变和 次β衰变,最后变成铅的同位素 。

高考物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析

高考物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析

高考物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离; (3)当物块a 相对小车静止时在小车上的位置到O 点的距离. 【答案】(1)1m/s (2) (3) x =0.125m【解析】试题分析:(1)对物块a ,由动能定理得:代入数据解得a 与b 碰前速度:;a 、b 碰撞过程系统动量守恒,以a 的初速度方向为正方向, 由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a 以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B 端距挡板的距离:;(3)由能量守恒得:,解得滑块a 与车相对静止时与O 点距离:;考点:动量守恒定律、动能定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理动量守恒定律解题技巧(超强)及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.牛顿的《自然哲学的数学原理》中记载,A、B两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B对A的速度,接近速度是指碰撞前A对B的速度.若上述过程是质量为2m的玻璃球A以速度v0碰撞质量为m 的静止玻璃球B,且为对心碰撞,求碰撞后A、B的速度大小.【答案】v0v0【解析】设A、B球碰撞后速度分别为v1和v2由动量守恒定律得2mv0=2mv1+mv2且由题意知=解得v1=v0,v2=v0视频3.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极端的时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止。

车运动时受到的摩擦阻力恒为车所受重力的k倍,重力加速度为g,若车与车之间仅在碰撞时发生相互作用,碰撞时间很短,忽略空气阻力,求:(1)整个过程中摩擦阻力所做的总功;(2)人给第一辆车水平冲量的大小;(3)第一次与第二次碰撞系统功能损失之比。

【答案】【解析】略4.光滑水平面上质量为1kg 的小球A ,以2.0m/s 的速度与同向运动的速度为1.0m/s 、质量为2kg 的大小相同的小球B 发生正碰,碰撞后小球B 以1.5m/s 的速度运动.求:(1)碰后A 球的速度大小;(2)碰撞过程中A 、B 系统损失的机械能. 【答案】 1.0/A v m s '=,0.25E J =损 【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度. (2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A 的初速度方向为正,由动量守恒定律得:m A v A +m B v B =m A v′A +m B v′B 代入数据解:v′A =1.0m/s②碰撞过程中A 、B 系统损失的机械能量为:代入数据解得:E 损=0.25J答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为0.25J .【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以正确解题,应用动量守恒定律解题时要注意正方向的选择.5.如图所示,木块m 2静止在高h=0.45 m 的水平桌面的最右端,木块m 1静止在距m 2 左侧s 0=6.25 m 处.现木块m 1在水平拉力F 作用下由静止开始沿水平桌面向右运动,与 m 2碰前瞬间撤去F ,m 1和m 2发生弹性正碰.碰后m 2落在水平地面上,落点距桌面右端水平 距离s=l .2 m .已知m 1=0.2 kg ,m 2 =0.3 kg ,m 1与桌面的动摩擦因素为0.2.(两个木块都可以视为质点,g=10 m /s 2)求:(1)碰后瞬间m 2的速度是多少? (2)m 1碰撞前后的速度分别是多少? (3)水平拉力F 的大小?【答案】(1)4m/s (2)5m/s ;-1m/s (3)0.8N 【解析】试题分析:(1)m 2做平抛运动,则:h=12gt 2; s=v 2t ; 解得v 2=4m/s(2)碰撞过程动量和能量守恒:m 1v=m 1v 1+m 2v 212m 1v 2=12m 1v 12+12m 2v 22代入数据解得:v=5m/s v 1=-1m/s (3)m 1碰前:v 2=2as11F m g m a μ-=代入数据解得:F=0.8N考点:动量守恒定律;能量守恒定律;牛顿第二定律的应用【名师点睛】此题关键是搞清两个物体的运动特征,分清物理过程;用动量守恒定律和能量守恒定律结合牛顿定律列出方程求解.6.在光滑的水平面上,质量m 1=1kg 的物体与另一质量为m 2物体相碰,碰撞前后它们的位移随时间变化的情况如图所示。

求:(1)碰撞前m 1的速度v 1和m 2的速度v 2; (2)另一物体的质量m 2。

【答案】(1)s m 41=v ,02=v ;(2)kg 32=m 。

【解析】试题分析:(1)由s —t 图象知:碰前,m 1的速度s m 40-40-161==∆∆=t s v ,m 2处于静止状态,速度02=v(2)由s —t 图象知:碰后两物体由共同速度,即发生完全非弹性碰撞 碰后的共同速度s m 14121624=--=∆∆=t s v 根据动量守恒定律,有:v m m v m )(2111+=另一物体的质量kg 331112==-⋅=m vvv m m 考点:s —t 图象,动量守恒定律7.如图所示,内壁粗糙、半径R =0.4 m 的四分之一圆弧轨道AB 在最低点B 与光滑水平轨道BC 相切。

质量m 2=0.2 kg 的小球b 左端连接一轻质弹簧,静止在光滑水平轨道上,另一质量m 1=0.2 kg 的小球a 自圆弧轨道顶端由静止释放,运动到圆弧轨道最低点B 时对轨道的压力为小球a 重力的2倍,忽略空气阻力,重力加速度g =10 m/s 2。

求:(1)小球a 由A 点运动到B 点的过程中,摩擦力做功W f ;(2)小球a 通过弹簧与小球b 相互作用的过程中,弹簧的最大弹性势能E p ; (3)小球a 通过弹簧与小球b 相互作用的整个过程中,弹簧对小球b 的冲量I 。

【答案】(1) (2)E P =0.2J (3) I =0.4N ⋅s【解析】(1)小球由静止释放到最低点B 的过程中,据动能定理得小球在最低点B时:据题意可知,联立可得(2)小球a与小球b把弹簧压到最短时,弹性势能最大,二者速度相同,此过程中由动量守恒定律得:由机械能守恒定律得弹簧的最大弹性势能E p=0.4J小球a与小球b通过弹簧相互作用的整个过程中,a球最终速度为,b求最终速度为,由动量守恒定律由能量守恒定律:根据动量定理有:得小球a通过弹簧与小球b相互作用的整个过程中,弹簧对小球b的冲量I的大小为I=0.8N·s8.如图所示,在水平面上有一弹簧,其左端与墙壁相连,O点为弹簧原长位置,O点左侧水平面光滑,水平段OP长L=1m,P点右侧一与水平方向成的足够长的传送带与水平面在P点平滑连接,皮带轮逆时针转动速率为3m/s,一质量为1kg可视为质点的物块A 压缩弹簧(与弹簧不栓接),使弹簧获得弹性势能,物块与OP段动摩擦因数,另一与A完全相同的物块B停在P点,B与传送带的动摩擦因数,传送带足够长,A与B的碰撞时间不计,碰后A.B交换速度,重力加速度,现释放A,求:(1)物块A.B第一次碰撞前瞬间,A的速度(2)从A.B第一次碰撞后到第二次碰撞前,B与传送带之间由于摩擦而产生的热量(3)A.B能够碰撞的总次数【答案】(1)(2)(3)6次【解析】试题分析:(1)设物块质量为m,A与B第一次碰前的速度为,则:解得:(2)设A.B第一次碰撞后的速度分别为,则,碰后B 沿传送带向上匀减速运动直至速度为零,加速度大小设为, 则:,解得:运动的时间,位移此过程相对运动路程此后B 反向加速,加速度仍为,与传送带共速后匀速运动直至与A 再次碰撞, 加速时间为 位移为此过程相对运动路程 全过程生热(3)B 与A 第二次碰撞,两者速度再次互换,此后A 向左运动再返回与B 碰撞,B 沿传送带向上运动再次返回,每次碰后到再次碰前速率相等,重复这一过程直至两者不再碰撞.则对A.B 和弹簧组成的系统,从第二次碰撞后到不再碰撞:解得第二次碰撞后重复的过程数为n=2.25,所以碰撞总次数为N=2+2n=6.5=6次(取整数)考点:动能定理;匀变速直线运动的速度与时间的关系;牛顿第二定律【名师点睛】本题首先要理清物体的运动过程,其次要准确把握每个过程所遵守的物理规律,特别要掌握弹性碰撞过程,动量和机械能均守恒,两物体质量相等时交换速度9.如图所示,一质量为M 的平板车B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M,A 、B 间粗糙,现给A 和B 以大小相等、方向相反的初速度v0,使A 开始向左运动,B 开始向右运动,最后A 不会滑离B ,求:(1)A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向. 【答案】(1)0M mv M m-+(2)2022M m v Mg μ- 【解析】试题分析:(1)由A 、B 系统动量守恒定律得: Mv0—mv0=(M +m )v ① 所以v=v0方向向右(2)A 向左运动速度减为零时,到达最远处,设此时速度为v′,则由动量守恒定律得:Mv0—mv0="Mv′"00Mv mv v M-'=方向向右 考点:动量守恒定律;点评:本题主要考查了动量守恒定律得直接应用,难度适中.10.如图所示,固定点O 上系一长L =0.6 m 的细绳,细绳的下端系一质量m =1.0 kg 的小球(可视为质点),原来处于静止状态,球与平台的B 点接触但对平台无压力,平台高h =0.80 m ,一质量M =2.0 kg 的物块开始静止在平台上的P 点,现对物块M 施予一水平向右的初速度v 0,物块M 沿粗糙平台自左向右运动到平台边缘B 处与小球m 发生正碰,碰后小球m 在绳的约束下做圆周运动,经最高点A 时,绳上的拉力恰好等于小球的重力,而物块M 落在水平地面上的C 点,其水平位移x =1.2 m ,不计空气阻力,g =10 m/s 2.(1)求物块M 碰撞后的速度大小;(2)若平台表面与物块M 间的动摩擦因数μ=0.5,物块M 与小球的初始距离为x 1=1.3 m ,求物块M 在P 处的初速度大小. 【答案】(1)3.0m/s (2)7.0m/s 【解析】试题分析:(1)碰后物块M 做平抛运动,设其平抛运动的初速度为V① (2分)S = Vt ② (2分) 得:=" 3.0" m/s ③ (2分)(2)物块与小球在B 处碰撞,设碰撞前物块的速度为V 1,碰撞后小球的速度为V 2,由动量守恒定律:MV 1= mV 2+ MV ⑥ (2分)碰后小球从B 处运动到最高点A 过程中机械能守恒,设小球在A 点的速度为V A :⑦(2分)小球在最高点时依题给条件有:⑧ (2分)由⑦⑧解得:V 2=" 6.0" m/s ⑨ (1分) 由③⑥⑨得:=" 6.0" m/s ⑩ (1分)物块M 从P 运动到B 处过程中,由动能定理:⑾(2分)解得:=" 7.0" m/s ⑿ (2分)考点:本题考查了平抛运动的规律、动量守恒定律、机械能守恒定律及动能定理的应用11.如图所示,小球A 质量为m ,系在细线的一端,线的另一端固定在O 点,O 点到水平面的距离为h .物块B 质量是小球的5倍,置于粗糙的水平面上且位于O 点正下方,物块与水平面间的动摩擦因数为μ.现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为16h.小球与物块均视为质点,不计空气阻力,重力加速度为g ,求碰撞过程物块获得的冲量及物块在地面上滑行的距离.【答案】16h μ【解析】 【分析】对小球下落过程由机械能守恒定律可求得小球与物块碰撞前的速度;对小球由机械能守恒可求得反弹的速度,再由动量守恒定律可求得物块的速度;对物块的碰撞过程根据动量定理列式求解获得的冲量;对物块滑行过程由动能定理可求得其滑行的距离. 【详解】小球的质量为m,设运动到最低点与物块相撞前的速度大小为v 1,取小球运动到最低点时的重力势能为零,根据机械能守恒定律有:mgh=12mv 12 解得:v 12gh 设碰撞后小球反弹的速度大小为v′1,同理有:'211162h mg mv ⋅= 解得:v′18gh 设碰撞后物块的速度大小为v 2,取水平向右为正方向,由动量守恒定律有: mv 1=-mv′1+5mv 2 解得:v 28gh 由动量定理可得,碰撞过程滑块获得的冲量为I=5mv 2=524m gh物块在水平面上滑行所受摩擦力的大小为F=5μmg 设物块在水平面上滑行的时间为t,由动能定理有:221052Fs mv -=-⋅解得:16h s μ= 【点睛】本题综合考查动量守恒定律、机械能守恒定律及动能定理,要注意正确分析物理过程,选择合适的物理规律求解.12.如图所示,物块质量m =4kg ,以速度v =2m /s 水平滑上一静止的平板车上,平板车质量M =16kg ,物块与平板车之间的动摩擦因数μ=0.2,其他摩擦不计(g =10m /s 2),求:(1)物块相对平板车静止时,物块的速度; (2)物块在平板车上滑行的时间;(3)物块在平板车上滑行的距离,要使物块在平板车上不滑下,平板车至少多长? 【答案】(1)0.4m/s (2)(3)【解析】解:物块滑下平板车后,在车对它的摩擦力作用下开始减速,车在物块对它的摩擦力作用下开始加速,当二者速度相等时,物块相对平板车静止,不再发生相对滑动。

相关文档
最新文档