【配套K12】东营专版2019年中考数学复习第四章几何初步与三角形第六节解直角三角形及其应用练习
(东营专版)2019年中考数学复习 第四章 几何初步与三角形 第一节 线段、角、相交线与平行线练习

第四章几何初步与三角形第一节线段、角、相交线与平行线姓名:________ 班级:________ 用时:______分钟1.(2018·武威中考)若一个角为65°,则它的补角的度数为( )A.25° B.35° C.115° D.125°2.(2018·邵阳中考)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为( )A.20° B.60° C.70° D.160°3.如图所示,点P到直线l的距离是( )A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度4.(2018·利津一模)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有( )A.4个B.3个C.2个 D.1个5.(2018·眉山中考改编)下列命题为真命题的是( )A.两条直线被一组平行线所截,所得的对应线段成比例B.若AM=BM,则点M为线段AB的中点C.到角的两边的距离相等的点在角的平分线上D.经过一点,有且只有一条直线与这条直线平行6.(2018·广州中考)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( )A.∠4,∠2 B.∠2,∠6C.∠5,∠4 D.∠2,∠47.(2018·北京中考)如图所示的网格是正方形网格,∠BAC______∠DAE.(填“>”“=”或“<”)8.(2018·岳阳中考)如图,直线a∥b,∠1=60°,∠2=40°,则∠3=________.9.(2019·原创题)已知∠AOB=45°,OC是∠AOB的一条三等分线,则∠AOC的度数是__________________.10.(2018·重庆中考A卷)如图,直线AB∥CD,BC平分∠ABD,∠1=54°,求∠2的度数.11.(2018·泸州中考)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是( )A.50° B.70° C.80° D.110°12.(2018·黄冈中考)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为( )A.50° B.70° C.75° D.80°13.(2018·盐城中考)将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=__________.14.(2019·原创题)如图,将一副含有45°和30°的两个三角板叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB的度数为____________.15.如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界),其中区域③④位于直线AB上方,P是位于以上4个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).16.阅读下面的材料【材料一】异面直线(1)定义:不同在任何一个平面内的两直线叫做异面直线.(2)特点:既不相交,也不平行.(3)理解:①“不同在任何一个平面内”,指这两条直线永不具备确定平面的条件,因此,异面直线既不相交,也不平行,要注意把握异面直线的不共面性.②“不同在任……”也可以理解为“任何一个平面都不可能同时经过这两条直线”.③不能把异面直线误解为分别在不同平面内的两条直线为异面直线.也就是说,在两个不同平面内的直线,它们既可以是平行直线,也可以是相交直线.例如:在长方体ABCD-A1B1C1D1中,棱A1D1所在直线与棱AB所在直线是异面直线,棱A1D1所在直线与棱BC 所在直线就不是异面直线.【材料二】我们知道“由平行公理,进一步可以得到如下结论:如果两条直线都与第三条直线平行,那么这两条直线也平行.”其实,这个结论不仅在平面内成立,在空间内仍然成立.利用材料中的信息,解答下列问题.(1)在长方体ABCD-A1B1C1D1中,与棱A1A所在直线成异面直线的是( )A.棱A1D1所在直线B.棱B1C1所在直线C.棱C1C所在直线D.棱B1B所在直线(2)在空间内,两条直线的位置关系有________、________、________.(重合除外)(3)如图,在长方体ABCD-A1B1C1D1中,已知E,F分别为BC,AB的中点.求证:EF∥A1C1.参考答案【基础训练】1.C 2.D 3.B 4.A 5.A 6.B7.>8.80°9.15°或30°10.解:∵AB∥CD,∴∠ABC=∠1=54°.∵BC平分∠ABD,∴∠CBD=∠ABC=54°.∵∠1=54°,∴∠BDC=180°-∠CBD-∠1=72°.∵∠BDC=∠2,∴∠2=72°.【拔高训练】11.C 12.B13.85°14.180°15.解:(1)①∠AED=70°.②∠AED=80°.③猜想:∠AED=∠EAB+∠EDC.证明:如图,延长AE交DC于点F.∵AB∥DC,∴∠EAB=∠EFD.∵∠AED为△EDF的外角,∴∠AED=∠EFD+∠EDF=∠EAB+∠EDC.(2)当点P在区域①时,∠EPF=360°-(∠PEB+∠PFC);当点P在区域②时,∠EPF=∠PEB+∠PFC;当点P在区域③时,∠EP F=∠PEB-∠PFC;当点P在区域④时,∠EPF=∠PFC-∠PEB.【培优训练】16.解:(1)B.(2)相交平行异面(3)证明:如图,连接AC.∵E,F分别为BC,AB的中点,∴EF∥AC.∵A1A∥C1C,A1A=C1C,∴四边形A1ACC1是平行四边形,∴A1C1∥AC,∴EF∥A1C1.。
(东营专版)2019年中考数学复习 第四章 几何初步与三角形 第四节 等腰三角形练习

第四节等腰三角形姓名:_______ 班级:________ 用时:______分钟1.(2017·南充中考)如图,等边△OAB的边长为2,则点B的坐标为( )A.(1,1) B.(3,1)C.(3,3) D.(1,3)2.(2019·易错题)若实数m,n满足|m-2|+n-4=0,且m,n恰好是等腰△ABC的两条边的边长,则△ABC的周长是( )A.12 B.10C.8 D.10或83.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于( )A.10° B.12.5°C.15° D.20°4.(2019·易错题)等腰三角形一腰的垂直平分线与另一腰所在的直线夹角为30°,则这个等腰三角形的顶角的度数为( )A.30° B.60°C.30°或150° D.60°或120°5.下列三角形,不一定是等边三角形的是( )A.有两个角等于60°的三角形B.有一个外角等于120°的等腰三角形C.三个角都相等的三角形D.边上的高也是这边的中线的三角形6.(2018·湘潭中考)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD=__________.7.(2018·淮安中考)若一个等腰三角形的顶角等于50°,则它的底角等于________°.8.(2018·娄底中考)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3 cm,则BF=______cm.9.(2018·嘉兴中考)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.10.(2017·武汉中考)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .711.(2019·改编题)如图,△ABC 是等边三角形,△ABD 是等腰直角三角形,∠BAD=90°,AE⊥BD 于点E ,连接CD 分别交AE ,AB 于点F ,G ,过点A 作AH⊥CD 交BD 于点H.则下列结论:①∠ADC=15°;②AF =AG ;③AH=DF ;④AF=(3-1)EF.其中正确结论的个数为( )A .4B .3C .2D .112.(2018·吉林中考)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k =12,则该等腰三角形的顶角为________度.13.已知:如图,△ABC 中,BO ,CO 分别是∠ABC 和∠ACB 的平分线,过O 点的直线分别交AB ,AC 于点D ,E ,且DE∥BC.若AB =6 cm ,AC =8 cm ,则△ADE 的周长为______________.14.如图,已知△ABC,AD 平分∠BAC 交BC 于点D ,BC 的中点为M ,ME∥AD,交BA 的延长线于点E ,交AC 于点F. (1)求证:AE =AF ; (2)求证:BE =12(AB +AC).15.(2019·创新题)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题;变式:等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC 中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.参考答案【基础训练】1.D 2.B 3.C 4.D 5.D 6.30° 7.65 8.69.证明:∵DE⊥AB,DF⊥BC,垂足分别为点E ,F , ∴∠AED=∠CFD=90°. ∵D 为AC 的中点,∴AD=DC. 在Rt△ADE 和Rt△CDF 中,⎩⎪⎨⎪⎧AD =CD ,DE =DF , ∴Rt△ADE≌Rt△CDF(HL), ∴∠A=∠C,∴BA=BC. ∵AB=AC ,∴AB=BC =AC , ∴△ABC 是等边三角形. 【拔高训练】 10.D 11.B 12.36 13.14 cm14.证明:(1)∵DA 平分∠BAC,∴∠BAD=∠CAD. ∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE, ∴∠AEF=∠AFE,∴AE=AF.(2)如图,作CG∥EM,交BA 的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE. ∵∠AEF=∠AFE,∴∠G=∠ACG, ∴AG=AC.∵BM=CM ,EM∥CG,∴BE=EG , ∴BE=12BG =12(BA +AG)=12(AB +AC).【培优训练】15.解:(1)若∠A 为顶角,则∠B=(180°-∠A)÷2=50°; 若∠A 为底角,∠B 为顶角,则∠B=180°-2×80°=20°;若∠A 为底角,∠B 为底角,则∠B=80°. 故∠B=50°或20°或80°. (2)分两种情况:①当90≤x<180时,∠A 只能为顶角, ∴∠B 的度数只有一个; ②当0<x <90时,若∠A 为顶角,则∠B=(180-x2)°;若∠A 为底角,∠B 为顶角,则∠B=(180-2x)°; 若∠A 为底角,∠B 为底角,则∠B=x°. 当180-x 2≠180-2x 且180-2x≠x 且180-x2≠x, 即x≠60时,∠B 有三个不同的度数.综上所述,可知当0<x <90且x≠60时,∠B 有三个不同的度数.。
(东营专版)中考数学复习第四章几何初步与三角形第三节全等三角形练习

第三节全等三角形姓名:________ 班级:________ 用时:______分钟1.(2018·黔南州中考)下列各图中a,b,c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙2.(2019·易错题)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下哪个条件仍不能判定△ABE≌△ACD( )A.∠B=∠C B.AD=AEC.BD=CE D.BE=CD3.(2019·改编题)下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等4.(2018·垦利模拟)如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=12,AC=8,则CD的长为( )A.5.5 B.4 C.4.5 D.35.如图,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有( )A.4个B.3个C.2个D.1个6.如图,Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,垂足分别为D,E,若BD=3,CE=2,则DE=________.7.(2018·永州中考)现有A,B两个大型储油罐,它们相距2 km,计划修建一条笔直的输油管道,使得A,B两个储油罐到输油管道所在直线的距离都为0.5 km,输油管道所在直线符合上述要求的设计方案有______种.8.(2018·河口模拟)如图,DE⊥AB,CF⊥AB,垂足分别是点E,F,DE=CF,AE=BF,求证:AC∥BD.9.(2019·改编题)如图,在△ACB中,∠ACB=90°,∠A=45°,点C的坐标为(-1,0),点A的坐标为(-4,3),求点B的坐标.10. 如图,在正方形ABCD中,连接BD,点O是BD的中点,若M,N是边AD上的两点,连接MO,NO,并延长交边BC于M′,N′两点,则图中的全等三角形共有( )A.2对B.3对 C.4对 D.5对11.(2018·黑龙江中考)如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为( )A.15 B.12.5 C.14.5 D.1712.(2019·易错题)如图,在平面直角坐标系中,A(3,0),B(0,4),连接AB,在平面直角坐标系中找一点C,使△AOC与△AOB全等,则C点的坐标为____________.13.(2019·改编题)如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.下列说法:①CE=BF;②∠BAD=∠CAD;③△ABD和△ACD的面积相等;④BF∥CE;⑤△BDF≌△CDE.其中正确的是____________.14. 已知△ABN和△ACM的位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.15.(2018·黄冈中考)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证:△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证:BF⊥BC.16.(2019·原创题)如图,点B,F,C,E在同一直线上,∠A=∠D,BF=CE,AB∥DE.求证:AC∥DF.参考答案【基础训练】1.B 2.D 3.C 4.B 5.B6.57.48.证明:∵DE⊥AB,CF⊥AB,∴∠DEB=∠CFA=90°.∵AE=BF,∴AF=BE.在△DEB和△CFA中,⎩⎪⎨⎪⎧DE =CF ,∠DEB=∠CFA,AF =BE ,∴△DEB≌△CFA(SAS),∴∠A=∠B,∴AC∥DB. 9.解:如图,过点A ,B 分别作AD⊥x 轴于点D ,BE⊥x 轴于点E , ∴∠ADC=∠CEB=90°, ∴∠ACD+∠CAD=90°. ∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠CAD=∠BCE. 在△ADC 和△CEB 中, ⎩⎪⎨⎪⎧∠ADC=∠CEB,∠CAD=∠BCE,AC =CB ,∴△ADC≌△CEB(AAS), ∴CD=BE ,AD =CE.∵点C 的坐标为(-1,0),点A 的坐标为(-4,3), ∴OC =1,CE =AD =3,OD =4,∴CD=OD -OC =3,OE =CE -OC =3-1=2, ∴BE=3,∴点B 的坐标是(2,3). 【拔高训练】 10.C 11.B12.(3,4)或(3,-4)或(0,-4) 13.①③④⑤ 14.证明:(1)在△ABD 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD≌△ACE,∴BD=CE. (2)∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE, ∴∠BAN=∠CAM.∵△ABD≌△ACE,∴∠B=∠C. 在△ACM 和△ABN 中, ⎩⎪⎨⎪⎧∠C =∠B,AC =AB ,∠CAM=∠BAN,∴△ACM≌△ABN,∴∠M=∠N.15.证明:(1)∵四边形ABCD 是平行四边形, ∴AB=CD ,AD =BC ,∠ABC=∠ADC. ∵BC=BF ,CD =DE , ∴BF=AD ,AB =DE.∵∠ADE+∠ADC+∠EDC=360°,∠ABF+∠ABC+∠CBF=360°,∠EDC=∠CBF, ∴∠ADE=∠ABF, ∴△ABF≌△EDA.(2)如图,延长FB 交AD 于点H.∵AE⊥AF,∴∠EAF=90°. ∵△ABF≌△EDA,∴∠EAD=∠AFB.∵∠EAD+∠FAH=90°,∴∠FAH+∠AFB=90°, ∴∠AHF =90°,即BF⊥AD. ∵AD∥BC,∴BF⊥BC. 【培优训练】16.证明:∵BF=CE ,∴BF+FC =FC +CE ,∴BC=EF. ∵AB∥DE,∴∠ABC=∠DEF. 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧∠A=∠D,∠ABC=∠DEF,BC =EF ,∴△ABC≌△DEF (AAS),∴∠ACB=∠DFE, ∴AC∥DF.。
(东营专版)2019年中考数学复习 第四章 几何初步与三角形 第四节 等腰三角形要题随堂演练

第四节等腰三角形要题随堂演练1.(2018·湖州中考)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE 的度数是( )A.20° B.35° C.40° D.70°2.(2018·福建中考)如图,等边三角形ABC中,AD⊥BC,垂足为点D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15° B.30° C.45° D.60°3.(2018·雅安中考)已知:如图,在△ABC中,AB=AC,∠C=72°,BC=5,以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为( )A.2 2 B.2 3 C. 5 D. 64.(2018·成都中考)等腰三角形的一个底角为50°,则它的顶角的度数为__________.5.(2018·邵阳中考)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△A BC中的∠A沿DE向下翻折,使点A落在点C处.若AE=3,则BC的长是__________.6.(2018·天津中考) 如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G 为EF的中点,连接DG,则DG的长为________.7.如图,已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,D M⊥BC,垂足为点M,求证:M是BE的中点.参考答案1.B 2.A 3.C4.80° 5. 3 6.19 27.证明:如图,连接BD.∵在等边△ABC 中,D 是AC 的中点,∴∠DBC=12∠ABC=12×60°=30°, ∠ACB=60°.∵CE=CD ,∴∠CDE=∠E.∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED ,∴△BDE 为等腰三角形.又∵DM⊥BC,∴M 是BE 的中点.百度文库是百度发布的供网友在线分享文档的平台。
山东东营市七年级数学上册第四章《几何图形初步》知识点复习(含解析)

山东东营市七年级数学上册第四章《几何图形初步》知识点复习(含解析)一、选择题1.如图,已知点C为线段AB的中点,则①AC=BC;②AC=12AB;③BC=12AB;④AB=2AC;⑤AB=2BC,其中正确的个数是()A.2 B.3 C.4 D.5D 解析:D【分析】根据线段中点的定义解答.【详解】∵点C为线段AB的中点,∴AC=BC,AC=12AB,BC=12AB,AB=2AC,AB=2BC,故选:D.【点睛】此题考查线段中点的定义及计算,掌握线段中点是将线段两等分的点是解题的关键.2.下列说法错误的是()A.若直棱柱的底面边长都相等,则它的各个侧面面积相等B.n棱柱有n个面,n个顶点C.长方体,正方体都是四棱柱D.三棱柱的底面是三角形B解析:B【解析】A、若直棱柱的底面边长都相等,则它的各个侧面面积相等,说法正确;B、n棱柱有n+2个面,n个顶点,故原题说法错误;C、长方体,正方体都是四棱柱,说法正确;D、三棱柱的底面是三角形,说法正确;故选B.3.如图,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,且∠DOE=60°,∠BOE=13∠EOC,则下列四个结论正确的个数有()①∠BOD=30°;②射线OE平分∠AOC;③图中与∠BOE互余的角有2个;④图中互补的角有6对.A.1个B.2个C.3个D.4个D解析:D【分析】根据题意首先计算出∠AOD的度数,再计算出∠AOE、∠EOC、∠BOE、∠BOD的度数,然后再分析即可.【详解】解:由题意设∠BOE=x,∠EOC=3x,∵∠DOE=60°,OD平分∠AOB,∴∠AOD=∠BOD =60°-x,根据题意得:2(60°-x)+4x=180°,解得x=30°,∴∠EOC=∠AOE=90°,∠BOE=30°,∴∠BOD=∠AOD=30°,故①正确;∵∠BOD=∠AOD=30°,∴射线OE平分∠AOC,故②正确;∵∠BOE=30°,∠AOB=60°,∠DOE=60°,∴∠AOB+∠BOE=90°,∠BOE+∠DOE=90°,∴图中与∠BOE互余的角有2个,故③正确;∵∠AOE=∠EOC=90°,∴∠AOE+∠EOC=180°,∵∠EOC=90°,∠DOB=30°,∠BOE=30°,∠AOD=30°,∴∠COD+∠AOD=180°,∠COD+∠BOD=180°,∠COD+∠BOE=180°,∠COB+∠AOB=180°,∠COB+∠DOE=180°,∴图中互补的角有6对,故④正确,正确的有4个,故选:D.【点睛】本题主要考查角平分线以及补角和余角,解答的关键是正确计算出图中各角的度数.4.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D. C解析:C【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,根据看到的图形进行比较即可解答.【详解】解:A、主视图看到的是2行,3列,最下1行是3个,上面一行是1个,第2列是2个;左视图是2行,上下各1个;B.主视图看到的是3行,最下1行是2个,上面2行在下面1行的中间,各1个,左视图是3行,每行各一个;C.主视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个;左视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个,故主视图和左视图相同;D.主视图是2行2列,下面1行2个,上面1行1个,右面1列2个,左视图也是2行2列,下面1行2个,上面1行1个,左面1列2个.故选:C.【点睛】此题考查了从不同方向观察物体,重点是看清有几行几列,每行每列各有几个.5.将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是()A.B.C.D. C解析:C【分析】根据图形,结合互余的定义判断即可.【详解】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.【点睛】本题考查了余角和补角的应用,掌握余角和补角的定义是解题的关键.6.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20°B.30°C.10°D.15°A解析:A【分析】首先根据三角形的内角和定理求得∠B,再根据角平分线的定义求得∠BAD,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC,最后根据直角三角形的两个锐角互余即可求解.【详解】∵∠BAC=60°,∠C=80°,∴∠B=180°-∠BAC-∠C=40°,又∵AD是∠BAC的角平分线,∠BAC=30°,∴∠BAD=12∴∠ADE=∠B+∠BAD=70°,又∵OE⊥BC,∴∠EOD=90°-∠ODE=90°-70°=20°.故选:A.【点睛】本题考查了三角形的内角和定理及其推论、角平分线的定义等知识,此类题要首先明确解题思路,再利用相关知识解答.7.一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有()A.7种B.6种C.5种D.4种B解析:B【分析】根据棒上标的数字,找出这根木棒被2、7两点分成的线段的条数即可.【详解】如图,∵线段AD被B、C两点分成AB、AC、AD、BC、BD、CD六条的线段∴能量的长度有:2、3、5、7、8、10,共6个,故选B.【点睛】本题考查的实质是找出已知图形上线段的条数.8.如图所示,在∠AOB的内部有3条射线,则图中角的个数为().A.10 B.15 C.5 D.20A解析:A【分析】根据图形写出各角即可求解.【详解】图中的角有∠AOB、∠AOD、∠AOC、∠AOE、∠EOB、∠EOD、∠EOC、∠COB、∠COD、∠DOB,共10个.故选A.【点睛】此题主要考查角的个数,解题的关键是依次写出各角.9.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.10.用一个平面去截一个圆锥,截面的形状不可能是()A.B.C.D. D解析:D【解析】【分析】圆锥是由圆和扇形围成的几何体,圆锥的底面是圆,侧面是曲面,截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关,据此对所给选项一一进行判断.【详解】圆锥的轴截面是B,平行于底面的截面是C,当截面与轴截面斜交时截面是A;无论如何截,截面都不可能是D.故选D.【点睛】此题考查截一个几何体,解题关键是掌握圆锥的特点进行求解.二、填空题11.已知一个角的补角是它余角的3倍,则这个角的度数为_____.45°【分析】根据互为余角的和等于90°互为补角的和等于180°用这个角表示出它的余角与补角然后列方程求解即可【详解】设这个角为α则它的余角为90°﹣α补角为180°﹣α根据题意得180°-α=3(解析:45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键. 12.如图,若AOB ∠是直角,OM 平分AOC ∠,ON 平分COB ∠,则MON ∠=________.45°【分析】结合图形根据角的和差以及角平分线的定义找到∠MON 与∠AOB 的关系即可求出∠MON 的度数【详解】解:∵OM 平分∠AOCON 平分∠BOC ∴∠MOC=∠AOC ∠NOC=∠BOC ∴∠MON=解析:45°【分析】结合图形,根据角的和差,以及角平分线的定义,找到∠MON 与∠AOB 的关系,即可求出∠MON 的度数.【详解】解:∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC=12∠AOC ,∠NOC=12∠BOC , ∴∠MON=∠MOC-∠NOC =12(∠AOC-∠BOC ) =12(∠AOB+∠B0C-∠BOC ) =12∠AOB =45°.故选答案为45°.【点睛】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.13.已知线段AB的长度为16厘米,C是线段AB上任意一点,E,F分别是AC,CB的中点,则E,F两点间的距离为_______.8厘米【解析】【分析】根据线段的中点即把线段分成相等的两部分的点进行解答【详解】解:∵C是线段AB的中点∴AC=CB=AB=8∵EF分别是ACCB的中点∴CE=AC=4CF=CB=4∴EF=8(cm解析:8厘米【解析】【分析】根据线段的中点即把线段分成相等的两部分的点进行解答.【详解】解:∵C是线段AB的中点,∴AC=CB=12AB=8,∵E、F分别是AC、CB的中点,∴CE=12AC=4,CF=12CB=4,∴EF=8(cm),故答案为:8cm.【点睛】本题主要考查了线段的中点的概念和性质,解决本题的关键是要能够根据中点准确运用式子表示并进行计算.14.36.275︒=_____度______分______秒.1630【解析】【分析】利用度分秒的换算1度=60分1分=60秒来计算【详解】36度16分30秒故答案为:361630【点睛】此题考查度分秒的换算解题关键在于掌握换算法则解析:16 30【解析】【分析】利用度分秒的换算1度= 60分,1分=60秒,来计算.【详解】36.275︒=36度16分30秒故答案为:36,16,30.【点睛】此题考查度分秒的换算,解题关键在于掌握换算法则.15.按照图填空:(1)可用一个大写字母表示的角有____________.(2)必须用三个大写字母表示的角有_____________________.(3)以B为顶点的角共有______个,分别表示为_______________________.3【解析】【分析】根据角的表示方法:即角可以用一个大写字母表示也可以用三个大写字母表示其中顶点字母要写在中间唯有在顶点处只有一个角的情况才可用顶点处的一个字母来记这个角否则分不清这个字母究竟表示哪个解析:A ∠,C ∠ ABD ∠,ABC ∠,DBC ∠,ADB ∠,BDC ∠ 3 ABD ∠,ABC ∠,DBC ∠【解析】【分析】根据角的表示方法:即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】(1)∵以A 、 C 为顶点的角有两个,∴能用一个大写字母表示的角有A ∠,C ∠ ;(2)∵只要角的顶点及两边均有大写字母,则此角可用三个大写字母表示, ∴可用三个大写字母表示的角是ABD ∠,ABC ∠,DBC ∠,ADB ∠,BDC ∠ ; (3)由图可知以B 为顶点的角共有3个,分别是ABD ∠,ABC ∠,DBC ∠.【点睛】此题考查角的概念,解题关键在于掌握其概念.16.车轮旋转时,看起来像一个整体的圆面,这说明了_______;直角三角形绕它的直角边旋转一周形成了一个圆锥体,这说明了________.线动成面面动成体【解析】【分析】车轮上有线看起来像一个整体的圆面所以是线动成面;直角三角形是一个面形成圆锥体所以是面动成体【详解】车轮旋转时看起来像一个整体的圆面这说明了线动成面;直角三角形绕它的直解析:线动成面 面动成体【解析】【分析】车轮上有线,看起来像一个整体的圆面,所以是线动成面;直角三角形是一个面,形成圆锥体,所以是面动成体.【详解】车轮旋转时,看起来像一个整体的圆面,这说明了线动成面;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了面动成体.故答案为线动成面,面动成体.【点睛】此题考查点、线、面、体,解题关键在于掌握其定义.17.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.90【分析】根据折叠的性质及平角的定义求出根据BD 为∠A′BE 的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD 为∠A′BE 的平分线∴∴故答案为:90【点睛】此题考查折叠的性质解析:90【分析】根据折叠的性质及平角的定义求出45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,根据BD 为∠A′BE 的平分线,得到45A BD '∠=︒,根据角的和差计算求出答案.【详解】∵∠ABA′=90°,∴45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,∵BD 为∠A′BE 的平分线,∴45A BD '∠=︒,∴90CBD A BC A BD ∠∠∠=+=''︒故答案为:90.【点睛】此题考查折叠的性质:折叠前后的对应角角相等,利用平角求角的度数,角平分线的性质,掌握图形中各角的位置关系是解题的关键.18.如图所示,直线AB ,CD 交于点O ,∠1=30°,则∠AOD =________°,∠2=________°.30【分析】根据邻补角和对顶角的定义解答【详解】∠AOD =180°-∠1=180°-30°=150°∠2=180°-∠AOD=180°-150°=30°故答案为:15030【点睛】此题考查邻补角的定解析:30【分析】根据邻补角和对顶角的定义解答.【详解】∠AOD=180°-∠1=180°-30°=150°,∠2=180°-∠AOD=180°-150°=30°.故答案为:150,30.【点睛】此题考查邻补角的定义,正确理解图形中角的位置关系是解题的关键.19.如图,把一张长方形纸片沿AB折叠后,若∠1=50°,则∠2的度数为______.65°【解析】∵把一张长方形纸片沿AB折叠∴∠2=∠3∵∠1+∠2+∠3=180°∠1=50°∴∠2=(180°-∠1)2=65°解析:65°【解析】∵把一张长方形纸片沿AB折叠,∴∠2=∠3,∵∠1+∠2+∠3=180°,∠1=50°,∴∠2=(180°-∠1) 2=65°.20.如图,将一副三角板叠放一起,使直角的顶点重合于点O,则∠AOD +∠COB的度数为___________度.180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB转化成∠COD+∠AOB是解决本题的关键.三、解答题21.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.22.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)解析:见解析.【分析】根据正方体展开图直接画图即可.【详解】解:【点睛】正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.23.已知,A、B是线段EF上两点,已知EA:AB:BF=1:2:3,M、N分别为EA、BF的中点,且MN=8cm,求EF的长.解析:12cm【解析】【分析】由已知设设EA=x,AB=2x,BF=3x,根据线段中点性质得MN=MA+AB+BN=12x+2x+32x=4x=8,可得EF=EA+AB+BF=6x=12.【详解】解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=12EA,NB=12BF,∴MN=MA+AB+BN=12x+2x+32x=4x,∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm.【点睛】本题考核知识点:线段的中点.解题关键点:根据线段中点性质和线段的和差关系列出方程.24.已知线段AB=10cm,直线AB上有一点C,BC=6cm,M为线段AB的中点,N为线段BC的中点,求线段MN的长.解析:2cm或8cm【分析】分两种情况:(1)点C在线段AB上时,(2)点C在AB的延长线上时,分别求出线段MN的值,即可.【详解】解:(1)若为图1情形,∵M为AB的中点,∴MB=MA=5cm,∵N为BC的中点,∴NB=NC=3cm,∴MN=MB﹣NB=2cm;(2)若为图2情形,∵M为AB的中点,∴MB=AB=5cm,∵N为BC的中点,∴NB=NC=3cm,∴MN=MB+BN=8cm.【点睛】本题主要考查线段的和差倍分和线段的中点概念,根据题意,画出图形,分类讨论,是解题的关键.25.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.解析:120°【分析】此题可以设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOB=120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.26.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.解析:(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD是∠AOB的平分线,OE是∠BOC的平分线,所以∠BOD=12∠AOB,∠BOE=12∠BOC,所以∠DOE=12(∠AOB+∠BOC)=12∠AOC=90°;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x)=72°,解得x=36°,故∠EOC=2x=72°.【点睛】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.27.如图是由7个相同的小立方体组成的几何体,请画出从正面看、从左面看、从上面看的平面图形.解析:画图见详解.【分析】分别画出从正面看、左面看、上面看的图形,注意所有看到的棱都要表示到三视图中.【详解】如图所示:【点睛】本题主要考查了三视图的画法,所有看到的棱都要在三视图中表示出来是画图的关键. 28.如图,C,D,E为直线AB上的三点.(1)图中有多少条线段,多少条射线?能用大写字母表示的线段、射线有哪些?请表示出来;(2)若一条直线上有n个点,则这条直线上共有多少条线段,多少条射线?解析:(1)有10条线段,10条射线.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.(2)(1)2n n条线段,2n条射线.【解析】【分析】对于(1),这条直线上共5个点,求直线上的线段条数,相当于求从5个点中任取两个点的不同取法有多少种,可从点A开始,用划曲线的方法从左向右依次连接其它各点,再从点C开始,用同样的划曲线方法,直到将线段EB画出为止,即可找到所有的线段,由于每个点对应两条射线,由直线上的5个点即可知有多少条射线;对于(2),和(1)类似,当一条直线上有n个点时,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,结合其中有一半重合的线段,则可计算出n个点所组成的线段条数;一个点对应延伸方向相反的两条射线,可表示出当一条直线上有n个点时的射线条数.【详解】解:(1)图中有10条线段,10条射线.如图所示.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.能用大写字母表示的射线:射线AC、射线CD、射线DE、射线EB、射线CA、射线DC、射线ED、射线BE.(2)因为n个点,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,所以n个点就组成n(n-1)条线段.因为其中有一半重合的线段,如线段AC与线段CA,所以这条直线上共有(1)2n n条线段.因为一个端点对应延伸方向相反的两条射线,所以当一条直线上有n个点时,共有2n条射线.【点睛】此题考查直线、射线、线段,解题关键在于掌握直线上射线、线段条数的求法.。
(完整版)2019年东营市中考数学试题、答案(解析版)

2019年东营市中考数学试题、答案(解析版)(总分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.2019-的相反数是( )A .2019-B .2019C .12019- D .120192.下列运算正确的是( )A .3335=2--x x xB .384=2÷x x xC .2=--xy x xy y x yD =3.将一副三角板(30∠︒=A ,45∠︒=E )按如图所示方式摆放,使得BAEF ∥,则∠AOF 等于( )A .75︒B .90︒C .105°D .115︒ 4.下列图形中,是轴对称图形的是( )ABCD5.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x ,负的场数为y ,则可列方程组为 ( )A .10216+=⎧⎨+=⎩x y x yB .10216+=⎧⎨-=⎩x y x yC .10216+=⎧⎨-=⎩x y x yD .10216+=⎧⎨+=⎩x y x y6.从1,2,3,4中任取两个不同的数,分别记为a 和b ,则2219+>a b 的概率是 ( ) A .12B .512C .712D .137.如图,在△Rt 中,90∠︒=ACB ,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于、D E 两点,作直线DE 交AB 于点F ,交BC 于点G ,连结CF .若3=AC ,2=CG ,则CF 的长为 ( )A .52B .3C .2D .728.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s (米)与时间t (秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )A .乙队率先到达终点B .甲队比乙队多走了126米C .在47.8秒时,两队所走路程相等D .从出发到13.7秒的时间段内,乙队的速度慢9.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B 出发,沿表面爬到AC 的中点D 处,则最短路线长为( )A .B C .3 D .10.如图,在正方形ABCD 中,点O 是对角线、AC BD 的交点,过点O 作射线、OM ON 分别交、BC CD 于点、E F ,且90∠︒=EOF ,、OC EF 交于点G .给出下列结论:①COE DOF △≌△;②OGE FGC △∽△;③四边形CEOF 的面积为正方形ABCD 面积的14;④22•+=DF BE OG OC .其中正确的是( )A .①②③④B .①②③C .①②④D .③④第Ⅰ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.2019年1月12日,“五指山”舰正式入列服役,是我国第六艘071型综合登陆舰艇,满载排水量超过20 000吨,20 000用科学记数法表示为 . 12.因式分解:33--+()=x x x .13.东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如表所示,则在本次调查中,学生阅读时间的中位数是 .时间(小时) 0.5 1 1.5 2 2.5 人数(人)1222105314.已知等腰三角形的底角是30︒,腰长为则它的周长是 .15.不等式组3(2)421152-->⎧⎪-+⎨≤⎪⎩x x x x 的解集为 .16.如图,AC 是e O 的弦,5=AC ,点B 是e O 上的一个动点,且45∠︒=ABC ,若点、M N 分别是、AC BC 的中点,则MN 的最大值是 .17.如图,在平面直角坐标系中,△ACE 是以菱形ABCD 的对角线AC 为边的等边三角形,2=AC ,点C 与点E 关于x 轴对称,则点D 的坐标是 .18.如图,在平面直角坐标系中,函数y和y 的图象分别为直线1l ,2l ,过1l上的点11(A 作x 轴的垂线交2l 于点2A ,过点2A 作y 轴的垂线交1l 于点3A ,过点3A 作x 轴的垂线交2l 于点4A ,…依次进行下去,则点2019A 的横坐标为 .三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分8分,第(1)小题4分,第(2)小题4分)(1)计算:101 3.142sin452019|π-+-++︒-()()(2)化简求值:22222+b a+-÷--()a b a ab a b a ab ,当1=-a 时,请你选择一个适当的数作为b 的值,代入求值.20.(本题满分8分)为庆祝建国70周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题: (1)在这次调查中,一共抽取了多少名学生? (2)补全条形统计图;(3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数;(4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率.________________ _____________21.(本题满分8分)如图,AB是e O的直径,点D是AB延长线上的一点,点C在e O上,且=AC CD, 120∠︒=ACD.(1)求证:CD是e O的切线;(2)若e O的半径为3,求图中阴影部分的面积.22.(本题满分8分)如图,在平面直角坐标系中,直线=y mx与双曲线=nyx 相交于()2,-A a、B两点,⊥BC x轴,垂足为C,△AOC的面积是2.(1)求、m n的值;(2)求直线AC的解析式.23.(本题满分8分)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32 000元?24.(本题满分10分)如图1,在△Rt ABC 中,90∠︒=B ,4=AB ,2=BC ,点、D E 分别是边、BC AC 的中点,连接DE .将CDE △绕点C 逆时针方向旋转,记旋转角为α.(1)问题发现 ①当0︒=α时,=AE BD ;②当180︒=α时,=AEBD. (2)拓展探究试判断:当0360︒≤︒<α时,AEBD的大小有无变化?请仅就图2的情形给出证明. (3)问题解决CDE △绕点C 逆时针旋转至、、A B E 三点在同一条直线上时,求线段BD 的长.25.(本题满分12分)已知抛物线24+-=y ax bx 经过点()()2,04,0-、A B ,与y 轴交于点C . (1)求这条抛物线的解析式;(2)如图1,点P 是第三象限内抛物线上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标;(3)如图2,线段AC 的垂直平分线交x 轴于点E ,垂足为D ,M 为抛物线的顶点,在直线DE 上是否存在一点G ,使CMG △的周长最小?若存在,求出点G 的坐标;若不存在,请说明理由.2019年东营市中考数学答案与解析第Ⅰ卷(选择题 共30分)一、选择题 1.【答案】B【解析】2019-的相反数是:2019.故选:B . 2.【答案】C【解析】A 、333352--x x x =,故此选项错误;B 、32842÷x x x =,故此选项错误;C 、2xy --xxy y x y=,正确;D 无法计算,故此选项错误.故选:C .3.【答案】A 【解析】Q BA EF ∥,30∠︒A=,30∴∠∠︒FCA A ==. 45∠∠︒Q F E ==,304575∴∠∠+∠︒+︒︒AOF FCA F ===.故选:A .4.【答案】D【解析】A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D . 5.【答案】A【解析】设这个队胜x 场,负y 场,根据题意,得10216+=⎧⎨+=⎩x y x y .故选:A .6.【答案】D【解析】画树状图得:Q 共有12种等可能的结果,任取两个不同的数,2219+a b >的有4种结果,2219∴+a b >的概率是41123=,故选:D . 7.【答案】A【解析】由作法得GF 垂直平分BC ,∴FB FC =,2CG BG ==,⊥FG BC ,90∠︒Q ACB =,∴FG AC ∥,∴BF CF =,∴CF 为斜边AB 上的中线,5Q AB ,1522∴CF AB ==.故选:A . 8.【答案】C【解析】A 、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B 、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C 、由函数图象可知,在47.8秒时,两队所走路程相等,均无174米,本选项正确;D 、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误;故选:C . 9.【答案】D【解析】如图将圆锥侧面展开,得到扇形'ABB ,则线段BF 为所求的最短路程.设∠'︒BAB n =.64180⋅=Q n ππ,120∴n =即120∠'︒BAB =.Q E 为弧'BB 中点,90∴∠︒AFB =,60∠︒BAF =,•6∴∠BF AB sin BAF ==∴最短路线长为D .10.【答案】B【解析】①Q 四边形ABCD 是正方形,45∴⊥∠∠︒OC OD AC BD ODF OCE =,,==,90∠︒Q MON =,∴∠∠COM DOF =,∴COE DOFASA △≌△(),故①正确; ②90∠∠︒Q EOF ECF ==,∴点O E C F 、、、四点共圆,∴∠∠∠∠EOG CFG OEG FCG =,=,∴OGE FGC △∽△,故②正确;③Q COE DOF △≌△,∴COE DOF S S △△=,1=4∴OCD ABCD CEOF S S S △正方形四边形=,故③正确;④Q COE DOF △≌△,∴OE OF =,又90∠︒Q EOF =,∴EOF △是等腰直角三角形,45∴∠∠︒OEG OCE ==,∠∠Q EOG COE =,∴OEG OCE △∽△,∴OE OC OG OE :=:,2•∴OG OC OE =,12Q OC AC =,2OE EF ,2•∴OG AC EF =,Q CE DF BC CD =,=,∴BE CF =,又Q Rt CEF △中,222+CF CE EF =,222∴+BE DF EF =,22•∴+OG AC BE DF =,故④错误,故选:B . 二、填空题 11.【答案】4210⨯【解析】20 000用科学记数法表示为4210⨯. 12.【答案】(1)(3)--x x【解析】原式=(3)(3)(1)(3)-----x x x x x =. 13.【答案】1 【解析】由统计表可知共有:1222105352++++=人,中位数应为第26与第27个的平均数, 而第26个数和第27个数都是1,则中位数是1.14.【答案】6+【解析】作⊥AD BC 于D ,Q AB AC =,∴BD DC =,在Rt ABD △中,30∠︒B =,12∴AD AB =由勾股定理得,3BD ,26∴BC BD ==,∴ABC △的周长为:66++15.【答案】71≤x ﹣<【解析】解不等式324--x x ()>,得:1x <,解不等式2x 1122-+≤x ,得:7≥-x ,则不等式组的解集为71-≤x <.16.【答案】2【解析】Q 点M N ,分别是BC AC ,的中点,12∴MN AB=,∴当AB取得最大值时,MN就取得最大值,当AB是直径时,AB最大,连接AO并延长交e O于点'B,连接'CB,'Q AB是e O的直径,90∴∠'︒ACB=.45∠︒Q ABC=,5AC=,45∴∠'︒AB C=,52sin452∴'︒ACAB===,52∴MN最大=.17.【答案】3(,)【解析】如图,Q ACE△是以菱形ABCD的对角线AC为边的等边三角形,2AC=,1∴CH=,3∴AH=,30∠∠︒Q ABO DCH==,33∴DH AO==,3333333∴--OD==,∴点D的坐标是3(,).18.【答案】10093-【解析】由题意可得,131,3⎛⎫⎪⎪⎝⎭A,2(1,3)-A,3(3,3)--A,4(3,33)-A,5(9,33)A,6(9,93)-A,…,可得21+nA的横坐标为3-n()2019210091⨯+Q=,∴点2019A的横坐标为:1009100933--()=,三、解答题19.【答案】(1)2020(2)1+a b,1【解析】(1)原式2201912322232++-+⨯-=2020232223+-+-=2020=;(2)原式()()222a•--+b aa ab a b=()()()()2•-+-+a b a b aa ab a b=1+a b=, 当1a =-时,取2b =, 原式1112-+==. 20.【答案】(1)200 (2)(3)126°(4)14【解析】(1)Q 被抽到的学生中,报名“书法”类的人数有20人,占整个被抽取到学生总数的10%,∴在这次调查中,一共抽取了学生为:2010%200÷=(人);(2)被抽到的学生中,报名“绘画”类的人数为:20017.5%35⨯=(人),报名“舞蹈”类的人数为:20025%50⨯=(人);补全条形统计图如下:(3)被抽到的学生中,报名“声乐”类的人数为70人,∴扇形统计图中,“声乐”类对应扇形圆心角的度数为:70360126200︒︒⨯=; (4)设小提琴、单簧管、钢琴、电子琴四种乐器分别为A B C D 、、、,画树状图如图所示:共有16个等可能的结果,小东和小颖选中同一种乐器的结果有4个,∴小东和小颖选中同一种乐器的概率为41164=. 21.【答案】(1)见解析(2【解析】(1)证明:连接OC .Q AC CD =,120∠︒ACD =,30∴∠∠︒A D ==.Q OA OC =,30∴∠∠︒ACO A ==.90∴∠∠∠︒OCD ACD ACO =﹣=.即⊥OC CD ,∴CD 是e O 的切线.(2)30∠︒Q A =,260∴∠∠︒COB A ==.260333602⋅∴=BOC S ππ扇形=, 在Rt OCD △中,CD OC tan 60︒=⋅=11S 32∴=⋅=⨯⨯OCD OC CD △∴-=OCD BOC S S △扇形, ∴. 22.【答案】(1)=1=4m n -,-(2)112=-+y x 【解析】(1)Q 直线y mx =与双曲线=n y x相交于2A a B (-,)、两点, ∴点A 与点B 关于原点中心对称,2∴B a (,-), 20∴C (,); 2Q AOC S △=,1222∴⨯⨯a =,解得2a =, 22∴A (-,), 把22∴A (-,)代入y mx =和=n y x 得22-m =,n 22=-,解得14m n =-,=-; (2)设直线AC 的解析式为+y kx b =,Q 直线AC 经过A C 、,2220-+=⎧∴⎨+=⎩k b k b ,解得1k 2b 1⎧=-⎪⎨⎪=⎩ ∴直线AC 的解析式为112=-+y x . 23.【答案】电子产品降价后的销售单价为180元时,公司每天可获利32 000元.【解析】设降价后的销售单价为x 元,则降价后每天可售出3005200[]+-x ()个, 依题意,得:10030052003]200[0-+-x x ()()=,整理,得:2360324000-+x x =,解得:12180x x ==. 180200<,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.24.【答案】(1(2)当0360︒≤︒α<时,AF BD 的大小没有变化(3【解析】(1)①当0︒α=时,Q Rt ABC △中,90∠︒B =,∴==ACQ 点D E 、分别是边BC AC 、的中点,11122∴===AE AC BD BC ,∴=AE BD. ②如图1﹣1中,当180︒α=时,可得AB DE ∥, =Q AC BC AE BD,∴=AE AC BD BC(2)如图2,当0360︒≤︒α<时,AF BD 的大小没有变化, ∠∠Q ECD ACB =,∴∠∠ECA DCB =,又AC BC==Q EC DC ∴ECA DCB △∽△,∴=AE EC BD DC(3)①如图3﹣1中,当点E 在AB 的延长线上时,在Rt BCE △中,2==CE BC ,1∴=BE ,5∴+AE AB BE ==,=QAE BD,∴==BD . ②如图3﹣2中,当点E 在线段AB 上时,易知1413-BE AE =,==,=Q AE BD,∴=BD , 综上所述,满足条件的BD. 25.【答案】(1)2142=--y x x (2)24(-,-)(3)315,48⎛⎫- ⎪⎝⎭G 【解析】(1)Q 抛物线4+-y ax bx =经过点2040A B (-,),(,), 424016440+-=⎧∴⎨--=⎩a b a b , 解得1a 2b 1⎧=⎪⎨⎪=⎩,∴抛物线解析式为2142=--y x x ; (2)如图1,连接OP ,设点21,42⎛⎫+- ⎪⎝⎭P x x x ,其中40-x <<,四边形ABPC 的面积为S,由题意得04C (,-),∴++AOC OCP OBP S S S S △△△= 21111244(x)4x x 42222⎛⎫=⨯⨯+⨯⨯-⨯⨯--+ ⎪+⎝⎭, 24228---+x x x =,2412--+x x =,2216-++x =().10-Q <,开口向下,S 有最大值,∴当2x =-时,四边形ABPC 的面积最大,此时,4y =-,即24--P (,). 因此当四边形ABPC 的面积最大时,点P 的坐标为24--(,). (3)221194(1)222=+-=+-y x x x , ∴顶点912--M (,). 如图2,连接AM 交直线DE 于点G ,此时,CMG △的周长最小. 设直线AM 的解析式为y kx =,且过点92012--A M (,),(,),2092+=⎧⎪∴⎨-+=-⎪⎩k b k b , ∴直线AM 的解析式为332=-y x . 在Rt AOC △中,==AC Q D 为AC 的中点,12∴==AD AC Q ADE AOC △∽△,∴=AD AF AC, 22∴=A , 5∴AE =,523∴--OE AE AO ===,30∴E (-,),由图可知12D (,-)设直线DE 的函数解析式为+y mx n =, 230+=-⎧⎨-+=⎩m n m n , 解得:1232⎧=-⎪⎪⎨⎪=-⎪⎩m n , ∴直线DE 的解析式为1322=--y x . 1322332⎧=-⎪⎪⎨⎪=-⎪⎩y x y x , 解得:34158⎧=⎪⎪⎨⎪=⎪⎩x y , 315,48⎛⎫∴- ⎪⎝⎭G .。
(东营专版)2019年中考数学复习 第四章 几何初步与三角形 第四节 等腰三角形要题随堂演练

第四节等腰三角形要题随堂演练1.(2018·湖州中考)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE 的度数是( )A.20° B.35° C.40° D.70°2.(2018·福建中考)如图,等边三角形ABC中,AD⊥BC,垂足为点D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15° B.30° C.45° D.60°3.(2018·雅安中考)已知:如图,在△ABC中,AB=AC,∠C=72°,BC=5,以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为( )A.2 2 B.2 3 C. 5 D. 64.(2018·成都中考)等腰三角形的一个底角为50°,则它的顶角的度数为__________.5.(2018·邵阳中考)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△A BC中的∠A沿DE向下翻折,使点A落在点C处.若AE=3,则BC的长是__________.6.(2018·天津中考) 如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G 为EF的中点,连接DG,则DG的长为________.7.如图,已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,D M⊥BC,垂足为点M,求证:M是BE的中点.参考答案1.B 2.A 3.C4.80° 5. 3 6.19 2最新中小学教案、试题、试卷 7.证明:如图,连接BD.∵在等边△ABC 中,D 是AC 的中点,∴∠DBC=12∠ABC=12×60°=30°,∠ACB=60°.∵CE=CD ,∴∠CDE=∠E.∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED ,∴△BDE 为等腰三角形. 又∵DM⊥BC,∴M 是BE 的中点.。
【配套K12】东营专版2019年中考数学复习第四章几何初步与三角形第五节直角三角形练习

第五节直角三角形姓名:________ 班级:________ 用时:______分钟1.下列四组线段中,能组成直角三角形的是( )A.a=1,b=2,c=3 B.a=2,b=3,c=4C.a=2,b=4,c=5 D.a=3,b=4,c=52.(2018·宜宾中考)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是( ) A.锐角三角形B.直角三角形C.钝角三角形D.不能确定3.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm至D点,则橡皮筋被拉长了( )A.2 cm B.3 cmC.4 cm D.5 cm4.如图,一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是( )A.(32+8)cm B.10 cmC.14 cm D.无法确定5.(2018·贺州中考)如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,E是边BC的中点,AD=ED=3,则BC的长为( )A.3 2 B.3 3 C.6 D.6 26.(2018·哈尔滨中考)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为____________________.7.(2018·福建中考)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=________.8.如图,正方形网格的边长为1,点A,B,C在网格的格点上,点P为BC的中点,则AP=________.9.(2018·深圳中考)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD,BE相交于点F,且AF=4,EF=2,则AC=________.10.在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于点D,CE是△ABC的角平分线.(1)求∠DCE的度数.(2)若∠CEF=135°,求证:EF∥BC.11.(2018·南充中考)如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,D ,E ,F 分别为AB ,AC ,AD 的中点,若BC =2,则EF 的长度为( )A.12B .1C.32D. 312.(2018·枣庄中考)如图,在Rt △ABC 中,∠ACB=90°,CD⊥AB,垂足为D ,AF 平分∠CAB,交CD 于点E ,交CB 于点F.若AC =3,AB =5,则CE 的长为( )A.32B.43C.53D.8513.(2018·泰州中考)如图,四边形ABCD 中,AC 平分∠BAD,∠ACD =∠ABC=90°,E ,F 分别为AC ,CD 的中点,∠D=α,则∠BEF 的度数为__________________(用含α的式子表示).14.(2019·原创题)如图,四边形ABCD 中,AB⊥BC,AD⊥CD,∠C=120°,AB =3,CD =1,则边BC =__________.15.(2018·盐城中考)如图,在直角△ABC 中,∠C=90°,AC =6,BC =8,P ,Q 分别为边BC ,AB 上的两个动点,若要使△APQ 是等腰三角形且△BPQ 是直角三角形,则AQ =________.16.(2019·易错题)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC 与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为__________.17.已知,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.(1)如图1,求证:CD⊥AB;(2)将△ADC沿CD所在直线翻折,A点落在BD边所在直线上,记为A′点.①如图2,若∠B=34°,求∠A′CB的度数;②若∠B=n°,请直接写出∠A′CB的度数(用含n的代数式表示).18.(2019·改编题)如图,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段A B 的勾股分割点.若AM =3,MN =5,求BN 的长为________.参考答案【基础训练】1.D 2.B 3.A 4.B 5.D6.130°或90° 7.3-1 8.522 9.810510.解:∵∠B=30°,CD⊥AB 于D , ∴∠DCB=90°-∠B=60°. ∵CE 平分∠ACB,∠ACB=90°, ∴∠ECB=12∠ACB=45°,∴∠DCE=∠DCB-∠ECB=60°-45°=15°. (2)证明:∵∠CEF=135°,∠ECB=12∠ACB=45°,∴∠CEF+∠ECB=180°, ∴EF∥BC. 【拔高训练】 11.B 12.A13.270°-3α 14.33-2 15.154或307 16.43或417.(1)证明:∵∠ACB=90°,∴∠ACD+∠BCD=90°. ∵∠ACD=∠B, ∴∠B+∠BCD=90°, ∴∠BDC=90°,∴CD⊥AB.(2)解:①当∠B=34°时,∵∠ACD=∠B,∴∠ACD=34°.由(1)知,∠BCD+∠B=90°,∴∠BCD=56°.由折叠知∠A′CD=∠ACD=34°,∴∠A′CB=∠BCD-∠A′CD=56°-34°=22°.②当∠B=n°时,同①的方法得∠A′CD=n°,∠BCD=90°-n°,∴∠A′CB=∠BCD-∠A′CD=90°-n°-n°=90°-2n°.【培优训练】18.4或34。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六节 解直角三角形及其应用
姓名:________ 班级:________ 用时:______分钟
1.(2018·天津中考)cos 30°的值等于( ) A.2
2
B.3
2
C .1
D. 3
2.(2018·云南中考)在Rt △ABC 中,∠C=90°,AC =1,BC =3,则∠A 的正切值为( ) A .3
B.13
C.1010
D.310
10
3.(2019·易错题)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cos α=12
13,则小车上升
的高度是( )
A .5米
B .6米
C .6.5米
D .12米
4.(2018·孝感中考)如图,在Rt △ABC 中,∠C=90°,AB =10,AC =8,则sin A 等于( )
A.3
5
B.4
5
C.3
4
D.43
5.(2018·宜昌中考)如图,要测量小河两岸相对的两点P ,A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得PC =100米,∠PCA=35°,则小河宽PA 等于( )
A .100sin 35°米
B .100sin 55°米
C .100tan 35°米
D .100tan 55°米
6.把一块直尺与一块三角板如图放置,若sin ∠1=
2
2
,则∠2的度数为( )
A .120°
B .135°
C .145°
D .150°
7.(2018·天水中考)已知在Rt △ABC 中,∠C=90°,sin A =12
13,则tan B 的值为________.
8.(2019·原创题)如图,已知△ABC 的三个顶点均在正方形网格的格点上,则cos C 的值为________.
9.(2018·咸宁中考)如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为45°,测得底部C 的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为110 m ,那么该建筑物的高度BC 约为___________(结果保留整数,3≈1.73)
10.(2019·原创题)某条道路上有学校,为了保证师生的交通安全,通行车辆限速为40千米/时,在离道路100米的点P 处建一个监测点,道路AB 段为检测区(如图).在△ABP 中,∠PAB=30°,∠PBA=45°,那么车辆通过AB 段的时间在多少秒以内时,可认定为超速?(精确到0.1秒,参考数据:2≈1.41,3≈1.73)
11.(2018·恩施州中考)如图所示,为测量旗台A 与图书馆C 之间的直线距离,小明在A 处测得C 在北偏东30°方向上,然后向正东方向前进100米至B 处,测得此时C 在北偏西15°方向上,求旗台与图书馆之间的距离.(结果精确到1米,参考数据2≈1.41,3≈1.73)
12.(2019·原创题)如图,在Rt △ABC 中,∠C=90°,若sin A>
3
2
,则下列各式成立的是( )
A .cos A>1
2
B .sin B<1
2
C .tan B> 3
D .tan A< 3
13.(2018·重庆中考B 卷)如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为i =1∶0.75、坡长为10米的斜坡CD 到达点D ,
然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan 24°≈0.45)( )
A.21.7米B.22.4米
C.27.4米D.28.8米
14.(2018·眉山中考)如图,在边长为1的小正方形网格中,点A,B,C,D都在这些小正方形的顶点上,AB,CD相交于点O,则tan∠AOD=________.
15.(2017·黑龙江中考)△ABC中,AB=12,AC=39,∠B=30°,则△ABC的面积是______________.16.(2018·湘西州中考)如图,某市郊外景区内一条笔直的公路l经过A,B两个景点,景区管委会又开发了风景优美的景点C.经测量,C位于A的北偏东60°的方向上,C位于B的北偏东30°的方向上,且AB=10 km.
(1)求景点B与C的距离;
(2)为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长.(结果保留根号)
17.(2018·安徽中考)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上.如图所示,该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED)在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan 84.3°≈10.02)
18.一般地,当α,β为任意角时,sin(α+β)与sin(α-β)的值可以用下面的公式求得:
sin(α+β)=sinαcosβ+cosαsinβ;
si n(α-β)=sinαcosβ-cosαsinβ.
例如sin90°=sin(60°+30°)=sin60°cos30°+cos60°sin30°=
3
2
×
3
2
+
1
2
×
1
2
=1.
类似地,可以求得sin15°的值是________.
参考答案
【基础训练】
1.B 2.A 3.A 4.A 5.C 6.B 7.
512 8.2
2
9.300 10.解:如图,作PC⊥AB 于点C.
在Rt△APC 中,tan∠PAC=PC AC ,
则AC =PC
tan∠PAC =1003≈173(米).
同理,BC =PC
tan∠PBA =PC =100(米),
则AB =AC +BC =273(米). ∵40千米/时=100
9米/秒,
则273÷100
9
≈24.6(秒).
答:车辆通过AB 段的时间在24.6秒内时,可认定为超速. 11.解:如图,由题意知∠MAC=30°,∠NBC=15°,
∴∠BAC=60°, ∠ABC=75°,
∴∠C=45°.
过点B 作BE⊥AC,垂足为E. 在Rt△AEB 中,
∵∠BAC=60°,AB =100米,
∴AE=cos∠BAC·AB=1
2×100=50(米),
BE =sin∠BAC·AB=3
2
×100=503(米). 在Rt△CEB 中,
∵∠C=45°,BE =503米, ∴CE=BE =503米,
∴AC=AE +CE =50+503≈137(米). 答:旗台与图书馆之间的距离约为137米. 【拔高训练】 12.B 13.A
14.2 15.153或21 3
16.解:(1)如图,由题意得∠CAB=30°,∠ABC=90°+30°=120°, ∴∠C=180°-∠CAB-∠ABC=30°, ∴∠CAB=∠C=30°,∴BC=AB =10 km , 即景点B ,C 相距的路程为10 km.
(2)如图,过点C 作CE⊥AB 于点E.
∵BC=10 km ,C 位于B 的北偏东30°的方向上, ∴∠CBE=60°. 在Rt△CBE 中,CE =
3
2
BC =53(km). 17.解:由题意可得∠FED=45°.
在Rt△DEF 中,∵∠FDE=90°,∠FED=45°, ∴DE=DF =1.8米,EF =2DE =92
5(米).
∵∠AEB=∠FED=45°,
∴∠AEF=180°-∠AEB-∠FED=90°.
在Rt△AE F 中,
∵∠AEF=90°,∠AFE=39.3°+45°=84.3°, ∴AE=EF·tan∠AFE≈92
5×10.02=18.0362(米).
在Rt△ABE 中,
∵∠ABE=90°,∠AEB=45°, ∴AB=AE·sin∠AEB≈18.0362×2
2
≈18(米). 答:旗杆AB 的高度约为18米. 【培优训练】 18.6-2
4。