八年级数学上册13.1.2 线段的垂直平分线的性质

合集下载

13.1.2线段的垂直平分线的性质(1)+课件+2023—2024学年人教版数学八年级上册

13.1.2线段的垂直平分线的性质(1)+课件+2023—2024学年人教版数学八年级上册

3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,
连接AE.若BC=6,AC=5,则△ACE的周长为( B )
A.8
B.11
C.16
D.17
4.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,交AC于点 E,ED垂直平分AB于点D,求证:BE+DE=AC. 证明:∵∠ACB=90°, ∴AC⊥BC. 又ED⊥AB,BE平分∠ABC, ∴CE=DE. ∵ED垂直平分AB, ∴AE=BE. ∴BE+DE=AE+CE=AC.
(2)若△ABC的周长为14 cm,AC=6 cm,求DC的长. 解:∵△ABC的周长为14 cm, ∴AB+BC+AC=14cm. ∵AC=6 cm, ∴AB+BC=8cm. ∵AB=EC,BD=DE, ∴DC=DE+EC=12(AB+BC)=12 ×8=4(cm).
7.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=39°, 则∠AOC=__7_8_°__.
长为( C ) A.25
B.22
C.19
D.18
4.如图,在△ABC中,∠C=90°,DE垂直平分AB,分别交AB, BC于点D,E,若∠CAE=∠B+18°,则∠B的度数为__2_4_°__.
5.【几何直观、推理能力】如图,在△ABC中,DM,EN分别垂直 平分AC和BC,分别交AB于M,N两点,DM与EN相交于点F. (1)若△CMN的周长为15 cm,求AB的长; 解:∵DM,EN分别垂直平分AC和BC, ∴AM=CM,BN=CN. ∴△CMN的周长为CM+MN+CN=AM+MN+BN=AB. 又△CMN的周长为15 cm, ∴AB=15 cm.
∴AD=BC.
(2)点O在线段AB的垂直平分线上. ∠DOA=∠COB,

13-1-2 线段的垂直平分线的性质(解析版)

13-1-2 线段的垂直平分线的性质(解析版)

13.1.2线段的垂直平分线的性质瞄准目标,牢记要点夯实双基,稳中求进线段垂直平分线的性质题型一:线段垂直平分线的性质【例题1】(2019·常熟市第一中学八年级月考)如图,ABC中,边AB的中垂线分别交BC、AB于点D、E,3cmAE=,ABC的周长为17cm,则ADC的周长是__________cm.【答案】11【分析】由DE垂直平分AB可知BD=AD,AB=2AE,从而发现ADC的周长即为BC AC+的长,然后求解即可.【详解】解:∵DE垂直平分AB,∵BD=AD,AB=2AE,∵ABC的周长为17cm,∵17AB BC AC++=(cm),∵3cmAE=,∵26cmAB AE==,知识点管理归类探究1.线段的轴对称性:线段是轴对称图形,线段的垂直平分线是它的对称轴.2.线段垂直平分线的性质定理文字描述:线段垂直平分线上的点到线段两端的距离相等;几何语言:∵MN是线段AB的垂直平分线(或MN⊥AB于点D,且AD = BD),∴CA = CB.∵()17611cm BC AC +=-=ADC 的周长为AD DC AC BD DC AC BC AC ++=++=+,∵ADC 的周长是11cm , 故答案为:11.【点睛】本题考查了线段垂直平分线的性质,发现ADC 的周长即为BC AC +的长,是解题的关键. 变式训练【变式1-1】(2020·吴江区盛泽第二中学九年级月考)在ABC 中,9BC =,AB 的垂直平分线分别交AB ,AC 于点D ,E ,若BCE 的周长为17,则AC 的长为___________.【答案】8【分析】根据线段的垂直平分线的性质得到EA =EB ,根据∵BCE 的周长等于17,求出AC 的长. 【详解】解:∵DE 是AB 的垂直平分线, ∵EA =EB ,由题意得,BC +CE +BE =17,则BC +CE +AE =17,即BC +AC =17,又BC =9, ∵AC =8, 故答案为:8.【点睛】本题主要考查线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.【变式1-2】(2021·扬州市梅岭中学九年级一模)如图,根据图中尺规作图痕迹,计算1∠的度数是( )A .22︒B .32︒C .34︒D .68︒【答案】A【分析】根据作图痕迹可知CD 是AB 的垂直平分线,再根据垂直平分线的性质,即可求解. 【详解】解:由尺规作图痕迹,可知:CD 是AB 的垂直平分线, ∵AC =BC ,∵∵1=∵ABC =90°-68°=22°, 故选A .【点睛】本题主要考查垂直平分线的性质和尺规作图,掌握垂直平分线上的点到线段的两个端点距离相等,是解题的关键.【变式1-3】(2021·九年级一模)如图,在ABC 中,34A ∠=︒分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧分别相交于点M 、N ,直线MN 与AC 相交于点E .过点C 作CD AB ⊥,垂足为点D ,CD 与BE 相交于点F .若BD CE =,则BFC ∠的度数为( )A .102︒B .107︒C .108︒D .124︒【答案】B【分析】连接DE ,如图,利用基本作图得到AE =CE ,则DE 为斜边AC 的中线,所以DE =AE =CE ,则∵ADE =∵A =34°,接着证明BD =DE ,所以∵DBE =∵DEB =17°,然后利用三角形外角性质计算∵BFC 的度数. 【详解】解:连接DE ,如图,由作法得MN 垂直平分AC , ∵AE =CE , ∵CD ∵AB ,∵∵CDB =∵CDE =90°, ∵DE 为斜边AC 的中线, ∵DE =AE =CE , ∵∵ADE =∵A =34°, ∵BD =CE , ∵BD =DE , ∵∵DBE =∵DEB=12∵ADE =17°, ∵∵BFC =∵DBF +∵BDF =17°+90°=107°. 故选:B . 【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).线段垂直平分线的判定线段垂直平分线的性质定理文字描述:到线段两端距离相等的点在线段的垂直平分线上; 几何语言:∵CA = CB ,∴点C 在线段AB 的垂直平分线上.题型二:线段垂直平分线的判定【例题2】(2020·吴江区青云实验中学八年级月考)如图,DE=DF ,,DE AB DF AC ⊥⊥,垂足分别是,E F 连接,EF EF 与AD 相交于点G .(1)求证:AD 是EF 的垂直平分线;(2)若3,5,2AB AC ED ===,求ABC 的面积. 【答案】(1)见解答;(2)8 【分析】(1)先证明Rt ∵ADE ∵Rt ∵ADF 得到AE =AF ,然后根据线段垂直平分线的判定定理得到结论; (2)先得到DF =DE =2,然后根据三角形面积公式计算. 【详解】解:(1)证明:∵DE ∵AB ,DF ∵AC , ∵AD =AD ,DE =DF , ∵Rt ∵ADE ∵Rt ∵ADF (HL ), ∵AE =AF ,∵AD 是EF 的垂直平分线; (2)∵DF =DE =2, ∵S ∵ABC =S ∵ABD +S ∵ACD =12×2×3+12×2×5 =8. 【点睛】本题考查了线段垂直平分线的判定,以及全等三角形的判定和性质,解题的关键是灵活运用所学定理证明三角形全等. 变式训练【变式2-1】(2020·吴江经济开发区实验初级中学八年级月考)三角形纸片ABC 上有一点P ,量得3cm PA =,3cm PB =,则点P 一定( )A .是边AB 的中点 B .在边AB 的中线上C .在边AB 的高上D .在边AB 的垂直平分线上【答案】D【分析】已知条件知道线段相等,利用线段垂直平分线上的点到线段两端的距离相等的逆定理可知点P 一定在边AB 的垂直平分线上. 【详解】解:∵PA =3cm ,PB =3cm ∵点P 一定在边AB 的垂直平分线上. 故选:D .【点睛】本题主要考查了线段垂直平分线的性质的逆定理;熟练掌握该知识是解答本题的关键.【变式2-2】(2020·南京市溧水区和凤初级中学八年级月考)已知:如图,AB =AC ,点D ,E 分别在AC ,AB 上,AD =AE ,BE ,CD 相交于点O . 求证:点O 在线段BC 的垂直平分线上.【答案】详见解析 【分析】由SAS 得出∵ADB∵∵AEC ,得出∵ABD=∵ACE ,再根据AAS 证明∵BOE∵∵COD ,得出OB=OC ,由等腰三角形的性质即可得出结论. 【详解】证明:在∵ADB 和∵AEC 中,AD AE A A AB AC ⎧=∠=∠=⎪⎨⎪⎩∵∵ADB ∵∵AEC (SAS ), ∵∵ABD =∵ACE . ∵AB =AC ,AD =AE ,∵BE =CD .在∵BOE 与∵COD 中,BOE COD BE CDOBE OCD ∠=∠=∠=∠⎧⎪⎨⎪⎩∵∵BOE ∵∵COD (AAS ), ∵OB =OC ,∵点O 在线段BC 的垂直平分线上.【点睛】本题主要考查了全等三角形的判定及性质,线段垂直平分线的判定.通过证明三角形全等得出OB=OC 是解题的关键.【变式2-3】(2019·盐城市·八年级期中)如图,AB =AC ,点D 、E 分别在AB 、AC 上,且AD =AE ,BE 、CD 交于点O ,求证:AO 垂直平分BC .【分析】由SAS 得出∵ADC∵∵AEB ,得出∵ACD=∵ABE ,再根据AAS 证明∵BOD∵∵COE ,得出OB=OC ,由线段垂直平分线的判定得出结论. 【详解】证明:在∵ADC 和∵AEB 中,AD AE A A AC AB =⎧⎪∠=∠⎨⎪=⎩, ∵∵ADC ∵∵AEB (SAS ), ∵∵ACD =∵ABE . ∵AB =AC ,AD =AE , ∵BD =CE .在∵BOD 与∵COE 中,00BD CE BOD COE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∵∵BOD ∵∵COE (AAS ), ∵OB =OC ,∵点O 在线段BC 的垂直平分线上.同理AB =AC ,点A 在线段BC 的垂直平分线上 ∵AO 垂直平分BC .【点睛】本题主要考查了全等三角形的判定及性质,线段垂直平分线的判定.通过证明两套三角形全等得出OB=OC 是解题的关键.线段垂直平分线的画法题型三:画线段垂直平分线【例题3】(2021·沙坪坝区·重庆八中九年级月考)如图,在钝角ABC 中,90BAC ∠>︒.(1)作AC 的垂直平分线,与边BC ,AC 分别交于点D 、E (要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,过点B 作BH AC ⊥交CA 的延长线于点H ,连接AD ,求证ADE HBC ∠=∠. 【答案】(1)见详解;(2)见详解【分析】(1)利用尺规作图法作AC 的垂直平分线即可;(2)在(1)的条件下,画出∵ABC的AC边上的高BH即可,进而可以写出∵ADE和∵HBC的大小关系.【详解】解:(1)如图,AC的垂直平分线DE即为所求;(2)在(1)的条件下,AC边上的高BH即为所求.∵ADE和∵HBC的大小关系为:相等.理由如下:∵DE是AC的垂直平分线,∵DA=DC,AE=EC,又∵DE=DE,∵∵ADE∵∵CDE(SSS),∵∵ADE=∵CDE,∵BH∵AC,DE∵AC,∵DE∵BH,∵∵CDE=∵HBC,∵∵ADE=∵HBC.【点睛】本题考查了作图−复杂作图、线段垂直平分线的性质,全等三角形的判定和性质,解决本题的关键是掌握线段垂直平分线的性质.变式训练【变式3-1】(2020·江阴市长寿中学八年级月考)如图,已知∵ABC(AC<AB),用尺规在AB上确定一点P,使PB+PC=AB,则符合要求的作图痕迹是()A.B.C.D.【答案】C【分析】利用PB+PC=AB,PB+PA=AB,得到PC=PA,根据线段垂直平分线的判定定理,得到点P在线段AC的垂直平分线上,由此可知选项C符合题意.【详解】解:∵点P在AB上,∵PB+PA=AB,又∵PB+PC=AB,∵PC=PA,∵点P在线段AC的垂直平分线上,且线段AC的垂直平分线交AB于点P.∵选项C符合要求,故选:C.【点睛】本题考查了线段垂直平分线的尺规作图,结合几何图形的基本性质把AB拆成PA与PB之和进而得到PC=PA是解决本题的关键.【变式3-2】(2020·连云港市·八年级期中)题目:用直尺和圆规过直线l外一点P做直线l的垂线.作法:(1)在直线l上任取两点A、B;(2)以点A为圆心,AP的长为半径画弧,以点B为圆心,BP的长为半径画弧,两弧相交于Q,如图所示;(3)作直线PQ则直线PQ就是直线l的垂线.请你对这种作法加以证明.【分析】根据线段的垂直平分线的判定证明即可.【详解】由作法得AP=AQ,BP=BQ,∵点A 在PQ 的垂直平分线上.点B 在PQ 的垂直平分线上,∵直线AB 垂直平分PQ,∵直线PQ 就是直线l 的垂线.【点睛】本题考查作图−复杂作图,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.【变式3-3】(2021·山西吕梁市·九年级二模)如图,在Rt∵ABC中,∵C=90°,AC<BC.(1)动手操作:要求尺规作图,不写作法,但保留作图痕迹.∵作出AB 的垂直平分线MN ,MN 分别与AB 交于点D ,与BC 交于点E .∵过点B 作BF 垂直于AE ,垂足为F .(2)推理证明:求证AC =BF .【答案】(1)∵见解析;∵见解析;(2)见解析【分析】(1)∵根据垂直平分线的作法得出即可;∵延长AE ,再根据过直线外一点作已知直线的垂线的作法得出即可;(2)根据垂直平分线的性质得到AE =BE ,再加上90BFE ACE ∠=∠=︒,BEF AEC ∠=∠,证得:BEF AEC △≌△,根据全等的性质得AC BF =.【详解】(1)∵∵:如图直线MN ,BF 就是所要求的作的图形.(2)证明:∵MN 垂直平分AB ,∵AE =BE .∵BF ∵AE ,垂足为F ,∵90BFE ACE ∠=∠=︒.∵BEF AEC ∠=∠,∵BEF AEC △≌△.∵AC =BF .【点睛】此题主要考查了垂直平分线的作法、过直线外一点作已知直线的垂线的作法、垂直平分线性质以及全等三角形的应用,根据已知得出AE 与BE 的关系是解题关键.【变式3-4】(2021·贵州贵阳市·)如图,已知线段6AB =,利用尺规作AB 的垂直平分线,步骤如下:∵分别以点,A B为圆心,以b的长为半径作弧,两弧相交于点C和D.∵作直线CD.直线CD就是线段AB 的垂直平分线.则b的长可能是()A.1B.2C.3D.4【答案】D【分析】利用基本作图得到b>12AB,从而可对各选项进行判断.【详解】解:根据题意得:b>12 AB,即b>3,故选:D.【点睛】本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).题型四:线段垂直平分线的实际应用【例题4】(2020·扬州市·八年级月考)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪的三个顶点的距离相等,凉亭的位置应选在()A.∵ABC三边的垂直平分线的交点B.∵ABC的三条中线的交点C.∵ABC三条角平分线的交点D.∵ABC三条高所在直线的交点【答案】A【分析】由于凉亭到草坪的三个顶点的距离相等,所以根据垂直平分线上任意一点,到线段两端点的距离相等,可知是∵ABC三条边垂直平分线的交点.由此即可确定凉亭位置.【详解】解:∵凉亭到草坪三条边的距离相等,∵凉亭选择∵ABC三边的垂直平分线的交点.故选:A.【点睛】本题主要考查的是线段的垂直平分线的性质在实际生活中的应用.主要利用了到线段的两个端点的距离相等的点在这条线段的垂直平分线上.变式训练A B C三名同学站在一个三角形的三个顶点位置【变式4-1】(2020··八年级月考)在联欢晚会上,有、、上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置在ABC的()A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边垂直平分线的交点【答案】D【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】解:利用线段垂直平分线的性质得:要放在三边中垂线的交点上.故选:D.【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.【变式4-2】(2020·常州市第二十四中学八年级期中)如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.∵A、∵B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处【答案】D【分析】根据线段垂直平分线的性质即可得出答案.【详解】解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.【点睛】本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.【变式4-3】(2020·昆山高新区汉浦中学八年级月考)在元旦联欢会上,三个小朋友分别站在三角形的三个顶点的位置上,他们玩抢凳子游戏,要求在他们中间放一个木凳,谁先做到凳子上谁就获胜,为使游戏公平,则凳子应放在三角形的()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点【答案】D【分析】根据三角形三边中垂线的交点到三个顶点的距离相等可得答案.【详解】解:∵三角形三边中垂线的交点到三个顶点的距离相等,∵为使游戏公平,凳子应放的最适当的位置在三角形的三边的垂直平分线的交点,故选:D.【点睛】本题主要考查游戏公平性,判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平,并熟练掌握三角形内心、外心、垂心和重心的性质.【变式4-4】(2020·磴口县诚仁中学八年级期中)如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请用尺规作图,将上述两种情况下的自来水厂厂址分别在图(1)(2)中标出,并保留作图痕迹.【答案】(1)见解析;(2)见解析.【分析】(1)作出AB的垂直平分线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB 最小.【详解】(1)根据垂直平分线的性质:垂直平分线上的点到线段两个端点的距离相等知,作出AB的垂直平分线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小,理由:AP=PC,三角形的任意两边之和大于第三边,当点P在CB的连线上时,CP+BP是最小的.【点睛】本题考查了垂直平分线的性质,轴对称的性质和距离之和最短问题,熟悉性质及距离之和最短问题的作法是关键.链接中考【真题1】(2012·无锡市·中考真题)如图,梯形ABCD中,AD∵BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于()A.17B.18C.19D.20【答案】A【解析】梯形和线段垂直平分线的性质.【分析】由CD 的垂直平分线交BC 于E ,根据线段垂直平分线上的点到线段两端距离相等的性质,即可得DE=CE ,即可由已知AD=3,AB=5,BC=9求得四边形ABED 的周长为:AB+BC+AD=5+9+3=17.故选A .【真题2】(2010·无锡市·中考真题)如图,∵ABC 中,DE 垂直平分AC 交AB 于E ,∵A=30°,∵ACB=80°,则∵BCE=_____ °.【答案】50【分析】根据∵ABC 中DE 垂直平分AC ,可求出AE=CE ,再根据等腰三角形的性质求出∵ACE=∵A=30°,再根据∵ACB=80°即可解答.【详解】∵DE 垂直平分AC ,∵A=30°,∵AE=CE ,∵ACE=∵A=30°,∵∵ACB=80°,∵∵BCE=80°-30°=50°.故答案为:50.【真题3】(2019·泰州市·中考真题)如图,ABC ∆中,90C =∠,4AC =,8BC =.用直尺和圆规作AB 的垂直平分线;(保留作图痕迹,不要求写作法)【分析】分别以A ,B 为圆心,大于12AB 为半径画弧,两弧交于点M ,N ,作直线MN 即可.. 【详解】如图直线MN 即为所求.【点睛】本题考查作图﹣基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【拓展1】(2020·南京市·中考真题)如图,线段AB、BC的垂直平分线1l、2l相交于点O,若1∠=39°,则AOC∠=__________.【答案】78︒【分析】如图,利用线段垂直平分线的性质结合三角形外角性质得到∵AOC=∵2+∵3=2(∵A+∵C),再利用垂直的定义结合三角形外角性质得到∵AOG =51︒-∵A,∵COF =51︒-∵C,利用平角的定义得到∵AOG+∵2+∵3+∵COF+∵1=180︒,计算即可求解.【详解】如图,连接BO并延长,满分冲刺∵1l 、2l 分别是线段AB 、BC 的垂直平分线,∵OA=OB ,OB=OC ,∵ODG=∵OEF=90︒,∵∵A=∵ABO ,∵C=∵CBO ,∵∵2=2∵A ,∵3=2∵C ,∵OGD=∵OFE=90︒-39︒=51︒,∵∵AOC=∵2+∵3=2(∵A+∵C),∵∵OGD=∵A+∵AOG ,∵OFE=∵C+∵COF ,∵∵AOG =51︒-∵A ,∵COF =51︒-∵C ,而∵AOG+∵2+∵3+∵COF+∵1=180︒,∵51︒-∵A+2∵A+2∵C+51︒-∵C+39︒=180︒,∵∵A+∵C=39︒,∵∵AOC=2(∵A+∵C)=78︒,故答案为:78︒.【点睛】本题考查了线段垂直平分线的性质,三角形外角的性质,垂直的定义,平角的定义,注意掌握辅助线的作法,注意掌握整体思想与数形结合思想的应用.【拓展2】(2018·南通市启秀中学八年级期中)如图,在Rt GMN 中,90M P ∠=︒,为MN 的中点 ∵用直尺和圆规在GN 边上求作点Q ,使得GQM PQN ∠=∠(保留作图痕迹,不要求写作法); ∵在∵的条件下,如果60G ∠=︒,那么Q 是GN 的中点吗?为什么?【答案】∵作图见详解,∵Q是GN的中点,证明见详解.【分析】∵利用尺规进行作图即可,注意要保留作图痕迹.∵证明Q是GN的中点,根据∵的条件大胆猜想综合运用等角和等边转换,从而分析证明.【详解】解:∵∵ 在∵的条件下,如果∵G=60°,那么Q是GN的中点,理由如下:设PP'交GN于点K,∵∵G=60°,∵GMN=90°,∵∵N=90°─60°=30°,∵点P关于GN的对称点是点P',∵PK∵KN,PK=12P P',∵∵PKN=90°,又∵∵N=30°,∵PK=12PN,PP'=PN,∵P为MN的中点,∵PM=PN,PP'=PM,∵∵PР'M=∵PMР',∵∵PK N=90°,∵N=30°,∵∵NРK=90°-30°=60°,又∵∵PP'M+∵PMP’=∵NPK,∵∵PM P'=12×60°=30°,又∵∵N=30°,∵∵PM P'=∵N,QM=QN,∵∵GMN=90°,∵PM P'=30°,∵∵GMQ=90°-30°=60°,又∵∵G=60°,∵∵GMQ=∵G,∵QG=QM,又∵QM=QN,∵QG=QN,Q是GN的中点。

人教版八年级数学上册13.1.2线段的垂直平分线的性质

人教版八年级数学上册13.1.2线段的垂直平分线的性质

C
B
辨析:
性质:在线段垂直平分线上的点到线段两个端 点距离都相等。 判定:与线段两个端点距离相等的点都在线段 的垂直平分线上。
线段垂直平分线的集合定义:
线段垂直平分线可以看作是与 线段两个端点距离相等的所有点的 集合。
线段垂直平分线的性质与判定定理的区别
• 二者是互逆定理,线段垂直平分线的性质定理的已知条 件是线段垂直平分线,结论是垂直平分线上的点与这条 线段两端点的距离相等.
AD为BC的中垂线 ,
AB=AC 2、∵ _______________________ , ∴ A在线段BC的中垂线上( 与一条线段两个端点距离相等的 _____________________ _______ ) 点,在这条线段的垂直平分线上。
3、如图, NM是线段AB的中垂线, 下列说法正确的有:①②③ 。
已知:如图,PA =PB. 求证:点P 在线段AB 的垂直平 A 分线上.
C
B
探索并证明线段垂直平分线的判定
证明:过点P 作线段AB 的垂线PC, 垂足为C.则∠PCA =∠PCB =90°. 在Rt△PCA 和Rt△PCB 中, ∵ PA =PB,PC =PC, ∴ Rt△PCA ≌Rt△PCB(HL). ∴ AC =BC. A 又 PC⊥AB, ∴ 点P 在线段AB 的垂直平分线上.
生活中的数学
A
在某高速公路L的同侧,有两个工厂A、B,为了便 于两厂的工人看病,市政府计划在公路边上修建一所医 院,使得两个工厂的工人都没意见,问医院的院址应选 在何处?你的方案是什么?
B
L
高 速 公 路
探索并证明线段垂直平分线的判定
反过来,如果PA =PB,那么点P 是否在线段AB 的 垂直平分线上呢? P 点P 在线段AB 的垂直平分线上.

八年级上册数学13.1.2 线段的垂直平分线的性质

八年级上册数学13.1.2 线段的垂直平分线的性质

对应点,叫做 对称点 .
1.了解轴对称及线段垂直平分线的性质和判定.
2.会应用线段垂直平分线的性质和判定解题. 3.依据轴对称的性质找出两个图形成轴对称及轴对称图形的对 称轴. 4.作出轴对称图形的对称轴,即线段垂直平分线的尺规作图.
画线段AB的垂直平分线l,在l上任意取点P,•量一量 点P到A与B的距离,你有什么发现?再取几个点试试.你能 说明理由吗? 结论:线段垂直平分线上的点与这条线段两个
端点的距离相等.
反过来,若AP=BP,则P在线段AB的垂直平 分线上.
结论:与一条线段两个端点距离相等的点,在这 条线段的垂直平分线上.
线段的垂直平分线可以看成是与线段两端点的距离相 等的所有点的集合.
练一练
1.下列说法:①若直线PE是线段AB的垂直平分线,则
EA=EB,PA=PB;②若PA=PB,EA=EB,则直线PE垂直平分
= AC+BC
= 12+7=19.
4.如图,如果△ACD的周长为18cm,△ABC的
周长为28cm, DE是BC的垂直平分线,根据这
A
些条件,你可以求出哪条线段的长?
D
【解析】 (1)△ACD的周长=AD +CD+AC=18cm.
BE C
(2)△ABC的周长=AB+AC+BC=28cm.
(3)由DE是BC的垂直平分线得:BD=CD;所以AD+CD=
2.如图,A,B是路边两个新建小区,要在公路边增设一个 公共汽车站.使两个小区到车站的路程一样长,该公共汽 车站应建在什么地方?
B A
【提示】连接AB,作AB的垂直平分线,则与公路的 交点就是要建的公共汽车站.
通过本课时的学习,需要我们:
1.了解轴对称及线段的垂直平分线的有关性质. 2.会灵活运用这些性质来解决问题. 3.用尺规作出线段的垂直平分线.并据此得到作出一个 轴对称图形的一条对称轴的方法. 4.找出轴对称图形的任意一对对应点,连接这对对应点, 作出连线的垂直平分线,该垂直平分线就是这个轴对称图形 的一条对称轴.

新人教版八年级上册数学13.1.2_线段的垂直平分线的性质[2]

新人教版八年级上册数学13.1.2_线段的垂直平分线的性质[2]

聚焦中考
• △ABC中,AB>AC ,∠A的平分线与BC的 垂直平分线DM相交于D,过D作DE ⊥AB 于E,作DF⊥AC于F,求证:BE=CF
A
C
E
M
F
B
D
随堂练习
1、如图,已知AB是线段CD的垂直 平分线,E是AB上的一点,如果 EC=7cm,那么ED= 7 cm;如果 ∠ECD=600,那么∠EDC= 60 0.
C
AE
B D
A 2、如图所示,
在△ABC中,
AB=AC=32, MN是AB的垂
M
直平分线,且
N
有BC=21,求
△BCN的周长。 B
C

已知:P为MON内一点。P与A关于ON对称,
P与B关于OM对称。若AB长为15cm
求:PCD的周长.
解: P与A关于ON对称
N A
ON为PA的中垂线(
反过来,如果PA=PB,那麽点P是否在线段 AB的垂直平分线上呢?
通过探究可以得到:
与一条线段两个端点距离相等的点,在这条 l
线段的垂直平分线上。
∵PA=PB
P
∴点P在线段AB的垂直平分线上
A
C
B
已知:PA=PB
求证:点P在线段AB的垂直平分线上
证明:作PC⊥AB,垂足为C
l
∴∠ACP=∠BCP= 90
13.1.2线段的垂直平分线的性质
A
A
M PP1 P2 P3
C
B
B
•已,MAN如 AA是知C上BB=左l :任B钉 ,的如C图在 P意,点,图1M一,一、N木⊥起分P点条2A,别、.BLL,量与PP垂3一木是直…量条于…点 求P证1、:PPA2=、PBP.3……到A与

人教版数学八年级上册第十三章13.1.2线段的垂直平分线的性质

人教版数学八年级上册第十三章13.1.2线段的垂直平分线的性质

第十三章轴对称13.1 轴对称13.1.2 线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定学习目标:1.理解并掌握线段的垂直平分线的性质和判定方法.2.会用尺规过一点作已知直线的垂线.3.能够运用线段的垂直平分线的性质和判定解决实际问题.重点:线段的垂直平分线的性质和判定方法难点:运用线段的垂直平分线的性质和判定解决实际问题自主学习一、知识链接线段是轴对称图形吗?通过折叠的方法作出线段AB的对称轴l,交AB与O.(1)点A的对称点是_______(2)量出AO与BO的长度,它们有什么关系?(3)AB与直线l在位置上有什么关系?经过线段________并且______于这条线段的________,叫做这条线段的垂直平分线.二、新知预习已知直线l垂直平分线段AB,交AB与O.点C是l上任意一点,连接AC,BC.(1)量出AC,BC的长度,它们有什么关系?(2)另在l上任找一点D,量出AD,DB的长度,它们有什么关系?(3)由(1),(2),你得到什么结论?要点归纳:线段垂直平分线上的点与这条线段两个端点的__________.三、自学自测如图所示,直线CD是线段PB的垂直平分线,点P为直线CD 上的一点,且PA=5,则线段PB的长为()A. 6B. 5C. 4D. 3四、我的疑惑___________________________________________________________________________一、要点探究探究点1:线段垂直平分线的性质 证一证:线段垂直平分线上的点和这条线段两个端点的距离相等. 已知:如图,直线MN ⊥AB ,垂足为C ,AC =CB ,点P 在MN 上.求证:PA =PB .典例精析 例1:如图,在△ABC 中,AB =AC =20cm ,DE 垂直平分AB ,垂足为E ,交AC 于D ,若△DBC 的周长为35cm ,则BC 的长为( ) A .5cm B .10cm C .15cm D .17.5cm方法总结:利用线段垂直平分线的性质,实现线段之间的相互转化,从而求出未知线段的长.例2: 已知:如图,在ΔABC 中,边AB ,BC 的垂直平分线交于P.求证:PA=PB=PC.结论:三角形三边垂直平分线交于一点,这一点到三角形三个顶点的距离相等. 实际应用:某区政府为了方便居民的生活,计划在三个住宅小区A 、B 、C 之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等.例3:如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延课堂探究B ACM N M ' N ' PBAC长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.方法总结:证明线段相等的方法一般有:1.由全等得对应线段相等;2.由线段垂直平分线的性质得出线段相等.针对训练1.如图,△ABC中,AC的垂直平分线交AB于点D,∠A=50°,则∠BDC=()第1题图第2题图2.如图,△ABC中,AB=AC=18cm,BC=10cm,AB的垂直平分线ED交AC于D点,则△BCD的周长为_________.3.如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE垂直平分AB,交AB于D,求证:BE+DE=AC.探究点2:线段垂直平分线的判定1.做一做:用一根木棒和一根弹性均匀的橡皮筋,做一个简易的弓,箭通过木棒中央的孔射出去.图①图②(1)如图①要使CO垂直于AB,需要添加什么条件?为什么?点C在_____________上.(2)如图②,拉动C,到达D的位置,若AD=DB,那么点D在__________上.(3)由(1),(2),你得到什么猜想?要点归纳:DA BOOBAC与线段两个端点距离________的点在这条线段的______________上.2.证一证:已知:如图,PA =PB.求证:点P 在线段AB 的垂直平分线上.典例精析例4:已知:如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C,D,连接CD.求证:OE是CD的垂直平分线.针对训练1.三角形纸片上有一点P,量得PA=3cm,PB=3cm,则点P一定()A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上2.小明做了一个如图所示的风筝,其中EH=FH,ED=FD,小明说不用测量就知道DH是EF的垂直平分线.其中蕴含的道理是__________________________________________.3.如图,在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.二、课堂小结PA B线段垂直平分线的判定线段垂直平分线的性质与判定线段垂直平分线的性质三角形三边的垂直平分线的交点到三角形三个顶点的距离相等.证明线段相1.如图所示,AC=AD,BC=BD,则下列说法正确的是( ) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分 D .CD 平分∠ ACB2.在锐角三角形ABC 内一点P,,满足PA=PB=PC,则点P 是△ABC ( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点3.已知线段AB ,在平面上找到三个点D 、E 、F ,使DA =DB ,EA =EB,FA =FB ,这样的点的组合共有_________种.4.下列说法:①若点P 、E 是线段AB 的垂直平分线上两点,则EA =EB ,PA =PB ; ②若PA =PB ,EA =EB ,则直线PE 垂直平分线段AB ;③若PA =PB ,则点P 必是线段AB的垂直平分线上的点;④若EA =EB ,则经过点E 的直线垂直平分线段AB .其中正确的有_________(填序号).5.如图,△ABC 中,AB=AC,AB 的垂直平分线交AC 于E,连接BE ,AB+BC=16cm,则△BCE 的周长是_________cm.6.如图所示,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试说明AD 与EF 的位置关系.拓展提升7.如图,在四边形ADBC 中,AB 与CD 互相垂直平分,垂足为点O. (1)找出图中相等的线段;(2)OE ,OF 分别是点O 到∠CAD 两边的垂线段,试说明它们的大小有什么关系.当堂检测ABDC第十三章轴对称13.1 轴对称13.1.2 线段的垂直平分线的性质第2课时线段垂直平分线的有关作图学习目标:1.能用尺规作已知线段的垂直平分线.2.进一步了解尺规作图的一般步骤和作图语言,理解作图的依据.3.能够运用尺规作图的方法解决简单的作图问题.重点:用尺规作已知线段的垂直平分线.难点:运用尺规作图的方法解决简单的作图问题温故知新1.按如下要求,用尺规作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)经过已知直线外一点作这条直线的垂线.2.轴对称图形的性质是_______________________________________.3.线段垂直平分线的性质是_______________________________________.二、要点探究探究点1:线段垂直平分线的画法问题1:如何验证两个图形是轴对称的?不折叠图形,你能准确地作出图形的对称轴吗?图①图②问题2:如何作出线段的垂直平分线?[提示:由两点确定一条直线和线段垂直平分线的性质,只要作出到线段两端点距离相等的两点即可.]已知:线段AB.求作:线段AB的垂直平分线.作法:思考1:在上述作法中,为什么要以“大于AB的长”为半径作弧?思考2:根据上面作法中的步骤,请你说明CD为什么是AB的垂直平分线,并与同伴进行交流.归纳总结:可以运用线段垂直平分线的尺规作图,确定线段的中点.典例精析例1:如图,已知点A、点B以及直线l.(1)用尺规作图的方法在直线l上求作一点P,使PA=PB.(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,若AM=PN,BN=PM,求证:∠MAP=∠NPB.例2:如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计(尺规作图,不写作法,保留作图痕迹).方法总结:到角两边距离相等的点在角的平分线上,到两点距离相等的点在两点连线段的垂直平分线上.课堂探究探究点2:作轴对称图形的对称轴问题:下图中的五角星有几条对称轴?如何作出这些对称轴呢?方法总结:对于轴对称图形,只要找到任意一组对称点,作出对称点所连线段的垂直平分线,即能得此图形的对称轴.典例精析如图,△ABC和△A′B′C′关于直线l对称,请用无刻度的直尺作出它们的对称轴.方法总结:成轴对称的两个图形对称点连线段(或延长线)相交,交点必定在对称轴上.针对训练1.作出下列图形的一条对称轴.和同学比较一下,你们作出的对称轴一样吗?2.如图,小河边有两个村庄,要在河岸边建一自来水厂向A村与B村供水,若要使厂部到A,B 的距离相等,则应选在哪里?二、课堂小结ABCA′B′C′线段垂直平分线的有关作图用尺规作图作线段垂直平分线作轴对称图形的对称轴作对称轴的重要方法l1.如图,在△ABC中,分别以点A,B为圆心,大于12AB长为半径画弧,两弧分别交于点D,E,则直线DE是()A.∠A的平分线B.AC边的中线C.BC边的高线D.AB边的垂直平分线第1题图第2题图2.如图,已知线段AB的垂直平分线CP交AB于点P,且AP=2PC,现欲在线段AB上求作两点D,E,使其满足AD=DC=CE=EB,对于以下甲、乙两种作法:甲:分别作∠ACP、∠BCP的平分线,分别交AB于D、E,则D、E即为所求;乙:分别作AC、BC的垂直平分线,分别交AB于D、E,则D、E两点即为所求.下列说法正确的是()A.甲、乙都正确B.甲、乙都错误C.甲正确,乙错误D.甲错误,乙正确3.如图,与图形A 成轴对称的是哪个图形?画出它的对称轴.4.如图,角是轴对称图形吗?如果是,它的对称轴是什么?5.如图,有A,B,C三个村庄,现准备要建一所希望小学,要求学校到三个村庄的距离相等,请你确定学校的位置.当堂检测A BC DCAB。

13.1.2 第1课时 线段垂直平分线的性质和判定

13.1.2 第1课时 线段垂直平分线的性质和判定

B
作用:判断一个点是否在线段的垂直平分线上.
你能再找一些到线段AB 两端点的距离相等的点吗?能找到多
少个到线段AB 两端点距离相等的点?
这些点能组成什么几何图形? 与A,B 的距离相等的点
都在直线l上,所以直线l 可 以看成与A、B两点 的距离 相等的一条直 应用格式: ∵ AB =AC,MB =MC, 线是线段的垂直
PA =PB,PC =PC,
∴ Rt△PCA ≌Rt△PCB(HL). A ∴ AC =BC. 又 PC⊥AB, ∴ 点P 在线段AB 的垂直平分线上.
C
B
知识要点
线段垂直平分线的判定
与线段两个端点距离相等的点在这条线段的垂直平分线上. P
应用格式:


PA =PB,
点P 在AB 的垂直平分线上. A
平分线的方法.
∴ 直线AM 是线段BC 的垂直
平分线.
A
M B
D
C
例5 已知:如图,点E是∠AOB的平分线上一点,
EC⊥OA,ED⊥OB,垂足分别为C,D,连接CD.
求证:OE是CD的垂直平分线. 证明: ∵OE平分∠AOB,EC⊥OA,ED⊥OB, ∴DE=CE. 又∵OE=OE, ∴Rt△OED≌Rt△OEC. ∴DO=CO. ∴ OE是CD的垂直平分线. O C D B E
DF⊥AC,
∴∠EAD=∠FAD,∠AED= ∠AFD=90°. B
E
D
F C
又∵AD=AD,∴△ADE≌△ADF,
∴AE=AF,DE=DF. ∴A、D均在线段EF的垂直平分线 上,即直线AD垂直平分线段EF.
拓展提升: 7.如图,在四边形ADBC中,AB与CD互相垂

13.1.2 第1课时 线段的垂直平分线的性质

13.1.2 第1课时 线段的垂直平分线的性质
图 13-1-20
解:∵点 C 在 AE 的垂直平分线上, ∴CA=CE. ∵AD⊥BE,BD=DC, ∴AB=AC, 又∵△ABC 的周长为 22 cm, ∴AB+BC+AC=2AC+2DC=2(AC+CD)=2(CE+CD)=2DE=22, 解得 DE=11 cm.
6.如图 13-1-21,在△ABC 中,AB 边的垂直平分线 l1 交 BC 于点 D,AC 边 的垂直平分线 l2 交 BC 于点 E,l1 与 l2 相交于点 O,△ADE 的周长为 6 cm.
(2)∵AB 边的垂直平分线 l1 与 AC 边的垂直平分线 l2 相交于点 O, ∴OB=OA=OC. ∵△OBC 的周长为 16 cm, 即 OC+OB+BC=16 cm, ∴OC+OB=16-6=10 (cm), ∴OC=OB=5 cm,∴OA=5 cm.
分层作 业
点击进入word链接
4.小明做了一个如图 13-1-19 的风筝,其中 EH=FH,ED=FD,小明说不 用测量就知道 DH 是 EF 的垂直平分线,其中蕴含的道理是 与一条线段两个端点
距离相等的点,在这条线段的垂直平分线. 上
图 13-1-19
5.如图 13-1-20,在△ABE 中,AD⊥BE 于点 D,C 是 BE 上一点,BD=DC, 且点 C 在 AE 的垂直平分线上,若△ABC 的周长为 22 cm,求 DE 的长.
3.[2018 春·渝中区校级期中]如图 13-1-14,在△ABC 中,直线 ED 是线段 BC
的垂直平分线,直线 ED 分别交 BC,AB 于点 D,E,已知 BD=3,△ABC 的周
长为 20,则△AEC 的周长为( A )
A.14
B.20
C.16
D.12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号:538580002222179545525983331
学校:佛在合市经石门镇中碑磊小学*
教师:晓癯谙*
班级:白泽参班*
13.1.2 线段的垂直平分线的性质
【知识与技能】
1.了解两个图形成轴对称的性质,了解轴对称图形的性质.
2.探究线段垂直平分线的性质.
【过程与方法】
经历探索轴对称图形性质的过程,发展空间观察能力.
【情感态度】
体验数学与现实间的联系,发展审美感,激发兴趣.
【教学重点】
轴对称的性质,线段垂直平分线的性质.
【教学难点】
线段垂直平分线的性质.
一、情境导入,初步认识
问题1 下面图形中哪些是轴对称图形?如果是,请说出它的对称轴.
问题2 如果两个图形成轴对称,那么这两个图形有什么关系?
(如图2,△ABC和△A′B′C′关于直线MN对称)
【教学说明】两个图形成轴对称,那么这两个图形就全等.由此提出线段垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.如图3,直线l是线段AB的垂直平分线.教师讲课前,先让学生完成“自主预习”.
二、思考探究,获取新知
1.探究轴对称的性质
(1)作两个成轴对称的三角形,如图.
(2)将对称点分别用线段连接起来,观察它与对称轴的位置关系及数量关系,你能得到什么结论?是如何得到这个结论的?
(3)轴对称图形是否也具备这样的性质呢?举例说明.
2.探索线段垂直平分线的性质
探究1 教材中的“探究”.
学生先思考教科书上的问题,然后让学生以线段代替木条进行画图探究.任意画一条线段AB,画出它的垂直平分线MN,在MN上任取点P1,P2,P3,分别量一量
点P
1,P
2
,P
3
到点A,点B的距离,你有什么发现?与同伴交流,说明理由.
探究2 如图,PA=PB,取线段AB的中点O,连接PO,PO与AB有怎样的位置关
系?
指导学生运用三角形全等知识判定△PAO≌△PBO,从而推得PO是线段AB的垂直平分线.
教师总结线段垂直平分线的性质与判定.
例1 如图所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC 于D,交AB于E,量得△BDC的周长为17m,请你替测量人员计算BC的长.
解:∵ED是AB的垂直平分线,
∴DA=DB.
又∵△BDC的周长为17m,AB=AC=10m,
∴BD+DC+BC=17(m).
∴DA+DC+BC=17,
即AC+BC=17(m).
∴10+BC=17(m),BC=7(m).
3.作简单轴对称图形的对称轴.
例2 如图所示,△ABC与△A′B′C′关于某条直线对称,请你作出这条直线.
【分析】△ABC 与△A ′B ′C ′中的点A 与A ′,点B 与B ′,点C 与C ′是对应点,连接一对对应点,如连接BB ′,作线段BB ′的垂直平分线即可.
解:(1)如图所示,连接BB ′,分别以点B ,B ′为圆心,以大于2
1
BB ′的长为半径作弧,两弧相交于D 、E 两点;
(2)作直线DE ,DE 即为所求的直线.
三、运用新知,深化理解
1.如果△ABC 中,∠BAC=110°,P\,Q 在BC 上,若MP\,NQ 分别垂直平分AB\,AC,则∠PAQ 的度数是 .
2.如图,正方形ABCD 的边长为4cm,则图中阴影部分的面积为.
3.如图所示,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA=5,则线段PB 的长度为( )
A.6
B.5
C.4
D.3
4.如图所示,OC 是∠AOB 的平分线,AC ⊥AO,BC ⊥BO,则OC 与AB 的关系是( ).
A.AB 垂直平分OC
B.OC 垂直平分AB
C.OC 只平分AB 但不垂直
D.OC只垂直AB但不平分
5.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC.
(1)求∠ECD的度数;
(2)若CE=5,求BC的长.
【教学说明】指导学生解答上述习题时,强调学生应:(1)注意成轴对称的两个图形的全等关系,由此可得到几组边、角的相等;(2)注意线段垂直平分线的性质的灵活运用.
【答案】1.40° 2.8cm2 3.B 4.B
5.(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°.(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∵∠ECD=36°,∴∠BCE=∠ACB-∠ECD=36°,∴∠BEC=72°=∠B,∴BC=EC=5.
四、师生互动,课堂小结
问题:本节课学会了什么?有哪些收获?还有什么疑问?
由学生表述,教师归纳总结.
1.布置作业:从教材“习题13.1”中选取.
2.完成练习册中本课时的练习.
本课教学力求充分体现内容的基础性,方法的灵活性、学生学习的主体性和教学的主导性,在学习活动中,要求学生主动参与,认真思考、比较观察、动手交流和表述,并借助多媒体的手段辅助教学,增强直观性、激发学习兴趣.
强调分组讨论,学生与学生之间很好地交流与合作,利用师生的双边活动,激发学生学习兴趣,教师从中发现、搜集学生的学习情况,查漏补缺,适时调度,
从而顺利达到教学的目的.。

相关文档
最新文档