牛顿运动定律测试题(提升版)

合集下载

牛顿运动定律测试题

牛顿运动定律测试题

第四章 牛顿运动定律测试题一、选择题(每题4分,共计40分)1.根据牛顿运动定律,以下选项中正确的是 ( )A .人只有在静止的车厢内,竖直向上高高跳起后,才会落在车厢的原来位置B .人在沿直线匀速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方C .人在沿直线加速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方D .人在沿直线减速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方2.在以加速度a =13g 匀加速上升的电梯里,有一质量为m 的人,下列说法正确的是( )A .人的重力为23mg B . 人的重力仍为mgC .人对电梯的压力为23mgD .人对电梯的压力为43mg3.如图l 所示,小车和人的总质量为M ,人用力F 拉绳.若不计绳和滑轮质量,不计一切摩擦,则车和人的加速度为 ( ) A . 2F MB . 0C .F MD .2F M 4.在一种叫做“蹦极跳”的运动中,质量为m 的游戏者身系一根长为L 、弹性优良的轻质柔软的橡皮绳,从高处由静止开始下落1.5L 时达到最低点,若不计空气阻力,则在弹性绳从原长达最低点的过程中,以下说法正确的是( )A .速度先减小后增大B .加速度先减小后增大C .速度先增大后减小D .加速度先增大后减小5. 如图2所示,不计绳的质量及绳与滑轮的摩擦,物体A 的质量为M ,水平面光滑,当在绳端施以F =mg N 的竖直向下的拉力作用时,物体A 的加速度为a 1,当在B 端挂一质量为m kg 的物体时,A 的加速度为a 2,则a 1与a 2的关系正确的是( )A . a 1=a 2B . a 1>a 2C . a 1<a 2D . 无法判断 6. 有两个物体,质量分别为m 1和m 2,m 1原来静止,m 2以速度v 向右运动,它们同时各受到一个向右的大小相等的恒力作用,它们能达到相同速度的条件是( )A .m l <m 2B .m l =m 2C .m l >m 2D .m l 远远大于m 27. 如图3所示水平面上,质量为10 kg 的物块A 拴在一个被水平拉伸的弹簧一端,弹簧的另一端固定在小车上,小车静止不动,弹簧对物块的弹力大小为5 N 时,物块处于静止状态,若小车以加速度a =1 m/s 2沿水平地面向右加速运动时( )A .物块A 相对小车仍静止B .物块A 受到的摩擦力将减小C .物块A 受到的摩擦力大小不变图 1图2 图 3D .物块A 受到的弹力将增大8. 如图4所示光滑竖直圆槽,AP 、BP 、CP 为通过最低点P 与水平面分别成30°、45°、60°角的三个光滑斜面,与圆相交于A 、B 、C 点.若一物体由静止分别从A 、B 、C 滑至P 点所需的时间为t 1,t 2,t 3,则 ( )A.t 1<t 2<t 3B.t 1>t 2>t 3C.t 1=t 2=t 3D.t 1=t 2<t 39.声音在空气中的传播速度υ 与空气的密度ρ压强p 有关,下列关于空气中声速的表达式中正确的是 ( )A .υ=kp /ρB .υC .υD .υ10.如图5所示,物体A 和B 叠放在光滑水平面上,在水平拉力F 1=10 N ,F 2=12 N 的作用下一起加速运动,物体A 和B 保持相对静止.若m ay =4 kg ,m B =6 kg ,则A 与B 所受的摩擦力f 1和f 2的大小和方向为 ( )A .f 1向左,f 2向右,大小都等于1.2 NB .f 1向右,f 2向左,大小都等于1.2 NC .f 1向左,大小为2 N ,f 2为零D .f 2向右,大小为3 N ,f 1为零二、填空题(每小题4分,共计20分)11.如图6所示,光滑水平面上物体A 和B 以轻弹簧相连接,在水平拉力F作用下,以加速度a 做直线运动.设A 和B 的质量分别为m A 和m B ,当突然撤掉力F 时,A 和B 的加速度分别为a A = ,a B = .12. 一辆小车在水平恒力F 作用下,由静止开始在水平面上匀加速运动t 1 s 后撤去F ,小车再经过t 2 s 停下.则小车加速阶段的位移s 1与减速阶段的位移s 2之比s 1∶s 2=______;小车牵引力F 与所受的摩擦力F f 之比F ∶F f =______.13. 体重为900 N 的人站在地面上用手能直接提起103 N 的重物,若利用如图7所示的装置(滑轮,绳的质量,摩擦均不计)设人始终站在地面上,他通过滑轮使质量为60 kg 的重物获得加速度最大为________m/s 2.(g 取10m/s 2)14.科学实验是人们认识自然的重要手段.一学生测量自行车在行驶中所受的阻力系数k (阻力对重力的比值),他依次做了以下事项:(1)找一段平直的路面,并在路面上画一道起点线;(2)以较大速度骑车驶过起点线,并在通过起点线时按动秒表开始计时;(3)当车驶过起点线后就不再蹬车,让自行车依靠惯性沿直线继续前进;(4)自行车停下,立即按下秒表停止计时,记录自行车行驶时间t ,同时记下终点位置;(5)量出起点线到终点的距离L .根据上述操作,可测出自行车在行驶中的阻力系数k = .15. 质量为0.8 kg 的物体在一水平面上运动,图8中所示的两条直线分别表示物体受到水平拉力作用和不受拉力作用时的υ-t 图线.则图线b 与上述的 状态相符.该物体所受到的拉力是 N图 4 图 5 图6 图7 图 8三、计算题(第16题8分,17、18题10分,19题12分)16. (8分) 质量为200kg 的物体,置于升降机内的台秤上,从静止开始上升.运动过程中台秤的示数F 与时间t 的关系如图9所示.求升降机在7s 内上升高度(取g =10m /s 2)17.(10分)如图10所示,跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,已知人的质量为70 kg ,吊板的质量为10 kg ,绳及定滑轮的质量、滑轮的摩擦均可不计,取重力加速度g =10m/s 2。

高考物理牛顿运动定律题20套(带答案)含解析

高考物理牛顿运动定律题20套(带答案)含解析

高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。

力学中的牛顿定律测试题

力学中的牛顿定律测试题

力学中的牛顿定律测试题牛顿定律测试题一、选择题1. 牛顿第一定律也被称为:A. 万有引力定律B. 质点运动定律C. 作用-反作用定律D. 力的平衡定律2. 下列哪个不是牛顿第二定律的表达方式?A. F = maB. F = dp/dtC. F = m(dv/dt)D. F = mg3. 牛顿第三定律指出:A. 力等于物体的质量乘以加速度B. 物体的加速度与作用力成反比C. 任何两个物体之间都存在相互作用力,且大小相等方向相反D. 物体受到的合外力等于物体的质量乘以加速度4. 一个质量为2kg的物体受到一个5N的水平力作用,求物体的加速度是多少?A. 2.5 m/s²B. 1.67 m/s²C. 3.33 m/s²D. 2.0 m/s²5. 一个物体质量为20kg,受到一个45°斜向上的力30N作用,求物体在水平方向上的加速度是多少?A. 1.5 m/s²B. 1.0 m/s²C. 0.87 m/s²D. 0.5 m/s²二、填空题1. 由一个物体自由下落引起的加速度叫做重力加速度,通常用符号________表示。

2. 当一个物体受到的合力为零时,物体处于_____________状态。

3. 牛顿第二定律公式中的F表示_____________。

4. 单位质量物体受到的重力加速度叫做______________。

三、简答题1. 简述牛顿第一定律的内容以及它在物体运动中的应用。

2. 什么是惯性?举个例子说明。

3. 对于一个均匀匀速直线运动的物体,它的加速度是多少?4. 牛顿第三定律是什么?请举个例子来解释。

答案:一、选择题1. B2. B3. C4. B5. C二、填空题1. g2. 力的平衡3. 力4. 重力加速度三、简答题1. 牛顿第一定律也被称为惯性定律,它表明当一个物体处于静止状态或作匀速直线运动时,如果外力合力为零,则物体将保持原来的状态。

牛顿运动定律习题集(含答案)

牛顿运动定律习题集(含答案)

物理训练题 之 牛顿运动定律一、选择题1. 关于惯性,以下说法正确的是: ( )A 、在宇宙飞船内,由于物体失重,所以物体的惯性消失B 、在月球上物体的惯性只是它在地球上的1/6C 、质量相同的物体,速度较大的惯性一定大D 、质量是物体惯性的量度,惯性与速度及物体的受力情况无关2. 理想实验是科学研究中的一种重要方法,它把可靠事实和理论思维结合起来,可以深刻地揭示自然规律。

以下实验中属于理想实验的是: ( ) A 、验证平行四边形定则 B 、伽利略的斜面实验C 、用打点计时器测物体的加速度D 、利用自由落体运动测定反应时间3. 关于作用力和反作用力,以下说法正确的是: ( ) A 、作用力与它的反作用力总是一对平衡力 B 、地球对物体的作用力比物体对地球的作用力大 C 、作用力与反作用力一定是性质相同的力D 、凡是大小相等,方向相反,作用在同一条直线上的,并且分别作用在不同物体上的两个力一定是一对作用力和反作用力4. 在光滑水平面上,一个质量为m 的物体,受到的水平拉力为F 。

物体由静止开始做匀加速直线运动,经过时间t ,物体的位移为s ,速度为v ,则: ( ) A 、由公式α=可知,加速度a 由速度的变化量和时间决定 B 、由公式a 由物体受到的合力和物体的质量决定 C 、由公式αa 由物体的速度和位移s 决定D 、由公式αa 由物体的位移s 和时间决定 5.力F 1a 1=3m/s 2,力F 2作用在该物体上产生的加速度a 2=4m/s 2,则F 1和F 2同时作用在该物体上,产生的加速度的大小不可能为: ( ) A 、 7m/s 2B 、 5m/s 2C 、 1m/s 2D 、 8m/s26.电梯的顶部挂有一个弹簧秤,秤下端挂了一个重物,电梯匀速直线运动时,弹簧秤的示数为10N ,在某时刻电梯中的人观察到弹簧秤的示数变为8N ,关于电梯的运动,以下说法正确的是: ( ) A 、电梯可能向上加速运动,加速度大小为2m/s 2B 、电梯可能向下加速运动,加速度大小为2m/s 2C 、电梯可能向上减速运动,加速度大小为2m/s 2D 、电梯可能向下减速运动,加速度大小为2m/s 2 7.下国际单位制中的单位,属于基本单位的是:( ) A 、力的单位:N B 、 质量的单位:kg C 、 长度的单位:m D 、时间的单位:s8. 关于物体的运动状态和所受合力的关系,以下说法正确的是: ( ) A 、物体所受外力为零,物体一定处于静止状态 B 、只有合力发生变化时,物体的运动状态才会发生变化 C 、 物体所受合力不为零时,物体的加速度一定不为零D 、物体所受的合力不变且不为零,物体的运动状态一定变化 9.以下说法中正确的是: ( )A 、牛顿第一定律反映了物体不受外力作用时的运动规律B、静止的物体一定不受外力的作用C、在水平地面上滑动的木块最终要停下来,是由于没有外力维持木块的运动D、物体运动状态发生变化时,物体必须受到外力作用10.做自由落体运动的物体,如果下落过程中某时刻重力突然消失,物体的运动情况将是:A、悬浮在空中不动B、速度逐渐减小C、保持一定速度向下匀速直线运动D、无法判断11.人从行驶的汽车上跳下来容易: ( )A 、向汽车行驶的方向跌倒 B、向汽车行驶的反方向跌倒C、从向车右侧方向跌倒D、向车左侧方向跌倒12.下面说法中正确的是: ( )A、只有运动的物体才能表现出它的惯性;B、只有静止的物体才能表现出它的惯性C、物体的运动状态发生变化时,它不具有惯性D、不论物体处于什么状态,它都具有惯性13.下列事例中,利用了物体的惯性的是:( )A、跳远运动员在起跳前的助跑运动B、跳伞运动员在落地前打开降落伞C、自行车轮胎有凹凸不平的花纹D、铁饼运动员在掷出铁饼前快速旋转14.火车在长直水平轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回车上原处,这是因为:( )A、人跳起后,厢内空气给他以向前的力,带着他随同火车一起向前运动;B、人跳起的瞬间,车厢的地板给他一个向前的力,推动他随同火车一起向前运动;C、人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离很小,不明显而已;D、人跳起后直到落地,在水平方向上人和车始终具有相同的速度。

牛顿定律测试题

牛顿定律测试题

牛顿定律测试题一、选择题1. 牛顿第一定律也被称为:A. 质量定律B. 加速度定律C. 动量定律D. 作用-反作用定律2. 牛顿第二定律表达了什么关系?A. 力和加速度的关系B. 质量和加速度的关系C. 力和速度的关系D. 质量和力的关系3. 牛顿第三定律描述了什么?A. 力的大小与物体加速度相关B. 力的作用和反作用相等且方向相反C. 力的作用和反作用不相等D. 力的作用和速度成反比二、填空题1. 牛顿第一定律指出:若物体所受的合力为零,则物体将保持________。

2. 牛顿第二定律的数学表达式为:力 =________。

3. 牛顿第三定律又称为作用-________定律。

三、简答题1. 解释牛顿第一定律的内容,并给出一个日常生活中的例子。

2. 简述牛顿第二定律的数学表达式和意义。

3. 用一个例子解释牛顿第三定律的概念。

注意:请在答案后面标明题号和答案内容。

参考答案:一、选择题1. A2. B3. B二、填空题1. 静止或匀速直线运动状态2. 力 = 质量 ×加速度3. 反作用三、简答题1. 牛顿第一定律,也称为惯性定律,指出当物体所受的合力为零时,物体将保持静止或匀速直线运动的状态。

例如,当汽车突然停止时,人体会继续向前运动,因为人体具有惯性,继续保持运动状态。

2. 牛顿第二定律的数学表达式为力 = 质量 ×加速度。

这个定律指出,物体所受的合力与物体的质量成正比,与物体的加速度成正比。

从数学角度上可以表示为 F = ma,其中 F 表示物体所受的合力,m 表示物体的质量,a 表示物体的加速度。

这个定律告诉我们,由于质量不同,物体在相同的力作用下会获得不同的加速度。

3. 牛顿第三定律也称为作用-反作用定律,它指出力的作用和反作用总是相等且方向相反。

例如,当我们划船时,我们用桨划水向后,船向前移动。

这是因为我们划水时施加了一个向后的力,根据牛顿第三定律,水会给船以相同大小的向前的力,从而推动船向前移动。

物理牛顿运动定律专题练习(及答案)含解析

物理牛顿运动定律专题练习(及答案)含解析

物理牛顿运动定律专题练习(及答案)含解析一、高中物理精讲专题测试牛顿运动定律1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。

【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.2.如图所示.在距水平地面高h =0.80m 的水平桌面一端的边缘放置一个质量m =0.80kg 的木块B ,桌面的另一端有一块质量M =1.0kg 的木块A 以初速度v 0=4.0m/s 开始向着木块B 滑动,经过时间t =0.80s 与B 发生碰撞,碰后两木块都落到地面上,木块B 离开桌面后落到地面上的D 点.设两木块均可以看作质点,它们的碰撞时间极短,且已知D 点距桌面边缘的水平距离s =0.60m ,木块A 与桌面间的动摩擦因数μ=0.25,重力加速度取g =10m/s 2.求:(1)木块B 离开桌面时的速度大小; (2)两木块碰撞前瞬间,木块A 的速度大小; (3)两木块碰撞后瞬间,木块A 的速度大小. 【答案】(1) 1.5m/s (2) 2.0m/s (3) 0.80m/s 【解析】 【详解】(1)木块离开桌面后均做平抛运动,设木块B 离开桌面时的速度大小为2v ,在空中飞行的时间为t ′.根据平抛运动规律有:212h gt =,2s v t '= 解得:2 1.5m/s 2gv h== (2)木块A 在桌面上受到滑动摩擦力作用做匀减速运动,根据牛顿第二定律,木块A 的加速度:22.5m/s Mga Mμ==设两木块碰撞前A 的速度大小为v ,根据运动学公式,得0 2.0m/s v v at =-=(3)设两木块碰撞后木块A 的速度大小为1v ,根据动量守恒定律有:2Mv Mv mv =+1解得:210.80m/s Mv mv v M-==.3.如图所示,传送带水平部分x ab =0.2m ,斜面部分x bc =5.5m ,bc 与水平方向夹角α=37°,一个小物体A 与传送带间的动摩擦因数μ=0.25,传送带沿图示方向以速率v =3m/s 运动,若把物体A 轻放到a 处,它将被传送带送到c 点,且物体A 不脱离传送带,经b 点时速率不变.(取g =10m/s 2,sin37°=0.6)求:(1)物块从a 运动到b 的时间; (2)物块从b 运动到c 的时间. 【答案】(1)0.4s ;(2)1.25s . 【解析】 【分析】根据牛顿第二定律求出在ab 段做匀加速直线运动的加速度,结合运动学公式求出a 到b 的运动时间.到达b 点的速度小于传送带的速度,根据牛顿第二定律求出在bc 段匀加速运动的加速度,求出速度相等经历的时间,以及位移的大小,根据牛顿第二定律求出速度相等后的加速度,结合位移时间公式求出速度相等后匀加速运动的时间,从而得出b 到c 的时间. 【详解】(1)物体A 轻放在a 处瞬间,受力分析由牛顿第二定律得:1mg ma μ=解得:21 2.5m/s a =A 与皮带共速需要发生位移:219 1.8m 0.2m 25v x m a ===>共故根据运动学公式,物体A 从a 运动到b :21112ab x a t =代入数据解得:10.4s t =(2)到达b 点的速度:111m/s 3m/s b v a t ==<由牛顿第二定律得:22sin 37mg f ma ︒+=2cos37N mg =︒且22f N μ=代入数据解得:228m/s a =物块在斜面上与传送带共速的位移是:2222b v vs a -=共代入数据解得:0.5m 5.5m s =<共时间为:2231s 0.25s 8b v v t a --=== 因为22sin 376m/s cos372m/s g g μ︒=︒=>,物块继续加速下滑 由牛顿第二定律得:23sin 37mg f ma ︒-= 2cos37N mg =︒,且22f N μ=代入数据解得:234m/s a =设从共速到下滑至c 的时间为t 3,由23331 2bc x s vt a t -=+共,得: 31s t =综上,物块从b 运动到c 的时间为:23 1.25s t t +=4.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgsinθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.5.现有甲、乙两汽车正沿同一平直马路同向匀速行驶,甲车在前,乙车在后,它们行驶的速度均为10m/s .当两车快要到一十字路口时,甲车司机看到绿灯已转换成了黄灯,于是紧急刹车(反应时间忽略不计),乙车司机为了避免与甲车相撞也紧急刹车,但乙车司机反应较慢(反应时间为0.5s ).已知甲车紧急刹车时制动力为车重的0.4倍,乙车紧急刹车时制动力为车重的0.5倍,g 取10m/s 2.(1)若甲车司机看到黄灯时车头距警戒线15m ,他采取上述措施能否避免闯警戒线? (2)为保证两车在紧急刹车过程中不相撞,甲、乙两车行驶过程中至少应保持多大距离?【答案】(1)见解析(2)2.5m 【解析】 【分析】(1)根据甲车刹车时的制动力求出加速度,再根据位移时间关系求出刹车时的位移,从而比较判定能否避免闯红灯;(2)根据追及相遇条件,由位移关系分析安全距离的大小. 【详解】(1)甲车紧急刹车的加速度为210.44/a g m s ==甲车停下来所需时间0112.5v t s a ==甲滑行距离 20112.52v x m a == 由于12.5 m <15 m ,所以甲车能避免闯红灯;(2)乙车紧急刹车的加速度大小为:220.55/a g m s ==设甲、乙两车行驶过程中至少应保持距离0x ,在乙车刹车2t 时刻两车速度相等,0120022()v a t t v a t -+=-解得2 2.0t s =此过程中乙的位移: 220002121152x v t v t a t m =+-= 甲的位移:210021021()()12.52x v t t a t t m =+-+= 所以两车安全距离至少为:012 2.5x x x m =-= 【点睛】解决本题的关键利用牛顿第二定律求出加速度,再根据运动学公式进行求解.注意速度大者减速追速度小者,判断能否撞上,应判断速度相等时能否撞上,不能根据两者停下来后比较两者的位移去判断.6.如图甲所示,在平台上推动物体压缩轻质弹簧至P 点并锁定.解除锁定,物体释放,物体离开平台后水平抛出,落在水平地面上.以P 点为位移起点,向右为正方向,物体在平台上运动的加速度a 与位移x 的关系如图乙所示.已知物体质量为2kg ,物体离开平台后下落0.8m 的过程中,水平方向也运动了0.8m ,g 取10m/s 2,空气阻力不计.求:(1)物体与平台间的动摩擦因数及弹簧的劲度系数; (2)物体离开平台时的速度大小及弹簧的最大弹性势能. 【答案】(1)0.2μ=,400/k N m =(2)2/v m s =, 6.48p E J = 【解析】 【详解】(1)由图象知,弹簧最大压缩量为0.18x m ∆=,物体开始运动时加速度2134/a m s =,离开弹簧后加速度大小为222/a m s =.由牛顿第二定律1k x mg ma μ⋅∆-=①,2mg ma μ=②联立①②式,代入数据解得0.2μ=③400/k N m =④(2)物体离开平台后,由平抛运动规律得:212h gt =⑤ d vt =⑥物体沿平台运动过程由能量守恒定律得:212p E mgx mv μ-=⑦ 联立①②⑤⑥⑦式,代入数据得2/v m s =⑧6.48p E J =⑨7.木块A 、B 质量分别为5A m kg =和7B m kg =,与原长为020l cm =、劲度系数为100/k N m =轻弹簧相连接,A 、B 系统置于水平地面上静止不动,此时弹簧被压缩了5c m .已知A 、B 与水平地面之间的动摩擦因数均为0.2μ=,可认为最大静摩擦力等于滑动摩擦力,现用水平推力F=2N 作用在木块A 上,如图所示(g 取10m/s 2),(1)求此时A ,B 受到的摩擦力的大小和方向;(2)当水平推力不断增大,求B 即将开始滑动时,A 、B 之间的距离 (3)若水平推力随时间变化满足以下关系12(),2F t N =+ 求A 、B 都仍能保持静止状态的时间,并作出在A 开始滑动前A 受到的摩擦力图像.(规定向左为正方向)【答案】(1)3,A f N =向右,3,B f N =向左;(2)11cm ,(3).【解析】试题分析:(1)分析A 、B 的最大静摩擦力大小关系,根据平衡条件进行求解;(2)当B 要开始滑动时弹簧弹力不变,则A 、B 的距离等于原长减去压缩量;(3)A 开始滑动时B 静止,则弹簧弹力不变,求出此时的时间,在A 没有滑动前,根据平衡条件求出A f t -的表达式,并作出图象.(1)由:max 10A A f f m g N μ===静动,max 14B B f f m g N μ===静动 此时假设A 、B 均仍保持静止状态由题得:5F kx N ==弹 对A 有:A F F f -=弹max 3A A f N f ∴=<方向向右;对B 有:B F f =弹max 5B B f N f ∴=<方向向左 则假设成立(2)当B 要开始滑动时,此时,max F f =弹静 由max B f f m g μ==静动 则:B kx m g μ'=0.1414B m gx m cm kμ∴='==A 、B 间距离: 011s l x cm '=-=(3)在A 没有开始滑动前,A 处于静止状态,弹簧弹力不变 则有:A F f F +=弹 得:13()2A f F F t N =-=-弹 设t 时刻A 开始滑动,此时B 静止,弹簧弹力不变 对A: max A F f F +=弹 代入数据解得:t=26s作出在A 开始滑动前A 受到的摩擦力A f t -图象如图所示8.草逐渐成为我们浙江一项新兴娱乐活动。

牛顿运动定律测试题及答案详解

牛顿运动定律测试题及答案详解

(三)牛顿运动定律测验卷一.命题双向表二. 期望值:65三. 试卷(三)牛顿运动定律测验卷一.选择题(每道小题 4分共 40分 )1.下面关于惯性的说法正确的是()A.物体不容易停下来是因为物体具有惯性B.速度大的物体惯性一定大C.物体表现出惯性时,一定遵循惯性定律D.惯性总是有害的,我们应设法防止其不利影响2.一个物体受到多个力作用而保持静止,后来物体所受的各力中只有一个力逐渐减小到零后又逐渐增大,其它力保持不变,直至物体恢复到开始的受力情况,则物体在这一过程中A.物体的速度逐渐增大到某一数值后又逐渐减小到零B.物体的速度从零逐渐增大到某一数值后又逐渐减小到另一数值C.物体的速度从零开始逐渐增大到某一数值D.以上说法均不对3.质量为m1和m2的两个物体,分别以v1和v2的速度在光滑水平面上做匀速直线运动,且v1<v2,如图所示。

如果用相同的水平力F同时作用在两个物体上,则使它们的速度相等的条件是图-1 图3-3-7 A .力F 与v1、v2同向,且m1>m2 B .力F 与v1、v2同向,且m1<m2 C .力F 与v1、v2反向,且m1>m2 D .力F 与v1、v2反向,且m1<m24.如图3-1所示,水平面上,质量为10kg 的物块A 拴在一个被水平位伸的弹簧一端,弹簧的另一端固定在小车上,小车静止不动,弹簧对物块的弹力大小为5N 时,物块处于静止状态,若小车以加速度a =1m/s 2沿水平地面向右加速运动时A .物块A 相对小车仍静止B .物块A 受到的摩擦力将减小C .物块A 受到的摩擦力将不变D .物块A 受到的弹力将增大5 、n 个共点力作用在一个质点上,使质点处于平衡状态。

当其中的F 1逐渐减小时,物体所受的合力 A .逐渐增大,与F 1同向 B .逐渐增大,与F 1反向 C .逐渐减小,与F 1同向 D .逐渐减小,与F 1反向6、质量不等的A 、B 两长方体迭放在光滑的水平面上。

牛顿运动定律期末复习(提升训练)含答案

牛顿运动定律期末复习(提升训练)含答案

高中物理牛顿运动定律专题(提升训练)1.竖直向上飞行的子弹,达到最高点后又返回原处,设整个运动过程中,子弹受到的阻力与速率成正比,则整个运动过程中,加速度的变化是( ) (A )始终变小(B )始终变大(C )先变大后变小 (D )先变小后变大2.如图所示,质量分别为m 1和m 2的两个物体中间以轻弹簧相连,并竖直放置.今设法使弹簧为原长(仍竖直),并让它们从高处同时由静止开始自由下落,则下落过程中弹簧形变将是(不计空气阻力)( )(A )若m 1>m 2,则弹簧将被压缩 (B )若m 1<m 2,则弹簧将被拉长 (C )只有m 1=m 2,弹簧才会保持原长 (D )无论m 1和m 2为何值,弹簧长度均不变3.如图所示,自由下落的小球,从它接触竖直放置的弹簧开始,到弹簧被压缩到最短的过程中,小球的速度和所受外力的合力变化情况是( )(A )合力变小,速度变小 (B )合力变小,速度变大(C )合力先变小后变大,速度先变大后变小 (D )合力先变大后变小,速度先变小后变大4.如图所示,质量不等的木块A 和B 的质量分别为m 1和m 2,置于光滑的水平面上.当水平力F 作用于左端A 上,两物体一起作匀加速运动时,A 、B 间作用力大小为F 1.当水平力F 作用于右端B 上,两物体一起作匀加速运动时,A 、B 间作用力大小为F 2,则()(A )在两次作用过程中,物体的加速度的大小相等 (B )在两次作用过程中,F 1+F 2<F (C )在两次作用过程中,F 1+F 2=F (D )在两次作用过程中,2121m m F F5.如图所示,一轻绳绕过轻滑轮,绳的一端挂一个质量为60kg 的物体,另一端有一个质量也为60kg 的人拉住绳子站在地上,现人由静止开始沿绳子向上爬,在人向上爬的过程中( )(A )物体和人的高度差不变 (B )物体和人的高度差减小 (C )物体始终静止不动(D )人加速、匀速爬时物体和人的高度差变化情况不同6.如图所示,在光滑水平而上有一质量为M 的斜劈,其斜面倾角为α,一质量为m 的物体放在其光滑斜面上,现用一水平力F 推斜劈,恰使物体m 与斜劈间无相对滑动,则斜劈对物块m 的弹力大小为( )(A )mgcos α (B )αcos mg(C )αcos )m M (mF + (D )αsin )m M (mF+7.如图所示,一轻绳通过一光滑定滑轮,两端各系一质量为m 1和m 2的物体,m 1放在地面上,当m 2的质量发生变化时,m 1的加速度a 的大小与m 2的关系大致如下图所示中的图()8.质量为10kg 的物体,在水平地面上向左运动,物体与水平面间的动摩擦因数为0.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿运动定律测试题(满分:100分 时间:90分钟)一、选择题(本题共9小题,每小题5分,共45分) 1.下列说法正确的是( )A .运动越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大B .同一物体在地球上不同的位置受到的重力是不同的,所以它的惯性也随位置的变化而变化C .一个小球竖直上抛,抛出后能继续上升,是因为小球运动过程中受到了向上的推力D .物体的惯性大小只与本身的质量有关,质量大的物体惯性大,质量小的物体惯性小2.如图甲所示,A 、B 两物块叠放在一起,在水平面上保持相对静止地做直线运动,运动的速度—时间图象如图乙所示,则运动过程中B 受到的摩擦力F f 随时间t 的变化图象是(规定向右的方向为正方向) ( )3.如图所示,质量满足mA =2mB =3mC 的三个物块A 、B 、C ,A 与天花板之间,B 与C 之间均用轻弹簧相连,A 与B 之间用细绳相连,当系统静止后,突然剪断AB 间的细绳,则此瞬间A 、B 、C 的加速度分别为(取向下为正) ( )A .-56g 、2g 、0B .-2g 、2g 、0C .-56g 、53g 、0D .-2g 、53g 、g4.在水平地面上运动的小车车厢底部有一质量为m 1的木块,木块和车厢通过一根轻质弹簧相连接,弹簧的劲度系数为k .在车厢的顶部用一根细线悬挂一质量为m 2的小球.某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与车厢保持相对静止,如图3所示.不计木块与车厢底部的摩擦力,则在这段时间内弹簧的形变为( )A .伸长量为m 1g k tan θB .压缩量为m 1g k tan θC .伸长量为m 1g k tan θD .压缩量为m 1gk tan θ5.如图所示,物体A 放在一斜面体上,与斜面体一起向右做匀加速直线运动,且与斜面体始终保持相对静止,则 ( )A .物体A 可能受二个力的作用B .物体A 可能受三个力的作用C .当加速度增加时,物体A 受的摩擦力一定增大D .当加速度增加时,物体A 受的摩擦力可能先减小后增大6.为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图所示.当此车减速上坡时,乘客( )A .处于超重状态B .处于失重状态C .受到向前的摩擦力作用D .所受力的合力沿斜坡向上7.如图所示为粮袋的传送装置,已知AB 间长度为L ,传送带与水平方向的夹角为θ,工作时其运行速度为v ,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A 点将粮袋放到运行中的传送带上,关于粮袋从A 到B 的运动,以下说法正确的是(设最大静摩擦力等于滑动摩擦力)( )A .粮袋到达B 点的速度与v 比较,可能大,也可能相等或小B .粮袋开始运动的加速度为g (sin θ-μcos θ),若L 足够大,则以后将一定以速度v 做匀速运动C .若μ≥tan θ,则粮袋从A 到B 一定是一直做加速运动D .不论μ大小如何,粮袋从A 到B 一直做匀加速运动,且a >g sin θ8.如图所示,在光滑水平面上,用弹簧水平连接一斜面,弹簧的另一端固定在墙上,一玩具遥控小车放在斜面上,系统静止不动.用遥控器启动小车,小车沿斜面加速上升,则( )A .系统静止时弹簧被压缩B .小车加速时弹簧处于原长C .小车加速时弹簧被压缩D .小车加速时可将弹簧换成细绳9.如图甲所示,用同种材料制成的倾角为30°的斜面和长水平面,斜面和水平面之间由光滑圆弧连接,斜面长为2.4 m 且固定.一小物块从斜面顶端以沿斜面向下的初速度v 0开始自由下滑.当v 0=2 m/s 时,经过0.8 s 后小物块停在斜面上.多次改变v 0的大小,记录下小物块从开始运动到最终停下的时间t ,作出t -v0图象如图乙所示,g 取10 m/s 2,则 ( ) A .小物块与该种材料间的动摩擦因数为0.25 B .小物块与该种材料间的动摩擦因数为32C .若小物块初速度为1 m/s ,则根据图象可知小物块运动时间为0.4 sD .若小物块初速度为4 m/s ,则根据图象可知小物块运动时间为1.6 s 二、非选择题10.(8分)某同学做“探究加速度与力、质量关系”的实验.如图所示是该同学探究小车加速度与力的关系的实验装置,他将光电门固定在水平轨道上的B 点,用不同重物通过细线拉同一小车,每次小车都从同一位置A 由静止释放.(1)若测出遮光条的宽度为d ;实验时将小车从图示位置由静止释放,由数字计时器读出遮光条通过光电门的时间Δt ,则小车经过光电门时的速度为________(用字母表示).(2)实验中可近似认为细线对小车的拉力与重物重力大小相等,则重物的质量m 与小车的质量M 间应满足的关系为________;(3)测出多组重物的质量m 和对应遮光条通过光电门的时间Δt ,并算出相应小车经过光电门时的速度v ,通过描点作出线性图象,研究小车加速度与力的关系.处理数据时应作出________(选填“v -1-m ”或“v2-m”)图象;(4)有关本实验的下列说法,正确的是________.A.将不带滑轮的木板一端适当垫高,使小车在钩码拉动下恰好做匀速运动,此时细线对重物的拉力和摩擦力恰好平衡B.将不带滑轮的木板一端适当垫高,在不挂钩码的情况下使小车恰好做匀速运动,当每次改变重物的质量时,都需要重新调节木板的倾角C.如果在实验过程中,木板始终保持水平,那么该同学在(3)中作出的图象将不是一条直线了D.将不带滑轮的木板一端适当垫高,在不挂钩码的情况下使小车恰好做匀速运动,这是用小车受到的重力沿斜面方向的分力平衡了小车受到的摩擦力的结果三、计算题(本大题共4小题,共47分,要有必要的文字说明和解题步骤,有数值计算的要注明单位) 11.(15分)2012年6月16日,我国第一位女航天员刘洋,随“神舟九号”飞船成功发射升空,并于6月29日安全返回,实现了国人“嫦娥飞天”的千年梦想.“神舟九号”载人飞船回收阶段完成的最后一个动作是断开主伞缆绳,启动反推发动机工作,此时返回舱的速度竖直向下,大小约为7 m/s,距地面的高度约为1 m,落地前一瞬间的速度约为1 m/s,空气阻力及因反推火箭工作造成的质量改变均不计(g取10 m/s2),求:(1)反推发动机工作后,返回舱落地前的加速度大小是多少?(2)航天员所承受的支持力是重力的多少倍?(3)假设返回舱与航天员的总质量为3 t,求反推火箭对返回舱的平均推力多大?12.(16分)传送带以恒定速度v=4 m/s顺时针运行,传送带与水平面的夹角θ=37°.现将质量m=2 kg的小物品轻放在其底端(小物品可看成质点),平台上的人通过一根轻绳用恒力F=20 N拉小物品,经过一段时间物品被拉到离地面高为H=1.8 m的平台上,如图所示.已知物品与传送带之间的动摩擦因数μ=0.5,设最大静摩擦力等于滑动摩擦力,g取10 m/s2,已知sin 37°=0.6,cos 37°=0.8.问:(1)物品从传送带底端运动到平台上所用的时间是多少?(2)若在物品与传送带达到同速瞬间撤去恒力F,求物品还需多少时间离开传送带?13.(16分)如图所示,一木箱静止在长平板车上,某时刻平板车以a=2.5 m/s2的加速度由静止开始向前做匀加速直线运动,当速度达到v=9 m/s时改做匀速直线运动,已知木箱与平板车之间的动摩擦因数μ=0.225.箱与平板车之间的最大静摩擦力与滑动摩擦力相等(g取10 m/s2).求:(1)车在加速过程中木箱运动的加速度的大小;(2)要使木箱不从平板车上滑落,木箱开始时距平板车末端的最小距离.1、D2、B3、C4、A5、ABD6、B7、答案 A解析 开始时,粮袋相对传送带向上运动,其受重力、支持力和沿传送带向下的摩擦力,由牛顿第二定律可知,mg sin θ+μF N =ma ,F N =mg cos θ,解得a =g sin θ+μg cos θ,故B 项错;粮袋加速到与传送带相对静止时,若mg sin θ>μmg cos θ,即当μ<tan θ时粮袋不能继续做加速运动,C 、D 项错,A 项对. 8、答案 D解析 系统静止时,其合力为零,对系统受力分析,如图所示. 系统水平方向不受弹簧的作用力,即弹簧处于原长状态,选项 A 错误;当小车沿斜面加速上升时,仍对系统受力分析,如图所示.由图中关系可知:弹簧对斜面应有水平向右的拉力,即弹簧处于伸长状态,可以将弹簧换成细绳,选项B 、C 错误,选项D 正确. 9、答案 BC解析 由t -v 0图象可得a =v 0t =20.8 m/s 2=2.5 m/s 2.对小物块应用牛顿第二定律有mg sin 30°-μmg cos30°=-ma ,解得μ=32,则A 项错,B 项对.若v 0=1 m/s ,小物块仍在斜面上运动,由图象可知小物块运动时间为0.4 s ,C 项对.若v 0=4 m/s ,由v 20=2ax得x =v 202a =162×2.5m =3.2 m>2.4 m ,故小物块已运动到水平面上,图象对小物块已不再成立,故D 项错. 10、答案 (1)1.415dΔt(2)m ≪M (3)v 2-m (4)D 11、答案 (1)24 m/s 2 (2)3.4倍 (3)1.02×105 N解析 (1)选竖直向上为正方向,在反推减速阶段,由v 2-v 20=-2ax得:a =v 20-v22x =72-122×1m/s 2=24 m/s 2所以加速度大小为24 m/s 2,方向竖直向上. (2)以航天员为研究对象,由牛顿第二定律可得: F N -mg =ma ,解得:F N =m (g +a )=3.4mg .所以航天员承受的支持力是重力的3.4倍.(3)以返回舱和航天员整体为研究对象,由牛顿第二定律可得 F -Mg =Ma ,解得F =M (g +a )=1.02×105 N 12、答案 (1)1 s (2)(2-2) s解析 (1)物品在达到与传送带速度v =4 m/s 相等前加速度为a 1,有: F +μmg cos 37°-mg sin 37°=ma 1 解得a 1=8 m/s 2由v=a1t1解得t1=0.5 s位移x1=a1t21/2=1 m随后有:F-μmg cos 37°-mg sin 37°=ma2解得a2=0,即物品随传送带以速度v=4 m/s匀速上升位移x2=H/sin 37°-x1=2 mt2=x2/v=0.5 s其运动到平台上的总时间为t=t1+t2=1 s(2)物品与传送带同速瞬间,撤去恒力F后加速度为a3,有:μmg cos 37°-mg sin 37°=ma3解得a3=-2 m/s2假设物品向上匀减速到速度为零时,通过的位移为xx=-v2/2a3=4 m>x2由x2=v t3+a3t23/213、答案(1)2.25 m/s2(2)1.8 m解析(1)设木箱的最大加速度为a′,根据牛顿第二定律μmg=ma′解得a′=2.25 m/s2<2.5 m/s2则木箱与平板车之间存在相对运动,所以车在加速过程中木箱的加速度为2.25 m/s2(2)设平板车做匀加速直线运动的时间为t1,木箱与平板车达到共同速度的时间为t2,根据速度公式v=at1 ①v=a′t2 ②达到共同速度时平板车的位移为x1,则x1=v22a+v(t2-t1) ③木箱的位移为x2,则x2=12a′t22④要使木箱不从平板车上滑落,木箱距平板车末端的最小距离满足x=x1-x2 ⑤解①②③④⑤得x=1.8 m解得:t3=(2-2) s[另有一解t3=(2+2) s>1 s舍去]。

相关文档
最新文档