分式7

合集下载

培优专题7_分式的运算(含问题详解)

培优专题7_分式的运算(含问题详解)

10、分式的运算【知识精读】1. 分式的乘除法法则;当分子、分母是多项式时,先进行因式分解再约分。

2. 分式的加减法(1)通分的根据是分式的基本性质,且取各分式分母的最简公分母。

求最简公分母是通分的关键,它的法则是:①取各分母系数的最小公倍数;②凡出现的字母(或含有字母的式子)为底的幂的因式都要取;③相同字母(或含有字母的式子)的幂的因式取指数最高的。

(2)同分母的分式加减法法则(3)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减。

3. 分式乘方的法则(n为正整数)4. 分式的运算是初中数学的重要内容之一,在分式方程,求代数式的值,函数等方面有重要应用。

学习时应注意以下几个问题:(1)注意运算顺序及解题步骤,把好符号关;(2)整式与分式的运算,根据题目特点,可将整式化为分母为“1”的分式;(3)运算中及时约分、化简;(4)注意运算律的正确使用;(5)结果应为最简分式或整式。

下面我们一起来学习分式的四则运算。

【分类解析】例1:计算的结果是()A. B. C. D.分析:原式故选C说明:先将分子、分母分解因式,再约分。

例2:已知,求的值。

分析:若先通分,计算就复杂了,我们可以用替换待求式中的“1”,将三个分式化成同分母,运算就简单了。

解:原式例3:已知:,求下式的值:分析:本题先化简,然后代入求值。

化简时在每个括号内通分,除号改乘号,除式的分子、分母颠倒过来,再约分、整理。

最后将条件等式变形,用一个字母的代数式来表示另一个字母,带入化简后的式子求值。

这是解决条件求值问题的一般方法。

解:故原式例4:已知a 、b 、c 为实数,且,那么的值是多少?分析:已知条件是一个复杂的三元二次方程组,不容易求解,可取倒数,进行简化。

解:由已知条件得:所以即又因为所以例5:化简:解一:原式=+-++=-++--+=+-++-+-+-+=+-+-+-++=+-+x x x x x x x x x x x x x x x x x x x x x x x x x x x x 432423222322323241311111311111133311244()()()()()()()()()()()解二:原式说明:解法一是一般方法,但遇到的问题是通分后分式加法的结果中分子是一个四次多项式,而它的分解需要拆、添项,比较麻烦;解法二则运用了乘法分配律,避免了上述问题。

浙教版数学七年级下册《分式》课件

浙教版数学七年级下册《分式》课件
分式的值为零,必须同时满足: (1)分子等于零; (2)分母不等于零,两者缺一不可。
归纳
浙江教育出版社 七年级 | 下册
求使分式的值为0的字母的值的方法: 第一求出使分子的值等于0的字母的值,再检验这个字母的 值是否使分母的值等于0,只有当它使分母的值不为0时,才 是我们所要求的字母的值。
课后小结
第五单元·分式
分式
浙江教育出版社 七年级 | 下册
学习目标
1 课堂讲授 2 课时流程
分式的定义 分式有(无)意义的条件 分式的值为零的条件
逐点 导讲练
课堂 小结
作业 提升
浙江教育出版社 七年级 | 下册
课时引入
浙江教育出版社 七年级 | 下册
为了调查珍稀动物资源,动物专家在p平方千米的保护区 内找到7只灰熊;你能用代数式表示该保护区平均每平方千米 内有多少只灰熊吗?
浙江教育出版社 七年级 | 下册
本节课学到了什么?请同学们叙述本节的概念和结论。
浙江教育出版社 七年级 | 下册
感悟新知
知识点一 分式的定义
思考
我们知道,两个整数相除可以表示成分数的情势,例如,
3÷5= 3;
5
在整式运算时,两个整式相除也可以表示成类似的情势,
例如,7÷p= 2x - 3 。
7;b÷a=
p
b a
;(v-v0)÷t=
v - v0;(2x-3)÷(x+2)=
t
x2
归纳
浙江教育出版社 七年级 | 下册
分式的定义:
7 p

b a

v
-v t
0
,2xx-23
这些代数式都表示两个
整式相除,且除式中含有字母, 像这样的代数式就叫做分

第7课 分式方程

第7课  分式方程
2 2.(2015•济宁)解分式方程 x - 1
2 x- 3
3 x
变形为( D ) A.2+(x+2)=3(x﹣1) B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)
x +2 + 1- x
=3时,去分母后
首页
末页
2 5 3.(2015•酒泉)分式方程 x = x + 3 的解是
A.5000 = 8000 x - 600 x
5000 8000 = C. x + 600 x
5000 8000 B. x = x + 600
5000 8000 D. x = x - 600
首页
末页
5.(2016•贵州)为加快“最美毕节”环境建设,某园 林公司增加了人力进行大型树木移植,现在平均每天比 原计划多植树30棵,现在植树400棵所需时间与原计划植 树300棵所需时间相同,设现在平均每天植树x棵,则列 出的方程为( A )
1 1 A. = - 5 3x 8 x 1 C. = 8 x - 5 3x
1 1 B. = + 5 3x 8 x 1 = 8x + 5 D. 3x
首页
末页
二、填空题
7.(2016•广州)分式方程 x=﹣1 .
1 2 = 2x x - 3
的解是
4 1 - =0 8.(2016•泸州)分式方程 x- 3 x x=﹣1 .
x- 2 2- x
3 2 = x +1 x 的解是
解:方程两边同乘x﹣2,得1﹣3(x﹣2) =﹣(x﹣1), 即1﹣3x+6=﹣x+1, 解得:x=3, 经检验x=3是原方程的解, ∴原方程的解为x=3.

分式知识点总结

分式知识点总结

分式知识点总结1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。

3.分式值为零的条件:当分式的分子等于0且分母不等于0时,分式的值为0。

〔分式的值是在分式有意义的前提下才可以考虑的,所以使分式为0的条件是A=0,且B≠0.〕〔分式的值为0的条件是:分子等于0,分母不等于0,二者缺一不可。

首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。

〕4.分式的根本性质:分式的分子与分母同乘〔或除以〕一个不等于0的整式,分式的值不变。

用式子表示为〔〕,其中A、B、C是整式注意:〔1〕“C是一个不等于0的整式〞是分式根本性质的一个制约条件;〔2〕应用分式的根本性质时,要深刻理解“同〞的含义,防止犯只乘分子〔或分母〕的错误;〔3〕假设分式的分子或分母是多项式,运用分式的根本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C;〔4〕分式的根本性质是分式进行约分、通分和符号变化的依据。

5.分式的通分:和分数类似,利用分式的根本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是确定几个式子的最简公分母。

几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。

求最简公分母时应注意以下几点:〔1〕“各分母所有因式的最高次幂〞是指凡出现的字母〔或含字母的式子〕为底数的幂选取指数最大的;〔2〕如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数;〔3〕如果分母是多项式,一般应先分解因式。

6.分式的约分:和分数一样,根据分式的根本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

7分式方程的解法

7分式方程的解法
引言的问题:
一艘轮船在静水中的最大 速度为20千米/时,它沿江 以最大航速顺流航行100千 米所用时间,与以最大航 速逆流航行60千米所用时 间相等。江水的流速为多 少?
问题一:你能给出分式方程 的定义吗?
1. 分式方程:分母中含有未知 数的方程叫做分式方程。显然, 分式方程中至少有一边是分母 中含有未知数的分式 2. 整式方程:等号两边都是整 式的方程叫做整式方程。 3. 有理方程:整式方程和分式 方程统称为有理方程
4 . 已知 B x2
x3 ( x 2)
2

A ( x 2)
2

, 求 A 、 B 的值。
3. a 为何值时关于 x 的方程 x 1 x-2 2a 3 a5 的解为零?
解下列分式方程
3.
3 1 x
2

5 1 2x x
2
ቤተ መጻሕፍቲ ባይዱ
2 1 2x x
2
解下列分式方程:
一元一次方程 有理 整式方程 其他整式方程 方程 分式方程
练习:判断下列各式哪个是 分式方程
1 x y 5 2
y
x5 1 x 2 2y z 3 4 x 5 3
0
例1请你指出哪些是分式方程?
(1) x 3 x 3; ( 2 ) 5 x
小 结 1.分式方程的概念 2.分式方程的解法步骤 3.分式方程产生增根的原 因 4.计算技巧
2.
3 x

x5 x x
2

6 1 x
解下列关于x的方程:
m x

a
n x 1
0
(m≠n)
xa
b 1
(b ≠ 1)

干货 | 初中数学分式运算7大类型的易错点,必须掌握!

干货 | 初中数学分式运算7大类型的易错点,必须掌握!

干货|初中数学分式运算7大类型的易错点,必须掌握!分式运算是初二下册考试难点之一,今天小志老师给大家分享分式运算的7大类型易错点,一定要好好掌握哦!01类型一:错用分式的基本性质●分式的分子、分母同时乘以或乘以同一个不为0的数(或整式),分式的值不变。

在化简时,不能分子乘以3,分母乘以2,这样不符合分式的基本性质,因此我们先找到两个分数分母的最小公倍数,2×3=6,然后分式的分子与分母同时乘以6,进行化简。

分式的基本性质是分式运算的基础,不要凭自己的想象做题。

02类型二:运算顺序出错●分式运算顺序与整式运算顺序类似,先乘方,再乘除,然后加减,有括号的先算括号里面的。

同级运算,按照从左往右的顺序依次计算,因此这道题目不能直接约去a-3和3-a,更加不能直接得到答案-1,不能看到能约分的直接全部约掉,要按照运算顺序进行计算,先将除法变为乘法,再进行计算。

搞清楚运算顺序,不能为了简便而简便。

03类型三:互为相反数的代数式约分出错●首先要注意,互为相反数的代数式能约分,不能放任不管;其次,约分时也要注意,若为奇次方约分时,变形时要多一个负号;若为偶次方约分时,直接变形即可。

本题的注意点较多,有括号的先算括号里面的,括号里面的为加减法,因此需要先通分。

通分时可以每一项分别通分,也可以加括号将a+2看作一个整体再通分。

除数中有3-a和4-2a 可将其转化为a-3和2a-4,然后再进一步化简。

这类题目一定要特别注意,一个符号出错会导致整道题目都出错。

04类型四:不该约分时约分导致出错●在求解分式有意义的条件时,不能约分,约分会导致出错。

分式有意义的条件为分母不等于0,本题的错解为:x≠-3,在计算时将a-3约分掉,这样会扩大未知数的取值范围。

应该直接令分母(a-3)(a+3)≠0,即x的取值范围:x≠3且x≠-3。

05类型五:分式加减法与分式方程混淆导致出错●分式加减法是进行通分处理,分式方程是方程左右两边同时乘以最简公分母,进行去分母处理,不要混淆。

人教版初三数学下册中考知识点梳理:第7讲分式方程

人教版初三数学下册中考知识点梳理:第7讲分式方程

第7讲分式方程一、知识清单梳理中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.如图,65,AFD CD EB ∠=︒∕∕,则B 的度数为( )A .115°B .110°C .105°D .65°【答案】A【解析】根据对顶角相等求出∠CFB =65°,然后根据CD ∥EB ,判断出∠B =115°. 【详解】∵∠AFD =65°, ∴∠CFB =65°, ∵CD ∥EB ,∴∠B =180°−65°=115°, 故选:A . 【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.2.如图,矩形ABCD 中,AB=8,BC=1.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .25B .35C .5D .6【答案】C【解析】试题分析:连接EF 交AC 于点M ,由四边形EGFH 为菱形可得FM=EM ,EF ⊥AC ;利用”AAS 或ASA”易证△FMC ≌△EMA ,根据全等三角形的性质可得AM=MC ;在Rt △ABC 中,由勾股定理求得AC=45,且tan ∠BAC=12BC AB =;在Rt △AME 中,AM=12AC=25,tan ∠BAC=12EM AM =可得EM=5;在Rt △AME 中,由勾股定理求得AE=2.故答案选C .考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.3.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2. 下列判断: ①当x >2时,M=y 2; ②当x <0时,x 值越大,M 值越大; ③使得M 大于4的x 值不存在; ④若M=2,则x=" 1" . 其中正确的有A .1个B .2个C .3个D .4个【答案】B【解析】试题分析:∵当y 1=y 2时,即2x 4x 2x -+=时,解得:x=0或x=2,∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -21y x 4x =-+直线2y 2x =的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线()221y x 4x x 24=-+=--+的最大值为4,∴M 大于4的x 值不存在.∴③正确;∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,2x 4x 2-+=,解得12x 22x 22=+=-,(舍去). ∴使得M=2的x 值是1或22+.∴④错误. 综上所述,正确的有②③2个.故选B .4.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA =55,那么点C 的位置可以在( )A .点C 1处B .点C 2处 C .点C 3处D .点C 4处【答案】D 【解析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin 5A =, ∴545DC AC AC ==,∴AC=45, ∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C =228445+=,故答案为D. 5.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位【答案】D【解析】A.平移后,得y=(x+1)2,图象经过A 点,故A 不符合题意; B.平移后,得y=(x−3)2,图象经过A 点,故B 不符合题意; C.平移后,得y=x 2+3,图象经过A 点,故C 不符合题意; D.平移后,得y=x 2−1图象不经过A 点,故D 符合题意; 故选D.6.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,若∠C =65°,则∠P 的度数为( )A .65°B .130°C .50°D .100°【答案】C【解析】试题分析:∵PA 、PB 是⊙O 的切线,∴OA ⊥AP ,OB ⊥BP ,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C . 考点:切线的性质.79153 ) A .2到3之间 B .3到4之间 C .4到5之间 D .5到6之间【答案】D915335,∵253,∴355到6之间.故选D . 【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键. 8.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-. 【答案】C【解析】直接利用反比例函数的性质分别分析得出答案. 【详解】A 、关于反比例函数y=-4x,函数图象经过点(2,-2),故此选项错误; B 、关于反比例函数y=-4x ,函数图象位于第二、四象限,故此选项错误; C 、关于反比例函数y=-4x ,当x >0时,函数值y 随着x 的增大而增大,故此选项正确;D 、关于反比例函数y=-4x,当x >1时,y >-4,故此选项错误;故选C . 【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.9.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )A .13B .14C .15D .16【答案】C【解析】解:如图所示,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、I .因为六边形ABCDEF 的六个角都是120°,所以六边形ABCDEF 的每一个外角的度数都是60°. 所以AFI BGC DHE GHI 、、、都是等边三角形.所以31AI AF BG BC ====,. 3317GI GH AI AB BG ∴==++=++=, 7232DE HE HI EF FI ==--=--=, 7124CD HG CG HD .=--=--= 所以六边形的周长为3+1+4+2+2+3=15; 故选C .10.如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35C .43D .45【答案】D【解析】如图,连接AB ,由圆周角定理,得∠C=∠ABO ,在Rt △ABO 中,OA=3,OB=4,由勾股定理,得AB=5, ∴4cos cos 5OB C ABO AB =∠==. 故选D .二、填空题(本题包括8个小题)11.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为_____.【答案】72°【解析】首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键12.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.【答案】20 cm.【解析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得2222''++(cm).A B A D BD121620故答案为:20cm. 【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.13.如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则菱形的边长____cm .【答案】13【解析】试题解析:因为正方形AECF 的面积为50cm 2, 所以25010AC cm =⨯=, 因为菱形ABCD 的面积为120cm 2, 所以21202410BD cm ⨯==, 所以菱形的边长22102413.22cm ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭故答案为13.14.如图,在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为4时,阴影部分的面积为_____.【答案】4π﹣1【解析】分析:连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解. 详解:连接OC ∵在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是AB 的中点,∴∠COD=45°, ∴OC=2CD=42,∴阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积 =22451(42)43602π⨯⨯-⨯=4π-1. 故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.15.如图所示,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △BDE :S 四边形DECA 的值为_____.【答案】1:1【解析】根据题意得到BE :EC=1:3,证明△BED ∽△BCA ,根据相似三角形的性质计算即可. 【详解】∵S △BDE :S △CDE =1:3, ∴BE :EC=1:3, ∵DE ∥AC , ∴△BED ∽△BCA , ∴S △BDE :S △BCA =(BE BC)2=1:16, ∴S △BDE :S 四边形DECA =1:1, 故答案为1:1. 【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键. 16.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是 【答案】13.【解析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.【详解】有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是2163=. 故答案为13【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.17.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)【答案】12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1, ∴当x>1时,y 随x 的增大而增大. ∴若x 1>x 2>1 时,y 1>y 2 . 故答案为>18.如图,△ABC 中,AB =BD ,点D ,E 分别是AC ,BD 上的点,且∠ABD =∠DCE ,若∠BEC =105°,则∠A 的度数是_____.【答案】85°【解析】设∠A=∠BDA=x ,∠ABD=∠ECD=y ,构建方程组即可解决问题. 【详解】解:∵BA =BD ,∴∠A =∠BDA ,设∠A =∠BDA =x ,∠ABD =∠ECD =y ,则有21802105x y y x ︒︒⎧+=⎨+=⎩, 解得x =85°, 故答案为85°. 【点睛】本题考查等腰三角形的性质,三角形的外角的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本题包括8个小题)19.已知关于x 的方程220x ax a ++-=.当该方程的一个根为1时,求a 的值及该方程的另一根;求证:不论a 取何实数,该方程都有两个不相等的实数根.【答案】(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.20.如图,在Rt △ABC 中,∠ACB=90°,以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线.交BC 于点E .求证:BE=EC 填空:①若∠B=30°,AC=23,则DE=______;②当∠B=______度时,以O ,D ,E ,C 为顶点的四边形是正方形.【答案】(1)见解析;(2)①3;②1.【解析】(1)证出EC 为⊙O 的切线;由切线长定理得出EC=ED ,再求得EB=ED ,即可得出结论; (2)①由含30°角的直角三角形的性质得出AB ,由勾股定理求出BC ,再由直角三角形斜边上的中线性质即可得出DE ;②由等腰三角形的性质,得到∠ODA=∠A=1°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.【详解】(1)证明:连接DO .∵∠ACB=90°,AC为直径,∴EC为⊙O的切线;又∵ED也为⊙O的切线,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,3∴3∴22AB AC,∵AC为直径,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=12BC=3,故答案为3;②当∠B=1°时,四边形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四边形DECO 是矩形,∵OD=OC ,∴矩形DECO 是正方形.故答案为1.【点睛】本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21.解方程组4311,213.x y x y -=⎧⎨+=⎩①② 【答案】53x y =⎧⎨=⎩ 【解析】将②×3,再联立①②消未知数即可计算. 【详解】解:②3⨯得:6339x y += ③①+③得:1050x =5x =把5x =代入③得10339y +=3y =∴方程组的解为53x y =⎧⎨=⎩【点睛】本题考查二元一次方程组解法,关键是掌握消元法.22.春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率. 【答案】小王在这两年春节收到的年平均增长率是【解析】增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x )元,在2018年的基础上再增长x ,就是2019年收到微信红包金额400(1+x )(1+x )元,由此可列出方程400(1+x )2=484,求解即可. 【详解】解:设小王在这两年春节收到的红包的年平均增长率是. 依题意得:解得(舍去).答:小王在这两年春节收到的年平均增长率是【点睛】本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.23.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是.【答案】(1)证明见解析;(2)1.【解析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×1×2=1,故答案为1.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.24.为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【答案】(1)0.3 ,45;(2)108°;(3)16.【解析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=30100=0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【答案】(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×60200=108°,(3)1600×60+56200=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.26.若关于x的方程311x ax x--=-无解,求a的值.【答案】1-2a=或【解析】分析:该分式方程311x ax x--=-无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.详解:去分母得:x(x-a)-1(x-1)=x(x-1),去括号得:x2-ax-1x+1=x2-x,移项合并得:(a+2)x=1.(1)把x=0代入(a+2)x=1,∴a无解;把x=1代入(a+2)x=1,解得a=1;(2)(a+2)x=1,当a+2=0时,0×x=1,x无解即a=-2时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解.故答案为a=1或a=-2.点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【答案】C【解析】∵DG是AB边的垂直平分线,∴GA=GB,△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周长=AC+BC+AB=51cm,故选C.2.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°【答案】B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考点:角度的计算3.已知a35a等于()A.1 B.2 C.3 D.4【答案】B351,进而得出答案.【详解】∵a35∴a=1.故选:B.【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.4.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.【答案】B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.5.实数21-的相反数是()A.21--B.21+C.21--D.12【答案】D【解析】根据相反数的定义求解即可.【详解】21-的相反数是-21+,故选D.【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.6.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9cm B.13cm C.16cm D.10cm【答案】A【解析】试题分析:由折叠的性质知,CD=DE,BC=BE.易求AE及△AED的周长.解:由折叠的性质知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).故选A.点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.如图,AB切⊙O于点B,OA=23,AB=3,弦BC∥OA,则劣弧BC的弧长为()A.33πB.32πC.πD.32π【答案】A【解析】试题分析:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=23,∠A=30°,∴OB=3,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC长为6033 1803ππ⨯=.故选A.考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.8.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c【答案】C【解析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选A.9.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.23C .22D.52【答案】C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12 PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12×22PD DG=22,故选:C.点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.10.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,33),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(32,332) B.(2,332) C.(332,32) D.(32,3﹣332)【答案】A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,33),∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=33×33=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=33.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=332,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D的坐标为(32,332).故选A.二、填空题(本题包括8个小题)11.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.【答案】1 4【解析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【详解】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=14S四边形,∴针头扎在阴影区域内的概率为14;故答案为:14.【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.12.如图,点A 是反比例函数y=﹣4x(x<0)图象上的点,分别过点A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.【答案】4﹣π【解析】由题意可以假设A(-m,m),则-m2=-4,求出点A坐标即可解决问题.【详解】由题意可以假设A(-m,m),则-m2=-4,∴m=≠±2,∴m=2,∴S阴=S正方形-S圆=4-π,故答案为4-π.【点睛】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题13.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是___.【答案】12【解析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出线段长度解答.【详解】根据题意观察图象可得BC=5,点P 在AC 上运动时,BP ⊥AC 时,BP 有最小值,观察图象可得,BP 的最小值为4,即BP ⊥AC 时BP=4,又勾股定理求得CP=3,因点P 从点C 运动到点A ,根据函数的对称性可得CP=AP=3,所以ABC ∆的面积是13+342⨯⨯()=12. 【点睛】本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型. 14.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .【答案】.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5, ∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF==,∴cos ∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.15.如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则菱形的边长____cm .【答案】13【解析】试题解析:因为正方形AECF的面积为50cm2,所以25010AC cm=⨯=,因为菱形ABCD的面积为120cm2,所以21202410BD cm⨯==,所以菱形的边长22102413.22cm ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭故答案为13.16.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=_______.【答案】1.5【解析】在Rt△ABC中,225AC=AB+BC=,∵将△ABC折叠得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.设B′E=BE=x,则CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得32x=.17.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为___________元.【答案】28【解析】设标价为x元,那么0.9x-21=21×20%,x=28.18.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于____度.【答案】30【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则∠A=30°.考点:折叠图形的性质三、解答题(本题包括8个小题)19.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示.求y 与x 之间的函数关系式,并写出自变量x 的取值范围;求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?【答案】(1)()401016y x x =-+≤≤ (2)()225225x --+,16x =,144元 【解析】(1)利用待定系数法求解可得y 关于x 的函数解析式;(2)根据“总利润=每件的利润⨯销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.【详解】(1)设y 与x 的函数解析式为y kx b =+,将()10,30、()16,24代入,得:10301624k b k b +=⎧⎨+=⎩, 解得:140k b =-⎧⎨=⎩, 所以y 与x 的函数解析式为()y x 4010x 16=-+;(2)根据题意知,()()()2W x 10y x 10x 40x 50x 400=-=--+=-+- ()2x 25225=--+, a 10=-<,∴当x 25<时,W 随x 的增大而增大,10x 16,∴当x 16=时,W 取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【点睛】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.20.省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?【答案】(1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、1﹣14%﹣20%﹣40%=26%;20÷40%=50;骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名).答:该校骑自行车上学的学生有300名.考点:统计图21.某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B 与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG 为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈35,tan37°≈34)。

07第7讲--分式的运算

07第7讲--分式的运算

第7讲 分式的运算本讲重点:分式的约分、通分和加、减、乘、除四则运算.【考点链接】1.通分:根据分式的基本性质,异分母的分式可以化为 分母的分式,这一过程称为分式的通分.2.分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加减,即=±b cb a .(2)异分母的分式相加减,先通分,化为 分母的分式,然后再按同分母分式的加减法则进行计算.即bd bcad bd bc bd ad d c b a ±=±=±.3.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式 .即bd ac d c b a =•,bcadc d b a d c b a =•=÷. 4.分式的混合运算顺序,先算乘方,再算乘除,最后算 ,有括号先算括号里面的.【典例探究】考点1 分式的乘除运算 『例1』(教材例题变式题)计算:(1)22-+a a ·a a 212+; (2)4412+--a a a ÷4122--a a ;(3)xy x y x +-2÷4222x y x x xy --·y x -1; (4)(xy -x 2)÷xy y xy x 222+-·2x y x -.『解析』(1)原式=)2()2(2+⋅⋅-+a a a a =aa 212-.(2)原式=4414+--a a a ×1422--a a =)1)(44()4)(1(222-+---a a a a a =)1)(1()2()2)(2)(1(2+---+-a a a a a a =)1)(2(2+-+a a a .(3)原式=)(y x x y x +-·)())((2y x x y x y x x ---+-·y x -1=1.(4)原式=)(y x x --·2)(y x xy -·2xyx -=-y. 『备考兵法』分式乘除的应注意的几个问题(1)分式乘除运算时,应先确定结果的符号.(2)计算结果应是最简分式或整式. (3)“变除为乘,除式颠倒”,写好中间步骤.(4)可先约分,再相乘;当分子、分母为多项式时应先将分子、分母分解因式. (5)运算中遇到整式,可看成分母是1的式子.考点2 分式的加减 『例2』(教材例题变式题)化简:(1)22x x +-42x +; (2)12-x +xx --11;(3)222222433x y yx y x y x y x x y ----+---.『解析』(1)原式=242x x -+=(2)(2)2x x x +-+=x -2.(2)原式=12-x +11--x x =1)1(2--+x x =13--x x . (3)原式2222224323y x yx y x y x y x x y --+-+---=223y x y x --=.『备考兵法』1. 同分母的分式相加减,分母不变,把分子相加减,用式子表示是:c a ±c b =cb a ±(其中a 、b 既可以是数,也可以是整式,c 是含有字母的非零的整式). 2. 分式有很多地方和分数相类似,异分母的分式加减也可以通过像分数那样通分,将异分母的分式加减法化成同分母的分式加减法.考点3 分式的混合运算与求值『例3』(1)(2012恩施州)先化简,再求值:,其中x=﹣2.(2)(2012黄石)先化简,后计算:22819169269a a a a a a --÷⋅++++,其中33a =-.(3)(2012重庆)先化简,再求值:,其中x 是不等式组的整数解.『解析』(1)原式=÷=×=﹣=,将x=﹣2代入上式,原式=.(2)解:原式=919)3(2)3()9)(9(2+•-+•++-a a a a a a =32+a 当33-=a 时,原式=332. (3)(﹣)÷=[﹣]•=•=•=.又,由①解得:x >﹣4,由②解得:x <﹣2,∴不等式组的解集为﹣4<x <﹣2,其整数解为﹣3, 当x=﹣3时,原式==2.『备考兵法』1.在进行分式的混合运算时应注意运算的顺序,一般是先乘方,再乘除,后加减. 同时注意分式的化简结果应是最简分式,能约分的要约分.2. 分式求值问题,一般是先将分式化简,再将字母值代入求值.但对于一些特殊的分式求值问题,要注意针对分式的特殊性,灵活选择方法.. 【当堂过关】1. (2012济南模拟)化简:22m n m n m n---的结果是( ) A .m +nB .m ﹣nC .n ﹣mD .﹣m ﹣n『解析』22m n m n m n ---=22m n m n --=()()m n m n m n+-- =m +n . 『答案』A2. (2012安徽)化简xxx x -+-112的结果是( )A.x +1B. x -1C.—xD. x『解析』原式x x x x x x x x x x x =--=--=---=1)1(11122. 『答案』D3. (2012天门模拟)化简)2()242(2+÷-+-m mm m 的结果是( )A.0B.1C.-1D.2)2(+m『解析』原式=242--m m ÷(m +2)=212)2)(2(+⨯--+m m m m =1. 『答案』B4. (2012福州)计算:x -1x +1x=______________. 『解析』原式=x -1+1x=1. 『答案』15. (2012泰安模拟)化简:4)222(2-÷--+x xx x x x 的结果为 . 『解析』原式=x x x x x x x x 4)2)(2()2()2(22-⨯-++--x x x x x 446222-⨯--==x -6.『答案』x -6 6. (2012山西)化简的结果是 .『解析』•+=•+=+=.『答案』7. (2012山西模拟)21-=a 时,1112112222+--+-⋅-+a a a a a a a 的值为 .『解析』当21-=a 时,原式=()()()()111111122+---⋅-++a a a a a a a =()11112+-++a a a a =()()1112+-++a a a a a a =()11++a a a =a1=-2.『答案』-28. (2012广东珠海)先化简,再求值:,其中.解:原式=[﹣]×=×=,当x=时,原式==.9.(2012六盘水)先化简代数式,再从﹣2,2,0三个数中选一个恰当的数作为a 的值代入求值. 解:原式=÷=•=,当a=0时,原式==2.10. (2012广安模拟)先化简22()5525x x x x x x -÷---,然后从不等组23,212.x x --⎧⎨<⎩≤的解中,选取一个你认为符合题意....的x 的值代入求值. 解:22()5525x x xx x x -÷--- ()()()()55552552525.x x xx x x x x x x x x x +-⎛⎫=+ ⎪--⎝⎭+-=-=+g g 解不等式组23,212.x x --⎧⎨<⎩≤,得56x -<≤.可选取不为±5,0的x 的值代入求值,如当1x =时,原式515 6.x =+=+=【浙江两年中考】 1. (2012台州)计算yxy x÷的结果是 . 『解析』根据分式的乘法和除法运算法则计算即可:2y xxy =xy =x x=x x y÷÷⋅. 『答案』2x2. (2011金华)计算111aa a ---的结果为( ) A .11a a +- B .1aa -- C .-1 D .2『解析』111a a a ---=-1. 『答案』C3. (2012绍兴)化简111x x --可得( )A .21x x - B . 21x x -- C .221x x x+- D .221x x x-- 『解析』原式=211(1)x x x x x x--=---.『答案』B4. (2011·衢州)化简:a -3b a -b +a +ba -b. 解 原式=a -3b +a +b a -b =2a -2b a -b =2a -ba -b=2.5. (2011舟山)先化简211()1122xx x x -÷-+-,然后从2,1,-1中选取一个你认为合适..的数作为x 的值代入求值. 解:211()1122x x x x -÷-+-=4x.当 x=2时 , 原式=22.【命题趋势提醒】本节内容是中考命题的重要内容之一,在中考中占有一定的比例,命题的形式有填空、选择、计算、解答题,主要考查对概念的理解和运用基础知识、计算、分析判断的能力.【迎考精炼】一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选,多选,错选均不给分) 1. (2012苏州模拟)化简211a a a a--÷的结果是( ) A .1a B .a C .a -1 D .11a - 『解析』直接计算,211a a a a--÷= a -1.『答案』C2. (2012淄博模拟)下列运算正确的是( )(A )1=---a b b b a a (B )b a nm b n a m --=- (C )a a b a b 11=+- (D )ba b a b a b a -=-+--1222 『解析』逐一检验.『答案』D3. (2012随州模拟)化简:211()(3)31x x x x +-•---的结果是( ) A .2 B .21x - C .23x - D .41x x --『解析』直接计算.『答案』B4. (2012年吴中区一模)化简211a a a ---的结果是( )(A)11a - (B)-11a - (C)211a a +- (D)211a a a ---『解析』通分后计算. 『答案』A5. (2012福集镇青龙中学中考模拟)计算111xx x ---结果是( ) A .0 B .1 C .-1 D .x 『解析』直接计算111x x x ---=11xx --=-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整数指数幂(学案1) 执笔人:简顺昌 审查人:简顺昌 授课日期__3.8______节次_____节 学习目标:理解和掌握负整数指数幂的法则,体会指数域扩大的内涵.学会小于1的正数用科学记数法表示的方法.
重点与难点:理解负整数指数幂的意义,掌握整数指数幂的运算.掌握小于1的正数用科学记数法表示.学会正数指数与负整数指数用于科学记数法的区别. 复习与新知识探索:一、正数指数幂运算性质
①___________=⋅n m a a ②___________)(=n m a ③()__________
=n
ab ④ ___________=÷n m a a ⑤___________)(=n
b
a
⑥___________0=a 二、请你计算下列各式
①=⋅⋅3
2
2a a a _______________
②()
___________33
2=-b
a ③
()()
___________3
32
2
32
=⋅y x y x

()[]___________22
32
=-y x ⑤___________69
=÷a a

()___________063=≠÷a a a __
归纳:一般地,当n 是正整数时, ()0_______
≠=-a a n
,这就是说, ()0≠-a a n 是n a 的倒数. 三、新知识应用,(一)计算: ①()
___________2
3
2=--y x ②
()
_
__________3
2
233=⋅---y x y x ③
________________2624=÷-y x y x
④(
)
___________262
3=÷-y x y
x ⑤
()
_
__________3
132=--y x y x ⑥
()()
___________23
2
2
32=÷---b a c ab
(二)用科学记数法表示下列各数:
①0.00752=___________ ②0.000379=______________ ③378000=______________ ④576=______________ ⑤0.0523=________________

-0.576=______________ 四、当堂测评:1.填空 (1)-22
=
(2)(-2)2
=
(3)(-2) 0
=
(4)20= (
5)2 -3
= (
6)(-2) -3
= 2.计算
(1) (x 3y -2)2
=__________ (2)x 2y -2
·(x -2
y)3
=_____________
(3)(3x 2y -2)
2
÷(x -2
y)3=_______________ (4)()
_________
2
32=--y x (5) ()
_________
3
2
233=-⋅---y x y x
(6)()
_________
22
1
3=÷-y x y x 3.计算
①()()
()b a b a b a n n
m +⋅+⋅+-+1

()()()5
43
32
2
2
ab b a b a -÷-⋅-
③()()0
4
2
2
3
x x x ⋅÷

()()
⎪⎭

⎝⎛-÷-÷-xyz z y x
z y x 312.08.1322
3
2
4
⑤()()0
4
2
20055211π-÷-⎪⎭
⎫ ⎝⎛+--
⑥()
3
1
2226----⋅y x x
整数指数幂(学案2)执笔: 审查:简顺昌
授课日期______节次_____节
习题课
1. 用科学计数法表示下列各数: (1)0.000 04,
(2) -0. 034,
(3) 0.000 000 45,
(4) 0. 003 009
(5)-0.00001096
(6)0.000329
2.计算
(1) (3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3
(3)()()
65107103--⨯⨯⨯
(4) ()()2
64103105.0-⨯⨯⨯
(5) ()()
2
17104109--⨯÷⨯
(6) ()()2
8
91021011⨯÷⨯-
3.计算:()()0
4
2
20055211π-÷-⎪⎭
⎫ ⎝⎛+--
4.先将分式1
2
1312
-+÷⎪⎭⎫ ⎝⎛-+x x x 进行化简,然后请你给x 选择一个合适的值,再求原式的值。

相关文档
最新文档