2020届全国高考理科数学模拟冲刺卷一(word含答案)

合集下载

2020年高考数学(理)金榜冲刺卷(一)解析版

2020年高考数学(理)金榜冲刺卷(一)解析版

f (x) cos x sin x (a sin x) ( sin x) a sin x 1 因 为 cos2 x 0 , 所 以 a sin x 1 0 在 区 间
cos2 x
cos2 x ,
( π , π ) 恒成立,所以 a 1
因为
x
(
,
) ,所以
1
sin
x
32 3
1
2 所以 a 的取值范
3.4 张卡片上分别写有数字 1,2,3,4,从这 4 张卡片中随机抽取 2 张,则取出的 2 张卡片上的数字之和
本资料由集师广益·教学研究所整理
为奇数的概率为( )
1
A.
3
1
B.
2
【答案】C
2
C.
3
3
D.
4
【解析】取出的
2
张卡片上的数字之和为奇数的抽取方法是一奇一偶,
C21C21 C42
=
2 3
9.已知正方体 ABCD A1B1C1D1 的棱长为 2,直线 AC1 平面 .平面 截此正方体所得截面有如下四个
结论:①截面形状可能为正三角形;②截面形状可能为正方形;③截面形状不可能是正五边形;
④截面面积最大值为 3 3 .则正确的是( )
A.①②
B.①③
C.①②④
D.①③④
【答案】D
【解析】对①,当 截此正方体所得截面为 B1CD1 时满足.故①正确.
【答案】B
【解析】根据题意有 f x cos2x 1 1 cos2x 2 3 cos2x 5 ,
2
2
2
所以函数 f x 的最小正周期为 T 2 ,且最大值为 f x 3 5 4 ,故选 B.

专题20 2020年全国普通高等学校统一招生考试数学冲刺试卷(全国I卷)(理)(解析版)

专题20 2020年全国普通高等学校统一招生考试数学冲刺试卷(全国I卷)(理)(解析版)

第I 卷 选择题部分(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,1,2,3,4,5}A =-,{|(1)(5)0}B x x x =∈--<N ,则AB =( ).A .{3}B .{2,3}C .{2,3,5}D .{1,1,5}-【答案】D 【解析】{|(1)(5)0}{2,3,4}B x x x =∈--<=N ,所以{1,1,5}A B =-.故选:D.2.设i 为虚数单位,复数z 满足()25z i -=,则在复平面内,z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【解析】因为()25z i -=,所以()()()5252222i z i i i i +===----+, 由共轭复数的定义知,2z i =-+,由复数的几何意义可知,z 在复平面对应的点为()2,1-,位于第二象限. 故选:B3.某公司以客户满意为出发点,随机抽选2000名客户,以调查问卷的形式分析影响客户满意度的各项因素.每名客户填写一个因素,下图为客户满意度分析的帕累托图.帕累托图用双直角坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率,分析线表示累计频率,横坐标表示影响满意度的各项因素,按影响程度(即频数)的大小从左到右排列,以下结论正确的个数是( ).①35.6%的客户认为态度良好影响他们的满意度; ②156位客户认为使用礼貌用语影响他们的满意度; ③最影响客户满意度的因素是电话接起快速;④不超过10%的客户认为工单派发准确影响他们的满意度. A .1 B .2C .3D .4【答案】C 【解析】①认为态度良好影响他们满意度的客户比例为35.6%18.35%17.25%-=,故错误; ②156位客户认为使用礼貌用语影响他们的满意度,故正确; ③影响客户满意度的因素是电话接起快速,故正确;④认为工单派发准确影响他们满意度的客户比例为100%98.85% 1.15%-=,故正确. 故选:C . 4.函数()()1ln 1xxe xf x e -=+的部分图像大致为( )A .B .C .D .【答案】B 【解析】()()1ln 1xxe xf x e -=+,其定义域为:(,0)(0,)-∞+∞,又()()()1ln 1ln ()11x xx xe x e xf x f x e e ------===-++,所以()f x 为奇函数,故排除A,C 选项,又当12x =时,1(1)ln 12()021e f e ⨯=<+, 所以排除D 选项, 故选:B.5.惰性气体分子为单原子分子,在自由原子情形下,其电子电荷分布是球对称的.负电荷中心与原子核重合,但如两个原子接近,则彼此能因静电作用产生极化(正负电荷中心不重合),从而导致有相互作用力,这称为范德瓦尔斯相互作用.今有两个相同的惰性气体原子,它们的原子核固定,原子核正电荷的电荷量为q ,这两个相距为R 的惰性气体原子组成体系的能量中有静电相互作用能221121111c U k q R R x x R x R x ⎛⎫=+-- ⎪+-+-⎝⎭,其中c k 为静电常量,1x ,2x 分别表示两个原子负电中心相对各自原子核的位移,且1x 和2x 都远小于R ,当x 远小于1时,()1211x x x -+≈-+,则U 的近似值为( )A .21232c k q x x RB .21232c k q x x R - C .2123c k q x x R D .2123c k q x x R- 【答案】B 【解析】根据题意,221121111c U k q R R x x R x R x ⎛⎫=+-- ⎪+-+-⎝⎭21212c k q R R R R R R R x x R x R x ⎛⎫=+-- ⎪+-+-⎝⎭212121111111c k q x x x x R R R R⎛⎫⎪=+--⎪- ⎪++-⎝⎭, 因为1x 和2x 都远小于R ,当x 远小于1时,()1211x x x -+≈-+,所以212121111111c k q x x x x R R R R⎛⎫⎪+--⎪- ⎪++-⎝⎭222212121122221111+c k q x x x x x x x x R R R R R R R ⎡⎤⎛⎫⎛⎫--⎛⎫≈+-+--+-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎝⎭⎣⎦()222212121122222c x x k q x x x x x x RR R R R R R ⎡⎤--≈-++---⎢⎥⎢⎥⎣⎦21232c k q x x R ≈-, 故选:B6.若曲线()xf x mx e n =⋅+在点()()1,1f 处的切线方程为y ex =,则m n +的值为( )A .12e + B .12e - C .12D .2e 【答案】A 【解析】()x f x mx e n =⋅+,则()()'1x f x m x e =+⋅,故()1f e =,()1f e '=,()11me n e m e e +=⎧∴⎨+=⎩,解得122m e n ⎧=⎪⎪⎨⎪=⎪⎩,所以12e m n ++=. 故选:A .7.据《九章算术》记载,商高是我国西周时期的数学家,曾经和周公讨论过“勾3股4弦5”的问题,比毕达哥拉斯早500年.如图,现有ABC 满足“勾3股4弦5”,其中3AC =,4BC =,点D 是CB 延长线上的一点,则AC AD ⋅=( )A .3B .4C .9D .不能确定【答案】C 【解析】因为3,4,5AC CB AB ===,所以222AC CB AB +=, 所以AC CB ⊥,所以0AC CB ⋅=,所以0AC CD ⋅=, 所以2()AC AD AC AC CD AC AC CD ⋅=⋅+=+⋅909=+=. 故选:C8.一个球体被挖去一个圆锥,所得几何体的三视图如图所示,则该几何体的体积为( )A .403πB .56πC .1843πD .104π【答案】C 【解析】由题意可知该几何体是球体被挖去一个圆锥,圆锥底面半径为332=6, 设球的半径为R ,可得(()22236R R =+-,解得4R =,所以该几何体的体积为(2341184236333R π⨯π⨯-⨯⨯π=. 故选:C .9.为响应国家“节能减排,开发清洁能源”的号召,小华制作了一个太阳灶,如图所示.集光板由抛物面(抛物线绕对称轴旋转得到)形的反光镜构成,已知镜口圆的直径为2m ,镜深0.25m ,为达到最佳吸收太阳光的效果,容器灶圈应距离集光板顶点( )A .0.5米B .1米C .1.5米D .2米【答案】B 【解析】若使吸收太阳光的效果最好,容器灶圈应在抛物面对应轴截面的抛物线的焦点处, 如图,画出抛物面的轴截面,并建立坐标系,设抛物线方程22x py = 集光板端点()1,0.25A ,代入抛物线方程可得24p =, 所以抛物线方程24x y =, 故焦点坐标是()0,1F.所以容器灶圈应距离集光板顶点1m . 故选:B10.若等差数列{}n a 的前n 项和为n S ,且130S =,3421a a +=,则7S 的值为( ). A .21 B .63C .13D .84【答案】B 【解析】因为130S =,3421a a +=,所以111313602521a d a d +⨯=⎧⎨+=⎩,解可得,3d =-,118a =,则7171876(3)632S =⨯+⨯⨯⨯-=.故选:B .11.已知函数()14sin cos f x x x =-,现有下述四个结论: ①()f x 的最小正周期为π;②曲线()y f x =关于直线4πx =-对称; ③()f x 在5,412ππ⎛⎫⎪⎝⎭上单调递增;④方程()2f x =在[],ππ-上有4个不同的实根. 其中所有正确结论的编号是( ) A .②④ B .①③④C .②③④D .①②④【答案】D 【解析】()112sin 2,sin 2214sin cos 12sin 212sin 21,sin 22x x f x x x x x x ⎧-<⎪⎪=-=-=⎨⎪-≥⎪⎩, 作出()f x 在[],ππ-上的图象(先作出2sin 2y x =-的图象,再利用平移变换和翻折变换得到12sin 2y x =-的图象),如图所示,由图可知①②④正确,③错误.故所有正确结论的编号是①②④.故选:D.12.三棱锥P ABC -中,,,PA PB PC 互相垂直,1PA PB ==,M 是线段BC 上一动点,若直线AM 与平面PBC 6P ABC -的外接球的体积是( ) A .2π B .4πC .83πD .43π 【答案】D 【解析】M是线段BC上一动点,连接PM,PA PB PC,,互相垂直,AMP∴∠就是直线AM与平面PBC所成角,当PM最短时,即PM BC⊥时直线AM与平面PBC所成角的正切的最大.此时6 APPM=,6PM=,在直角PBC中,2612PB PC BC PM PC PC PC⋅=⋅⇒=+⨯⇒=. 三棱锥P ABC-扩充为长方体,则长方体的对角线长为1122++=.∴三棱锥P ABC-的外接球的半径为1R=,∴三棱锥P ABC-的外接球的体积为34433Rππ=.故选:D.第II卷非选择题部分(共90分)二、填空题:本大题共4小题,每题5分,共20分.13.若x,y满足约束条件24010220x yx yx y-+≥⎧⎪++≥⎨⎪+-≤⎩,则3z x y=+的最大值为______.【答案】5【解析】由题意,作出约束条件所表示的平面区域,如图所示:目标函数3z x y =+,可化为直线3y x z =-+, 当3y x z =-+经过点A 时,直线在y 轴上的截距最大. 此时目标函数取得最大值,又由10220x y x y ++=⎧⎨+-=⎩,解得3x =,4y =-,即()3,4A -,所以目标函数的最大值为3345z =⨯-=. 故答案为:514.设n S 是等比数列{}n a 的前n 项和,425S S =,则此数列的公比q =____________. 【答案】1-或2± 【解析】设等比数列{}n a 的首项为10a ≠,公比为q ,425S S =,∴1q ≠, ∴()()421115111a q a q qq--=--,化简可得()()22140qq--=,解得1q =-或2q =±. 故答案为:1-或2±.15.2020年初,我国突发新冠肺炎疫情.面对“突发灾难”,举国上下心,继解放军医疗队于除夕夜飞抵武汉,各省医疗队也陆续增援,纷纷投身疫情防控与病人救治之中.为分担“逆行者”的后顾之忧,某大学学生志愿者团队开展“爱心辅学”活动,为抗疫前线工作者子女在线辅导功课.现随机安排甲、乙、丙3名志愿者为某学生辅导数学、物理、化学、生物4门学科,每名志愿者至少辅导1门学科,每门学科由1名志愿者辅导,则数学学科恰好由甲辅导的概率为______.【答案】13【解析】根据题意,要求甲、乙、丙3名志愿者每名志愿者至少辅导1门学科, 每门学科由1名志愿者辅导,则必有1人辅导2门学科;则有23436636C A =⨯=种情况,若甲辅导数学,有2212323212C A C A +=种情况, 则数学学科恰好由甲辅导的概率为13, 故答案为:13. 16.过双曲线2221(0)x y a a -=>上一点M 作直线l ,与双曲线的两条渐近线分别交于,P Q ,且M 为线段PQ 的中点,若POQ △(O 为坐标原点)的面积为2,则双曲线的离心率为______.【解析】由题意知,双曲线2221(0)x y a a-=>的两条渐近线方程为1y x a =±,设112211,,,P x x Q x x a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则()12121,22x x M x x a +⎛⎫- ⎪⎝⎭,根据点M 在双曲线2221x y a -=上,得()()22121222144x x x x a a +--=,得212x x a =,由双曲线的两条渐近线方程得1tan2POQ a∠= 222sin cos 22sin =2sin cos 22sin cos 22POQ POQ POQ POQ POQ POQ POQ ∠∠∠∠∠=∠∠+ 22212tan2tan 211POQPOQ a a∠==∠++ ,所以21222211121POQ a aS POQ x x a a a∆+=∠=⨯⨯⨯=+,而2POQS=,所以2a =,又1b =,所以5c =,离心率5e =.故答案为:5 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17—21题为必考题,每个考生都必须作答.22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.平面四边形ABCD ,点,,A B C 均在半径为2的圆上,且6BAC π∠=.(1)求BC 的长;(2)若3BD =,2DBC BCD ∠=∠,求BCD ∆的面积. 【答案】(1)2;(2)352【解析】(1)设外接圆半径为2R =, 在ABC 中,6BAC π∠=,由正弦定理得12sin 422BC R BAC =∠=⨯=, 即2BC =; (2)在BCD 中,2DBC BCD ∠=∠,sin sin 22sin cos DBC BCD BCD BCD ∴∠=∠=∠∠则由正弦定理可得2cos CD BD BCD =⋅∠,又由余弦定理知222cos 2BC CD BD BCD BC CD +-∠=⋅,222()BD BC CD BD CD BC CD+-∴=⋅,又2BC =,3BD =, 解得215CD =,由余弦定理2222232151cos 22326BD BC CD CBD BD BC +-+-∠===-⋅⨯⨯,则35sin 6CBD ∠=, BCD ∴△的面积135sin 22BCDSBC BD CBD =⋅⋅∠=. 18.如图1,在多边形ABCDEF 中,四边形ABCD 为等腰梯形,//BC AD ,1AB AF BC ===,2AD DE ==,四边形ADEF 为直角梯形,//AF DE ,90DAF ∠=︒.以AD 为折痕把等腰梯形ABCD 折起,使得平面ABCD ⊥平面ADEF ,如图2所示.(1)证明:AC ⊥平面CDE .(2)求直线CF 与平面EAC 所成角的正切值. 【答案】(1)详见解析;(2)1919. 【解析】(1)证明:取AD 的中点M ,连接CM ,如下图所示:1AB AF BC ===,//BC AM ,由四边形ABCM 为菱形,可知12AM AD =, 在ACD 中,在90ACD ∠=︒, 所以AC DC ⊥.又平面ABCD ⊥平面ADEF ,平面ABCD 平面ADEF AD =,//AF DE ,90DAF ∠=︒,所以DE AD ⊥,DE ⊂平面ADEF ,所以DE ⊥平面ABCD ,AC ⊂平面ABCD , 所以DE AC ⊥,又因为DE DC D ⋂=, 所以AC ⊥平面CDE .(2)由平面ABCD ⊥平面ADEF ,如图取AD 的中点为O ,以O 为原点,以OA 为x 轴,其中y 轴,z 轴分别在平面ADEF 平面ABCD 中,且与AD 垂直,垂足为O 建立空间直角坐际系O xyz -.因为()1,1,0F ,13,0,22C ⎛⎫- ⎪ ⎪⎝⎭,()1,2,0E -,()1,0,0A ,33,0,22CA ⎛=- ⎝⎭,()2,2,0AE =-,33,1,2CF ⎛= ⎝⎭. 设平面CAE 的法向量(),,n x y z =,则00CA n AE n ⎧⋅=⎨⋅=⎩,即330220x z x y ⎧=⎪⎨-+=⎪⎩,不妨令1x =,得(1,1,3n =.设直线CF 与平面EAC 所成的角为θ,则331522sin 1045CF n CF nθ+-⋅===⨯⋅, 所以19tan θ=.19.在平面直角坐标系xOy中,设椭圆22221x ya b+=(0ab>>)的离心率是e,定义直线bye=±为椭圆的“类准线”,已知椭圆C的“类准线”方程为23y=±,长轴长为4.(1)求椭圆C的方程;(2)点P在椭圆C的“类准线”上(但不在y轴上),过点P作圆O:223x y+=的切线l,过点O且垂直于OP的直线l交于点A,问点A是否在椭圆C上?证明你的结论.【答案】(1)22143x y+=;(2)在,证明见解析.【解析】(1)由题意得:23b abe c==,24a=,又222a b c=+,联立以上可得:24a=,23b=,21c=.∴椭圆C的方程为22143x y+=;(2)如图,由(1)可知,椭圆的类准线方程为23y=±,不妨取23y=,设(),23P x(x≠),则23OPk=,∴过原点且与OP垂直的直线方程为023y x=,当3=x时,过P点的圆的切线方程为3x=过原点且与OP垂直的直线方程为12y x=-,联立312xy x⎧=⎪⎨=-⎪⎩,解得:33,2A⎫-⎪⎪⎭,代入椭圆方程成立;同理可得,当0x =时,点A 在椭圆上;当0x ≠时,联立223412y x x y ⎧=⎪⎨⎪+=⎩,解得1A ⎛⎫,2A ⎛⎫⎝, 1PA所在直线方程为()()20060x x y --=.此时原点O 到该直线的距离d ==∴说明A 点在椭圆C 上;同理说明另一种情况的A 也在椭圆C 上. 综上可得,点A 在椭圆C 上.20.已知函数()()2ln 1f x x a x =+-.(1)讨论函数()f x 的单调性;(2)设函数()()0g x kx b k =+>,当0a =时,若对任意的()0,x ∈+∞,存在实数k ,b 使得关于x 的不等式()()221ef x g x x -≤≤恒成立,求k 的最小值.【答案】(1)详见解析;(2)2. 【解析】(1)()()212120ax f x ax x x x+'=+=>,当0a ≥时,()0f x '≥在()0,∞+上恒成立, 所以函数()f x 在()0,∞+上单调递增; 当0a<时,若()0f x '>,解得0x <<若()0f x '<,解得x >所以函数()f x 在区间⎛ ⎝上单调递增,在区间⎫+∞⎪⎪⎭上单调递减. (2)因为()2g x x ≤,所以20x kx b --≥,0k >,故240k b ∆=+≤,即24k b ≤-,又因为()()21ef x g x -≤,所以2ln 10e x kx b ---≤. 设()2ln 10x e x kx b ϕ=---≤,()2ex k xϕ'=-, 当20,e x k ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'>,()x ϕ单调递增, 当2,e x k ⎛⎫∈+∞⎪⎝⎭时,()0x ϕ'<,()x ϕ单调递减. 故()max 2222ln 212ln 10e ex e e b e b k k k ϕϕ⎛⎫==---=--≤ ⎪⎝⎭,所以22ln 1e b k -≤,所以有222ln 14k e b k -≤≤-. 由题知,存在实数k ,b 使得关于x 的不等式()()221ef x g x x -≤≤恒成立的充要条件是不等式222ln 14k e k -≤-有解,将该不等式化为222ln 104k e k--+≥,令2kt =,则22ln 10t e t -++≥有解. 设()22ln 1h t t e t =-++,()22e h t t t'=-+,可知()h t 在区间(上单调递增,在区间)+∞单调递减,又()10h =,10h=>,()2210h e e e =-++<,所以()22ln 1h x t e t =-++在区间)e 内存在唯一零点0t,故不等式22ln 10t e t -++≥的解集为01t t ≤≤,即012kt ≤≤,故k 的最小值为2. 21.11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为12,乙每次投球命中的概率为23,且各次投球互不影响.(1)经过1轮投球,记甲的得分为X ,求X 的分布列;(2)若经过n 轮投球,用i p 表示经过第i 轮投球,累计得分,甲的得分高于乙的得分的概率. ①求,,p p p 123;②规定00p =,经过计算机计算可估计得11(1)i i i i p ap bp cp b +-=++≠,请根据①中,,p p p 123的值分别写出a ,c 关于b 的表达式,并由此求出数列{}n p 的通项公式. 【答案】(1)分布列见解析;(2)①1231743,,636216p p p ===;②116177i i i p p p +-=+,11156n np ⎛⎫=- ⎪⎝⎭. 【解析】(1)记一轮投球,甲命中为事件A ,乙命中为事件B ,,A B 相互独立,由题意1()2P A =,2()3P B =,甲的得分X 的取值为1,0,1-,(1)()P X P AB =-=121()()(1)233P A P B ==-⨯=, (0)()()()()()()P X P AB P AB P A P B P A P B ==+=+12121(1)(1)23232=⨯+-⨯-=, 121(1)()()()(1)236P X P AB P A P B ====⨯-=,∴X 的分布列为:(2)由(1)16p =, 2(0)(1)(1)((0)(1))p P X P X P X P X P X ==⋅=+==+=111117()2662636=⨯+⨯+=,同理,经过2轮投球,甲的得分Y 取值2,1,0,1,2--:记(1)P X x =-=,(0)P X y ==,(1)P X z ==,则2(2)P Y x =-=,(1)P Y xy yx =-=+,2(0)P Y xz zx y ==++,(1)P Y yz zy ==+,2(2)P Y z ==由此得甲的得分Y 的分布列为:∴3()()3362636636636216p =⨯+⨯++⨯++=, ∵11(1)i i i i p ap bp cp b +-=++≠,00p =,∴1212321p ap bp p ap bp cp =+⎧⎨=++⎩,71136664371721636636a b a b c ⎧+=⎪⎪⎨⎪++=⎪⎩,∴6(1)717b a b c -⎧=⎪⎪⎨-⎪=⎪⎩,代入11(1)i i i i p ap bp cp b +-=++≠得:116177i i i p p p +-=+, ∴111()6i i i i p p p p +--=-, ∴数列1{}n n p p --是等比数列,公比为16q =,首项为1016p p -=, ∴11()6nn n p p --=.∴11210()()()n n n n n p p p p p p p ---=-+-++-111111()()(1)66656n n n -=+++=-. (二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在平面直角坐标系xOy 中,直线l 的参数方程为12112x y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程2cos ρθ=. (Ⅰ)求直线l 的极坐标方程和曲线C 的直角坐标方程; (Ⅱ)若直线l 与曲线C 交于M ,N 两点,求MON ∠的大小.【答案】(Ⅰ)直线l 的极坐标方程为(cos )1ρθθ=+曲线C 的直角坐标方程为222x y x +=;(Ⅱ)6MON π∠=.【解析】(Ⅰ)由1112x y t ⎧=⎪⎪⎨⎪=+⎪⎩,,得直线l的普通方程为1x += 又因为cos ,sin ,x y ρθρθ=⎧⎨=⎩所以直线l的极坐标方程为(cos )1ρθθ+=+曲线C 的极坐标方程为2cos ρθ=,22cos ρρθ∴=,222x y x ∴+=,即曲线C 的直角坐标方程为222x y x +=.(Ⅱ)设M ,N 的极坐标分别为()11,ρθ,()22,ρθ, 则12MON θθ∠=-,由(cos )12cos ,ρθθρθ⎧=+⎪⎨=⎪⎩消去ρ得2cos (cos )1θθθ+=+,化为cos 22θθ+=sin 26πθ⎛⎫+= ⎪⎝⎭ 不妨设0,2πθ⎛⎫∈ ⎪⎝⎭,即72,666πππθ⎛⎫+∈ ⎪⎝⎭, 所以263ππθ+=,或2263ππθ+=, 即12,12,4πθπθ⎧=⎪⎪⎨⎪=⎪⎩或12412πθπθ⎧=⎪⎪⎨⎪=⎪⎩,, 所以126MON πθθ∠=-=.23.已知函数()|4||4|f x x x =++-. (Ⅰ)求不等式()3f x x >的解集;(Ⅱ)设函数()f x 的最小值为z ,正实数m ,n 满足2mn m n z --=,求证:2103m n ++. 【答案】(Ⅰ)8|3x x ⎧⎫<⎨⎬⎩⎭;(Ⅱ)详见解析. 【解析】(Ⅰ)()3f x x >,即|4||4|3x x x ++->.当4x <-时,不等式可化为443x x x --+->,解得4x <-; 当44x -时,不等式可化为443x x x ++->,解得843x -<; 当4x >时,不等式可化为443x x x ++->,无解. 综上,原不等式的解集为8|3x x ⎧⎫<⎨⎬⎩⎭.(Ⅱ)由绝对值不等式性质得,|4||4||44|8x x x x ++-+-+=,8z ∴=,即28mn m n --=,所以(1)(2)10m n --=,所以(1)(2)32103m n m n +=-+-++,当且仅当1m =,2n =时取“=”, 原不等式得证.。

2020年高考数学(理)冲刺模拟卷(一)解析版

2020年高考数学(理)冲刺模拟卷(一)解析版

2020年高考冲刺模拟卷(一)数学(理)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数21i+(i 为虚数单位)的共轭复数是( ) A .i 1-+B .1i -C .1i +D .i 1--2.已知集合{}|110,P x N x =∈≤≤{}2|60,Q x R x x =∈+-=则P Q ⋂等于( )A .{}1,2,3B .{}2,3C .{}1,2D .{}23.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A .13B .12C .23D .344.若等差数列{}n a 和等比数列{}n b 满足11443,24a b a b ==-==,则22a b =( )A .-1B .1C .-4D .45.如图所示的程序框图,该算法的功能是( )A .计算012(12)(22)(32)++++++L (12)nn +++的值B .计算123(12)(22)(32)++++++L (2)nn ++的值C .计算(123+++L )n +012(222++++L 12)n -+的值D .计算[123+++L (1)]n +-012(222++++L 2)n+的值6.已知ABC V 是边长为()20a a >的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r 的最小值是( )A .22a -B .232a -C .243a -D .2a -7.已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为48.已知奇函数()f x ,且()()g x xf x =在[0,)+∞上是增函数.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ) A .a b c <<B .c b a <<C .b a c <<D .b c a <<9.已知正方体1111ABCD A B C D -的棱长为2,直线1AC ⊥平面α.平面α截此正方体所得截面有如下四个结论:①截面形状可能为正三角形;②截面形状可能为正方形;③截面形状不可能是正五边形;④截面面积最大值为 )A .①②B .①③C .①②④D .①③④10.已知数列{}n a 的通项公式21021n a n n =-+-,前n 项和为n S ,若>n m ,则n m S S -的最大值是( )A .5B .10C .15D .2011.椭圆2222:1(0)x y C a b a b +=>>的左右焦点分别为12,F F ,O 为坐标原点,点A 在椭圆上,且160AOF ∠=︒,'A 与A 关于原点O 对称,且22·'0F A F A =u u u u v u u u u v,则椭圆离心率为( )A 1B C D .4-12.不等式3ln 1x x e a x x --≥+对任意(1,)x ∈+∞恒成立,则实数a 的取值范围( ) A .(,1]e -∞- B .2(,2]e -∞-C .(,2]-∞-D .(,3]-∞-二、填空题:本题共4小题,每小题5分,共20分.13.若双曲线221y x k-=的焦点到渐近线的距离为k 的值为__________.14.若函数sin ()cos a x f x x-=在区间ππ(,)63上单调递增,则实数a 的取值范围是 .15.据气象部门预报,在距离某码头南偏东45°方向600km 的A 处的热带风暴中心正以20km /h 的速度向正北方向移动,距风暴中心450km 以内的地区都将受到影响,则从现在起经过 小时该码头将受到热带风暴影响.16.在三棱锥A BCD -中,60BAC BDC ∠=∠=︒,二面角A BC D --的余弦值为13-,当三棱锥A BCD -____________. 三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知ABC ∆内接于单位圆,且()()1tan 1tan 2AB ++=, (1)求角C ;(2)求ABC ∆面积的最大值.18.(12分)如图,四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥底面ABCD ,AC =,2PA =,E 是PC 上的一点,2PE EC =.(1)证明PC ⊥平面BED ;(2)设二面角A PB C --为90︒,求PD 与平面PBC 所成角的大小.19.(12分)已知抛物线22y x =,过点(1,1)P 分别作斜率为1k ,2k 的抛物线的动弦AB 、CD ,设M 、N 分别为线段AB 、CD 的中点.(1)若P 为线段AB 的中点,求直线AB 的方程;(2)若121k k +=,求证直线MN 恒过定点,并求出定点坐标.20.(12分)有人收集了10年中某城市的居民年收入(即此城市所有居民在一年内的收入的总和)与某种商品的销售额的有关数据:且已知101380.0ii x==∑(1)求第10年的年收入10x ;(2)若该城市该城市居民收入与该种商品的销售额之间满足线性回归方程363ˆˆ254yx a=+, ①求第10年的销售额10y ;②如果这座城市居民的年收入达到40亿元,估计这种商品的销售额是多少?(精确到0.01)附:(1)在线性回归方程ˆˆˆybx a =+中,1221ˆˆˆ,ni ii nii x y nxyb ay b x xnx ==-==--∑∑. (2)1022110254.0ii xx =-=∑,91125875.0i i i x y ==∑,91340.0i i y ==∑.21.(12分)设函数()e cos ,()xf x xg x =为()f x 的导函数.(1)求()f x 的单调区间;(2)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+- ⎪⎝⎭…;(3)设n x 为函数()()1u x f x =-在区间2,242m m πππ⎛⎫++⎪⎝⎭内的零点,其中n N ∈, 证明:20022sin cos n n n x x e x πππ-+-<-.(二)、选考题:共10分.请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分. 22.【极坐标与参数方程】(10分)A 为椭圆1C :221424x y +=上任意一点,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为210cos 240ρρθ-+=,B 为2C 上任意一点.(1)写出1C 参数方程和2C 普通方程;(2)求AB 最大值和最小值.23.【选修4-5:不等式选讲】(10分)已知函数()2f x x a =-+,()4g x x =+,a R ∈. (1)解不等式()()f x g x a <+;(2)任意x ∈R ,2()()f x g x a +>恒成立,求a 的取值范围.2020年高考冲刺模拟卷(一)数学(理)解析(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数21i+(i 为虚数单位)的共轭复数是( ) A .i 1-+ B .1i -C .1i +D .i 1--【答案】C【解析】因为21i i1=-+,所以其共轭复数是1i +,故选C. 2.已知集合{}|110,P x N x =∈≤≤{}2|60,Q x R x x =∈+-=则P Q ⋂等于( )A .{}1,2,3B .{}2,3C .{}1,2D .{}2【答案】D【解析】试题分析:{}{}2|603,2Q x R x x =∈+-==-{}2P Q ∴⋂=.故选D.3.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A .13B .12C .23D .34【答案】C【解析】取出的2张卡片上的数字之和为奇数的抽取方法是一奇一偶,112224C C C =23,故选C. 4.若等差数列{}n a 和等比数列{}n b 满足11443,24a b a b ==-==,则22a b =( ) A .-1 B .1 C .-4 D .4【答案】B【解析】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,因为11443,24a b a b ==-==,所以413413278d a a b q b =-=⎧⎪⎨==-⎪⎩,解得92d q =⎧⎨=-⎩,因此212166a a d b b q =+=⎧⎨==⎩,所以221a b =.故选B. 5.如图所示的程序框图,该算法的功能是( )A .计算012(12)(22)(32)++++++L (12)nn +++的值B .计算123(12)(22)(32)++++++L (2)nn ++的值C .计算(123+++L )n +012(222++++L 12)n -+的值D .计算[123+++L (1)]n +-012(222++++L 2)n +的值 【答案】C【解析】试题分析:初始值1,0k S ==,第1次进入循环体:012S =+,2k =;当第2次进入循环体时:011222S =+++,3k =,,给定正整数n ,当k n =时,最后一次进入循环体,则有:011222S =++++L12n n -++,1k n =+,退出循环体,输出S =(123+++L )n +012(222++++L 12)n -+,故选C .6.已知ABC ∆是边长为()20a a >的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( )A .22a -B .232a -C .243a -D .2a -【答案】B【解析】建立如图所示的平面直角坐标系设(,)P x y ,()()(),,0,,0,A B a C a - 则()()(),,,,PA x y PB a x y PC a x y =--=---=--u u u v u u u v u u u v,所以()PA PB PC ⋅+u u u r u u u r u u u r()()(),,x y a x y a x y =--⋅---+--⎡⎤⎣⎦()()2,2x y x y =--⋅--2222x y =+-22232222x y a a ⎛⎫=+-- ⎪ ⎪⎝⎭,所以最小值为232a -,所以选B.7.已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4 【答案】B【解析】根据题意有()1cos2x 35cos212cos2222f x x x -=+-+=+, 所以函数()f x 的最小正周期为22T ππ==,且最大值为()max 35422f x =+=,故选B. 8.(2019·江西南昌十中高三期中(文))已知奇函数()f x ,且()()g x xf x =在[0,)+∞上是增函数.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则,,a b c 的大小关系为( )A .a b c <<B .c b a <<C .b a c <<D .b c a <<【答案】C【解析】因为()f x 是奇函数,从而()()g x xf x =是R 上的偶函数,且在[0,)+∞上是增函数,22(log 5.1)(log 5.1)a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以即0.8202log 5.13<<<, 0.82(2)(log 5.1)(3)g g g <<,所以b a c <<,故选C .9.已知正方体1111ABCD A B C D -的棱长为2,直线1AC ⊥平面α.平面α截此正方体所得截面有如下四个结论:①截面形状可能为正三角形;②截面形状可能为正方形;③截面形状不可能是正五边形;④截面面积最大值为 )A .①②B .①③C .①②④D .①③④ 【答案】D【解析】对①,当α截此正方体所得截面为11B CD 时满足.故①正确.对②,由对称性得,截面形状不可能为正方形.故②错误. 对③,由对称性得截面形状不可能是正五边形,故③正确.对④,当截面为正六边形时面积最大,为64⨯=故④正确.故选D. 10.已知数列{}n a 的通项公式21021n a n n =-+-,前n 项和为n S ,若>n m ,则n m S S -的最大值是( )A .5B .10C .15D .20【答案】B【解析】数列{}n a 的通项公式21021(3)(7)n a n n n n =-+-=---,当37n ≤≤时0n a ≥,当2n ≤或8n ≥是0n a <,n S 最大值为6S 或7Sm S 最小值为2S 或3S ,n m S S -的最大值为6345634310S S a a a -=++=++= ,故选B.11.椭圆2222:1(0)x y C a b a b +=>>的左右焦点分别为12,F F ,O 为坐标原点,点A 在椭圆上,且160AOF ∠=︒,'A 与A 关于原点O 对称,且22·'0F A F A =u u u u v u u u u v,则椭圆离心率为( )A1B.2C.12D.4-【答案】A【解析】连结1'A F ,1AF ,由'A 与A 关于原点O 对称,且1F 与2F 关于原点O 对称,可知四边形12'AF A F 为平行四边形,又22·'0F A F A =u u u u v u u u u v,即22'F A F A ⊥可知四边形12'AF A F 为矩形,1,AO OF ∴=又160AOF ∠=︒,11,AF OF c ∴==同理有2AF =,由椭圆的定义可得2c a =,1c e a ∴===.故选A. 12.不等式3ln 1x x e a x x --≥+对任意(1,)x ∈+∞恒成立,则实数a 的取值范围( ) A .(,1]e -∞-B .2(,2]e -∞-C .(,2]-∞-D .(,3]-∞-【答案】D【解析】题意即为3ln 1x a x x e x -≤--对()1,x ∀∈+∞恒成立,即31ln x x e x a x ---≤对()1,x ∀∈+∞恒成立,从而求31ln x x e x y x ---=,()1,x ∈+∞的最小值,而33ln 3ln 3ln 1xx x x x x e ee e x x ---==≥-+,故313ln 113ln xx e x x x x x ---≥-+--=-,即313ln 3ln ln x x e x x x x----≥=-,当3ln 0x x -=时,等号成立,方程3ln 0x x -=在()1,+∞内有根,故3min13ln x x e x x -⎛⎫--=- ⎪⎝⎭,所以3a ≤-,故选D .二、填空题:本题共4小题,每小题5分,共20分.13.若双曲线221y x k-=的焦点到渐近线的距离为k 的值为____________.【答案】8【解析】由双曲线221y x k-=得其中一个焦点为),其中一条渐近线方程为y =,所以焦点=,所以8k =.故答案为8.14.若函数sin ()cos a x f x x-=在区间ππ(,)63上单调递增,则实数a 的取值范围是 .【答案】[2,)+∞【解析】试题分析:因为函数sin ()cos a x f x x-=在区间ππ(,)63上单调递增所以()0f x '≥在区间ππ(,)63恒成立,22cos sin (sin )(sin )sin 1()cos cos x x a x x a x f x x x -⋅--⋅--'==,因为2cos 0x >,所以sin 10a x -≥在区间ππ(,)63恒成立,所以1sin a x ≥,因为(,)63x ππ∈,所以11sin 2223sin x x <<⇒<<,所以a 的取值范围是[2,)+∞.15.据气象部门预报,在距离某码头南偏东45°方向600km 的A 处的热带风暴中心正以20km /h 的速度向正北方向移动,距风暴中心450km 以内的地区都将受到影响,则从现在起经过 小时该码头将受到热带风暴影响. 【答案】15【解析】记t 小时后热带风暴中心到达点B 位置,在OAB V 中,600km OA =,20km AB t =,45OAB ︒∠=,根据余弦定理得222600400260020OB t t =+-⨯⨯令22450OB „,即2415750t -+„,解得151522t+剟,15(h)=.16.在三棱锥A BCD -中,60BAC BDC ∠=∠=︒,二面角A BC D --的余弦值为13-,当三棱锥A BCD -的体积的最大值为4时,其外接球的表面积为____________. 【答案】6π【解析】如图,设球心O 在平面ABC 内的射影为1O ,在平面BCD 内的射影为2O则二面角A BC D --的平面角为AMD ∠,点A 在截面圆1O 上运动,点D 在截面圆2O 上运动,由图知,当AB AC =,BD CD =时,三棱锥A BCD -的体积最大,此时ABC ∆与BDC ∆是等边三角形,设BC a =,则AM DM ==,2BCD S ∆=.sin()3h AM AMD a π=-∠=,313124A BCD DBC V S h a -∆=⋅==解得a =32DM =,21DO =,212O M =,设2AMD θ∠=则21cos 22cos 13θθ=-=-,解得tan θ=∴22tan OO O M θ==球O 的半径2R ==,所求外接球的表面积为246S R ππ==.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知ABC ∆内接于单位圆,且()()1tan 1tan 2A B ++=, (1)求角C ;(2)求ABC ∆面积的最大值.【解析】(1)()()112tanA tanB ++=Q ,1tanA tanB tanA tanB ∴+=-⋅,()11tanA tanB tanC tan A B tanAtanB +∴=-+=-=--,()3C 0,4C ππ∈∴=Q .(2)ABC ∆的外接圆为单位圆,∴其半径1R =,由正弦定理可得2c RsinC ==2222c a b abcosC =+-,代入数据可得222a b =++(22ab ab ≥=+,当且仅当a=b时,“=”成立,ab ∴≤,ABC V ∴的面积11222S absinC =≤=,ABC ∆面积的最大值为12.18.(12分)如图,四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥底面ABCD ,AC =,2PA =,E 是PC 上的一点,2PE EC =.(1)证明PC ⊥平面BED ;(2)设二面角A PB C --为90︒,求PD 与平面PBC 所成角的大小. 【解析】(1)以A 为坐标原点,建立如图空间直角坐标系A xyz -,设),0Db,则()0C ,,()002P ,,,23E ⎫⎪⎪⎝⎭,)0Bb -,,∴()2PC =-u u u r ,,2 ,3BE b ⎫=⎪⎪⎝⎭u u u r,2 33DE b ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,∴44 033PC BE ⋅=-=u u u r u u u r ,0PC DE ⋅=u u u r u u u r ,∴PC BE ⊥,PC DE ⊥,BE DE E ⋂=, ∴PC ⊥平面BED .(2)() 002AP =u u u r,,,),0AB b =-u u u r ,设平面PAB 的法向量为() ,,x y z m =u r ,则20m AP z m AB by ⎧⋅==⎪⎨⋅=-=⎪⎩u u u v v u u u vv ,取()b m =u r ,设平面PBC 的法向量为() ,,p n q r =r,则20203n PC r n BE p bq r ⎧⋅=-=⎪⎨⋅=++=⎪⎩u u u v v u u u v v ,取 1,n ⎛= ⎝r ,∵平面PAB ⊥平面PBC ,∴ 20m n b b =-=⋅u r r,故b =∴( 1,n =-r,()DP =u u u r ,∴1cos ,2n DP DP n n DP ⋅==⋅r u u u ru u u r r r u u u r ,设PD 与平面PBC 所成角为θ,02⎡⎤∈⎢⎥⎣⎦,πθ,则1sin 2θ=,∴30θ=︒,∴PD 与平面PBC 所成角的大小为30°.19.(12分)已知抛物线22y x =,过点(1,1)P 分别作斜率为1k ,2k 的抛物线的动弦AB 、CD ,设M 、N 分别为线段AB 、CD 的中点.(1)若P 为线段AB 的中点,求直线AB 的方程;(2)若121k k +=,求证直线MN 恒过定点,并求出定点坐标.【解析】(1)设()11,A x y ,()22,B x y ,则2112y x =①,2222y x =②.①-②,得 ()()()1212122y y y y x x -+=- .又因为()1,1P 是线段AB 的中点,所以122y y +=,所以,21121212=1y y k x x y y -==-+.又直线AB 过()1,1P ,所以直线AB 的方程为y x =.(2)依题设(),M M M x y ,直线AB 的方程为()111y k x -=-,即111y k x k =+-, 亦即12y k x k =+,代入抛物线方程并化简得 ()2221122220k x k k x k +-+=.所以,12121222112222k k k k x x k k --+=-= ,于是,12211M k k x k -=,12121221111M M k k y k x k k k k k -=⋅+=⋅+=.同理,12221N k k x k -=,21N y k =.易知120k k ≠,所以直线MN 的斜率21211M N M N y y k k k x x k k -==--. 故直线MN 的方程为211221211111k k k k y x k k k k ⎛⎫--=- ⎪-⎝⎭,即212111k k y x k k =+-.此时直线过定点()0,1. 故直线MN 恒过定点()0,1.20.(12分)有人收集了10年中某城市的居民年收入(即此城市所有居民在一年内的收入的总和)与某种商品的销售额的有关数据:且已知101380.0ii x==∑(1)求第10年的年收入10x ;(2)若该城市该城市居民收入与该种商品的销售额之间满足线性回归方程363ˆˆ254yx a=+, ①求第10年的销售额10y ;②如果这座城市居民的年收入达到40亿元,估计这种商品的销售额是多少?(精确到0.01)附:(1)在线性回归方程ˆˆˆybx a =+中,1221ˆˆˆ,ni ii nii x y nxyb ay b x xnx ==-==--∑∑. (2)1022110254.0ii xx =-=∑,91125875.0i i i x y ==∑,91340.0i i y ==∑.【解析】(1)依题意101380.0ii x==∑,则10323133363738394345380x +++++++++=,解得1046x =.(2)①由居民收入x 与该种商品的销售额y 之间满足线性回归方程$y =363254x a +知 363254b =,即101102211036325410i ii i i x y x yb x x==-==-∑∑,即10103401287546103836310254254y y ++-⋅⋅=, 解之得:1051y =.②易得38x =,39.1y =,代入$363254y x a =+得:36339.138254a =⨯+, 解得15.21a ≈-,所以$36315.21254y x =-,当40x =时,3634015.2141.96254y =⨯-≈ 故若该城市居民收入达到40.0亿元,估计这种商品的销售额是41.96万元.21.(12分)设函数()e cos ,()xf x xg x =为()f x 的导函数.(1)求()f x 的单调区间;(2)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+- ⎪⎝⎭…; (3)设n x 为函数()()1u x f x =-在区间2,242m m πππ⎛⎫++⎪⎝⎭内的零点,其中n N ∈,证明20022sin cos n n n x x e x πππ-+-<-.【解析】(1)由已知,有()()'ecos sin xf x x x =-.当()52,244x k k k Z ππππ⎛⎫∈++∈ ⎪⎝⎭时,有sin cos x x >,得()'0f x <,则()f x 单调递减;当()32,244x k k k Z ππππ⎛⎫∈-+∈ ⎪⎝⎭时,有sin cos x x <,得()'0f x >,则()f x 单调递增. 所以,()f x 的单调递增区间为()32,244k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, ()f x 的单调递减区间为()52,244k k k Z ππππ⎛⎫++∈ ⎪⎝⎭. (2)记()()()2h x f x g x x π⎛⎫-=⎝+⎪⎭.依题意及(1)有:()()cos sin x g x e x x =-, 从而'()2sin xg x e x =-.当,42x ππ⎛⎫∈⎪⎝⎭时,()'0g x <,故'()'()'()()(1)()022h x f x g x x g x g x x ππ'⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭…. 所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+- ⎪⎝⎭…. (3)依题意,()()10n n u x f x =-=,即e cos 1n xn x =.记2n n y x n π=-,则,42n y ππ⎛⎫∈⎪⎝⎭. 且()e cos n yn n f y y ==()()22ecos 2e n x n n n x n n N πππ---∈=.由()()20e 1n n f y f y π-==„及(Ⅰ)得0n y y ….由(2)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()'0g x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫<=⎪⎝⎭„.又由(Ⅱ)知()()02n n n f y g y y π⎛⎫+- ⎪⎝⎭…,故: ()()()2e 2n n n n n f y y g y g y ππ---=-„()()022200000sin cos sin cos n n n y e e e g y e y y x x πππ---=<--„.所以200e 22sin cos n n n x x x πππ-+--<. (二)、选考题:共10分.请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分.22.【极坐标与参数方程】(10分)A 为椭圆1C :221424x y +=上任意一点,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为210cos 240ρρθ-+=,B 为2C 上任意一点. (1)写出1C 参数方程和2C 普通方程;(2)求AB 最大值和最小值.【解析】(1)由题意可得1C的参数方程为:2cos ,,x y αα=⎧⎪⎨=⎪⎩(α为参数), 又∵210cos 240ρρθ-+=,且222x y ρ=+,cos x ρθ=, ∴2C 的普通方程为2210240x y x +-+=,即()2251x y -+=. (2)由(1)得,设()2cos A αα,圆2C 的圆心()5,0M ,则||AM ===[]cos 1,1α∈-,∴当1cos 2α=-时,max ||AM = 当cos 1α=时,min ||3AM =.当1cos 2α=-时,max max ||||11AB AM =+=; 当cos 1α=时,min min ||||12AB AM =-=.23.【选修4-5:不等式选讲】(10分)已知函数()2f x x a =-+,()4g x x =+,a R ∈.(1)解不等式()()f x g x a <+;(2)任意x ∈R ,2()()f x g x a +>恒成立,求a 的取值范围. 【解析】(1)不等式()()f x g x a <+即24x x -<+,两边平方得2244816x x x x -+<++,解得1x >-,所以原不等式的解集为()1,-+∞.(2)不等式()()2f x g x a +>可化为224a a x x -<-++, 又()()24246x x x x -++≥--+=,所以26a a -<,解得23a -<<, 所以a 的取值范围为()2,3-.。

2020届全国高考理科数学模拟冲刺卷一(含答案)

2020届全国高考理科数学模拟冲刺卷一(含答案)

162 128
114 135 89
71
63
37
(1)从散点图可以发现,各点散布在从左上角到右下角的区域里因此,气温与当天热饮销售
杯数之间成负相关,即气温越高,当天卖出去的热饮杯数越少统计中常用相关系数 r 来衡量 两个变量之间线性关系的强弱统计学认为,对于变量 x、y ,如果 r [1, 0.75],那么负相
8 答案及解析:
答案:C
π 解析:由于倾斜角为 的直线 l 与该双曲线在第一象限交于点 A,
3
且 △OAF 是等腰三角形,所以 AF OF c .
2π 设左焦点 F1(c,0) ,连接 AF1 ,则在△AFF1 中, FF1 2c , AF c , F1FA ,
3
由余弦定理,得
AF1
2
4c2
22、在极坐标系中,直线 l 的极坐标方程为 cos 4 ,曲线 C 的极坐标方程为 2cos 2sin ,以极点为坐标原点 O,极轴为 x 轴的正半轴建立直角坐标系,射线 l : y kx(x 0,0 k 1) 与曲线 C 交于 O,M 两点. (1)写出直线 l 的直角坐标方程以及曲线 C 的参数方程.


三、解答题:(本大题共 6 小题,共 70 分,解答应写出文字说明、证明过程或演
算步骤)
π 17、如图,在△ABC 中,M 是 AC 的中点, C , AM 2 .
3
5π (1)若 A ,求 AB 的长.
12 (2)若 BM 2 3 ,求△ABC 的面积.
18、如图,AB 为圆 O 的直径,点 C 在圆 O 上,且 AOC=120 ,PA 平面 ABC, AB = 4,PA = 2 3 ,D 是 PC 的中点,点 M 是圆 O 上的动点(不与 A,C 重合).

2020年高考数学(理)金榜冲刺卷(一)含答案

2020年高考数学(理)金榜冲刺卷(一)含答案

2020年高考金榜冲刺卷(一)数学(理)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数21i+(i 为虚数单位)的共轭复数是( ) A .i 1-+B .1i -C .1i +D .i 1--2.已知集合{}|110,P x N x =∈≤≤{}2|60,Q x R x x =∈+-=则P Q ⋂等于( )A .{}1,2,3B .{}2,3C .{}1,2D .{}23.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .344.若等差数列{}n a 和等比数列{}n b 满足11443,24a b a b ==-==,则22a b =( ) A .-1B .1C .-4D .45.如图所示的程序框图,该算法的功能是( )A .计算012(12)(22)(32)++++++L (12)nn +++的值 B .计算123(12)(22)(32)++++++L (2)nn ++的值C .计算(123+++L )n +012(222++++L 12)n -+的值D .计算[123+++L (1)]n +-012(222++++L 2)n+的值6.已知ABC V 是边长为()20a a >的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( )A .22a -B .232a -C .243a -D .2a -7.已知函数()222cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为48.已知奇函数()f x ,且()()g x xf x =在[0,)+∞上是增函数.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ) A .a b c <<B .c b a <<C .b a c <<D .b c a <<9.已知正方体1111ABCD A B C D -的棱长为2,直线1AC ⊥平面α.平面α截此正方体所得截面有如下四个结论:①截面形状可能为正三角形;②截面形状可能为正方形;③截面形状不可能是正五边形;④截面面积最大值为A .①②B .①③C .①②④D .①③④10.已知数列{}n a 的通项公式21021n a n n =-+-,前n 项和为n S ,若>n m ,则n m S S -的最大值是( )A .5B .10C .15D .2011.椭圆2222:1(0)x y C a b a b +=>>的左右焦点分别为12,F F ,O 为坐标原点,点A 在椭圆上,且160AOF ∠=︒,'A 与A 关于原点O 对称,且22·'0F A F A =u u u u v u u u u v,则椭圆离心率为( )A 1B C D .4-12.不等式3ln 1x x e a x x --≥+对任意(1,)x ∈+∞恒成立,则实数a 的取值范围( ) A .(,1]e -∞- B .2(,2]e -∞-C .(,2]-∞-D .(,3]-∞-二、填空题:本题共4小题,每小题5分,共20分.13.若双曲线221y x k-=的焦点到渐近线的距离为,则实数k 的值为__________.14.若函数sin ()cos a x f x x-=在区间ππ(,)63上单调递增,则实数a 的取值范围是.15.据气象部门预报,在距离某码头南偏东45°方向600km 的A 处的热带风暴中心正以20km /h 的速度向正北方向移动,距风暴中心450km 以内的地区都将受到影响,则从现在起经过小时该码头将受到热带风暴影响.16.在三棱锥A BCD -中,60BAC BDC ∠=∠=︒,二面角A BC D --的余弦值为13-,当三棱锥A BCD -的体积的最大值为4____________. 三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知ABC ∆内接于单位圆,且()()1tan 1tan 2A B ++=, (1)求角C ;(2)求ABC ∆面积的最大值.18.(12分)如图,四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥底面ABCD ,AC =2PA =,E 是PC 上的一点,2PE EC =.(1)证明PC ⊥平面BED ;(2)设二面角A PB C --为90︒,求PD 与平面PBC 所成角的大小.19.(12分)已知抛物线22y x =,过点(1,1)P 分别作斜率为1k ,2k 的抛物线的动弦AB 、CD ,设M 、N 分别为线段AB 、CD 的中点.(1)若P 为线段AB 的中点,求直线AB 的方程;(2)若121k k +=,求证直线MN 恒过定点,并求出定点坐标.20.(12分)有人收集了10年中某城市的居民年收入(即此城市所有居民在一年内的收入的总和)与某种商品的销售额的有关数据:且已知101380.0ii x==∑(1)求第10年的年收入10x ;(2)若该城市该城市居民收入与该种商品的销售额之间满足线性回归方程363ˆˆ254yx a=+, ①求第10年的销售额10y ;②如果这座城市居民的年收入达到40亿元,估计这种商品的销售额是多少?(精确到0.01)附:(1)在线性回归方程ˆˆˆybx a =+中,1221ˆˆˆ,ni ii nii x y nxyb ay b x xnx ==-==--∑∑. (2)1022110254.0ii xx =-=∑,91125875.0i i i x y ==∑,91340.0i i y ==∑.21.(12分)设函数()e cos ,()xf x xg x =为()f x 的导函数.(1)求()f x 的单调区间; (2)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+- ⎪⎝⎭…;(3)设n x 为函数()()1u x f x =-在区间2,242m m πππ⎛⎫++⎪⎝⎭内的零点,其中n N ∈, 证明:20022sin cos n n n x x e x πππ-+-<-.(二)、选考题:共10分.请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分. 22.【极坐标与参数方程】(10分)A 为椭圆1C :221424x y +=上任意一点,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为210cos 240ρρθ-+=,B 为2C 上任意一点. (1)写出1C 参数方程和2C 普通方程; (2)求AB 最大值和最小值. 23.【选修4-5:不等式选讲】(10分)已知函数()2f x x a =-+,()4g x x =+,a R ∈. (1)解不等式()()f x g x a <+;(2)任意x ∈R ,2()()f x g x a +>恒成立,求a 的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. C 2. D.3. C.4. B.5. C .6. B.7. B.8. C .9. D.10. B.11. A.12. D . 二、填空题:本题共4小题,每小题5分,共20分. 13. 8. 14. [2,)+∞ 15. 15 16. 6π提示:如图,设球心O 在平面ABC 内的射影为1O ,在平面BCD 内的射影为2O则二面角A BC D --的平面角为AMD ∠,点A 在截面圆1O 上运动,点D 在截面圆2O 上运动,由图知,当AB AC =,BD CD =时,三棱锥A BCD -的体积最大,此时ABC ∆与BDC ∆是等边三角形,设BC a =,则AM DM ==,2BCD S ∆=.sin()3h AM AMD a π=-∠=,313124A BCD DBC V S h -∆=⋅==解得a =32DM =,21DO =,212O M =,设2AMD θ∠=则21cos 22cos 13θθ=-=-,解得tan θ=∴22tan 2OO O M θ==,球O 的半径2R ==,所求外接球的表面积为246S R ππ==.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(1)()()112tanA tanB ++=Q ,1tanA tanB tanA tanB ∴+=-⋅,()11tanA tanB tanC tan A B tanAtanB +∴=-+=-=--,()3C 0,4C ππ∈∴=Q .(2)ABC ∆的外接圆为单位圆,∴其半径1R =,由正弦定理可得2c RsinC ==2222c a b abcosC =+-,代入数据可得222a b =+(22ab ab ≥=,当且仅当a=b时,“=”成立,ab ∴≤,ABC V ∴的面积11222S absinC =≤=, ABC ∆面积的最大值为12. 18.(1)以A 为坐标原点,建立如图空间直角坐标系A xyz -,设),0Db ,则()0C ,,()002P ,,,233E ⎛⎫ ⎪ ⎪⎝⎭,)0B b -,,∴()2PC =-u u u r ,,2 ,33BE b ⎛⎫= ⎪ ⎪⎝⎭u u u r,2 33DE b ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,∴44 033PC BE ⋅=-=u u u r u u u r ,0PC DE ⋅=u u u r u u u r ,∴PC BE ⊥,PC DE ⊥,BE DE E ⋂=,∴PC ⊥平面BED .(2)() 002AP =u u u r,,,),0AB b =-u u u r ,设平面PAB 的法向量为() ,,x y z m =u r ,则20m AP z m AB by ⎧⋅==⎪⎨⋅=-=⎪⎩u u u v v u u u vv ,取()b m =u r ,设平面PBC 的法向量为() ,,p n q r =r,则202023n PC r n BE p bq r ⎧⋅=-=⎪⎨⋅=++=⎪⎩u u u v v u u u v v ,取 1,b n ⎛=- ⎝r ,∵平面PAB ⊥平面PBC ,∴ 20m n b b =-=⋅u r r,故b =∴( 1,n =-r,()DP =u u u r ,∴1cos ,2n DP DP n n DP ⋅==⋅r u u u ru u u r r r u u u r ,设PD 与平面PBC 所成角为θ,02⎡⎤∈⎢⎥⎣⎦,πθ,则1sin 2θ=,∴30θ=︒, ∴PD 与平面PBC 所成角的大小为30°.19.(1)设()11,A x y ,()22,B x y ,则2112y x =①,2222y x =②.①-②,得 ()()()1212122y y y y x x -+=- .又因为()1,1P 是线段AB 的中点,所以122y y +=,所以,21121212=1y y k x x y y -==-+.又直线AB 过()1,1P ,所以直线AB 的方程为y x =.(2)依题设(),M M M x y ,直线AB 的方程为()111y k x -=-,即111y k x k =+-, 亦即12y k x k =+,代入抛物线方程并化简得 ()2221122220k x k k x k +-+=.所以,12121222112222k k k k x x k k --+=-=,于是,12211M k k x k -=,12121221111M M k k y k x k k k k k -=⋅+=⋅+=. 同理,12221N k k x k -=,21N y k =.易知120k k ≠,所以直线MN 的斜率21211M N M N y y k k k x x k k -==--. 故直线MN 的方程为211221211111k k k k y x k k k k ⎛⎫--=- ⎪-⎝⎭,即212111k k y x k k =+-.此时直线过定点()0,1. 故直线MN 恒过定点()0,1. 20. (1)依题意101380.0ii x==∑,则10323133363738394345380x +++++++++=,解得1046x =.(2)①由居民收入x 与该种商品的销售额y 之间满足线性回归方程$y =363254x a +知363254b =,即101102211036325410i ii i i x y x yb x x==-==-∑∑,即10103401287546103836310254254y y ++-⋅⋅=, 解之得:1051y =.②易得38x =,39.1y =,代入$363254y x a =+得:36339.138254a =⨯+, 解得15.21a ≈-,所以$36315.21254y x =-,当40x =时,3634015.2141.96254y =⨯-≈故若该城市居民收入达到40.0亿元,估计这种商品的销售额是41.96万元.21.(1)由已知,有()()'e cos sin xf x x x =-.当()52,244x k k k Z ππππ⎛⎫∈++∈ ⎪⎝⎭时,有sin cos x x >,得()'0f x <,则()f x 单调递减; 当()32,244x k k k Z ππππ⎛⎫∈-+∈ ⎪⎝⎭时,有sin cos x x <,得()'0f x >,则()f x 单调递增.所以,()f x 的单调递增区间为()32,244k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, ()f x 的单调递减区间为()52,244k k k Z ππππ⎛⎫++∈ ⎪⎝⎭. (2)记()()()2h x f x g x x π⎛⎫-=⎝+⎪⎭.依题意及(1)有:()()cos sin x g x e x x =-, 从而'()2sin xg x e x =-.当,42x ππ⎛⎫∈⎪⎝⎭时,()'0g x <,故'()'()'()()(1)()022h x f x g x x g x g x x ππ'⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭…. 所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+- ⎪⎝⎭….(3)依题意,()()10n n u x f x =-=,即e cos 1n xn x =.记2n n y x n π=-,则,42n y ππ⎛⎫∈⎪⎝⎭. 且()e cos n yn n f y y ==()()22ecos 2e n x n n n x n n N πππ---∈=.由()()20e 1n n f y f y π-==„及(Ⅰ)得0n y y ….由(2)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()'0g x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫<= ⎪⎝⎭„.又由(Ⅱ)知()()02n n n f y g y y π⎛⎫+- ⎪⎝⎭…,故: ()()()2e 2n n n n n f y y g y g y ππ---=-„()()022200000sin cos sin cos n n n y e e e g y e y y x x πππ---=<--„. 所以200e 22sin cos n n n x x x πππ-+--<.(二)、选考题:共10分.请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分. 22.(1)由题意可得1C的参数方程为:2cos ,,x y αα=⎧⎪⎨=⎪⎩(α为参数),又∵210cos 240ρρθ-+=,且222x y ρ=+,cos x ρθ=,∴2C 的普通方程为2210240x y x +-+=,即()2251x y -+=.(2)由(1)得,设()2cos A αα,圆2C 的圆心()5,0M , 则||AM ===[]cos 1,1α∈-,∴当1cos 2α=-时,max ||AM =当cos 1α=时,min ||3AM =.当1cos 2α=-时,max max ||||11AB AM =+=; 当cos 1α=时,min min ||||12AB AM =-=. 23.【选修4-5:不等式选讲】(10分)(1)不等式()()f x g x a <+即24x x -<+,两边平方得2244816x x x x -+<++,解得1x >-,所以原不等式的解集为()1,-+∞.(2)不等式()()2f x g x a +>可化为224a a x x -<-++, 又()()24246x x x x -++≥--+=,所以26a a -<,解得23a -<<, 所以a 的取值范围为()2,3-.。

2020年高考理科数学仿真冲刺卷及答案(一)

2020年高考理科数学仿真冲刺卷及答案(一)

2020年高考理科数学仿真冲刺卷及答案(一) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2},B={x|x=a+b,a∈A,b∈A},则集合B中元素个数为( )(A)1 (B)2 (C)3 (D)42.计算()2 017+()2 017等于( )(A)-2i (B)0(C)2i (D)23.在长为16 cm的线段MN上任取一点P,以MP,NP为邻边作一矩形,则该矩形的面积大于60 cm2的概率为( )(A)(B)(C)(D)4.在△ABC中,若AB=,BC=3,∠C=120°,则AC等于( )(A)1 (B)2 (C)3 (D)45.已知函数f(x)=ln(e x+e-x)+x2,则使得f(2x)>f(x+3)成立的x的取值范围是( )(A)(-1,3) (B)(-∞,-3)∪(3,+∞)(C)(-3,3) (D)(-∞,-1)∪(3,+∞)6.已知函数f(x)=cos(2x-ϕ)-sin(2x-ϕ)(|ϕ|<)的图象向右平移个单位后关于y轴对称,则f(x)在区间[-,0]上的最小值为( )(A)-1 (B)(C)-(D)-27.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )(A)96(B)80+4π(C)96+4(-1)π(D)96+4(2-1)π8.执行如图的程序框图,则输出x的值是( )(A)2 016 (B)1 024(C) (D)-19.已知(1-2x)2 017=a0+a1(x-1)+a2(x-1)2+…+a2 016(x-1)2 016+ a2 017(x-1)2 017(x∈R),则a1-2a2+3a3-4a4+…-2 016a2 016+2 017a2017等于( )(A)2 017 (B)4 034(C)-4 034 (D)010.若0<m<n<2,e为自然对数的底数,则下列各式中一定成立的是( )(A)me n<ne m (B)me n>ne m(C)mln n>nln m (D)mln n<nln m11.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x 0,2)(x0>)是抛物线C上一点,圆M与线段MF相交于点A,且被直线x=截得的弦长为|MA|.若=2,则|AF|等于( )(A)(B)1 (C)2 (D)312.现有10支队伍参加篮球比赛,规定:比赛采取单循环比赛制,即每支队伍与其他9支队伍各比赛一场;每场比赛中,胜方得2分,负方得0分,平局双方各得1分.下面关于这10支队伍得分的叙述正确的是( )(A)可能有两支队伍得分都是18分(B)各支队伍得分总和为180分(C)各支队伍中最高得分不高于10分(D)得偶数分的队伍必有偶数个第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须作答.第22、23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知|a|=1,|b|=2,a与b的夹角为120°,a+b+c=0,则a与c的夹角为.14.设变量x,y满足则点P(x+y,x-y)所在区域的面积为.15.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,A1,A2为其左、右顶点,以线段F1F2为直径的圆与双曲线的渐近线在第一象限的交点为M,且∠MA1A2=45°,则双曲线的离心率为.16.已知正四棱锥S ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在等差数列{a n}中,a2+a7=-23,a3+a8=-29.(1)求数列{a n}的通项公式;(2)设数列{a n+b n}是首项为1,公比为c的等比数列,求{b n}的前n项和S n.18.(本小题满分12分)从某市统考的学生数学试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如图的频率分布直方图.(1)求这100份数学试卷的样本平均分和样本方差s2;(同一组中的数据用该组区间的中点值作代表)(2)由直方图可以认为,这批学生的数学总分Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.①利用该正态分布,求P(81<Z<119);②记X表示2 400名学生的数学总分位于区间(81,119)的人数,利用①的结果,求E(X)(用样本的分布估计总体的分布). 附:≈19,≈18,若Z~N(μ,σ2),则P(μ-σ2),则P(μ-σ<Z<μ+σ)=0.682 7,P(μ-2σ<Z<μ+2σ)=0.954 5.19.(本小题满分12分)如图,在四棱锥P ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.(1)若PA=PD,求证:平面PQB⊥平面PAD;(2)若平面PAD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上,试确定点M的位置,使二面角M BQ C大小为60°,并求出的值.20.(本小题满分12分)已知圆E:(x+1)2+y2=16,点F(1,0),P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q.(1)求动点Q的轨迹Γ的方程;(2)若直线y=k(x-1)与(1)中的轨迹Γ交于R,S两点,问是否在x轴上存在一点T,使得当k变动时,总有∠OTS=∠OTR?说明理由.21.(本小题满分12分)已知函数f(x)=a x-e(x+1)ln a-(a>0,且a≠1),e为自然对数的底数.(1)当a=e时,求函数y=f(x)在区间x∈[0,2]上的最大值;(2)若函数f(x)只有一个零点,求a的值.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修44:坐标系与参数方程已知平面直角坐标系中,曲线C1的参数方程为( 为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cos θ.(1)求曲线C1的极坐标方程与曲线C2的直角坐标方程;(2)若直线θ=(ρ∈R)与曲线C1交于P,Q两点,求|PQ|的长度.23.(本小题满分10分)选修45:不等式选讲已知函数f(x)=的定义域为R.(1)求实数t的取值范围;(2)若t的最小值为s,正实数a,b满足+=s,求4a+5b 的最小值.参考答案仿真冲刺卷(一)1.C 由A={1,2}及题意得B={x|x=a+b,a∈A,b∈A}={2,3,4},则集合B中元素个数为3.故选C.2.B 因为===i,=-i.i4=1.所以()2 017+()2 017=(i4)504·i+[(-i)4]504·(-i)=i-i=0. 故选B.3.A 设MP=x,则NP=16-x(0<x<16),矩形的面积S=x(16-x)>60,所以x2-16x+60<0,所以6<x<10.由几何概率的求解公式可得,矩形面积大于60 cm2的概率P==,故选A.4.A AB2=AC2+BC2-2·AC·BC·cos 120°,13=AC2+9-2·AC·3×(-),AC2+3AC-4=0,解得AC=1或AC=-4(舍去).故选A.5.D 因为函数f(x)=ln(e x+e-x)+x2,所以f′(x)=+2x,当x>0时,f′(x)>0,f(x)单调递增;又因为f(x)=ln(e x+e-x)+x2是偶函数,所以f(2x)>f(x+3)等价于|2x|>|x+3|,整理得x2-2x-3>0,解得x>3或x<-1,所以使得f(2x)>f(x+3)成立的x的取值范围是(-∞,-1)∪(3,+∞),故选D.6.C函数f(x)=cos(2x-ϕ)-sin(2x-ϕ)=2cos(2x-ϕ+),(|ϕ|<)的图象向右平移个单位后,可得y=2cos(2x--ϕ+)=2cos(2x-ϕ+) 的图象,再根据所得图象关于y轴对称,可得-ϕ+=kπ,k∈Z,故ϕ=,f(x)=2cos(2x+).在区间[-,0]上,2x+∈[-,],cos(2x+)∈[-,1],故f(x) 的最小值为2×(-)=-,故选C.7.C 由三视图可知几何体为边长为4的正方体挖去一个圆锥得到的,圆锥的底面半径为2,高为2,所以圆锥的母线长为2.所以几何体的表面积为6×42-π×22+π×2×2=96-4π+4π.故选C.8.D 由程序框图可得x=2,y=0时满足条件y<1 024,执行循环体得x=-1,y=1;满足条件y<1 024,执行循环体,x=,y=2;满足条件y<1 024,执行循环体,x=2,y=3;满足条件y<1 024,执行循环体,x=-1,y=4;…;观察规律可知,x的取值周期为3,由于1 024=341×3+1,可得满足条件y<1 024,执行循环体,x=-1,y=1 024;不满足条件y<1 024,退出循环,输出x的值为-1.故选D.9.C 将(1-2x)2 017=a0+a1(x-1)+a2(x-1)2+…+a2 016(x-1)2 016+ a2 017(x-1)2 017(x∈R)两边求导可得-2×2 017(1-2x)2 016=a1+ 2a2(x-1)+…+2017a2017(x-1)2016,令x=0,则-4 034=a1-2a2+3a3-4a4+…-2 016a2 016+2 017a2 017,故选C.10.C 设g(x)=,所以g′(x)=,所以g(x)在(0,1)上单调递减,在(1,2)上单调递增,因为0<m<n<2,所以无法比较g(m)与g(n)的大小,即无法判断me n与ne m的大小.设f(x)=,所以f′(x)=>0在(0,2)上恒成立,所以f(x)在(0,2)上单调递增,所以f(m)<f(n),所以<,即mln n>nln m.,故选C.11.B如图,过M作MD⊥直线x=,由题意:M(x 0,2)在抛物线上,则8=2px0,则px0=4,①由抛物线的性质可知,|DM|=x0-,=2,则|MA|=2|AF|=|MF|=(x0+),因为被直线x=截得的弦长为|MA|,则|DE|=|MA|=(x0+),由|MA|=|ME|=r,在Rt△MDE中,|DE|2+|DM|2=|ME|2,即(x0+)2+(x0-)2=(x0+)2,代入整理得4+p2=20.②由①②,解得x0=2,p=2,所以|AF|=(x0+)=1,故选B.12.D 设每支队伍胜x场,负y场,平z场(x,y,z都是不大于9的自然数),则x+y+z=9,对于A,某支队伍得分18分为满分,也就是胜了9场,那么其他9队至少有一次负,就不可能再得18分,故错误;对于B,总共要进行=45场比赛,每场比赛的得分和都是2分,最后总得分为45×2=90(分),故错误;对于C,最高得分可能超过10分,比如A中可能为18分,故错误;对于D,由B可知,各个队伍得分总和m1+m2+…+m10=90,这10个数中,若有(2k+1)个偶数,则有10-(2k+1)=(9-2k)个奇数,其和必为奇数,不可能等于90,所以这10个数中,有偶数个偶数,正确.故选D.13.解析:因为|a|=1,|b|=2,a与b的夹角为120°,所以a·b=|a||b|cos 120°=1×2×(-)=-1.因为a+b+c=0,所以-b=a+c,所以-a·b=a·(a+c),所以-(-1)=a2+a·c,所以a·c=0.所以a⊥c.所以a与c的夹角为90°.答案:90°14.解析:令s=x+y,t=x-y,则点P(x+y,x-y)为P(s,t),由s=x+y,t=x-y,得s≤1,x=,y=,又x≥0,y≥0,所以s+t≥0,s-t≥0,所以s,t满足约束条件作出可行域如图,A(1,1),B(1,-1),O(0,0).所以点P(x+y,x-y)所在区域的面积为×2×1=1.答案:115.解析:由题得以F1F2为直径的圆的圆心是(0,0),半径为c, 故圆的标准方程为x2+y2=c2,又双曲线的其中一条渐近线方程为y=x,联立可得M(a,b). 故MA2垂直于A1A2,所以tan∠MA1A2==tan 45°,所以b=2a,c= a.故双曲线的离心率为.答案:16.解析:设底面边长为a,则高h==,所以体积V=a2h=,设y=12a4-a6,则y′=48a3-3a5,当y取最值时,y′=48a3-3a5=0,解得a=0或a=4时,当a=4时,体积最大,此时h==2.答案:217.解:(1)设等差数列{a n}的公差是d.依题意 a3+a8-(a2+a7)=2d=-6,从而d=-3.所以 a2+a7=2a1+7d=-23,解得 a1=-1.所以数列{a n}的通项公式为 a n=-3n+2.(2)由数列{a n+b n}是首项为1,公比为c的等比数列,得a n+b n=c n-1,即-3n+2+b n=c n-1,所以 b n=3n-2+c n-1.所以 S n=[1+4+7+…+(3n-2)]+(1+c+c2+…+c n-1)=+(1+c+c2+…+c n-1).从而当c=1时,S n=+n=;当c≠1时,S n=+.18.解:(1)由题意,=60×0.02+70×0.08+80×0.14+90×0.15+100×0.24+110×0.15+120×0.1+130×0.08+140×0.04=100,样本方差s2=(60-100)2×0.02+(70-100)2×0.08+(80-100)2×0.14+(9 0-100)2×0.15+(100-100)2×0.24+(110-100)2×0.15+(120-100)2×0.1+(130-100)2×0.08+(140-100)2×0.04=366. (2)①Z~N(100,366),P(81<Z<119)=P(100-19<Z<100+19)=0.682 7;②数学总分位于区间(81,119)的概率为0.682 7,X~(2 400,0.682 7),E(X)=2 400×0.682 7=1 638.48.19.(1)证明:因为PA=PD,Q为AD的中点,所以PQ⊥AD,又因为底面ABCD为菱形,∠BAD=60°,所以BQ⊥AD,又因为PQ∩BQ=Q,所以AD⊥平面PQB,又因为AD⊂平面PAD,所以平面PQB⊥平面PAD.(2)解:因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,所以PQ⊥平面ABCD.以Q为坐标原点,分别以QA,QB,QP为x,y,z轴建立空间直角坐标系如图.则由题意知Q(0,0,0),P(0,0,),B(0,,0),C(-2,,0).设=λ(0<λ<1),则M(-2λ,λ,(1-λ)),平面CBQ的一个法向量是n1=(0,0,1),设平面MQB的一个法向量为n2=(x,y,z),则取n 2=(,0,),因为二面角M BQ C大小为60°,所以==,解得λ=,此时=.20.解:(1)连接QF,根据题意,|QP|=|QF|,则|QE|+|QF|=|QE|+|QP|=4>|EF|=2,故动点Q的轨迹Γ是以E,F为焦点,长轴长为4的椭圆.设其方程为+=1(a>b>0),可知a=2,c=1,所以b==,所以点Q的轨迹Γ的方程为+=1.(2)假设存在T(t,0)满足∠OTS=∠OTR.设R(x1,y1),S(x2,y2)联立得(3+4k2)x2-8k2x+4k2-12=0,由韦达定理有①,其中Δ>0恒成立,由∠OTS=∠OTR(显然TS,TR的斜率存在),故k TS+k TR=0即+=0 ②,由R,S两点在直线y=k(x-1)上,故y1=k(x1-1),y2=k(x2-1)代入②得==0,即有2x1x2-(t+1)(x1+x2)+2t=0③,将①代入③,即有==0 ④,要使得④与k的取值无关,当且仅当t=4时成立,综上所述存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.21.解:(1)当a=e时,f(x)=e x-e(x+1)ln e-=e x-e(x+1)-,所以f′(x)=e x-e.令f′(x)=0,解得x=1.当x∈[0,1]时,f′(x)<0,函数f(x)单调递减,当x∈(1,2]时,f′(x)>0,函数f(x)单调递增,因为f(0)=1-e-,f(2)=e2-3e-,所以f(2)-f(0)=e2-3e--1+e+=e2-2e-1>0,所以函数y=f(x)在区间x∈[0,2]上的最大值为e2-3e-. (2)f′(x)=a x ln a-eln a=ln a(a x-e),当0<a<1时,由f′(x)=a x ln a-eln a=ln a(a x-e)<0,得a x-e>0,即x<.由f′(x)=a x ln a-eln a=ln a(a x-e)>0,得a x-e<0,即x>.所以f(x)在(-∞,)上为减函数,在(,+∞)上为增函数,所以当x=时函数取得最小值为f()=-e(+1)lna-=-eln a-e-.要使函数f(x)只有一个零点,则-eln a-e-=0,得a=;当a>1时,由f′(x)=a x ln a-eln a=ln a(a x-e)<0,得a x-e<0,即x<.由f′(x)=a x ln a-eln a=ln a(a x-e)>0,得a x-e>0,即x>.所以f(x)在(-∞,)上为减函数,在(,+∞)上为增函数,所以当x=时函数取得最小值为f()=-e(+1)lna-=-eln a-e-.要使函数f(x)只有一个零点,则-eln a-e-=0,得a=(舍去).综上,若函数f(x)只有一个零点,则a=.22.解:(1)曲线C1的参数方程为(ϕ为参数),利用平方关系消去ϕ可得(x-)2+(y+1)2=9,展开为x2+y2-2x+2y-5=0,可得极坐标方程ρ2-2ρcos θ+2ρsin θ-5=0.曲线C 2的极坐标方程为ρ=2cos θ,即ρ2=2ρcos θ,可得直角坐标方程x 2+y 2=2x.(2)把直线θ=(ρ∈R)代入ρ2-2ρcos θ+2ρsin θ-5=0,整理可得ρ2-2ρ-5=0,所以ρ1+ρ2=2,ρ1·ρ2=-5. 所以|PQ|=|ρ1-ρ2|===2. 23.解:(1)研究函数y=|x+5|-|x-1|,当x ≤-5时,y=-6,当x ≥1时,y=6,当-5<x<1时,y=2x+4∈(-6,6),故函数y=|x+5|-|x-1|的值域为[-6,6],因为函数f(x)=的定义域为R, 所以被开方的式子恒大于等于0,故t ≥6.(2)由(1)知正实数a,b 满足+=6, 令a+2b=m,2a+b=n,则正数m,n 满足+=6,则4a+5b=2m+n=(2m+n)(+)=(5++)≥(5+2)=,当且仅当=即m=n=时取等号,此时a=b=,故4a+5b 的最小值为.。

2020年普通高等学校招生全国统一考试高考数学临考冲刺卷(一)理

2020年普通高等学校招生全国统一考试高考数学临考冲刺卷(一)理

普通高等学校2020年招生全国统一考试临考冲刺卷(一)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. i 为虚数单位,则复数) ABCD【答案】AA .2.已知集合(){}|lg 21A x x =-<,集合{}2|230B x x x =--<,则A B =U ( )A .()2,12B .()1,3-C .()1,12-D .()2,3【答案】C【解析】(){}|lg 21A x x =-<{}()|02102,12x x =<-<=,{}2|230B x x x =--<()1,3=-,所以A B =U ()1,12-,选C .3.如图,四边形OABC 是边长为2的正方形,曲线段DE 所在的曲线方程为1xy =,现向该正方形内抛掷1枚豆子,则该枚豆子落在阴影部分的概率为()A.32ln24-B.12ln24+C.52ln24-D.12ln24-+【答案】A【解析】根据条件可知,122E⎛⎫⎪⎝⎭,,阴影部分的面积为()22112211122ln|22ln2ln32ln222dx x xx⎛⎫⎛⎫⎛⎫-=-=---=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰,所以,豆子落在阴影部分的概率为32ln24-.故选A.4.在ABC△中,角A,B,C所对应的边分别为a,b,c.若角A,B,C依次成等差数列,且1a=,3b=.则ABCS=△()A.2B.3C.32D.2【答案】C【解析】∵A,B,C依次成等差数列,∴60B=︒,∴由余弦定理得:2222cosb ac ac B=+-,得:2c=,∴由正弦定理得:13sin22ABCS ac B==△,故选C.5.如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.7 B.6 C.5 D.4【解析】几何体如图,则体积为332=64⨯,选B.6.已知函数()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增.若实数a 满足()(2133a f f -≥-,则a 的最大值是( )A .1B .12C .14D .34【答案】D【解析】根据题意,函数()f x 是定义在R 上的偶函数,则(3f =3f ,又由()f x 在区间(),0-∞上单调递增,则()f x 在()0,+∞上递减, 则()()2133a f f -≥-()()2133a f f -⇔≥2133a ⇔﹣≤121233a ⇔≤﹣,则有1212a≤﹣,解可得34a ≤,即a 的最大值是34,故选D . 7.在平面直角坐标系中,若不等式组2212 10x y x ax y +≥⎧≤≤-+≥⎪⎨⎪⎩(a 为常数)表示的区域面积等于1,则抛物线2y ax =的准线方程为( ) A .124y =-B .124x =-C .32x =-D .32y =-【答案】D 【解析】由题意得111121122a a ⎛⎫⨯⨯+-++= ⎪⎝⎭,16a ∴=,26x y ∴=,即准线方程为32y =-,选D .8.在nx x ⎛ ⎝的展开式中,各项系数和与二项式系数和之比为32,则2x 的系数为( )A .50B .70C .90D .120【解析】在3nx x ⎛+ ⎪⎝⎭中,令1x =得()134nn +=,即展开式中各项系数和为4n ;又展开式中的二项式系数和为2n.由题意得42322n nn ==,解得5n =.故二项式为53x x ⎛+ ⎪⎝⎭,其展开式的通项为()355215533rr r r r r r T C x C x x --+== ⎪⎝⎭,()0,1,2,3,4,5r =.令2r =得222235390T C x x ==.所以2x 的系数为90.选C .9.我国古代数学名著《九章算术》里有一道关于买田的问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”其意思为:“今有好田1亩价值300钱;坏田7亩价值500钱.今合买好、坏田1顷,价值10000钱.问好、坏田各有多少亩?”已知1顷为100亩,现有下列四个程序框图,其中S 的单位为钱,则输出的x ,y 分别为此题中好、坏田的亩数的是( )A .B .C .D .【答案】B【解析】设好田为x ,坏田为y12.5 87.5x y =⎧∴⎨=⎩, A 中12.5x ≠;B 中正确;C 中87.5x =,12.5y =;D 中12.5x ≠,所以选B .10.已知函数()()sin 0f x x x ωωω=->,4个元素,则实数ω的取值范围是( ) A .35,22⎡⎫⎪⎢⎣⎭B .35,22⎛⎤⎥⎝⎦C .725,26⎡⎫⎪⎢⎣⎭D .725,26⎛⎤⎥⎝⎦【答案】D【解析】π2sin 13x ω⎛⎫-=- ⎪⎝⎭Q ,π1sin 32x ω⎛⎫∴-=- ⎪⎝⎭,解()7π2π6k k +∈Z ,3π2π2k x ωω=+()k ∈Z , 设直线1y =-与()y f x =在()0,+∞上从左到右的第四个交点为A ,第五个交点为B,则由于方程()1f x =-在()0,π上有且只有四个实数根,则<πB A x x ≤,即3π2ππ4ππ26ωωωω+<≤+D . 11.已知三棱锥P ABC -的四个顶点都在球O 的球面上,PA ⊥平面ABC ,ABC △是边长为2的等边三角形,若球OPC 与平面PAB 所成角的正切值为( ) ABCD【答案】A【解析】R=,设ABC△的外心为M,由正弦定理AM=,由2222PAAM⎛⎫+=⎪⎝⎭得PA=,设AB的中点为N,则CN⊥平面PAB,连接PN,则CPN∠为直线与平面所成的角,PN==,CN=tanCNCPNPN∠==,故选A.12.设P为双曲线()2222:1,0x yC a ba b-=>上一点,1F,2F分别为双曲线C的左、右焦点,212PF F F⊥,若12PF F△的外接圆半径是其内切圆半径的176倍,则双曲线C的离心率为()A.2B.4C.2或3 D.4或53【答案】D【解析】∵1F,2F分别为双曲线C的左、右焦点,∴()1,0F c-,()2,0F c,∵212PF F F⊥,∴点P在双曲线的右支,12PF F△的内切圆半径为12212222F F PF PF c ac a+--==-.设1PF x=,则22PF x a=-.∵2221212PF PF F F=+,即()()22222x x a c=-+,∴22a cxa+=,即12PF F△的外接圆半径为222a ca+.∵12PF F△的外接圆半径是其内切圆半径的176倍,∴()221726a cc aa+=-,即22201730a ac c-+=.∴2317200e e-+=∴53e=或4,故选D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知()2,1=-a ,()1,0=b ,()1,2=-c,若a 与m -b c 平行,则m =__________. 【答案】-3【解析】已知()2,1=-a ,()1,2m m -=-b c ,若a 与m -b c 平行则143m m -=⇒=-,故答案为:-3.14.已知点()2,0A -,()0,2B 若点M 是圆22220x y x y +-+=上的动点,则ABM △面积的最小值为__________. 【答案】2【解析】将圆22:220M x y x y +-+=化简成标准方程()()22112x y -++=, 圆心()1,1-,半径2r =,因为()2,0A -,()0,2B ,所以22AB =,要求ABM △面积最小值,即要使圆上的动点M 到直线AB 的距离d 最小,而圆心()1,1-到直线AB 的距离为22,所以ABM S △的最小值为min 11222222AB d ⋅⋅=⨯⨯=,故答案为2.15. cos85sin 25cos30cos 25︒+︒︒=︒_____________.【答案】2【解析】()cos 6025sin 25cos30cos85sin 25cos30cos 25cos 25︒+︒+︒︒︒+︒︒=︒︒, 133cos 25sin 25sin 251222cos 252︒-︒+︒==︒,故答案为12.16.记{}ave ,,a b c 表示实数a ,b ,c 的平均数,{}max ,,a b c 表示实数a ,b ,c 的最大值,设11ave 2,,122A x x x ⎧⎫=-++⎨⎬⎩⎭,11max 2,,122M x x x ⎧⎫=-++⎨⎬⎩⎭,若31M A =-,则x 的取值范围是__________.【答案】{}| 4 2x x x =-≥或.【解析】作出112122M max x x x ⎧⎫=-++⎨⎬⎩⎭,的图象如图所示由题意1113A =⨯+,故031 0x x A x x x -<⎧-==⎨≥⎩,,,31M A =-Q ,∴当0x <时,122x x -=-+,得4x =-,当01x ≤<时,122x x =-+,得43x =,舍去,当12x ≤<时,112x x =+,得2x =,舍去,当2x ≥时,x x =,恒成立,综上所述,x 的取值范围是{}|42x x x =-≥或.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分. 17.已知数列{}n a 的前n 项和为n S ,且满足()413n n S a =-,*n ∈N . (1)求数列{}n a 的通项公式; (2)令2log n n b a =,记数列()()111n n b b ⎧⎫⎪⎪⎨⎬-+⎪⎪⎩⎭的前n 项和为n T ,证明:12nT <. 【答案】(1)()*4nn a n =∈N ;(2)见解析. 【解析】(I )当1n =时,有()111413a S a ==-,解得14a =.……1分 当n ≥2时,有()11413n n S a --=-,则 ()()11441133n n n n n a S S a a --=-=---,……3分整理得:14n n aa -=,……4分∴数列{}n a 是以4q =为公比,以14a =为首项的等比数列.……5分 ∴()1*444n n n a n -=⨯=∈N ,即数列{}n a 的通项公式为:()*4n n a n =∈N .……6分 (2)由(1)有22log log 42nn n b a n ===,……7分 则()()()()11111=11212122121n n b b n n n n ⎛⎫=- ⎪+-+--+⎝⎭,……8分∴()()11111335572121n T n n =+++⋅⋅⋅+⨯⨯⨯+- 11111111121335572121n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦……10分 11112212n ⎛⎫=-< ⎪+⎝⎭,故得证.……12分 18.在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标x 和y ,制成下图,其中“*”表示甲村贫困户,“+”表示乙村贫困户.若00.6x <<,则认定该户为“绝对贫困户”,若0.60.8x ≤≤,则认定该户为“相对贫困户”,若0.81x <≤,则认定该户为“低收入户”;若100y ≥,则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.(1)从甲村50户中随机选出一户,求该户为“今年不能脱贫的绝对贫困户”的概率; (2)若从所有“今年不能脱贫的非绝对贫困户”中选3户,用ξ表示所选3户中乙村的户数,求ξ的分布列和数学期望()E ξ;(3)试比较这100户中,甲、乙两村指标y 的方差的大小(只需写出结论). 【答案】(1)0.1;(2)见解析;(3)见解析.【解析】(1)由图知,在甲村50户中,“今年不能脱贫的绝对贫困户”有5户,……1分所以从甲村50户中随机选出一户,该户为“今年不能脱贫的绝对贫困户”的概率为50.150P==.……3分(2)由图知,“今年不能脱贫的非绝对贫困户”有10户,其中甲村6户,乙村4户,依题意,……4分ξ的可能值为0,1,2,3.从而……5分()363102011206CPCξ====,……6分()124631060111202C CPCξ====,……7分()2146310363212010C CPCξ====,……8分()3431041312030CPCξ====.……9分所以ξ的分布列为:故ξ的数学期望()1131120123 1.262103010Eξ=⨯+⨯+⨯+⨯==.……10分(3)这100户中甲村指标y的方差大于乙村指标y的方差.……12分19.如图,在直三棱柱111ABC A B C-中,底面ABC△是边长为2的等边三角形,D为BC的中点,侧棱13AA=,点E在1BB上,点F在1CC上,且1BE=,2CF=.(1)证明:平面CAE ⊥平面ADF ;(2)求二面角F AD E --的余弦值.【答案】(1)见解析;(2)1010. 【解析】(1)∵ABC △是等边三角形,D 为BC 的中点,∴AD BC ⊥,∴AD ⊥平面11BCC B ,得AD CE ⊥.①……2分在侧面11BCC B 中,1tan 2CD CFD CF ∠==,1tan 2BE BCE BC ∠==, ∴tan tan CFD BCE ∠=∠,CFD BCE ∠=∠,∴90BCE FDC CFD FDC ∠+∠=∠+∠=︒,∴CE DF ⊥.②……4分结合①②,又∵AD DF D =I ,∴CE ⊥平面ADF ,……5分又∵CE ⊂平面CAE ,∴平面CAE ⊥平面ADF ,……6分(2)如图建立空间直角坐标系D xyz -.则)300A ,,()012F -,,,()011E ,,. 得()300DA =u u u r ,,,()012DF =-u u u r ,,,()011DE =u u u r ,,,……7分 设平面ADF 的法向量()x y z =,,m ,则0 0DA DF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m , 即30 20x y z ⎧=-+=⎪⎨⎪⎩得0 2x y z ==⎧⎨⎩取()021=,,m .……9分 同理可得,平面ADE 的法向量()011=-,,n ,……10分……11分 则二面角F AD E --.……12分 20.已知定点()3,0A -、()3,0B ,直线AM 、BM 相交于点M ,且它们的斜率之积为19-,记动点M 的轨迹为曲线C .(1)求曲线C 的方程; (2)过点()1,0T 的直线l 与曲线C 交于P 、Q 两点,是否存在定点(),0S s ,使得直线SP 与SQ 斜率之积为定值,若存在求出S 坐标;若不存在请说明理由.【答案】(1)()22139x y x +=≠±;(2)见解析. 【解析】(1)设动点(),M x y ,则3MA y k x =+,3MB y k x =-()3x ≠±, 19MA MB k k ⋅=-Q ,即1339y y x x ⋅=-+-.……3分 化简得:2219x y +=,……4分 由已知3x ≠±,故曲线C 的方程为2219x y +=()3x ≠±.……5分 (2)由已知直线l 过点()1,0T ,设l 的方程为1x my =+,则联立方程组221 99x my x y =++=⎧⎨⎩, 消去x 得()229280m y my ++-=, 设()11,P x y ,()22,Q x y……7分 直线SP 与SQ 斜率分别为11111SP y y k x s my s ==-+-,22221SQ y y k x s my s==-+-,()()121111SP SP y y k k my s my s =+-+- ()()()1222121211y y m y y m s y y s =+-++-()()2228991s m s -=-+-.……10分当3s =时,()282991SP SP k k s -⋅==--; 当3s =-时,()2811891SP SP k k s -⋅==--. 所以存在定点()3,0S ±,使得直线SP 与SQ 斜率之积为定值.……12分21.设0a >,已知函数()()ln f x x a =-+,()0x >. (1)讨论函数()f x 的单调性;(2)试判断函数()f x 在()0,+∞上是否有两个零点,并说明理由.【答案】(1)见解析;(2)函数()f x 没有两个零点.【解析】(1)()1'f x x a=-+,……1分 ()()22'0220f x x a x a x a >⇔+>⇔+-+>,()()22'0220f x x a x a <⇔+-+<,设()()2222g x x a x a =+-+,则()161a ∆=-, ①当1a ≥时,0∆≤,()0g x ≥,即()'0f x ≥,∴()f x 在()0,+∞上单调递增;……3分②当01a <<时,0∆>,由()0g x =得12x a ==--,22x a =-+,可知120x x <<,由()g x 的图象得:()f x在(0,2a --和()2a -++∞上单调递增;()f x在(2a --2a -+上单调递减.……5分(2)假设函数()f x 有两个零点,由(1)知,01a <<,因为()0ln 0f a =->,则()20f x <()2ln x a <+,由()2'0f x =知2x a +=ln <(,t =,则()ln 2t t <(*),……8分由()221,4x a =-+,得()1,2t ∈,设()()ln 2h t t t =-,得()1'10h t t=->,所以()h t 在()1,2递增,得()()11ln20h t h >=->,即()ln 2t t >,……11分 这与(*)式矛盾,所以上假设不成立,即函数()f x 没有两个零点.…12分(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分) 22.在平面直角坐标系xOy 中,曲线1C 过点(),1P a,其参数方程为 1x a y =+=+⎧⎪⎨⎪⎩(t 为参数,a ∈R ),以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)求已知曲线1C 和曲线2C 交于A ,B 两点,且2PA PB =,求实数a 的值.【答案】(1)10x y a --+=,24y x =;(2)136a =或94. 【解析】(1)1C的参数方程 1x a y =+=+⎧⎪⎨⎪⎩,消参得普通方程为10x y a --+=,……2分 2C 的极坐标方程为2cos 4cos 0ρθθρ+-=两边同乘ρ得222cos 4cos 0ρθρθρ+-=即24y x =;……5分(2)将曲线1C的参数方程2 12x a y ⎧⎪⎪⎨=+=+⎪⎪⎩(t 为参数,a ∈R )代入曲线224C y x =:,得211402t a +-=,……6分由(()2141402a ∆=-⨯->,得0a >,……7分 设A ,B 对应的参数为1t ,2t ,由题意得122t t =即122t t =或122t t =-,…8分当122t t =时,()1212122 214t t t t t t a =+==-⎧⎪⎨⎪⎩,解得136a =,……9分 当122t t =-时,()1212122 214t t t t t t a =⎧-+==-⎪⎨⎪⎩解得94a =, 综上:136a =或94.……10分 23.选修4-5:不等式选讲已知x ∃∈R ,使不等式12x x t ---≥成立.(1)求满足条件的实数t 的集合T ;(2)若1,1m n >>,对t T ∀∈,不等式33log log m n t ⋅≥恒成立,求22m n +的最小值.【答案】(1){|1}t T t t ∈=≤;(2)18.【解析】(1……2分则()11f x -≤≤,……4分由于x ∃∈R 使不等式12x x t ---≥成立,有{|1}t T t t ∈=≤.……5分 (2)由(1)知,33log log 1m n ⋅≥,从而23mn ≥,当且仅当3m n ==时取等号, (7)分再根据基本不等式6m n +≥≥,当且仅当3m n ==时取等号.的最小值为6.……10分所以m n。

2020年全国高考1卷理科数学模拟试卷(一)

2020年全国高考1卷理科数学模拟试卷(一)

一、选择题:本大题共12个小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题 目要求的.1.已知集合A=(X |y=logax},B=(X-2≤X≤2),则AnB=()A(0,2) B[1.2] C(-的,2) D.[-2,2]2.若复数:=1-1.:为二的共轭复数,则复的虚部为《)A- 1 B.i C.- 1 D.13.如图所示的是一块儿童玩具积木的三视图,其中俯视图中的半曲线段为半固,则该积木的表面积为《)A.26+π4.已知命题P:3xg∈(-9,0),2 <3,则~p 为() A3XgE(-0,0),25≥35 8.3Xg ∈(0,+0),2S<34 C.VK ∈(-2,0),2⁷≥32 D.VTg ∈(0,+0),2⁵<3*5.在某校连续5次考试成绩中,统计甲,乙两名同学的数学成绩得到如图所示的茎叶图。

已知甲同学5次成绩 的平均数为81,乙同学5次成绩的中位数为73,则x+y 的值为()甲A4 8.3 C.6 D.56.若执行如图所示的程序框图,其中rand[0,1]表示区间[0,1]上任意一个实数,则输出数对(共》)的概率为 《)7.已如,b 表示两条不同的直线,在,β表示两个不同的平面,下列说法错误的是() A .若ala,b1β,a1b,则a1β B .若a1a,b18,8//β,则x//b C 若an β=a,α//b,则b//a 或b//β D .若a1m,a1b,g//β,则b//8.若实数x,y 满是、则E=1--9最大值是()A.19.将y=3sin4x 的图象向左平移个单位长度,再向下平移3个单位长度得到y=f(x)的图象,若f(m)= a,A.-a-3B.-6 C-a-6 D.-8+310.已知圆C:x²+y²-kx+2y=0与圆Cz:x²+y²+ky -4=0的公共弦所在直线恒过定点P(a,b),且点P 在直线mx-my-2=0上,则州判的取值范围是() A. (0, 8. ((11. 已 知 在 · A B C 中 , 角A , B , C 所 对 的 边 分 别 为a , b , e , b e e s C = a ,点M 在 线 段A 5上 , 且Z A C M =ZBCM .着b=6CN=6,则c05ZBCM=()12.设函数/(×)=In(x+1)+8(²-x),若f(x)在区间(0,+0)上无零点,则实数a 的取值范围是()A.[- 1,0]B.[0,1] C[- 1,1] D([0,2) 二、填空题(每题5分,满分20分,将著案填在等题纸上)=已知焦点在x 轴上的双曲线 它的焦点F 到渐近线的距离的取值芯围是第1页其10页 ○ 第2页其10页四x=ra/[0.1] J=1 41 +4? 2错出整对(y )皆魂西2020年全国高考1卷理科数学模拟试卷(一) D.26-πB.266.0乙已知在20AB中,0A=0B=2,AB=2V3,动点P位于线段AB上,则当PA+PO取最小值时,自量βA与PO的夹角的余弦值为已知定义在R上奇函数f(×)和偶函数g(4)满是若g(x+5)+8(一)<g(x)+8(G,则莲的取仙范围!二、解等题(本大题共5小题,共70分,解等应写出文宇说用、证明过程或演算步骤.)设等差数列{4-)的前的项和为S,点(1 Sn)在函数f(x)=r²+Bx+C-1(8,CeR)的图象上,Hai=C.《1)求数列[0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n n n 2020 届全国高考模拟冲刺卷 一数学(理)本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两卷.满分 150 分,考试时间 120 分钟.第 I 卷(选择题 共 60 分)一、选择题:(本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个 选项中,只有一项是符合题目要求的)1、集合{2, 4, 6,8,10} 用描述法表示出来应是()A. {x |1 < x < 10}B. {x | 2 ≤ x ≤ 10}C. {x | x ≤ 10, x ∈ N }D. {x | x = 2n , n ∈ N,1 ≤ n ≤ 5}2、复数 z 满足z (1- i ) = 3 + 4i ,则 z = ( )1 7A. - + i2 2B. 1 + 7i2 2C. 5 - 5i2 2 D. 5 + 5i2 23、不等式 6x 2 + x - 2 ≤ 0 的解集是()A. ⎧x | - 2 ≤ x ≤1 ⎫⎨ 3 2 ⎬⎩⎭ B. ⎧x | x ≤ - 2 或x ≥ 1 ⎫ ⎨ 3 2 ⎬⎩ ⎭ C. ⎧x | - 1 ≤ x ≤ 2 ⎫ ⎨ 2 3 ⎬⎩ ⎭D. ⎧x | x ≤ - 1 或x ≥ 2 ⎫ ⎨ 2 3 ⎬⎩ ⎭4、一船从某河一岸驶向另一岸,船速为 v 1 ,水速为 v 2 ,已知船可垂直到达对岸,则()A. v 1 < v 2B. v 1 > v 2C. v 1 ≤ v 2D. v 1 ≥ v 25、数列1,3, 7,15L 的一个通项公式是( )A. a = 2nB. a = 2n+1 C. a n = 2n +1D. a = 2n-16、在 (1 - x )( x + 2)4的展开式中,含 x 3 项的系数为()A.16B. -16C.8D. -83 107、已知某几何体的三视图如图,其中正视图中半圆的半径为 1,则该几何体的 表面积为()A . 52+2πB . 46+2πC . 52+3πD . 46+3π8、已知 O 为坐标原点,过双曲线 x2 y 2 - = 1(a > 0,b > 0) 右焦点 F 作倾斜角为 π 的直线 l ,a 2b 23 与该双曲线在第一象限交于点 A ,且△OAF 是等腰三角形,则该双曲线的离心率为( )A.2B.3 +12 C.7 + 13D. + 19、某学校高中部准备在“五四”青年节举行主题为“成长、感恩、责任、梦想”的十八岁 成人仪式,其中有一项学生发言,现 5 名男生干部、3 名女生干部中选取 3 人发言,则选取 的 3 人中既有男生又有女生的概率为( ) 13 15 A.B.56561545C.D.28 56 10 、 已知函数 f (x ) = 2 sin(ω x + ϕ )(ω > 0, 0 < ϕ < π) 的图像关于直线 x = π对称, 若存在x 1 , x 2 ∈ R 使 f (x 1 ) ≤ f (x ) ≤ f (x 2 ) 恒成立,且 x 1 - x 2 2 最小值为 π 26,则 ϕ = ( )A.π 12 B. π 6 C. π 4 D. π 311、已知点 P 在圆 x 2 + y 2 = 4 上, A (-2, 0), B (2, 0) ,M 为 BP 中点,则sin ∠BAM 的最大值为()1 1 A.B.231 C. D.10412、若函数 f (x ) = ln x - ax + 1 - 2ln 2 有两个不同的零点,则实数 a 的取值范围是()A. (0, 1)2B. (0, 1)eC. (0, 1)4D. (0, 1)5第 II 卷(非选择题 共 90 分) 本卷包括必考题和选考题两部分,第 13 题~第 21 题为必考题,每个试题考生都⎨ ⎩ 2必须做答.第 22 题和第 23 题为选考题,考生根据要求做答. 二、填空题:(本大题共 4 小题,每小题 5 分,共 20 分)⎧ y ≥ 1 13、已知实数 x , y 满足约束条件 ⎪2x - y + 1 ≥ 0 ⎪3x + 2 y - c ≤ 0,若z = 2 y - z 的最大值为 11,则实数 c 的值为.14、若函数 f (x ) = 2x 3 - ax 2 (a < 0) 在 (2a , a + 1) 上有最大值,则实数 a 的取值范围为.315、已知{a n }是等差数列, {S n } 是其前 n 项和.若 a 1 + a 2 = -3,S 5 =10 ,则a 9 的值是.16、已知圆锥的顶点为 S ,O 为底面中心, A ,B ,C 为底面圆周上不重合的三点, AB 为底面的直径,SA = AB ,M 为 SA 的中点设直线 MC 与平面 SAB 所成角为 α ,则 sin α 的最大值 为。

三、解答题:(本大题共 6 小题,共 70 分,解答应写出文字说明、证明过程或演 算步骤)17、如图,在△ABC 中,M 是 AC 的中点, ∠C = π, AM = 2 .3(1)若∠A = 5π,求 AB 的长.12(2)若 BM = 2 ,求△ABC 的面积.18、如图,AB 为圆 O 的直径,点 C 在圆 O 上,且 ∠AOC =120︒ ,PA ⊥ 平面 ABC ,AB = 4,PA = 2 ,D 是PC 的中点,点 M 是圆 O 上的动点(不与 A ,C 重合). 3 3(1)证明:AD ⊥ PB ;(2)当三棱锥D - ACM 体积最大时,求面MAD 与面MCD 所成二面角的正弦值.19、一个同学家开了一个小卖部,他为了研究气温对热饮饮料销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的散点图和对比表:(1)从散点图可以发现,各点散布在从左上角到右下角的区域里因此,气温与当天热饮销售杯数之间成负相关,即气温越高,当天卖出去的热饮杯数越少统计中常用相关系数r 来衡量两个变量之间线性关系的强弱统计学认为,对于变量x、y ,如果r ∈[-1,- 0.75],那么负相关很强;如果r ∈[0.75,1],那么正相关很强;如果r ∈(-0.75,- 0.30) ⋃ (0.30,0.75) ,那么相关性一般;如果r ∈(-0.25,0.25) ,那么相关性较弱请根据已知数据,判断气温x 与当天热饮销售杯数y 相关性的强弱.(2)(i)请根据已知数据求出气温x 与当天热饮销售杯数y 的线性回归方程;∑( x i - x) i =1 n2⋅ ∑( y i- y )i =1n2⎣ ⎦ ⎣ ⎦n2nn( )8(ii)记[x ] 为不超过 x 的最大整数,如[1.5] = 1 , [-4.9] = -5 .对于(i)中求出的线性回归方程y = $bx + $a ,将 y = ⎡$b ⎤ x + ⎡$a ⎤ 视为气温与当天热饮销售杯数的函数关系已知气温 x 与当天热饮每杯的销售利润f ( x ) (单位:元)的关系是 f ( x ) = 2 ⎡ x + 7 ⎤+ 3(x ∈[-7,38)) ,请问当气温 x为多少时,当天的热饮销售利润总额最大?⎣⎢ 15 ⎥⎦∑(x i- x )( y i- y ) 参考公式:$b = i =1, $a = y - $bx ,r = ∑( x i - x )i =1 ∑(x i- x )( y i- y ) i =182参考数据: ∑ x i - x i =1= 1340≈ 111, ∑( x i- x )( y i- y ) = -3953 , x = 15 , i =1y = 100 , 362 = 1296 , 372 = 1369 .20、如图,已知椭圆 T : x2 y 2 - = 1(a > b > 0) 与两条直线 y = ±x 的四个交点分别为 A , B ,C , D , a 2 b 2若四边形 ABCD 的面积为 24,且椭圆的离心率为 22(1)求椭圆 T 的标准方程(2)若过点 (0,1) 的直线 l 与椭圆 T 交于 P ,Q 两点,问:在坐标平面内是否存在一个定点 R,使得等u u u r u u u r u u u r uu u r 式 PR + QR = PR - QR 成立,若存在,求出定点 R 的坐标;若不存在,请说明理由21、设函数 f (x ) = x 2 + ax - ln x . (1)若a = 1,试求函数 f (x ) 的单调区间;(2)过坐标原点 O 作曲线 y = f (x ) 的切线,证明:切点的横坐标为 1.请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分.做答 时,用 2B 铅笔在答题卡把所选题目对应的标号涂黑.∑(y i- y ) i =182OMON 22、在极坐标系中,直线 l 的极坐标方程为 ρ cos θ = 4 ,曲线 C 的极坐标方程为 ρ = 2cos θ + 2sin θ ,以极点为坐标原点 O ,极轴为 x 轴的正半轴建立直角坐标系,射线l ' : y = kx (x ≥ 0,0 < k < 1) 与曲线 C 交于 O ,M 两点. (1)写出直线 l 的直角坐标方程以及曲线C 的参数方程.(2)若射线 l ' 与直线 l 交于点 N ,求 的取值范围.23、已知函数 f (x ) = 3x - 2a + 2x - 2 (a ∈ R ) (1)当a = 1时,解不等式 f ( x ) > 6 . 2 (2)若对任意 x 0 ∈ R ,不等式 f ( x 0 ) + 3x 0 > 4 + 2x 0 - 2 恒成立,求 a 的取值范围.n1 答案及解析: 答案:D答案以及解析解析:集合{2, 4, 6,8,10} 用描述法表示出来应是{x | x = 2n , n ∈ N,1 ≤ n ≤ 5} .故选 D.2 答案及解析: 答案:D解析:由已知条件,得3 + 4i = 5 ,则 z = 5=5(1 + i ) = 5 + 5i D.1 - i (1 - i )(1 + i ) ,故选2 23 答案及解析: 答案:A解析:∵ 6x 2 + x - 2 ≤ 0 ,∴ (2x -1) (3x + 2) ≤ 0 ,∴ . ⎭ 故选 A .4 答案及解析: 答案:B解析:作向量图,如图所示,向量的模即为速度的大小,根据三角形中斜边大于直角边,故选 B.5 答案及解析: 答案:D解析:经过观察,1 = 21 -1 ,3 = 22 -1, 7 = 23 -1 ,15 = 24 -1 ,……故推测 a = 2n-16 答案及解析: 答案:B解析:因为 (1 - x )( x + 2)4= ( x + 2)4- x ( x + 2)4,所以 (1 - x )( x + 2)4的展开式中含 x 3 项的系数为 ( x + 2)4的展开式中含 x 3 项的系数减去 x ( x + 2)4的展开式中含 x 3 项的系数,即为⎧x | 2 ≤ x ≤ 1 ⎫ ,∴不 等式 6x 2 + x - 2 ≤ 0 的解集是 ⎧x | - 2 ≤ x ≤ 1 ⎫ ⎨ ⎩ 3 2⎬ ⎨ ⎩ 3 2 ⎬ ⎭77 7 +1 4 4 ⎪ C 表8C 1 21 - C 2 22= -16 ,所以 (1 - x )( x + 2)4的展开式中,含x 3 项的系数为 -16 .故选 B.7 答案及解析:答案:B 解析:如图,几何体是一个长,宽,高分别为 4,3,2 的长方体在上底面中间挖去一个直径为S = 3 ⨯ 2 ⨯ 2 + 3 ⨯ 4 + 3 ⨯1⨯ 2 + ⎛ 2 ⨯ 4 - 1 π ⨯12 ⎫⨯ 2 + π ⨯1⨯ 3=46+2π2 的半圆柱, ⎝ 2 ⎭8 答案及解析: 答案:C解析:由于倾斜角为 π的直线 l 与该双曲线在第一象限交于点A , 3且△OAF 是等腰三角形,所以 AF = OF = c .设左焦点F (-c ,0) ,连接 AF ,则在△AFF 中, FF = 2c , AF = c , ∠F FA = 2π ,1111132 2 2 ⎛ 1 ⎫ 2AF = 4c + c - 2c ⨯ 2c ⨯ - = 7c 由余弦定理,得 1 2 ⎪ , AF 1 = c ,根据点 A 在双曲线上,得 AF 1 - AF = 2a ,即 ⎝ ⎭cc - c = 2a ,所以e = = ,故选 C. a 3 9 答案及解析:答案:DC 2C 1 + C 1C 245解析:选取的 3 人中既有男生又有女生的概率 p =5 3 5 3 = ,故选 D. 35610 答案及解析: 答案:BMK AK 0 0解析:由 f (x ) ≤ f (x ) ≤ f (x ) 恒成立, x - x= π,可得函数 f (x ) 图象的两条相邻的对称轴1 2 1 2 min 2之间的距离为 π ,则 f (x ) 的最小正周期 T = 2π = π,ω = 2 ,又该函数关于直线 x = π对称,所以2 ω 6f ( π) = 2 s in( π + ϕ ) = ±2 ,则 π + ϕ = k π + π , k ∈ Z ,ϕ = k π+ π , k ∈ Z ,又 ϕ ∈ (0, π) ,所以 ϕ = π 6 3 3 2 6 2 611 答案及解析: 答案:B解析:设点M 的坐标为 ( x ,y ) ,则 P (2x - 2, 2 y ) ,将点 P 的坐标代入圆的方程可得点 M 的 轨迹方程为 ( x - 1)2+ y 2 = 1,如图所示,当 AM 与圆 K 相切时, sin ∠BAM 取得最大值,此 sin ∠BAM = = 1 . 时312 答案及解析: 答案:C解析:构造函数 g (x ) = ln x , y = ax + 2 ln 2 -1,作出函数 g (x ) 的图象如图所示,结合函数如图可知,当 a ≤ 0 时,易知直线 y = ax + 2 l n 2 - 1 过点 (0, 2 l n 2 - 1) ,该当直线与曲线 y = ln x 相切时,设 切点坐标为 (x , l n x ) ,因为 (ln x )' = 1,所以切线的斜率为 1 ,又该切线的斜率为xx ln x 0 - 2 l n 2 + 1 =1 ,所以 x = 4 ,所以切线的斜率为 1 ,结合图象可知,当 0 < a < 1x 0 x 0 4 4时, g (x ) = ln x 的图象与 y = ax + 2 l n 2 - 1 的图象有三个不同的交点,即函数 f (x ) 有三个不同的零点,故实数 a 的取值范围是 (0, 1)4⎨13 答案及解析: 答案:23解析:作出可行域如图中阴影部分所示,易知 c≥ 1,所以 c ≥ 22作出直线 -x + 2 y = 0 并平移,分析可知,当平移后的直线经过直线 3x + 2 y - c = 0 和直线⎧x = c - 2 ⎧3x + 2 y - c = 0 2x - y + 1 = 0 的交点时, z = 2 y - x 取得最大值,由 ⎨ 解得 ⎪⎪ 7 ,故 ⎩2x - y + 1 = 0 ⎪ y = 2c + 32 ⨯ 2c +3 - c - 2= 11 ,解得 c = 237 7⎩⎪ 714 答案及解析: 答案: (-∞, - 2] 3a 3a 3 解析:Q f (x ) 在 (2a , a + 1) 上有最大值,∴ f (a + 1) ≤ f (a ) = - 即 2 (a + 1)3 - a (a + 1)2≤ -解得: a ≤ - 23 3 333xx 2 +(y +1)2 + 31⨯⎡( y + 4) -2 ⎢ ⎣12y + 4⎤+ 8 ⎥⎦3315 答案及解析:答案:20解析:由S5= 10 得a3= 2 ,因此2 - 2d + (2 - d )= -3 ⇒ d = 3, a9= 2 + 3⨯ 6 = 20.16 答案及解析:答案:- 1解析:以AB 的中点O 为坐标原点,OB,OS 所在直线分别为y 轴,z 轴,建立如图所示的空间直角坐标系,不妨设SA = AB = 4 ,则SO = 2,A(0, -2, 0) ,S (0, 0, 2) ,M(0, -1, ) ,设C ( x, y, 0) ,由题意可知x ≠ 0 ,且x2 + y2 = 4 ,-2 < y < 2 ,uuur则MC = ( x, y + 1, -3) ,易知平面SAB 的一个法向量为m = (1, 0, 0) ,据此有uuurMC ⋅ msinα uuur ==.MC m因为-2 < y < 2 ,所以2 < y + 4 < 6 ,所以sin α ≤ =- 1 ,当且仅当y = 2 - 4 时等号成立,综上,sinα 的最大值为- 1.17 答案及解析:答案:(1)由题意知∠ABC = π-π-5π=π,3 12 43 3 34 - 2 3 326 3 3在△ABC 中,由正弦定理得4 ⋅ sin πAC sin ∠ABC = AB ,sin ∠C∴ AB = AC ⋅ sin ∠C =sin ∠ABC sin π43 = 2 . (2)在△BCM 中,由余弦定理得BM 2 = CM 2 + BC 2 - 2CM ⋅ BC cos π, 3∴12 = 4 + BC 2 - 2BC ,得BC = 4 , ∴ S △ ABC 解析:= 1 ⋅ BC ⋅ CA ⋅ sin π= 4 .2 318 答案及解析:答案:(1)证明:∵AB 为圆 O 的直径,∴ AC ⊥ BC ,∵ PA ⊥ 平面 ABC , BC ⊂平面 ABC ,∴ PA ⊥ BC ,又 PA I AC = A ,∴ BC ⊥ 平面 PAC ,又 AD ⊂ 平面 PAC , BC ⊥ AD .∵ ∠AOC = 120︒ , AO = OC = 1AB = 2 ,∴ AC = 2 2,又 PA = 2 ,∴ PA = AC ,又 D 是 PC 的中点,∴ AD ⊥ PC ,又 PC ⋂ BC = C ,∴ AD ⊥ 平面 PBC , 又 PB ⊂ 平面 PBC ,∴ AD ⊥ PB .(2)当三棱锥 D ﹣ACM 体积最大时,三角形 ACM 的面积最大,取 AC 的中点 E , M 点为 EO 延长线与圆 O 的交点.∴ DE / / AP , EM ⊥ AC ,以 E 为原点,分别以 EC ,EM ,ED 为 x 轴、y 轴和 z轴,建立如图所示空间直角坐标系.33 33 33 1 - cos 2 α4 3 ∑( x i- x ) i =1n2⋅ ∑( y i - y )i =1n21340 ⨯111 1m 2n nn( ) ⎨ ⎩⎣ ⎝ ⎭又∵ MA = MC = AC = 2 , DE =1PA = 2 , ME =3 .∴ ∠M (0,3,0),D (0,0, ), A (- , 0, 0),C ( , 0, 0) ,→ ∴ DM = (0, 3, - → ) , AM = ( →,3, 0) , CM = (- , 3, 0) , r u u u u vr ⎧⎪m ⋅ DM = 0 ⎧⎪3 y 1 - z 1 = 0 设平面 MAD 的法向量为 m = ( x 1 , y 1 , z 1 ) ,则 ⎨ r u u u u v ,即 ⎨, ⎪⎩m ⋅ AM = 0⎩⎪ 3x 1 + 3y 1 = 0令 y = 1 可得 r = (- ,1, ) ,r u u u u v r ⎧⎪n ⋅ DM = 0 ⎧⎪3y 2 - z 2 = 0 设平面 MCD 的法向量为 n = (x 2 , y 2 , z 2 ) ,则 ⎨r u u u u v ,即 ⎨, ⎪⎩n ⋅ CM = 0 ⎪⎩- x 2 + 3 y 2 = 0令 y = 1 可得 r = (,1, ) ,设面 MAD 与面 MCD 所成二面角为α ,则r r r r cos α = cos < m , n > = m ⋅ n 1r r = m ⋅ n 7,∴sin α = = . 7 解析:19 答案及解析: 答案:(1)因为r =∑(x i - x)( y i - y)i =1 =< -3953 37 ⨯111≈ -0.96 , 所以气温x 与当天热饮销售杯数 y 的负相关很强.∑(x i- x )( y i- y ) (2)(i)因为$b = i =1=-3953 = -2.95 , $a = 100 + 2.95 ⨯15 = 144.25 ,n2∑ xi- x i =11340所以气温x 与当天热饮销售杯数 y 的线性回归方程为 y = -2.95x +144.25 (ii)由题意可知气温 x 与当天热饮销售杯数 y 的关系为 y = -3x + 144 . 设气温为 x 时,当天销售的热饮利润总额为g ( x ) 元, 则g ( x ) = (-3x +144)⎛ 2 ⎡ x + 7 ⎤ + 3⎫(x ∈[- 7,38)) , ⎢ 15 ⎥⎦⎪⎧9( x - 48),- 7 ≤ x < 8即g ( x ) = ⎪-15( x - 48),8 ≤ x < 23 . ⎪-21( x - 48),23 ≤ x < 38 3 3 33 3 3 33 3 32⎨ 易知g (-7) = 495 , g (8) = 600 , g (23) = 525 . 故当气温为 8℃时,当天的热饮销售利润总额最大,且最大为 600 元. 解析:20 答案及解析:答案:(1)将 y = ±x 代入 x2 y 2 += 1 ,得 x 2 =a 2b2a 2b 2a 2 +b 2⎧ ⎪4x 2= ⎪ ⎪ c 所以由题意,得 = 4a 2b 2a 2 +b 2 = 24 易得 a = 3, b = 3⎨⎪ ⎪a 2 = b 2 + c 2 ⎪ ⎩所以椭圆 T 的标准方程为 x y 2+ = 118 9 u u u r u u u r u u u r uu u ru u u r u u u r (2) 将 PR + QR = PR - QR 两边同时平方,得 PR ⋅ QR = 0 ,则点 R 在以 PQ 为直径的圆上当 l 与 x 轴平行时,易知以 PQ 为直径的阅的方程为 x 2 + ( y -1)2 = 16当 l 与 y 轴重合时,易知以 PQ 为直径的圆的方程为 x 2 + y 2 = 9结合图形可知这两个圆内切于点 (0, -3) ,即这两个图只有一个公共点. 因此.所求定点如果存在,只能是点 R (0, -3)以下证明当直线 l 的斜率存在且不为 0 时,以 PQ 为直径的圆恒过点 R (0, -3)设直线 l 的方程为 y = kx + 1(k ≠ 0)⎧ y = kx + 1由 ⎪ x 2 ⎪ y 2 + = 1 ,消去 y 得 (2k 2 + 1)x 2 + 4kx -16 = 0 ⎩18 9设点 P (x , y ), Q (x , y ) ,则 x + x = -4k, x x = -161 122u u u r u u u r 1 22k 2 + 1 1 22k 2+ 1又 RP = (x 1 , y 1 + 3), RQ = (x 2 , y 2 + 3) ,所以u u u r u u u rPR ⋅ RQ = x 1 x 2 + ( y 1 + 3)( y 2 + 3) = x 1 x 2 + (kx 1 + 4)(kx 2 + 4) = (1 + k)x 1x 2 + 4k (x 1 + x 2 ) + 16= (1 + k 2 )(- 16 ) + 4(- 4k) + 16 = 0 2k 2 + 1 2k 2 + 12 a 2 2 2u u u r u u u r 所以 PR ⊥ RQ 即当直线 l 的斜率存在且不为 0 时,以 PQ 为直径的圆恒过点 R (0, -3)所以存在一个定点 R (0, -3) 满足题意. 解析:21 答案及解析:答案:(1) a = 1时,f (x ) = x 2 + x - ln x ( x > 0)∴f '( x ) = 2x +1- 1 = (2x -1)( x +1)x xx ∈⎛ 0, 1 ⎫, f '( x ) < 0, x ∈⎛ 1 , +∞ ⎫, f '( x ) > 0 2 ⎪ 2 ⎪ ⎝ ⎭ ⎝ ⎭f (x ) 的减区间为⎛ 0, 1 ⎫ ,增区间⎛ 1 , +∞ ⎫2 ⎪ 2 ⎪ ⎝ ⎭ ⎝ ⎭(2)设切点为 M (t , f (t )), f '( x ) = 2x + a - 1x 1切线的斜率 k = 2t + a - ,又切线过原点 k =tf (t )tf (t ) 1= 2t + a - ,即 t 2 + at - ln t = 2t 2 + at -1∴t 2 -1 + ln t = 0 t tt = 1满足方程 t 2 -1+ ln t = 0 ,由 y = 1- x 2 , y = ln x 图像可知 x 2 -1 + ln x = 0有唯一解 x = 1 ,切点的横坐标为1; 或者设ϕ (t ) = t 2-1+ ln t ,ϕ'(t ) = 2t + 1 > 0tϕ (t )在 (0, +∞)递增,且ϕ (1) = 0 ,方程 t 2 -1+ ln t = 0 有唯一解 解析:22 答案及解析:答案:(1)依题意,直线 l 的直角坐标方程为x = 4 .曲线 C : ρ 2 = 2ρ cos θ + 2ρ sin θ ,故 x 2 + y 2 - 2x - 2 y = 0 ,故 ( x -1)2+ ( y -1)2= 2 ,⎧⎪x = 1+ 2cos ϕ 故曲线 C 的参数方程为 ⎨,(φ 为参数). ⎪⎩ y = 1 + sin ϕ22 2 2 1 + 2 OM ON ⎨ ⎬⎪ 3 4 (2)设M (ρ1,α ) , N (ρ2 ,α ) ,则 ρ1 = 2 c os α + 2sin α , ρ2 = .cos α所以=ρ1 =ρ2(2 c os α + 2sin α ) c os α 4sin α cos α + cos 2α =2=1(sin 2α + cos 2α ) +144= sin ⎛2α + π ⎫ + 1 . 4 4 ⎪ 4⎝ ⎭因为0 < k < 1 ,故 0 < α < π,所以 π< 2α + π < 3π,所以 < sin ⎛2α + π ⎫ ≤ 1 .4444 2 4 ⎪ ⎝ ⎭所以 1 < sin ⎛2α + π ⎫ + 1 ≤ ,故 的取值范围是 ⎛ 1 ,1 + 2 ⎤ . 2 4 4 ⎪ 4 42 4 ⎦⎥⎝ ⎭⎝解析:23 答案及解析:答案:(1)当a = 1时,不等式 f ( x ) > 6 可化为 3x -1 + 2x - 2 > 6 , 2当x < 1 时,不等式即为1 - 3x + 2 - 2x > 6 ,∴ x < - 3; 3 5当 1 ≤ x ≤ 1 时,不等式即为3x -1 + 2 - 2x > 6 ,无解; 3当x > 1 时,不等式即为 3x -1 + 2x - 2 > 6 ,∴ x > 9. 5综上所述,不等式的解集为 ⎧x | x < - 3 或x > 9 ⎫ . ⎩5 5 ⎭(2)不等式 f (x 0 ) + 3x 0 > 4 + 2x 0 - 2 恒成立可化为 3x 0 - 2a + 3x 0 > 4 恒成立, ⎧6x - 2a , x ≥ 2a ⎪ 令 g ( x ) = 3x - 2a + 3x = ⎨ , ⎪2a , x < 3a ⎩⎪ 3∴函数 g ( x ) 的最小值为 2a ,根据题意可得 2a > 4 ,即 a > 2 ,∴a 的取值范围为 (2,+ ∞) . 解析:OM ON。

相关文档
最新文档