【学习课件】第二章飞机飞行的基本原理
第二章_飞行原理

第二章- 飞行原理本章讨论飞行中支配作用于飞机上力的基本物理定律,以及这些自然定律和力对飞机性能特性的影响。
为了胜任的控制飞机,飞行员必须理解涉及的原理,学会利用和抵制这些自然力。
现代通用航空飞机可能有相当高的性能特性。
因此,飞行员充分领会和理解飞行艺术所依赖的原理是越来越必要的。
大气结构飞行所处的大气是环绕地球并贴近其表面的一层空气包层。
它是地球的相当重要的一个组成部分,就像海洋或者陆地一样。
然而,空气不同于陆地和水是因为它是多种气体的混合物。
它具有质量,也有重量,和不确定的形状。
空气象其他任何流体一样,由于分子内聚力的缺乏,当受到非常微小的压力时就会流动和改变它的形状。
例如,气体会充满任何装它的容器,膨胀和传播直到其外形达到容器的限制。
大气的组成是由78%的氮气,21%的氧气以及1%的其他气体,如氩气和氦气。
由于部分元素比其他的重,较重的气体如氧气有个天然的趋势,会占据地球的表面。
而较轻的气体会升到较高的区域。
这就解释了为什么大多数氧气包含在35000英尺高度以下。
因为空气有质量也有重量,它是一个物体,作为一个物体,科学定律会向其他物体一样对气体起作用。
气体驻留于地球表面之上,它有重量,在海平面上产生的平均压力为每平方英寸14.7磅,或者29.92英寸水银柱高度。
由于其浓度是有限的,在更高的高度上,那里的空气就更加稀薄。
由于这个原因,18000英尺高度的大气重量仅仅是海平面时的一半。
如图2-1大气压力尽管有多种压力,这里的讨论主要涉及大气压力。
它是天气变化的基本因素之一,帮助提升飞机,也驱动飞机里的某些重要飞行仪表。
这些仪表是高度仪,空速指示仪,和爬升率指示仪,和进气压力表。
虽然空气很轻,也受重力吸引的影响。
因此,和其他物质一样,由于有重量,就产生了力量。
由于它是流体物质,朝各个方向施加的力是相等的,它作用于空气中物体的效果就是压力。
在海平面的标准条件下,由于大气重量而施加于人体的平均压力大约14.7lb/in。
飞行器飞行原理ppt课件

2.3 飞机飞行原理
可重复使用的放热材料
用于像航天飞机类似的可重复使用的航天器的防热。 根据航天器表面不同温度的区域,采用相应的可重复使 用的防热材料。
例如:机身头部、机翼前缘温度最高,采用增强碳 碳复合材料,温度可耐受1593度;机身、机翼下表面前 部和垂尾前缘温度高,可采用防热隔热陶瓷材料;机身、 机翼上表面前部和垂尾前缘气动加热不是特别严重处, 可采用防热隔热的陶瓷瓦材料;机身中后部两侧和有效 载荷舱门处,温度相对较低(约350度),可采用柔性的 表面隔热材料;对于温度最高的区域,采用热管冷却和 强制循环冷却和发汗冷却等。
材料来制造飞机的重要受力构件和蒙皮; 2. 用隔热层来保护机内设备和人员; 3. 采用冷却液冷却结构内表面。
美国SR-71的机体结构的93%采用钛合 金越过热障,达到3.3倍音速。
52
2.3 飞机飞行原理
航天器的防热方法:
材料:石墨、陶瓷等。 高温下的热解和相变:固 液,固 气,液 气。 应用:烧蚀法适用于不重复使用的飞船、卫星等。
60
2.3 飞机飞行原理
B. 超声速飞机的机翼平面形状和布局形式
61
2.3 飞机飞行原理
62
2.3 飞机飞行原理
F-14 Tomcat 舰载机
米格-23
B-1 Lancer轰炸机
63
2.3 飞机飞行原理
边条涡
64
2.3 飞机飞行原理
超声速飞机的气动外形
鸭翼产生的脱体漩涡
机翼升力
鸭翼升力 机翼升力
流体黏性和温度有关,气体温度升高,黏性增大。液体相反。
4. 可压缩性
当气体的压强改变时,其密度和体积也改变,为气体可压缩性。 5. 声速
《航空概论》第2章 飞机飞行的原理

第2章 飞机飞行的原理
2.1.2 流体的连续性假设和状态方程 流体是液体(如水)和气体(如空气)的总称。和固体不同,
流体没有自己确定的几何形状,它们的形状都仅仅取决于盛 装它们的容器形状。例如,把流体盛满在某容器内,它的形 状就取决于这个容器的几何形状。流体的这种容易流动(或 抗拒变形的能力很弱)的特性,为易流性。
第2章 飞机飞行的原理
试验表明,在水中的声速大约为1440 m/s (约5200 km/h), 而在海平面的标准状态下,空气中的声速仅为341 m/s (约 1227 km/h)。由于水的可压缩性很小,而空气很容易被压缩, 所以可以推论:流体的可压缩性越大,声速越小;流体的可 压缩性越小,声速越大。在大气中,声速的计算公式为
第2章 飞机飞行的原理
流体的状态参数是指它的密度ρ,温度T,压力p(又称压
强)这三个参数,它们是影响流体运动规律最重要的物理量。
流体的密度ρ是指流体所占空间内,单位体积中包含的
质量。如流体的质量为m,占有的体积为V,则
,单
位是kg/m3。
流体的温度T是流体分子运动剧烈程度的指标,热力学
单位是K。以K为单位的绝对温度T与以℃为单位的摄氏温度
航空概论
第2章 飞机飞行的原理
2.1 流体流动的基本知识
2.1.1 飞行相对运动原理 飞行相对运动原理如图2-1所示。假设飞机是在静止的
大气中(无风情况下)作水平等速直线飞行的状态,一观察者 乘坐在高空气球(固定在空气中的某一位置)上描述这一飞行 状态,则飞机是以速度v∞向左飞行(见图2-1(a)),并将扰动 周围的空气使之产生运动,而运动起来的空气同时将在飞机 的外表面上产生空气动力。
第2章 飞机飞行的原理
图2-2 雷诺试验
飞机飞行原理基础知识

飞机飞行原理基础知识飞机的飞行原理是建立在伯努利定律和牛顿定律的基础上的。
飞机的飞行需要克服重力、空气阻力和其他阻力,同时利用空气动力学原理产生升力,从而实现飞行。
以下是飞机飞行原理的基础知识:1. 升力和重力。
飞机在飞行时需要产生足够的升力来克服重力,使飞机能够离开地面并保持在空中飞行。
升力是由飞机的机翼产生的,当空气经过机翼时,由于机翼的形状和倾斜角,会产生气流的分离,上表面气流速度快,气压小,下表面气流速度慢,气压大,这样就形成了上表面气流向下推,下表面气流向上推,产生了升力。
2. 推力和阻力。
飞机需要产生足够的推力来克服空气阻力和其他阻力,推动飞机向前飞行。
空气阻力是飞机飞行时遇到的阻力,它是由于飞机在空气中运动而产生的。
飞机的发动机产生的推力需要克服空气阻力,从而使飞机保持飞行速度。
3. 机翼和气流。
飞机的机翼形状和倾斜角对升力的产生起着至关重要的作用。
当飞机向前飞行时,空气流经过机翼,由于机翼的形状和倾斜角的作用,产生了上下表面气流的速度和压力的差异,从而产生了升力。
4. 飞行控制。
飞机的飞行控制是通过改变飞机的姿态和控制飞机的舵面来实现的。
飞机的姿态是通过改变飞机的升降舵、方向舵和副翼来实现的,从而改变飞机的飞行方向和高度。
总之,飞机的飞行原理基础知识涉及了众多的物理原理和工程技术,飞机的飞行是一项复杂而精密的工程,需要多方面的知识和技术来支撑和保障。
对于飞行爱好者和飞行员来说,了解飞机的飞行原理是非常重要的,它不仅可以帮助他们更好地理解飞机的飞行过程,还可以提高他们的飞行技能和安全意识。
第二章 飞机飞行的基本原理ppt课件

机翼上的压强分布
压心
阻力
作用在飞机上的空气动力在平行于气流速度 方向上的分力就是飞机的阻力。
摩擦阻力
压差阻力
诱导阻力
干扰阻力
附面层:
摩擦阻力
压差阻力
概念:翼尖涡
诱导阻力
翼尖涡的形成
诱导阻力的形成
诱导阻力的防止
干扰阻力
干扰阻力就是飞机各部分之间由于气流相互 干扰而产生的一种额外的阻力。
作变速运动。
(1)飞机的起飞 飞机从静止开始滑跑离开地面,并上升到h高度的加速
运动过程,叫做起飞。现代喷气式飞机安全 高度阶段。
飞机的主要飞行科目
A 3
h
1
2
1-起飞滑跑;2-加速爬升;3-起飞距离;4-建筑物
图2.31 飞机的起飞
散逸层 2000~3000km 电离层 800km 中间层 85km 平流层 50~55km 对流层 9~18km
如果你在对流层……
如果你在平流层……
如果你再往上……
继续往上……
2.1 飞行器飞行环境
大气物理特性:
连续性 有压强 有粘性 可压缩
大气的粘性
v∞
n
v∞
n
平板
(a)空气粘性实验示意图
飞机的主要飞行科目
飞机的主要飞行科目
A
h
5
4
3
2
1
6
1-下滑;2-拉平;3-平飞减速;4-飘落触地;5-着陆滑跑;6-着陆距离;7-建筑物
图2.32 飞机的着陆
飞机的主要飞行科目
(2)飞机的着陆 飞机的着陆同起飞相反,是一种减速运动。一般可分为五
个阶段:下滑、拉平、平飞减速、飘落触地和着陆滑跑。 合起来的总距离叫做着陆距离。
飞机是靠什么原理飞起来

飞机是靠什么原理飞起来
飞机实现飞行的原理是通过利用伯努利原理和牛顿第三定律。
伯努利原理指出当气体在速度增加时,压力会减小,而当速度减小时,压力会增加。
牛顿第三定律则指出,任何作用力都会有相等大小的反作用力。
在飞机起飞的过程中,引擎会提供足够的推力,使飞机加速并达到足够的速度。
当飞机在地面上加速时,飞机的机翼形状和风的流动将会导致上表面的气流速度比下表面的气流速度更快。
根据伯努利原理,上表面的气流速度增大,压力也会减小。
而下表面的气流速度较慢,压力也会较大。
因此,机翼上表面会形成一个气流速度较快、压力较低的区域,而下表面则形成一个气流速度较慢、压力较高的区域。
这样的压力差异会产生一个向上的升力,使飞机得以克服重力。
同时,飞机的引擎产生的推力也能帮助飞机克服重力。
牛顿第三定律说明,引擎喷射出的高速气流会产生一个向后的反作用力,即推力。
这个反作用力和重力达到平衡时,飞机就能在空中保持飞行状态。
综上所述,飞机的飞行原理主要是通过利用伯努利原理产生升力以及引擎产生的推力来克服重力,实现飞行。
《飞机飞行原理》PPT课件

第三节 影响升力和阻力的因素
1.机翼迎角的影响 (1)在一定范围内,机翼迎角增加,升力则增大。因为机翼迎角增加后,
机翼上表面气流的流线更加密集,流速更块,压力更小(吸力更大),压差 更大。 (2)机翼迎角增加,阻力随之增大。因为随着机翼迎角的增加,机翼后部 的涡流区也不断扩大,压力减小;而机翼前部气流压力增大,前后压力差 (阻力)增大。机翼升力增加诱导阻力页随之增加。 2.速度的影响 相对气流的速度越大,升力和阻力就越大。实验证明:升力和阻力与速 度的平方成正比。 (1)根据柏努利定理,机翼上表面的相对气流流速越快,静压越小,上下 压力差则越大,升力就越大。 (2)气流流速越快,机翼前部的气流动压越大,受档后转换成的静压也就 越大,前后压力差也越大。压差阻力越大.另外由于相对速度大摩擦阻力 也随之增大。 。
第二节 大气的一般介绍
空气的密度、温度和压力是确定空气状态 的三个主要参数。飞行中,飞机的空气动 力和大小和飞行性能的好坏都与这些参数 有关。
粘性和压缩性是空气的两种物理性质。在 飞行中,飞机之所以会受到空气阻力原因 之一就是空气有粘性。而飞机以接近音速 或者超过音速飞行时会出现阻力突增等现 象则与空气的压缩性有关。
3.空气密度的影响
空气密度越大,升力和阻力越大。升力、阻力的大小与空 气密度成正比。根据动压公式(g=1/2ρv,2),空气密度增大 后,气流流过机翼时的动压变化大。所以机翼上下的压力差 和机翼前后的压力差变化也大4.机真的影响
(1)面积:升力和阻力与面积成正比。
(2)平面形状:机翼产生升力后出现涡流,使上翼面压强增 加,下翼面压强减小,机翼升力受到损失,并产生诱导阻力。 当机翼平面形状接近椭圆形时,升力损失最小,诱导阻力也 较小,平面形状为矩形的机翼升力损失较大,诱导阻力也较 大。而梯形机翼居 两者之间,因此椭圆形机翼空气动力性能 最好。
飞机的飞行原理ppt课件

P = RρT
公式中: R为气体常数,是一个有量刚的常数,
其含义是指在等压的情况下,温度每升高1ºK时,1千
克的气体膨胀所做的功。在海平面上,空气的气体常
数 R=287.06 (焦尔/千克·ºK)。
精选PPT课件
9
二、空气的物理性质
1、空气的粘性
精选PPT课件
10
空气粘性的物理实质,是空气分子作无规则运 动的结果,当相邻两层空气具有不同流速时,流得 快的那层空气分子的动量大,它作无规则运动而进 入小速度层,通过分子间的掺和碰撞,会增加该层 分子的能量,从而牵动该层空气加速;速度小的那 一层空气分子,会碰入大速度层面,使该层速度减 小。这种相邻两层空气的相互牵扯的特性,就是空 气的粘性。而这种层与层之间的作用力就是空气的 粘性力(也叫空气的内摩擦力),用下列公式表示:
精选PPT课件
2)有大量臭氧存在。 3)有水平方向的风,且风速相当大。 4)空气质量很少,只占整个大气的三千分之一。
这层空气不利于飞机飞行,只有探空气球飞行。
精选PPT课件
21
4、电离层(暖层、热层)
电离层位于中间层之上,顶界离地面大约 800公里。
电离层的特点:
1)空气温度随着高度的增加而急剧增加, 气温可以增加到400 ℃以上(最高可达1000 ℃ 以上)。
F = μ ·Δv/ΔY·S
μ为粘性系数, Δv/ΔY为速度梯度,S为接触面积。
精选PPT课件
11
2、空气的压缩性
一定质量的空气,当压力或温度改变时, 引起空气密度变化的性质,叫做空气的压缩性。
影响空气压缩性的主要因素:
1)气流的流动速度(v)。气流的流动速 度越大,空气密度的变化显著增大(或密度减 小的越多),空气易压缩(或空气的压缩性增 大)。