中考数学专题训练(附详细解析):分解因式

合集下载

初三数学因式分解法练习题解析

初三数学因式分解法练习题解析

初三数学因式分解法练习题解析因式分解是初中数学中一个重要的概念和技巧,它在解决数学问题时具有重要作用。

本文将对初三数学因式分解法的练习题进行解析,旨在帮助同学们更好地理解和掌握这一知识点。

题目一:将多项式4x^2+12x因式分解。

解析:首先,我们可以看到这个多项式4x^2+12x中存在一个公因式4x,将其提取出来,得到4x(x+3)。

这就是多项式的因式分解形式。

题目二:将多项式x^2-9因式分解。

解析:根据平方差公式,可以将x^2-9写为(x+3)(x-3)。

这样就完成了多项式的因式分解。

题目三:将多项式2x^2+6x-16因式分解。

解析:对于这种三项式,我们可以通过分解法或配方法进行因式分解。

首先,我们可以尝试用分解法进行因式分解。

观察该多项式的各项系数,可以发现它们都是2的倍数,所以我们可以将2提取出来,得到2(x^2+3x-8)。

接下来,我们需要找到一个括号里的两个数,它们相乘得到-8,相加得到3。

经过尝试,我们可以得到(x-1)(x+8),所以最终的因式分解形式是2(x-1)(x+8)。

题目四:将多项式3x^2+5x-2因式分解。

解析:对于这种三项式,我们可以选择使用配方法进行因式分解。

首先,我们可以找到多项式的首项系数3,然后找到多项式的最后一项系数-2,它们的乘积是-6。

接下来,我们需要找到两个数,它们相乘得到-6,相加得到5。

经过尝试,我们可以得到3x^2+6x-x-2,进一步简化得到3x(x+2)-(x+2)。

观察可知,括号里的部分是相同的,所以我们可以将其提取出来,得到(x+2)(3x-1)。

因此,最终的因式分解形式是(x+2)(3x-1)。

题目五:将多项式x^3-125因式分解。

解析:这是一个立方差分的形式,根据立方差分公式可知,x^3-125可以写为(x-5)(x^2+5x+25)。

因此,最终的因式分解形式是(x-5)(x^2+5x+25)。

通过以上题目的解析,我们可以发现因式分解在解决数学问题中起着重要的作用。

初三中考数学复习 因式分解 专项复习训练 含答案

初三中考数学复习 因式分解 专项复习训练 含答案

初三中考数学复习因式分解专项复习训练1.将下列多项式因式分解,结果中不含有因式a+1的是( )A.a2-1 B.a2+a C.a2+a-2 D.(a+2)2-2(a+2)+1 2. 下列各式由左到右的变形中,属于分解因式的是( )A.a(m+n)=am+anB.a2-b2-c2=(a-b)(a+b)-c2C.10x2-5x=5x(2x-1)D.x2-16+6x=(x+4)(x-4)+6x3. 把多项式x2+ax+b分解因式,得(x+1)(x-3),则a,b的值分别是( ) A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-34. 计算:852-152等于( )A.70 B.700 C.4 900 D.7 0005. 已知a,b,c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC 的形状是( )A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形6. 如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )A.(a-b)2=a2-2ab+b2 B.a(a-b)=a2-abC.(a-b)2=a2-b2 D.a2-b2=(a+b)(a-b)7. 分解因式:2a2-4a+2=________________8.已知x+y=3,xy=6,则x2y+xy2的值为__________9. 将多项式mn2+2mn+m因式分解的结果是___________.10. 已知|x-y+2|+x+y-2=0,则x2-y2的值为_____________11. 分解因式:9x2-112. 分解因式:m3(x-2)+m(2-x);13. 分解因式:(m+1)(m-9)+8m14. 分解因式:a2b-10ab+25b15. 已知a2+b2+6a-10b+34=0,求a+b的值.16. 设y=kx,是否存在实数k,使得代数式(x2-y2)(4x2-y2)+3x2(4x2-y2)能化简为x4?若能,请求出所有满足条件的k的值;若不能,请说明理由.参考答案1---6 CCBDC D7. 2(a-1)28. 329. m(n+1)210. -411. 解:原式=(3x+1)(3x-1).12. 解:原式=m(m+1)(m-1)(x-2).13. 解:原式=(m+3)(m-3).14. 解:原式=b(a-5)2.15. 解:∵a2+b2+6a-10b+34=0,∴a2+6a+9+b2-10b+25=0,即(a+3)2+(b-5)2=0,∴a+3=0且b-5=0,∴a=-3,b=5,∴a+b=-3+5=2.16. 解:(x2-y2)(4x2-y2)+3x2(4x2-y2)=(4x2-y2)2,当y=kx时,原式=(4x2-k2x2)2=(4-k2)2x4,令(4-k2)2=1,解得k=±3或±5,∴当k=±3或±5时,原代数式可化简为x4.。

中考数学总复习 因式分解 专题训练(含答案)

中考数学总复习 因式分解 专题训练(含答案)

2020年中考数学总复习因式分解专题训练一、单选题1.下列变形是因式分解的是( ) A .22(2)x x x x +=+B .222(1)1x x x +=+-C .22221x x x x ⎛⎫+=+⎪⎝⎭D .22(1)x x x x x +=++2.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形 B .钝角三角形 C .等腰三角形D .等边三角形3.把(a 2+1)2-4a 2分解因式得( ) A .(a 2+1-4a )2 B .(a 2+1+2a )(a 2+1-2a ) C .(a +1)2(a -1)2D .(a 2-1)2 4.把多项式a 2﹣4a 分解因式,结果正确的是( ) A .a (a ﹣4)B .(a+2)(a ﹣2)C .(a ﹣2)2D .a (a+2(a ﹣2)5.下列等式中,从左到右的变形是因式分解的是( ). A .2323623x y x y =⋅B .ax - ay -1 = a (x - y ) -1C .22111x x x x x x ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭D .29x - = (x + 3)(x - 3)6.下列各式中,能用完全平方公式分解因式的多项式的个数为( ). ①x 2-10x + 25;①4x 2+ 4x -1;①9x 2y 2- 6xy +1;①214x x -+;①42144x x -+. A .1个B .2个C .3个D .4个7.下列因式分解:①()()()()22224a b a b a b a b a +++-+-=;①()()()22412a b a b a b +-+-=+-;①()4222211x x x -+=-;①()422244 41x y x y x y x -=-.正确的式子有( )A .1个B .2个C .3个D .4个8.下列各选项中因式分解正确的是( ) A .()2211x x -=-B .()32222a a a aa -+=-C .()22422y y y y -+=-+D .()2221m n mn n n m -+=-9.将下列多项式分解因式,结果中不含因式(x +1)的是( ) A .x 2-1 B .x (x -3)-(3-x ) C .x 2-2x +1D .x 2+2x +110.下列从左到右的变形属于因式分解的是( ) A .(x +1)(x -1)=x 2-1 B .m 2-2m -3=m(m -2)-3 C .2x 2+1=x(2x +1x) D .x 2-5x +6=(x -2)(x -3)11.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( )A .1B .-1C .-8D .18-12.下列等式从左到右的变形属于因式分解的是( ) A .()()2224x x x +-=-B .623xy x y =gC .()()23441x x x x --=-+D .222111144x x x x x ⎛⎫-+=-+ ⎪⎝⎭二、填空题13.分解因式:222x -= _________.14.分解因式:32a ab -=_________.15.已知3221-可以被10到20之间某两个整数整除,则这两个数是___________. 16.若x +y =1,xy =-7,则x 2y +xy 2=_____________. 17.分解因式:(2a+b )2﹣(a+2b )2= .18.已知a 、b 、c 是①ABC 的三条边,且2281252a b a b +=+-,其中c 是①ABC 中最短的边长,则c 的取值范围是________.19.已知a ,b ,c 为三角形的三边,且满足a 2c 2-b 2c 2=a 4-b 4,那么它的形状是_______. 20.分解因式:a 2b+4ab+4b=______.三、解答题21.(知识情境)通常情况下,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.(1)如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >.把余下的部分剪拼成一个长方形(如图2).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是______________;(拓展探究)类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个恒等式.如图3是边长为+a b 的正方体,被如图所示的分割线分成8块.图3(2)用不同的方法计算这个正方体的体积,就可以得到一个恒等式,这个恒等式可以为:_________________________________________________________________; (3)已知4a b +=,2ab =,利用上面的恒等式求33+a b 的值. 22.仔细阅读下面例题,解答问题:例题:已知二次三项式24x x m -+有一个因式是()3x +,求另一个因数及m 的值. 解:设另一个因式为()x n +,由题意,得()()243x x m x x n -+=++,化简、整理,得()2433x x m x n x n -+=+++,于是有343n m n +=-⎧⎨=⎩解得217m n =-⎧⎨=-⎩,∴另一个因式为()7x -,m 的值为21-.问题:仿照上述方法解答下面的问题:已知二次三项式223x x k +-有一个因式是()4x +,求另一个因式及k 的值.23.观察:22213-=;2222432110-+-=;22222265432121-+-+-=.探究:(1)2222222287654321-+-+-+-= .(直接写出答案)(2)222222(2)(21)(22)(23)21n n n n --+---+-= .(直接写出答案)应用:(3)如图,20个圆由小到大套在一起,从外向里相间画阴影,最外面一层画阴影,最外面的圆的半径为20cm ,向里依次为19cm 、18cm 、……1cm ,那么在这个图形中,所有阴影部分的面积和是多少?(结果保留π)24.材料1:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.例如:()am bm cm m a b c ++=++,2221(1)x x x ++=+都是因式分解.因式分解也可称为分解因式.材料2:只含有一个未知数,且未知数的最高次数是2的整式方程称作一元二次方程.一元二次方程的般形式是:20ax bx c ++=(其中a ,b ,c 为常数且0a ≠).“转化”是一种重要的数学思想方法,我们可以利用因式分解把部分一元二次方程转化为一元一次方程求解.例如解方程;240x -=24(2)(2)x x x -=+-Q()()220x x ∴+-=20x ∴+=或20x -=∴原方程的解是12x =-,22x =①原方程的解是12x =-,22x =又如解方程:2210x x -+=2221(1)x x x -+=-Q()210x ∴-=10x ∴-=∴原方程的解是121x x ==请阅读以上材料回答以下问题:(1)若22(2)(2)x x m x n x -+=+-,则m =_______;n =_______;(2)请将下列多项式因式分解:22a a -=_______,2244x xy y -+=________;(3)在平面直角坐标系中,已知点()2,1P m m -,)Qn ,其中m 是一元二次方程()22(3)134m m m ---=的解,n 为任意实数,求PQ 长度的最小值.参考答案1.A2.C3.C4.A5.D6.C7.B8.D9.C10.D11.A12.C 13.2(x+1)(x -1) 14.()()a a b a b +- 15.15和17; 16.﹣717.3(a+b )(a ﹣b ). 18.24c <<19.直角三角形或等腰三角形或等腰直角三角形. 20.b (a+2)221.(1)a 2-b 2=(a+b)(a -b)(2)(a +b )3=a 3+3a 2b +3ab 2+b 3(3)40 22.另一个因式为()25x -,k 的值为20. 23.(1)36;(2)83n -;(3)210π24.(1)6m =-,3n =;(2)(2)a a -,2(2)x y -;(3)3.。

(专题精选)初中数学因式分解经典测试题及答案解析

(专题精选)初中数学因式分解经典测试题及答案解析

(专题精选)初中数学因式分解经典测试题及答案解析一、选择题1.下列变形,属于因式分解的有( )①x 2﹣16=(x +4)(x ﹣4);②x 2+3x ﹣16=x (x +3)﹣16;③(x +4)(x ﹣4)=x 2﹣16;④x 2+x =x (x +1)A .1个B .2个C .3个D .4个【答案】B【解析】【分析】【详解】解:①x 2-16=(x+4)(x-4),是因式分解;②x 2+3x-16=x (x+3)-16,不是因式分解;③(x+4)(x-4)=x 2-16,是整式乘法;④x 2+x =x (x +1)),是因式分解.故选B .2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.3.将3a b ab -进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【解析】【分析】多项式3a b ab -有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选:C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;4.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【解析】【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+; 故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.5.计算201200(2)(2)-+-的结果是( )A .2002-B .2002C .1D .2-【答案】A【解析】【分析】直接提取公因式进而计算得出答案.【详解】(-2)201+(-2)200=(-2)200×(-2+1)=-2200.故选:A .【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.6.下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+-【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x−2y),解答错误;D. 是分解因式。

初中因式分解经典题型(含详细答案)

初中因式分解经典题型(含详细答案)

初中因式分解经典题型(含详细答案) 初中因式分解经典题型精选第一组:基础题1.a²b+2ab+b答案:b(a+1)²2.2a²-4a+2答案:2(a-1)²3.16-8(m-n)+(m-n)²答案:(4-m+n)²4.a²(p-q)-p+q答案:(p-q)(a+1)(a-1)5.a(ab+bc+ac)-abc答案:a²(b+c)第二组:提升题6.(x-y-1)²-(y-x-1)²答案:-4(x-y)7.ab-ab⁄4答案:ab(a+b)(a-b)8.b-14b²+1答案:(b²+4b+1)(b²-4b+1)9.x+x²+2ax+1-a²答案:(x+1+a)(x+1-a)10.a+a+1答案:2(a+1)11、化简表达式x-2y-2xy+xy x + xy - 2y - 2xyx(1+y) - 2y(1+x)x+y)(x-2y)12、展开表达式(ac-bd)²+(bc+ad)²a²c² - 2abcd + b²d² + b²c² + 2abcd + a²d²a²c² + b²c² + a²d² + b²d²a²+b²)(c²+d²)13、化简表达式x²(y-z)+y²(z-x)+z²(x-y)x²y - x²z + y²z - y²x + z²x - z²yx²y - y²x + z²x + y²z - x²z - z²yx-y)(x²+y²-z²)14、化简表达式x²-4ax+8ab-4b²x-2a)² - (2a-4b)²x-2a+2a-4b)(x-2a-2a+4b)x-4b)(x-2a)15、化简表达式xy²+4xz-xz²-4xx(y²-4) - z(x²-4)x-2)(x+z)(y+2z)16、将a(a²-b²)和b(b²-a²)的公因式提取出来,得到(a-b)(a+b)a和(b-a)(b+a)b,再利用立方差公式,化简为(a-b)²(a+b)(a²b²+a+b)。

初中因式分解经典题型(含详细答案)

初中因式分解经典题型(含详细答案)

初中因式分解经典题型精选第一组:基础题1、a²b+2ab+b2、2a²-4a+23、16-8(m-n)+(m-n)²4、a²(p-q)-p+q5、a(ab+bc+ac)-abc【答案】1、a²b+2ab+b=b(a²+2a+1)=b(a+1)²2、2a²-4a+2=2(a²-2a+1)=2(a-1)²3、16-8(m-n)+(m-n)²然后运用完全平方公式=4²-2*4*(m-n)+(m-n)²=[4-(m-n)] ²=(4-m+n) ²4、a²(p-q)-p+q=a²(p-q)-(p-q)=(p-q)(a²-1)=(p-q)(a+1)(a-1)5、a(ab+bc+ac)-abc=a[(ab+bc+ac)-bc]=a(ab+bc+ac-bc)bc与-bc 抵消=a(ab+ac)提取公因式a=a²(b+c)第二组:提升题6、(x-y-1)²-(y- x-1)²7、a3b-ab38、b4-14b²+19、x4+x²+2ax+1﹣a²10、a5+a+1【答案】6、(x-y-1)²-(y- x-1)²用平方差公式=[(x-y-1)+(y-x-1)][(x-y-1)-(y-x-1)]去括号,合并同类项=(-2)(2x-2y)提取2= -4(x-y)7、a3b-ab3提取公因式ab=ab(a²-b²)用平方差公式=ab(a+b)(a-b)8、b4-14b²+1将-14b²拆分为:+2b²-16b²=b4+2b²-16b²+1将-16b²移到最后=b4+2b²+1-16b²将前三项结合在一起=(b4+2b²+1)-16b²=( b²+1)²-(4b)²用平方差公式=[( b²+1)+4b][( b²+1)-4b] =( b²+4b+1)( b²-4b+1)9、x4+x²+2ax+1﹣a²将+x²拆分为:+2x²- x²=x4+2x²- x² +2ax+1﹣a²将x4、+2x²、+1结合,将-x²、+2ax、﹣a²结合=(x4+2x²+1)+(-x²+2ax﹣a²)提取-1=( x²+1)² -(x²-2ax+a²)=( x²+1)²-( x-a)²用平方差公式=[(x²+1)+(x-a)][(x²+1)-(x-a)]=(x²+x-a+1)(x²-x+a+1)10、a5+a+1在式子中添加:-a²+a²=a5 - a²+ a²+a+1将前两项结合,后面三项结合=(a5-a²)+(a²+a+1)提取公因式a²=a²(a3-1)+(a²+a+1)用立方差公式=a²(a-1)(a²+a+1)+(a²+a+1)提取公因式(a²+a+1)=(a²+a+1)[a²(a-1)+1]=(a²+a+1)(a3-a²+1)第三组:进阶题11、x4-2y4-2x3y+xy312、(ac-bd)²+(bc+ad)²13、x²(y-z)+y²(z-x)+z²(x-y)14、x²-4ax+8ab-4b²15、xy² +4xz -xz²-4x【答案】11、x4-2y4-2x3y+xy3x4与xy3结合,-2y4与-2x3y结合=(x4+xy3)+(-2y4-2x3y)x-2y,=x(x3+y3)-2y(x3+y3)提取公因式(x3+y3)=(x3+y3)(x-2y)=(x+y)(x2-xy+y2)(x-2y)12、(ac-bd)²+(bc+ad)²去括号展开= a²c² - 2abcd + b²d²+b²c² +2abcd + a²d²- 2abcd与+2abcd 抵消=a²c² + b²d² +b²c² + a²d²a²c²与b²c²结合,b²d²与a²d²结合=(a²c²+b²c²)+( b²d²+a²d²)c², d ²,=c²(a²+b²)+d²(a²+b²)提取公因式(a²+b²)=(a²+b²)(c²+d²)13、x²(y-z)+y²(z-x)+z²(x-y)=x²(y-z)+y²z -y²x +z²x -z²yy²z与-z²y结合,z²x 与-y²x=x²(y-z)+(y²z -z²y)+(z²x-y²x)提取公因式zy提取公因式=x²(y-z)+ zy(y-z)+x(z²-y²)提取公因式(y-z),=(y-z)(x²+zy)+x(z+y)(z-y)y-z),后一项 +x则变为 -x =(y-z)[(x²+zy)-x(z+y)]=(y-z)(x²+zy-xz-xy)14、x²-4ax+8ab-4b²²与-4b²结合,-4ax与+8ab结合=(x²-4b²)+(-4ax+8ab)-4a=(x+2b)(x-2b)-4a(x-2b)x-2b),=(x-2b)[(x+2b)-4a]=(x-2b)(x+2b-4a)15、xy² +4xz -xz²-4xx,=x(y²+4z -z²-4)=x[y²+(4z -z²-4)]-1,=x[y²-(z²-4z+4)]用完全平方公式进行分解,=x[y²-(z-2)²]=x[y+(z-2))][y-(z-2)]=x(y+z-2)(y-z+2)第四组:经典题16、a6(a²-b²)+b6(b²-a²)17、4m3-31m+1518、a3+5a²+3a-919、x4(1- y)²+2x²(y²-1)+(1+ y)²20、2x4 -x3-6x²- x+ 2【答案】16、a6(a²-b²)+b6(b²-a²)-1=a6(a²-b²)-b6(a²-b²)提取公因式(a²-b²)=(a²-b²)(a6-b6)=(a²-b²)(a²-b²)(a4+a²b²+b4)=(a²-b²)²(a4+a²b²+b4)=(a+b)²(a-b)²(a4+a²b²+b4)17、4m3-31m+15-31m拆分为:-m-30m=4m3-m-30m+15=(4m3-m)+(-30m+15)m-15=m(4m²-1)-15(2m-1)=m(2m+1)(2m-1)-15(2m-1)(2m-1),=(2m-1)[m(2m+1)-15]=(2m-1)(2m²+m-15)=(2m-1)(2m-5)(m+3)18、a3+5a²+3a-93a拆分为:-6a+9a =a3+5a²-6a+9a-9=(a3+5a²-6a)+(9a-9)a9=a(a²+5a-6)+9(a-1)=a(a+6)(a-1)+9(a-1)提取公因式(a-1)=(a-1)[a(a+6)+9]=(a-1)(a²+6a+9)=(a-1)(a+3)²19、x4(1- y)²+2x²(y²-1)+(1+ y)²-1=x4(1- y)² - 2x²(1-y²)+(1+ y)²=[x²(1-y)]² -2x²(1-y)(1+y)+(1+ y)²=(x²-yx²-1- y)²20、2x4 -x3-6x²- x+ 2-x拆分为:3x-4x =2x4 -x3-6x²+3x-4x+ 2=(2x4 -x3)+(-6x²+3x)+(-4x+ 2)=(2x-1)(x3-3x-2)第五组:精选题21、a3+2a2+3a+222、x4-6x²+123、x3+3x+424、2a2b2+2a2c2+2b2c2+a4+b4+c425、a3-3a-226、2x3+3x2-127、a2+3ab+2b2+2a+b-3【答案】21、a3+2a2+3a+23a拆分为:a+2a =a3+2a2+a+2a+2=(a3+2a2+a)+(2a+2)=a(a2+2a+1)+2(a+1)=a(a+1)2+2(a+1)a+1)=(a+1)[a(a+1)+2]=(a+1)(a2+a+2)22、x4-6x²+1-6x2拆分为:-2x2-4x2 =x4-2x²-4x²+1-4x2移到最后=x4-2x²+1-4x²=(x4-2x²+1)-4x²=(x2-1)2-(2x)2=[(x2-1)+2x][(x2-1)-2x] =(x2+2x-1)(x2-2x-1)23、x3+3x+44拆分为:3+1=x3+3x+3+1x3与1结合,3x与3结合=(x3+1) + (3x+3)3=(x+1)(x2-x+1)+3(x+1)x+1)=(x+1)[(x2-x+1)+3]=(x+1)(x2-x+4)24、2a2b2+2a2c2+2b2c2+a4+b4+c4=(a4+b4+2a2b2)+(2a2c2+2b2c2)+c4 =(a2+b2)2+2c2(a2+b2)+c4=[(a2+b2)+c2]2=(a2+b2+c2)225、a3-3a-2-3a拆分为:-a-2a=a3-a-2a-2=(a3-a)+(-2a-2)=a(a2-1)-2(a+1)=a(a+1)(a-1)-2(a+1)a+1)=(a+1)[a(a-1)-2]=(a+1)(a2-a-2)=(a+1)(a+1)(a-2)=(a+1)2(a-2)26、2x3+3x2-13x2拆分为:2x2+x2 =2x3+2x2+x2-1=(2x3+2x2)+(x2-1)=2x2(x+1)+(x+1)(x-1)x+1)=(x+1)[2x2+(x-1)]=(x+1)(2x2+x-1)=(x+1)(2x-1)(x+1)=(x+1)2(2x-1)27、a2+3ab+2b2+2a+b-3=(a2+3ab+2b2)+(2a+b)-3 =(a+b)(a+2b)+(2a+b)-3 =[(a+b)-1][(a+2b)+3] =(a+b-1)(a+2b+3)十字叉乘法故:x2+6x+5=(x+1)(x+5)故:2x2+5x+2=(2x+1)(x+2)故:4x2+5x-3=(2x-1)(2x+3)黄勇权2019-7-14。

中考数学总复习《整式与因式分解》专题训练-附答案

中考数学总复习《整式与因式分解》专题训练-附答案

中考数学总复习《整式与因式分解》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式. (1)代数式求值:用数值代替代数式里的未知数,按照代数式的运算关系计算得出结果.(2)代数推理:通过数学证明,等式变换等方式将复杂的问题简单化,形成一般性的公式,最终达到想要的结果.【练习】1-1.用代数式表示“x 的13与y 的12的差”为 . 【练习】1-2.某种弹簧秤能称不超过10kg 的物体,不挂物体时弹簧的长为8cm ,每挂重1kg 物体,弹簧伸长2cm ,在弹性限度内,当挂重xkg 的物体时,弹簧长度是 cm .(用含x 的代数式表示)【练习】1-3.若4a ﹣3b =3,则7﹣12a +9b = .【练习】1-4.观察一列数:12,24,38,416…根据规律,请你写出第n 个数是 .2. 整式的相关概念:(1)单项式:由数或字母的积组成的式子叫做单项式.单独的一个数或一个字母也是单项式.(2)多项式:几个单项式的和叫做多项式. 多项式中,_____________的项的次数,叫做这个多项式的次数.(3)整式:单项式与多项式统称为整式.(4)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.【练习】2-1.单项式3πx 4y 7的系数是 ,次数是 . 【练习】2-2.多项式12a 2bc −3ab +8是 次 项式.【练习】2-3.若单项式﹣2x m y 4与12x 3y m+n 的和仍是单项式,则m ﹣n = . 3. 整式的运算:知识梳理(1)整式的加减法:①合并同类项:把同类项的_____________相加,字母和字母的__________不变.②去括号法则:括号前为“+”,去括号后原括号里的每一项都不变号;括号前为“-”,去括号后原括号里的每一项都要变号.如a+(b+c)=________________,a-(b-c)=_______________.(2)幂的运算法则:①同底数幂相乘:a m·a n=_____________(m,n均为正整数).②同底数幂相除:a m÷a n=_____________(a≠0,m,n均为正整数,并且m>n).③幂的乘方:(a m)n=_____________(m,n均为正整数).④积的乘方:(a b)n=_____________(n为正整数).⑤负整数指数幂:a-n=____________(a≠0,n为正整数).⑥零指数幂:a0=_____________(a≠0).(3)整式的乘法:①单项式乘单项式:把它们的系数、同底数幂分别_____________,对于只在一个单项式里含有的字母,则连同它的_____________作为积的一个因式.②单项式乘多项式:m(a+b)=_________________.③多项式乘多项式:(a+b)(c+d)=__________________________.④乘法公式:平方差公式:(a+b)(a-b)=_____________.完全平方公式:(a±b)2=____________________.常用的公式变形:a2+b2=(a+b)2-2ab; a2+b2=(a-b)2+2ab;(a+b)2=(a-b)2+4ab; (a-b)2=(a+b)2-4ab.(4)整式的除法:①单项式除以单项式:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【练习】3-1.计算:(a3)2•2a=.【练习】3-2.计算:2x2•3xy的结果是.【练习】3-3.计算(2x)2(﹣3xy2)=.【练习】3-4.计算:(1)3xy•5x3=;(2)6m2÷3m=.【练习】3-5.计算:28x4y2÷7x3y2=.【练习】3-6.计算:(2x﹣1)(3x+2)=.【练习】3-7.计算:(6x3y2−2x2y3)÷13x2y2=.【练习】3-8.计算:(2x+y)(2x﹣y)=.【练习】3-9.已知(x﹣3)2=x2+2mx+9,则m的值是.4. 因式分解:把一个多项式化成几个整式的积的形式.(1)提公因式法:ma+mb+mc=m(a+b+c).(2)公式法:①平方差公式:a2-b2=___________________________.②完全平方公式:a2±2ab+b2=________________.(3)(拓展)十字相乘法:x2+(a+b)x+ab=(x+a)(x+b).【练习】4-1.因式分解:3a2b﹣9ab=.【练习】4-2.分解因式:m2﹣36=.【练习】4-3.分解因式:a2+8a+16=.【练习】4-4.因式分解:am+an﹣bm﹣bn=.【练习】4-5.分解因式:2ax2﹣4ax+2a=.【练习】4-6.因式分解:x2﹣8x+12=.【练习】4-7.分解因式:m2﹣4m﹣5=.参考答案1-1.【答案】13x−12y.1-2.【答案】(8+2x).1-3.【答案】﹣2.1-4.【答案】n2n2-1.【答案】3π75.2-2.【答案】四;三.2-3.【答案】2.3-1.【答案】2a7.3-2.【答案】6x3y.3-3.【答案】﹣12x3y2.3-4.【答案】(1)15x4y;(2)2m.3-5.【答案】18x-6y.3-6.【答案】6x2+x-23-7.【答案】18x﹣6y.3-8.【答案】4x2-y2.3-9.【答案】﹣3.4-1.【答案】3ab(a﹣3).4-2.【答案】(m﹣6)(m+6).4-3.【答案】(a+4)2.4-4.【答案】(m+n)(a﹣b).4-5.【答案】2a(x﹣1)2.4-6.【答案】(x﹣2)(x﹣6).4-7.【答案】(m﹣5)(m+1).考点一:整式的相关概念1.单项式﹣2x2y的系数是;多项式x4y2﹣x2y+23y4的次数是.2.如果单项式﹣a n﹣2b n﹣1与12ab m+3的和仍是单项式,那么m n=.考点突破考点二:整式的运算3.下列计算正确的是()A.a3•a3=2a3B.(ab2)3=ab6C.2ab2•(﹣3ab)=﹣6ab3D.10ab3÷(﹣5ab)=﹣2b24.已知x m=2,x n=3,则x m+n的值是()A.5B.6C.8D.95.观察图,用等式表示图中图形面积的运算为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.a(a+b)=a2+ab D.(a+b)2=a2+2ab+b26.下列计算正确的是()A.(x+2y)(x﹣2y)=x2﹣2y2B.(﹣x+y)(x﹣y)=x2﹣y2C.(2x﹣y)(x+2y)=2x2﹣2y2D.(﹣x﹣2y)(﹣x+2y)=x2﹣4y27.下列计算正确的是()A.2a2•3a2=6a2B.(3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a2考点三:代数式求值8.若x2﹣2x+1的值为10,则代数式﹣2x2+4x+3的值为.9.已知a2+3a﹣2023=0,则2a2+6a﹣1的值为.10.图是一数值转换机的示意图,若输入的x值为18,则输出的结果为.11.已知m=2,n=−12求代数式m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)的值.12.已知(a+b)2+(a﹣b)2=20.(1)求a2+b2的值;(2)若ab=3,求(a+1)(b+1)的值;(3)若2a﹣3b=m,3a﹣2b=n求mn的最大值.考点四:因式分解13.分解因式:(1)m2﹣1=;(2)a2+5a=;(3)x2﹣4x+4=.14.若x2﹣mx+25可以用完全平方式来分解因式,则m的值为.15.如果关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,那么整数k等于.考点五:规律探究16.已知S1=10 S2=11−S1S3=11−S2S4=11−S3…按此规律,则S2024=.17.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察右图中的数字排列规律,求a+b﹣c的值为.18.一组按规律排列的单项式a、2a2、3a3、4a4,…,依这个规律用含字母n(n为正整数,且n≥1)的式子表示第n个单项式为.19.如图,把每个正方形等分为4格,在每格中填入数字,在各正方形中的四个数之间都有相同的规律,根据此规律,x=.(用a,b表示)20.一列数:13,26,311,418,527,638…它们按一定的规律排列,则第n个数(n为正整数)为.参考答案与试题解1.【答案】﹣2,7.【解答】解:单项式﹣2x2y的系数是﹣2,多项式x4y2﹣x2y+23y4的次数是7.故答案为:﹣2,7.2.【答案】﹣1.【解答】解:由题意,n﹣2=1,n﹣1=m+3∴m=﹣1,n=3∴m n=(﹣1)3=﹣1.故答案为:﹣1.3.【答案】D【解答】解:A、a3•a3=a6本选项错误,不符合题意;B、(ab2)3=a3b6本选项错误,不符合题意;C、2ab2•(﹣3ab)=﹣6a2b3本选项错误,不符合题意;D、10ab3÷(﹣5ab)=﹣2b2本选项正确,符合题意;故选:D.4.【答案】B【解答】解:∵x m=2,x n=3∴x m+n=x m×x n=2×3=6.故选:B.5.【答案】B【解答】解:由题意得:图1的面积=(a+b)(a﹣b)图2的面积=a2﹣b2∴(a+b)(a﹣b)=a2﹣b2故选:B.6.【答案】D【解答】解:A、(x+2y)(x﹣2y)=x2﹣4y2,本选项错误,不符合题意;B、(﹣x+y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,本选项错误,不符合题意;C、(2x﹣y)(x+2y)=2x2+3xy﹣2y2,本选项错误,不符合题意;D、(﹣x﹣2y)(﹣x+2y)=(﹣x)2﹣(2y)2=x2﹣4y2,必须执行正确,符合题意.故选:D.7.【答案】D【解答】解:A、2a2•3a2=6a4,故A不符合题意;B、(3a2b)2=9a4b2,故B不符合题意;C、(a﹣b)2=a2﹣2ab+b2,故C不符合题意;D、﹣a2+2a2=a2,故D符合题意;故选:D.8.【答案】﹣15.【解答】解:∵x2﹣2x+1=10∴x2﹣2x=9∴﹣2x2+4x+3=﹣2(x2﹣2x)+3=﹣2×9+3=﹣15.故答案为:﹣15.9.【答案】4045.【解答】解:∵a2+3a﹣2023=0∴a2+3a=2023∴2a2+6a﹣1=2(a2+3a)﹣1=2×2023﹣1=4045故答案为:4045.10.【答案】见试题解答内容【解答】解:若输入的数为18,代入得:3(18﹣10)=24<100;此时输入的数为24,代入得:3(24﹣10)=42<100;此时输入的数为42,代入得:3(42﹣10)=96<100此时输入的数为96,代入得:3(96﹣10)=258>100则输出的结果为258.故答案为:258.11.【答案】﹣2mn,原式=2.【解答】解:m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)=m3n﹣2n3m2﹣4mn+2m2n3+2mn﹣m3n =﹣2mn当m=2,n=−12时,原式=﹣2×2×(−12)=2.12.【答案】(1)10;(2)8或0;(3)125.【解答】解:(1)∵(a+b)2+(a﹣b)2=20∴a2+2ab+b2+a2﹣2ab+b2=202a2+2b2=20∴a2+b2=10;(2)∵ab=3∴2ab=6∵a2+b2=10∴a2+2ab+b2=10+6=16(a+b)2=16a+b=±4∴当a+b=4时(a+1)(b+1)=ab+a+b+1=3+4+1=8当a+b=﹣4时(a+1)(b+1)=ab+a+b+1=3+(﹣4)+1=0∴(a+1)(b+1)的值为8或0;(3)由(1)可知:a2+b2=10∵(a+b)2≥0∴a2+b2+2ab≥010+2ab≥02ab≥﹣10ab≥﹣5∵(a﹣b)2≥0∴a2+b2﹣2ab≥010﹣2ab≥0﹣2ab≥﹣10ab≤5∴﹣5≤ab≤5∴ab的最小值为﹣5∵2a﹣3b=m,3a﹣2b=n∴mn=(2a﹣3b)(3a﹣2b)=6a2﹣4ab﹣9ab+6b2=6a2+6b2﹣13ab=6(a2+b2)﹣13ab=6×10﹣13ab=60﹣13ab∴mn的最大值为:60﹣13×(﹣5)=60+65=125.13.【答案】(1)(m+1)(m﹣1);(2)a(a+5);(3)(x﹣2)2.【解答】解:(1)m2﹣1=(m+1)(m﹣1)故答案为:(m+1)(m﹣1);(2)a2+5a=a(a+5)故答案为:a(a+5);(3)x2﹣4x+4=(x﹣2)2故答案为:(x﹣2)2.14.【答案】±10.【解答】解:∵x2﹣mx+25可以用完全平方式来分解因式∴m=±10.故答案为:±10.15.【答案】±6.【解答】解:∵关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,5=1×5或5=(﹣1)×(﹣5)∴k=1+5=6或k=(﹣1)+(﹣5)=﹣6故答案为:±6.16.【答案】−1 9.【解答】解:由题知因为S1=10所以S2=11−S1=11−10=−19;S3=11−S2=11−(−19)=910;S4=11−S3=11−910=10;…由此可见,这列数按10,−19,910循环出现又因为2024÷3=674余2所以S2024=−1 9.故答案为:−1 9.17.【答案】1.【解答】解:根据杨辉三角形的特点确定a=1+5=6b=5+10=15c=10+10=20a+b﹣c=6+15﹣20=1.故答案为:1.18.【答案】n•a n.【解答】解:第n个单项式是n•a n.故答案为:n•a n.19.【答案】a+18b(答案不唯一).【解答】解:由所给表格可知9=2×4+1;20=3×6+2;35=4×8+3;…所以表格中的左下角与右上角的数字之积加上左上角的数字等于右下角的数字; 则x =a +18b .故答案为:a +18b (答案不唯一).20.【答案】nn 2+2.【解答】解:∵一列数:13,26,311,418,527,638…其的分子与序号相同,分母为分子的平分加2∴第n 个数(n 为正整数)为:nn 2+2.故答案为:nn 2+2.。

人教版九年级数学中考因式分解专项练习及参考答案

人教版九年级数学中考因式分解专项练习及参考答案

人教版九年级数学中考因式分解专项练习1.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2.分解因式的一般方法: (1)提公共因式法. (2)运用公式法.①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=±(3)十字相乘法。

利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.①对于二次三项式2x bx c ++,若存在pq cp q b=⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++②首项系数不为1的十字相乘法在二次三项式2ax bx c ++(a ≠0)中,如果二次项系数a 可以分解成两个因数之积,即12a a a =,常数项c 可以分解成两个因数之积,即12c c c =,把1212a a c c ,,,排列如下:按斜线交叉相乘,再相加,得到1221a c a c +,若它正好等于二次三项式2ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即()()21122ax bx c a x c a x c ++=++.(4)分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式. 3.分解因式的步骤:专题知识回顾(1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解; (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.若有公因式,先提公因式;然后再考虑用公式法(平方差公式:a 2-b 2=(a +b )(a -b ),完全平方公式:a 2±2ab +b 2=(a ±b )2)或其它方法分解;直到每个因式都不能再分解为止.【例题1】(2019•江苏无锡)分解因式4x 2-y 2的结果是( ) A .(4x +y )(4x ﹣y ) B .4(x +y )(x ﹣y ) C .(2x +y )(2x ﹣y ) D .2(x +y )(x ﹣y ) 【答案】C【解析】此题主要考查了公式法分解因式,正确应用公式是解题关键.直接利用平方差公式分解因式得出答案. 4x 2-y 2=(2x )2-y 2 =(2x +y )(2x ﹣y ).【例题2】(2019贵州省毕节市) 分解因式:x 4﹣16= . 【答案】(x 2+4)(x +2)(x ﹣2). 【解析】运用公式法.x 4﹣16=(x 2+4)(x 2﹣4)=(x 2+4)(x +2)(x ﹣2). 【例题3】(2019广东深圳)分解因式:ab 2-a=____________. 【答案】a (b+1)(b -1)【解析】提公因式法与公式法的综合运用 原式=a (b 2-1)=a (b+1)(b -1).【例题4】(2019黑龙江哈尔滨)分解因式:22396ab b a a +-= . 【答案】a (a ﹣3b )2.【解析】先提取公因式,再用完全平方公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题训练(附详细解析)分解因式2233、(专题河北)下列等式从左到右的变形,属于因式分解的是A .a (x -y )=ax -ayB .x 2+2x +1=x (x +2)+1C .(x +1)(x +3)=x 2+4x +3D .x 3-x =x (x +1)(x -1)答案:D解析:因式分解是把一个多项式化为几个最简整式的积的形式,所以,A 、B 、C 都不符合,选D 。

4、(专题佛山市)分解因式a a -3的结果是( )A .)1(2-a aB .2)1(-a aC .)1)(1(-+a a aD .)1)((2-+a a a 分析:首先提取公因式a ,再利用平方差公式进行二次分解即可解:a 3﹣a=a (a 2﹣1)=a (a+1)(a ﹣1),故选:C .点评:此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止5、(专题台湾、32)若A=101×9996×10005,B=10004×9997×101,则A ﹣B 之值为何?( )A .101B .﹣101C .808D .﹣808考点:因式分解的应用.分析:先把101提取出来,再把9996化成(10000﹣4),10005化成(10000+5),10004化成(10000+4),9997化成(10000﹣3),再进行计算即可.解答:解:∵A=101×9996×10005,B=10004×9997×101,∴A ﹣B=101×9996×10005﹣10004×9997×101=101[(10000﹣4)(10000+5)﹣(10000+4)(10000﹣3)]=101(100000000+10000﹣20﹣100000000﹣10000+12)=101×(﹣8)=﹣808;故选D .点评:此题考查了因式分解的应用,解题的关键是提取公因式,把所给的数都进行分解,再进行计算.6、(专题台湾、24)下列何者是22x 7﹣83x 6+21x 5的因式?( )A .2x+3B .x 2(11x ﹣7)C .x 5(11x ﹣3)D .x 6(2x+7)考点:因式分解-十字相乘法等;因式分解-提公因式法.专题:计算题.分析:已知多项式提取公因式化为积的形式,即可作出判断.解答:解:22x 7﹣83x 6+21x 5=x 5(22x 2﹣83x+21)=x 5(11x ﹣3)(2x ﹣7),则x 5(11x ﹣3)是多项式的一个因式.故选C点评:此题考查了因式分解﹣十字相乘法与提公因式法,熟练掌握因式分解的方法是解本题的关键.7、(专题潍坊市)分解因式:()()=+-+a a a 322_________________.答案:(a -1)(a +4)考点:因式分解-十字相乘法等.点评:本题主要考查了整式的因式分解,在解题时要注意因式分解的方法和公式的应用是本题的关键.8、(专题•宁波)分解因式:x 2﹣4= (x+2)(x ﹣2) .9、分解因式:2a 2﹣8= 2(a+2)(a ﹣2) .10、(2-2因式分解·专题东营中考)分解因式2228a b -= . ()()222a b a b +-.解析:先提取公因式2,再利用平方差公式进行因式分解.11、(专题泰安)分解因式:m 3﹣4m= .考点:提公因式法与公式法的综合运用.分析:当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式利用平方差公式继续分解.解答:解:m 3﹣4m ,=m (m 2﹣4),=m (m ﹣2)(m+2).点评:本题考查提公因式法分解因式,利用平方差公式分解因式,熟记公式是解题的关键,要注意分解因式要彻底.12、(专题•莱芜)分解因式:2m 3﹣8m= 2m (m+2)(m ﹣2) .= b (a+2b )(a ﹣2b ) .14、(专题菏泽)分解因式:3a 2﹣12ab+12b 2= 3(a ﹣2b )2 .考点:提公因式法与公式法的综合运用.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解即可求得答案.解答:解:3a 2﹣12ab+12b 2=3(a 2﹣4ab+4b 2)=3(a ﹣2b )2.故答案为:3(a ﹣2b )2.点评:本题考查了用提公因式法和公式法进行因式分解的知识.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,注意因式分解要彻底.15、(专题•滨州)分解因式:5x 2﹣20= 5(x+2)(x ﹣2) .16、(专题山西,13,3分)分解因式:a2-2a= .【答案】a(a-2)【解析】原式提取公因式a 即可,本题较简单。

17、(专题•宁夏)分解因式:2a 2﹣4a+2= 2(a ﹣1)2 . 因式法与公式法的综合运用.18、(专题江西省)分解因式x -4= .【答案】 (x +2)(x -2).【考点解剖】 本题的考点是因式分解,因式分解一般就考提取公因式法和公式法(完全平方公式和平方差公式),而十字相乘法、分组分解等方法通常是不会考的.【解题思路】 直接套用公式即.【解答过程】 24(2)(2)x x x -=+-.【方法规律】 先观察式子的特点,正确选用恰当的分解方法.【关键词】 平方差公式 因式分解19、(专题•徐州)当m+n=3时,式子m 2+2mn+n 2的值为 9 .20、(专题•株洲)多项式x 2+mx+5因式分解得(x+5)(x+n ),则m= 6 ,n= 1 .的值是 1 .22、(2010•鞍山)因式分解:ab ﹣a= a (b+1)(b ﹣1) .23、(专题达州)分解因式:39x x =_ _.答案:x (x +3)(x -3)解析:原式=x (x 2-9)=x (x +3)(x -3)24、(专题•益阳)因式分解:xy 2﹣4x= x (y+2)(y ﹣2) .25、(专题•泸州)分解因式:x y ﹣4y= y (x+2)(x ﹣2) .26、(专题四川宜宾)分解因式:am 2﹣4an 2= a (m +2n )(m ﹣2n ) .考点:提公因式法与公式法的综合运用.分析:首先提取公因式a ,再利用平方差公式进行二次分解即可.解答:解:am 2﹣4an 2=a (m 2﹣4n 2)=a (m +2n )(m ﹣2n ),故答案为:a (m +2n )(m ﹣2n ).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.27、(专题•大连)因式分解:x 2+x= x (x+1) .28、(专题临沂)分解因式24x x -= .答案:(2)(2)x x x +-解析:24x x -=2(4)x x -=(2)(2)x x x +- 29、(专题•孝感)分解因式:ax 2+2ax ﹣3a= a (x+3)(x ﹣1) .10m= .考点:因式分解-提公因式法.分析:直接提取公因式m 即可.解答:解:m 2﹣10m=m (m ﹣10),故答案为:m (m ﹣10).点评:此题主要考查了提公因式法分解因式,关键是找准公因式.31、(专题•白银)分解因式:x 2﹣9= (x+3)(x ﹣3) .32、(专题•温州)因式分解:m ﹣5m= m (m ﹣5) .33、(专题黄石)分解因式:2327x -= .答案:3(3)(3)x x +-解析:原式=23(9)x -=3(3)(3)x x +-34、(专题•黄冈)分解因式:ab 2﹣4a= a (b ﹣2)(b+2) .35、(专题•绍兴)分解因式:x ﹣y = (x+y )(x ﹣y ) .36、(专题•内江)若m ﹣n =6,且m ﹣n=2,则m+n= 3 .37、(专题•荆门)分解因式:x 2﹣64= (x+8)(x ﹣8) .38、(专题四川南充,12,3分)分解因式:x 2-4(x -1)=_________.答案:(x -2)2解析:x 2-4(x -1)=x 2-4x +4=(x -2)239、(专题哈尔滨)把多项式224ax ay -分解因式的结果是 . 考点:提取公因式法和应用公式法因式分解。

分析:先提取公因式法然后考虑应用公式法来因式分解。

解答:22224(4)(2)(2)ax ay a x y a x y x y -=-=+-40、(专题•遵义)分解因式:x 3﹣x= x (x+1)(x ﹣1) .41、(专题•黔西南州)因式分解2x 4﹣2= 2(x 2+1)(x+1)(x ﹣1) .42、(专题•苏州)分解因式:a+2a+1=(a+1).43、(专题•六盘水)因式分解:4x3﹣36x=4x(x+3)(x﹣3).44、(专题•衡阳)已知a+b=2,ab=1,则a b+ab的值为2.45、(专题•玉林)分解因式:x2﹣9=(x+3)(x﹣3).46、(专题•南宁)分解因式:x2﹣25=(x+5)(x﹣5).47、(绵阳市专题)因式分解:2442x y x y -= x 2y 2(y+x) (y-x) 。

[解析]提取公因式x 2y 2,再用平方差公式。

48、(专题广东湛江)分解因式:24x -= .解析:考查分解因式的公式法,用平方差公式:()()22a b a b a b -==+-,()()2224222x x x x -=-=+-49、(专题深圳市)分解因式:4842+-x x =_________________ 答案:2)1(4-x解析:原式=24(21)x x -+=2)1(4-x50、(专题北京4分9)分解因式:a ab ab 442+-=_________________答案:2(2)a b -解析:原式=2(44)a b a -+=2(2)a b -(专题安徽省4分、12)因式分解:x 2y —y=51、(专题•自贡)多项式ax 2﹣a 与多项式x 2﹣2x+1的公因式是 x ﹣1 .52、(专题广州市)分解因式:=+xy x 2_______________.分析:直接提取公因式x 即可解:x 2+xy=x (x+y )点评:本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解53、(专题广东省)分解因式:92-x =________________.答案:)3)(3(-+x x解析:由平方差公式直接可以分解,原式=223x -=)3)(3(-+x x54、(专题安顺)分解因式:2a 3﹣8a 2+8a= .考点:提公因式法与公式法的综合运用.分析:先提取公因式2a ,再对余下的多项式利用完全平方公式继续分解.解答:解:2a 3﹣8a 2+8a ,=2a (a 2﹣4a+4),=2a (a ﹣2)2.故答案为:2a (a ﹣2)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 55、(专题•湖州)因式分解:mx 2﹣my 2.56、(专题凉山州)已知(2x ﹣21)(3x ﹣7)﹣(3x ﹣7)(x ﹣13)可分解因式为(3x+a )(x+b ),其中a 、b 均为整数,则a+3b= .考点:因式分解-提公因式法.分析:首先提取公因式3x ﹣7,再合并同类项即可得到a 、b 的值,进而可算出a+3b 的值. 解答:解:(2x ﹣21)(3x ﹣7)﹣(3x ﹣7)(x ﹣13),=(3x ﹣7)(2x ﹣21﹣x+13),=(3x ﹣7)(x ﹣8),则a=﹣7,b=﹣8,a+3b=﹣7﹣24=﹣31,故答案为:﹣31.点评:此题主要考查了提公因式法分解因式,关键是找准公因式.。

相关文档
最新文档