高三数学一轮复习导学案6 函数值域和最值(二)
【高三】2021届高考数学第一轮导学案复习 函数的单调性极值与最值

【高三】2021届高考数学第一轮导学案复习函数的单调性极值
与最值
【高三】2021届高考数学第一轮导学案复习函数的单调性、极值与最值
高三数学与科学复习43篇——函数的单调性、极值和最大值
【高考要求】求函数的单调区间、函数在开区间上的极值、闭区间上的最值(b)
[知识回顾和自学查询]
1、函数的极大值是.
2.区间[0,]上函数的最小值为
3、函数,x[-2,0]的值域为.
4.函数,是区间上的递增函数;
在区间上是减函数.
5.如果函数已知,当函数x=时有一个最大值;当x=时,有一个最小值
6、函数在上是增函数,则实数的取值范围是
[示例]
1、求下列函数的单调区间:
(1);(2);
2、求函数的极值.
3.在区间[0,]
4、已知函数在x=1处取得极值-3-c,若对任意x>0,不等式恒成立,求c的取值范围.
【纠正反馈】
1、函数的单调性为.
2.如果函数是(-)上的减法函数∞, - 1), (1, + ∞) 在(-1,1)上有一个递增函数,它的最小值和最大值是
3、函数的单调增区间是,单调减区间是.
4.函数的最小值为
5、函数在区间的最大值是.
6.假设函数在该点的切线方程为x+2Y+5=0,求区间[6,7]上的最大值和最小值
【迁移应用】
1.如果函数已知,那么此时y有一个最大值,当x=时,y有一个最小值
2、已知函数在(-1,1)上是减函数,则a的取值范围是.
3.函数的单调递增区间是
4、已知函数在区间(0,1)上有极值,求a的取值范围.
5.给定k>0,函数
(1)若对任意都有,求k的取值范围;
(2)如果它存在,让我们找到K的值范围。
高三数学一轮复习优质教案6:2.2 函数的单调性与最值教学设计

2.2 函数的单调性与最值『复习指导』本讲复习首先回扣课本,从“数”与“形”两个角度来把握函数的单调性和最值的概念,复习中重点掌握:(1)函数单调性的判断及其应用;(2)求函数最值的各种基本方法;对常见题型的解法要熟练掌握.基础梳理1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I.如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f (x )在区间D上是减函数图象描述自左向右图象是上升的自左向右图象是下降的(2)单调区间的定义若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件①对于任意x∈I,都有f(x)≤M;①对于任意x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M②存在x0∈I,使得f(x0)=M.结论M为最大值M为最小值助学微博一个防范函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y =1x 分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在整个定义域即(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞),不能用“∪”连接. 两种形式设任意x 1,x 2∈『a ,b 』且x 1<x 2,那么 ①f x 1-f x 2x 1-x 2>0⇔f (x )在『a ,b 』上是增函数;f x 1-f x 2x 1-x 2<0⇔f (x )在『a ,b 』上是减函数.②(x 1-x 2)『f (x 1)-f (x 2)』>0⇔f (x )在『a ,b 』上是增函数;(x 1-x 2)『f (x 1)-f (x 2)』<0⇔f (x )在『a ,b 』上是减函数. 两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值. 四种方法 函数单调性的判断(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数. (3)导数法:利用导数研究函数的单调性. (4)图象法:利用图象研究函数的单调性.双基自测1.设f (x )为奇函数,且在(-∞,0)内是减函数,f (-2)=0,则xf (x )<0的解集为( ). A .(-2,0)∪(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)2.(2011·湖南)已知函数f (x )=e x -1,g (x )=-x 2+4x -3.若有f (a )=g (b ),则b 的取值范围为( ).A .『2-2,2+2』B .(2-2,2+2)C .『1,3』D .(1,3)3.(2012·保定一中质检)已知f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ). A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)4.(2011·江苏)函数f (x )=log 5(2x +1)的单调增区间是______.5.若x >0,则x +2x的最小值为________.考向一 函数的单调性的判断『例1』试讨论函数f (x )=xx 2+1的单调性.『审题视点』 可采用定义法或导数法判断.『答案』 法一 f (x )的定义域为R ,在定义域内任取x 1<x 2, 都有f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1-x 21-x 1x 2x 21+1x 22+1,其中x 1-x 2<0,x 21+1>0,x 22+1>0.①当x 1,x 2∈(-1,1)时,即|x 1|<1,|x 2|<1,∴|x 1x 2|<1,则x 1x 2<1,1-x 1x 2>0,f (x 1)-f (x 2)<0,f (x 1)<f (x 2),∴f (x )为增函数. ②当x 1,x 2∈(-∞,-1』或『1,+∞)时, 1-x 1x 2<0,f (x 1)>f (x 2),∴f (x )为减函数.综上所述,f (x )在『-1,1』上是增函数,在(-∞,-1』和『1,+∞)上是减函数. 法二 ∵f ′(x )=⎝⎛⎭⎫x x 2+1′=x 2+1-x x 2+1′x 2+12=x 2+1-2x 2x 2+12=1-x 2x 2+12,∴由f ′(x )>0解得-1<x <1.由f ′(x )<0解得x <-1或x >1,∴f (x )在『-1,1』上是增函数,在(-∞,-1』和『1,+∞)上是减函数.判断(或证明)函数单调性的主要方法有:(1)函数单调性的定义;(2)观察函数的图象;(3)利用函数和、差、积、商和复合函数单调性的判断法则;(4)利用函数的导数等. 『训练1』 讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 『答案』 设-1<x 1<x 2<1, f (x )=ax -1+1x -1=a ⎝⎛⎭⎫1+1x -1, f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=ax 2-x 1x 1-1x 2-1当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.考向二 利用已知函数的单调区间求参数的值(或范围)『例2』已知函数f (x )=x 2+ax (a >0)在(2,+∞)上递增,求实数a 的取值范围.『审题视点』 求参数的范围转化为不等式恒成时要注意转化的等价性.『答案』 法一 设2<x 1<x 2,由已知条件f (x 1)-f (x 2)=x 21+a x 1-x 22+ax 2=(x 1-x 2)+a x 2-x 1x 1x 2=(x 1-x 2)x 1x 2-ax 1x 2<0恒成立.即当2<x 1<x 2时,x 1x 2>a 恒成立.又x 1x 2>4,则0<a ≤4.法二 f (x )=x+a x ,f ′(x )=1-ax 2>0得f (x )的递增区间是(-∞,-a ),(a ,+∞),根据已知条件a ≤2,解得0<a ≤4.已知函数的解析式,能够判断函数的单调性,确定函数的单调区间,反之已知函数的单调区间可确定函数解析式中参数的值或范围,可通过列不等式或解决不等式恒成立问题进行求解.『训练2』 函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( ).A .a =-3B .a <3C .a ≤-3D .a ≥-3『解析』y =x -5x -a -2=1+a -3x -a +2,需⎩⎪⎨⎪⎧a -3<0,a +2≤-1,即⎩⎪⎨⎪⎧a <3,a ≤-3,∴a ≤-3. 『答案』C考向三 利用函数的单调性求最值『例3』►已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在『-3,3』上的最大值和最小值.『审题视点』 抽象函数单调性的判断,仍须紧扣定义,结合题目作适当变形. (1)证明 法一 ∵函数f (x )对于任意x ,y ∈R 总有 f (x )+f (y )=f (x +y ), ∴令x =y =0,得f (0)=0. 再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0, f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2). 又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2). 因此f (x )在R 上是减函数. 法二 设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2) =f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2). 又∵x >0时,f (x )<0,而x 1-x 2>0, ∴f (x 1-x 2)<0,即f (x 1)<f (x 2), ∴f (x )在R 上为减函数. (2)解 ∵f (x )在R 上是减函数, ∴f (x )在『-3,3』上也是减函数,∴f (x )在『-3,3』上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,f (-3)=-f (3)=2.∴f (x )在『-3,3』上的最大值为2,最小值为-2.对于抽象函数的单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x 1,x 2在所给区间内比较f (x 1)-f (x 2)与0的大小,或f x 1f x 2与1的大小.有时根据需要,需作适当的变形:如x 1=x 2·x 1x 2或x 1=x 2+x 1-x 2等.『训练3』 已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值; (2)判断f (x )的单调性;(3)若f (3)=-1,求f (x )在『2,9』上的最小值. 『答案』 (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0. (2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)∵f (x )在『0,+∞)上是单调递减函数. ∴f (x )在『2,9』上的最小值为f (9). 由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.∴f (x )在『2,9』上的最小值为-2.规范解答2——如何解不等式恒成立问题『问题研究』 在恒成立的条件下,如何确定参数的范围是历年来高考考查的重点内容,近年来在新课标地区的高考命题中,由于三角函数、数列、导数知识的渗透,使原来的分离参数法、根的分布法增添了思维难度,因而含参数不等式的恒成立问题常出现在综合题的位置. 『解决方案』 解决这类问题的关键是将恒成立问题进行等价转化,使之转化为函数的最值问题,或者区间根的分布问题,进而运用最值原理或者区间根原理使问题获解,常用方法还有函数性质法,分离参数法等.『示例』►(本题满分12分)已知函数f (x )=x 2-2ax +2,当x ∈『-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.利用函数性质求f (x )的最值,从而解不等式f (x )min ≥a ,得a 的取值范围.解题过程中要注意a 的范围的讨论.『解答示范』 ∵f (x )=(x -a )2+2-a 2,∴此二次函数图象的对称轴为x =a (1分) (1)当a ∈(-∞,-1)时,f (x )在『-1,+∞)上单调递增, ∴f (x )min =f (-1)=2a +3.(3分)要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a , 解得a ≥-3,即-3≤a <-1.(6分)(2)当a ∈『-1,+∞)时,f (x )min =f (a )=2-a 2.(8分) 要使f (x )≥a 恒成立,只需f (x )min ≥a , 即2-a 2≥a (10分)解得-2≤a ≤1,即-1≤a ≤1.(11分)综上所述,实数a 的取值范围为『-3,1』(12分)本题是利用函数的性质求解恒成立问题,主要的解题步骤是研究函数的性质,由于导数知识的运用,拓展了这类问题深度和思维的广度,因此,解答问题时,一般的解题思路是先通过对函数求导,判断导函数的符号,从而确定函数在所给区间上的单调性,得到区间上对应的函数最值.『试一试』 当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________. 『解析』法一 当x ∈(1,2)时,不等式x 2+mx +4<0可化为:m <-⎝⎛⎭⎫x +4x , 又函数f (x )=-⎝⎛⎭⎫x +4x 在(1,2)上递增, 则f (x )>-5, 则m ≤-5.法二 设g (x )=x 2+mx +4当-m 2≤32,即m ≥-3时,g (x )<g (2)=8+2m , 当-m 2>32,即m <-3时,g (x )<g (1)=5+m 由已知条件可得:⎩⎪⎨⎪⎧ m ≥-3,8+2m ≤0,或⎩⎪⎨⎪⎧m <-3,5+m ≤0.解得m ≤-5『答案』(-∞,-5』答案双基自测1. 『答案』C 2.『解析』函数f (x )的值域是(-1,+∞),要使得f (a )=g (b ),必须使得-x 2+4x -3>-1.即x 2-4x +2<0,解得2-2<x <2+ 2. 『答案』B 3.『解析』由已知条件:⎪⎪⎪⎪1x >1,不等式等价于⎩⎪⎨⎪⎧|x |<1,x ≠0,解得-1<x <1,且x ≠0. 『答案』C4.『解析』要使y =log 5(2x +1)有意义,则2x +1>0,即x >-12,而y =log 5u 为(0,+∞)上的增函数,当x >-12时,u =2x +1也为增函数,故原函数的单调增区间是⎝⎛⎭⎫-12,+∞. 『答案』⎝⎛⎭⎫-12,+∞ 5.『解析』∵x >0,则x +2x≥2x ·2x=2 2 当且仅当x =2x ,即x = 2时,等号成立,因此x +2x 的最小值为2 2.『答案』2 2。
广东饶平二中高三数学高考一轮复习:函数的值域与最值

(四)函数的值域与最值(一) 知识归纳1. 函数(),y f x x A =∈,其中集合A 是函数的定义域。
与x 的值对应的y 的值称函数值,函数值的集合{()|}f x x A ∈称函数的值域. 2.最大值定义:设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =。
称M 是函数()y f x =的最大值。
你能说出最小值定义吗?3.一般地,如果在区间[,]a b 上函数()y f x =的图象是一条连续不断的曲线,那么它必有最大值和最小值。
且值域为min max [(),()]f x f x 。
4.请你说出常见函数:一次函数、二次函数、反比例函数、指数函数、对数函数、正、余弦函数、正、余切函数的值域。
(二) 学习要点求函数的值域没有通性解法,只能依据函数解析式的结构特征来确定相应的解法,下面给出常见方法。
1. 分析观察法有的函数结构并不复杂,可以通过基本函数的值域及不等式的性质观察出函数的值域。
2. 反函数法、分离常数法 对于形如(0)cx dy a ax b+=≠+的值域,用函数和它的反函数定义域和值域关系,通过求反函数(仅求x 的表达式)的定义域从而得到原函数的值域。
3. 换元法(1)代数换元对形如0)y ax b a =+±≠的函数常设d cx t +=来求值域;(2)三角换元法对形如0)y ax b a =+≠的函数常用“三角换元”,如令x α=来求值域。
注意:(1)新元的取值范围,(2)三角换元法中,角的取值范围要尽量小。
4. 配方法二次函数或可转化为二次函数的函数常用此方法来还求解,但在转化的过程中要注意等价性,特别是不能改变定义域。
5.判别式法对形如222111122222(0)a x b x c y a a a x b x c ++=+≠++的函数常转化成关于x 的二次方程,由于方程有实根,即0≥∆从而求得y 的范围,即值域。
2019-2020学年高中数学一轮复习《6函数的值域与最值》教学案

2019-2020学年高中数学一轮复习《6函数的值域与最值》教学案【考点及要求】: 会求简单初等函数的值域与最值.【基础知识】:1.函数c y =的值域为: ,函数()0≠+=k b kx y 的值域为: .2.函数()0≠=k xk y 的值域为: . 3.二次函数)0(2>++=a c bx ax y 的值域为:___________;二次函数)0(2<++=a c bx ax y 的值域为:___________.4.函数)1,0(≠>=a a a y x 且的值域为:___________.5.函数)1,0(log ≠>=a a x y a 且的值域为:___________.6.函数x y sin =的值域为: , 函数x y cos =的值域为: , 函数x y tan =的值域为: .【基本训练】: 1.{}5,3,1,22∈+=x x y 的值域为 . 2.函数x x y 212--=的值域为 .3.函数xx y 4+=的值域为 . 4.函数()322+-=x x x f ,()3,0∈x 的值域为 .5.函数()()1log 221+=x x f 的值域为 . 6.函数132sin 3+⎪⎭⎫ ⎝⎛+=πx y 的最小值为 . 7.函数[)+∞∈⎪⎭⎫ ⎝⎛=,0,21x y x 的值域为 . 【典型例题讲练】例1.已知二次函数122-=x y 在区间[]b a ,上有最小值-1,则实数a 的取值范围为 ___________,b 的取值范围____________.练习.已知函数x x x f 8)(2+-=,求)(x f 在区间[]1,+t t 上的最大值)(t g .例2.若函数()lg(42)xf x k =-⋅在(],2-∞上有意义,求实数k 的取值范围.练习.设a 为实数,函数2()2()||f x x x a x a =+--.(1)若(0)1f ≥,求a 的取值范围;(2)若2=a ,求()f x 的最小值.【课堂小结】【课堂检测】【课后作业】。
高三数学第一轮复习 函数最值与值域教案(学生)

芯衣州星海市涌泉学校教案16函数最值与值域一、课前检测1.函数23,[1,3]y x x =+∈-的值域为_____________.2.函数22y x x =-的定义域为{0,1,2,3},那么其值域为___________.3.函数122,(,2]x y x -=-∈-∞的值域为___________. 二、知识梳理求函数值域〔最值〕的一般方法:1.利用根本初等函数的值域;解读:2.配方法〔二次函数或者者可转化为二次函数的函数〕;解读:3.不等式法〔利用根本不等式,尤其注意形如)0(>+=k x k x y 型函数〕 解读:4.函数的单调性:特别关注)0(>+=k xk x y 的图象及性质 解读:5.局部分式法、判别式法〔分式函数〕解读:6.换元法〔无理函数〕解读:7.导数法〔高次函数〕解读:8.数形结合法解读:三、典型例题分析〔一〕利用根本初等函数的值域例1求以下函数的值域:〔1〕232,y x x x R =-+∈〔2〕y=5+21+x (x≥-1).变式训练:求函数232y x x =-+,[1,3]x ∈的值域. 〔二〕别离常数法例2求函数312x y x +=-的值域: 变式训练:求函数y=1122+-x x 的值域. 〔三〕换元法例3求以下函数的值域:〔1〕y x =+2〕y x =〔四〕数形结合法例4求以下函数的值域:〔1〕|1||4|y x x =-++〔2〕2sin 2sin x y x -=+ 〔五〕其他方法例5求以下函数的值域:〔1〕245(2)2x x y x x -+=>-〔2〕22221x x y x x -+=++ 四、归纳与总结〔以学生为主,师生一一共同完成〕1.知识:2.思想与方法:3.易错点:4.教学反思〔缺乏并查漏〕:。
2021届高考数学一轮复习第二章函数、导数及其应用考点测试6函数的单调性(含解析)人教版B版

考点测试6 函数的单调性高考概览本考点是高考的常考知识点,常与函数的奇偶性、周期性相结合综合考查.题型为选择题、填空题,分值5分,难度为低、中、高各种档次 考纲研读 1.理解函数的单调性、最大值、最小值及其几何意义 2.会运用基本初等函数的图象分析函数的单调性一、基础小题1.下列函数中,在区间(0,1)上是增函数的是( ) A .y =|x | B .y =3-x C .y =1xD .y =-x 2+4答案 A解析 函数y =3-x ,y =1x,y =-x 2+4在(0,1)上均为减函数,y =|x |在(0,1)上为增函数,故选A.2.函数y =x 2-6x +10在区间(2,4)上( ) A .递减 B .递增 C .先递减后递增 D .先递增后递减答案 C解析 由函数y =x 2-6x +10的图象开口向上,对称轴为直线x =3,知y =x 2-6x +10在(2,4)上先递减后递增,故选C.3.若函数f (x )=(2a -1)x +b 是R 上的减函数,则实数a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫12,+∞ B .⎝ ⎛⎦⎥⎤-∞,12C.⎝ ⎛⎭⎪⎫12,+∞ D .⎝⎛⎭⎪⎫-∞,12 答案 D解析 当2a -1<0,即a <12时,该函数是R 上的减函数.故选D.4.已知函数y =f (x )在R 上单调递增,且f (m 2+1)>f (-m +1),则实数m 的取值范围是( )A .(-∞,-1)B .(0,+∞)C .(-1,0)D .(-∞,-1)∪(0,+∞)答案 D解析 由题意得m 2+1>-m +1,故m 2+m >0,解得m <-1或m >0.故选D. 5.函数f (x )=-x +1x 在⎣⎢⎡⎦⎥⎤-2,-13上的最大值是( )A.32 B .-83C .-2D .2答案 A解析 因为f (x )=-x +1x 在⎣⎢⎡⎦⎥⎤-2,-13上为减函数,所以当x =-2时,f (x )取得最大值,且为2-12=32.故选A.6.函数f (x )=⎩⎪⎨⎪⎧x +cx ≥0,x -1x <0是增函数,则实数c 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1)D .(-∞,-1]答案 A解析 ∵f (x )在R 上单调递增,∴c ≥-1,即实数c 的取值范围是[-1,+∞).故选A.7.设函数f (x )在R 上为增函数,则下列结论一定正确的是( ) A .y =1f x在R 上为减函数B .y =|f (x )|在R 上为增函数C .y =-1f x在R 上为增函数D .y =-f (x )在R 上为减函数 答案 D解析 A 错误,如y =x 3,y =1f x在R 上无单调性;B 错误,如y =x 3,y =|f (x )|在R 上无单调性; C 错误,如y =x 3,y =-1f x在R 上无单调性;故选D.8.若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均为增函数,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-113,-3 B .[-6,-4] C .[-3,-22] D .[-4,-3]答案 B解析 由于f (x )为R 上的偶函数,因此只需考虑函数f (x )在(0,+∞)上的单调性即可.由题意知f (x )在[3,+∞)上为增函数,在[1,2]上为减函数,故-a2∈[2,3],即a ∈[-6,-4].9.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1]B .(-1,0)∪(0,1)C .(0,1)D .(0,1]答案 D解析 f (x )=-(x -a )2+a 2,当a ≤1时,f (x )在[1,2]上是减函数;g (x )=ax +1,当a >0时,g (x )在[1,2]上是减函数,则a 的取值范围是0<a ≤1.故选D.10.已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c答案 D解析 因为f (x )的图象关于直线x =1对称,所以f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.因为1<2<52<e ,所以f (2)>f ⎝ ⎛⎭⎪⎫52>f (e),所以b >a >c .11.设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.答案 (-∞,1]∪[4,+∞)解析 作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.12.已知f (x )=ax +1x +2,若对任意x 1,x 2∈(-2,+∞),有(x 1-x 2)[f (x 1)-f (x 2)]>0,则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,+∞ 解析 由f (x )=ax +1x +2=a +1-2ax +2,且y =f (x )在(-2,+∞)上是增函数,得1-2a <0,即a >12.二、高考小题13.(2019·全国卷Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( )答案 C解析 因为f (x )是定义域为R 的偶函数,所以f ⎝ ⎛⎭⎪⎫log 314=f (-log 34)=f (log 34).又因为log 34>1>>0,且函数f (x )在(0,+∞)单调递减,所以f (log 34)< .故选C.14.(2019·全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2单调递增的是( )A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |答案 A解析 作出函数f (x )=|cos2x |的图象,如图.由图象可知f (x )=|cos2x |的周期为π2,在区间⎝⎛⎭⎪⎫π4,π2上单调递增.同理可得f (x )=|sin2x |的周期为π2,在区间⎝ ⎛⎭⎪⎫π4,π2上单调递减,f (x )=cos|x |的周期为2π.f (x )=sin|x |不是周期函数.故选A.15.(2017·全国卷Ⅱ)函数f (x )=ln (x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)答案 D解析 由x 2-2x -8>0可得x >4或x <-2,所以x ∈(-∞,-2)∪(4,+∞),令u =x2-2x -8,则其在x ∈(-∞,-2)上单调递减,在x ∈(4,+∞)上单调递增.又因为y =ln u 在u ∈(0,+∞)上单调递增,所以f (x )=ln (x 2-2x -8)在x ∈(4,+∞)上单调递增.故选D.16.(2017·北京高考)已知函数f (x )=3x-⎝ ⎛⎭⎪⎫13x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 答案 A解析 ∵函数f (x )的定义域为R ,f (-x )=3-x-⎝ ⎛⎭⎪⎫13-x =⎝ ⎛⎭⎪⎫13x -3x =-f (x ),∴函数f (x )是奇函数.∵函数y =⎝ ⎛⎭⎪⎫13x 在R 上是减函数,∴函数y =-⎝ ⎛⎭⎪⎫13x 在R 上是增函数.又y =3x在R上是增函数,∴函数f (x )=3x-⎝ ⎛⎭⎪⎫13x 在R 上是增函数.故选A.17.(2016·北京高考)下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln (x +1)D .y =2-x答案 D解析 A 中,y =11-x =1-x -1的图象是将y =-1x的图象向右平移1个单位得到的,故y =11-x在(-1,1)上为增函数,不符合题意;B 中,y =cos x 在(-1,0)上为增函数,在(0,1)上为减函数,不符合题意;C 中,y =ln (x +1)的图象是将y =ln x 的图象向左平移1个单位得到的,故y =ln (x +1)在(-1,1)上为增函数,不符合题意;D 中,y =2-x=⎝ ⎛⎭⎪⎫12x 在(-1,1)上为减函数,所以D 符合题意.18.(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,32 解析 由题意知函数f (x )在(0,+∞)上单调递减.因为f (2|a -1|)>f (-2),且f (-2)=f (2),所以f (2|a -1|)>f (2),所以2|a -1|<,解得12<a <32.三、模拟小题19.(2019·武汉模拟)若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]答案 B解析 因为函数f (x )=2|x -a |+3=⎩⎪⎨⎪⎧2x -2a +3,x ≥a ,-2x +2a +3,x <a ,因为函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,所以a >1,所以a 的取值范围是(1,+∞).故选B.20.(2019·郑州模拟)函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3答案 C 解析 y =x -a -2+a -3x -a -2=1+a -3x -a -2=1+a -3x -a +2,由题意知⎩⎪⎨⎪⎧a -3<0,a +2≤-1,得a ≤-3.所以a 的取值范围是a ≤-3.21.(2019·重庆模拟)定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12答案 C解析 由已知得,当-2≤x ≤1时,f (x )=x -2;当1<x ≤2时,f (x )=x 3-2.因为f (x )=x -2,f (x )=x 3-2在定义域内都为增函数,所以f (x )的最大值为f (2)=23-2=6.22.(2019·漳州模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln x +1,x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)答案 D解析 因为当x =0时,两个表达式对应的函数值都为零,所以函数的图象是一条连续的曲线.因为当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln (x +1)也是增函数,所以函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.23.(2020·沈阳市高三摸底)如果函数y =f (x )在区间I 上是增函数,且函数y =f xx在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0,3]C .[0,1]D .[1,3]答案 D解析 因为函数f (x )=12x 2-x +32的对称轴为直线x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f x x =12x -1+32x ,令g (x )=12x -1+32x(x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤ 3,即函数f x x =12x -1+32x 在区间[1,3]上单调递减,故“缓增区间”I 为[1,3].24.(2019·广东名校联考)设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.答案 [0,1)解析 由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其单调递减区间是[0,1).一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2019·福建泉州高三阶段测试)已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1;②当x >0时,f (x )>-1.(1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解 (1)令x =y =0得f (0)=-1. 在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f ((x 1-x 2)+x 2)=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又因为f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.2.(2019·安徽肥东高级中学调研)函数f (x )=2x -ax的定义域为(0,1]. (1)当a =-1时,求函数f (x )的值域;(2)若f (x )在定义域上是减函数,求a 的取值范围.解 (1)因为a =-1,所以函数f (x )=2x +1x ≥22⎝ ⎛⎭⎪⎫当且仅当x =22时,等号成立,所以函数f (x )的值域为[22,+∞).(2)若函数f (x )在定义域上是减函数,则任取x 1,x 2∈(0,1]且x 1<x 2都有f (x 1)>f (x 2)成立, 即f (x 1)-f (x 2)=(x 1-x 2)⎝⎛⎭⎪⎫a +2x 1x 2x 1x 2>0,只要a <-2x 1x 2即可,由x 1,x 2∈(0,1],得-2x 1x 2∈(-2,0),所以a ≤-2,故a 的取值范围是(-∞,-2].3.(2019·湖南永州模拟)已知二次函数f (x )=ax 2+bx +1(a >0),F (x )=⎩⎪⎨⎪⎧f x ,x >0,-fx ,x <0.若f (-1)=0,且对任意实数x 均有f (x )≥0成立.(1)求F (x )的表达式;(2)当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围. 解 (1)因为f (-1)=0,所以a -b +1=0, 所以b =a +1,所以f (x )=ax 2+(a +1)x +1. 因为对任意实数x 均有f (x )≥0恒成立, 所以⎩⎪⎨⎪⎧a >0,Δ=a +12-4a ≤0,所以⎩⎪⎨⎪⎧a >0,a -12≤0.所以a =1,从而b =2,所以f (x )=x 2+2x +1,所以F (x )=⎩⎪⎨⎪⎧x 2+2x +1,x >0,-x 2-2x -1,x <0.(2)g (x )=x 2+2x +1-kx =x 2+(2-k )x +1. 因为g (x )在[-2,2]上是单调函数, 所以k -22≤-2或k -22≥2,解得k ≤-2或k ≥6.故实数k 的取值范围是(-∞,-2]∪[6,+∞).4.(2019·陕西西安长安区大联考)已知定义在区间(0,+∞)上的函数f (x )满足f (x 1·x 2)=f (x 1)+f (x 2),且当x >1时,f (x )>0.(1)求f (1)的值;(2)证明:f (x )为单调增函数;(3)若f ⎝ ⎛⎭⎪⎫15=-1,求f (x )在⎣⎢⎡⎦⎥⎤125,125上的最值. 解 (1)因为函数f (x )满足f (x 1·x 2)=f (x 1)+f (x 2), 令x 1=x 2=1,则f (1)=f (1)+f (1),解得f (1)=0. (2)证明:设x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,所以f ⎝ ⎛⎭⎪⎫x 1x2>0,所以f (x 1)-f (x 2)=f ⎝⎛⎭⎪⎫x 2·x 1x2-f (x 2)=f (x 2)+f ⎝ ⎛⎭⎪⎫x 1x 2-f (x 2)=f ⎝ ⎛⎭⎪⎫x 1x 2>0,所以f (x 1)>f (x 2),所以f (x )在(0,+∞)上是增函数. (3)因为f (x )在(0,+∞)上是增函数.若f ⎝ ⎛⎭⎪⎫15=-1,则f ⎝ ⎛⎭⎪⎫15+f ⎝ ⎛⎭⎪⎫15=f ⎝ ⎛⎭⎪⎫125=-2, 因为f ⎝ ⎛⎭⎪⎫15×5=f (1)=f ⎝ ⎛⎭⎪⎫15+f (5)=0, 所以f (5)=1,则f (5)+f (5)=f (25)=2,f (5)+f (25)=f (125)=3,即f (x )在⎣⎢⎡⎦⎥⎤125,125上的最小值为-2,最大值为3.。
2021届高三数学(文理通用)一轮复习题型专题训练:函数的值域(二)(含解析)

《函数的值域》(二)主要考查内容:主要涉及复杂的函数求值域问题一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数()21xf x x x =++的值域为( )A .11,3⎡⎤-⎢⎥⎣⎦B .11,3⎛⎫- ⎪⎝⎭C .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭D .()1,1,3⎡⎫-∞-+∞⎪⎢⎣⎭2.函数()()2108210x f x x x x +=≤≤++的值域为( )A .11,86⎡⎤⎢⎥⎣⎦B .[]6,8C .11,106⎡⎤⎢⎥⎣⎦D .[]6,103.函数()23f x x =-( )A .3⎡⎤⎣⎦B .[]1,5C .2,3⎡⎣D .3⎡⎣4.函数()1212xxf x -=+的值域为( ) A .()1,1-B .(),1-∞C .()1,+∞D .()0,15.函数()[]()11122,142xx f x x -⎛⎫⎛⎫=-+∈- ⎪ ⎪⎝⎭⎝⎭的值域是( )A .5,104⎛⎤⎥⎝⎦B .[]1,10C .51,4⎡⎤⎢⎥⎣⎦D .5,104⎡⎤⎢⎥⎣⎦6.函数()()22221(31)x x f x x +=+的最大值为()A .19B .18C .16D .147.已知函数()f x =()f x 的值域为() A .[]3,0-B .[]0,3C .[]3,3-D .[]3,128.函数2222x y x -=+的值域是( )A .(1-,1]B .(1,1)-C .[1-,1]D .(2,2)-9.函数2y = )A .[2,2]-B .[1,2]C .[0,2]D .[10.已知=1fx =+,则函数()y f x =的值域为( )A .[)0,+∞B .[)4,+∞C .15,4⎡⎫+∞⎪⎢⎣⎭D .15,44⎡⎤⎢⎥⎣⎦11.函数()f x = ).A B .32C .52D .2二.填空题12.函数222231x x y x x ++=+-的值域为________. 13.函数21()21x xf x 的值域为___________.14.若y =y 的取值范围是________15.函数()|31|x f x =-的定义域是[],a b ,值域是[]2,2a b ()b a >,则a b -=_____.16.函数()f x x =的值域为_______________.三.解答题(解答应写出文字说明、证明过程或演算步骤)17.已知二次函数满足2()(0)f x ax bx c a =++≠,(1)()2,f x f x x +-= 且(0) 1.f =(1)求函数()f x 的解析式(2)求函数()f x 在区间[1,1]-上的值域;18.求下列函数的值域:(1)2y =-(2)235,[2,3]y x x =-∈-;(3)11x y x -=+ (4)2231x y x -=+;(5)|1||3|y x x =++-; (6)212y x x =-++.19.已知函数2()21x x af x +=-是奇函数.(1)求函数()f x 的解析式;(2)设()[()2][()1]g x f x f x =+-,求函数()g x 的值域.20.已知31282x-⎛⎫≤≤ ⎪⎝⎭,函数()32log f x x =+. (1)求函数()f x 的值域;(2)求函数()()22y f x f x =+⎡⎤⎣⎦的最大值.21.已知函数()2426xx f x +=--.(1)求()f x 的值域;(2)[]0,2x ∈时,关于x 的不等式()0f x a -≥有解,求实数a 的取值范围.22.已知函数243()1x x af x x -++=-,其中a 为常数;(1)当2a =时,解不等式()1f x ≥;(2)当0a <时,求函数()f x 在(1,3]x ∈上的值域;《函数的值域》(二)解析1.【解析】当0x ≠时,有()21111x f x x x x x ==++++,又因为当0x >时,12x x +≥= ,则11113,131x x x x++≥≤++, 反之当0x <时,12x x+≤-,则1111,111x x x x ++≤-≥-++, 当0x =时,()0f x =有意义,取并集得:111131x x-≤≤++,即()113f x -≤≤, 所以()f x 的值域为11,3⎡⎤-⎢⎥⎣⎦.故选:A.2.【解析】令1()()g x f x =,22210(1)99()(1)111x x x g x x x x x ++++===+++++, 令1t x =+,则[1,9]t ∈,原函数化为9(19)y t t t=+≤≤, 该函数在[1,3]上为减函数,在[3,9]上为增函数,又当1t =时,10y =,当3t =时,6y =,当9t =时,10y =.∴函数2210(),(08)1x x g x x x ++=≤≤+的值域为[]6,10,则函数()()2108210x f x x x x +=≤≤++的值域为11,106⎡⎤⎢⎥⎣⎦.故选:C . 3.【解析】由()232x 3f x x =-=-2680x x -+-≥,解得[]2,4.x ∈令t 23x =-23x t =--.,即为y =y 23x t =--两函数图象有交点,作出函数图象,如图所示:由图可知,当直线和半圆相切时t 最小,当直线过点A(4,0)时,t 最大.1=,解得3t =3t =-当直线过点A(4,0)时,2430t ⨯--=,解得t 5=.所以t 3⎡⎤∈⎣⎦,即() 3f x ⎡⎤∈⎣⎦.故选A.4.【解析】()1212xxf x -=+2112x =-++, 因为20x >,所以121x +>,20212x <<+,211112x-<-+<+. ∴()f x 的值域是(1,1)-.故选:A. 5.【解析】设11(),[2,1],[,4]22xt x t =∈-∴∈,22()22(1)1f x t t t =-+=-+,当1t =时,min ()1f x =,当4t =时,max ()10f x =,函数()[]()11122,142x x f x x -⎛⎫⎛⎫=-+∈- ⎪ ⎪⎝⎭⎝⎭的值域是[1,10],选B.6.【解析】设231t x =+,则1t ≥,且213t x -=, 则函数()2221121113393t t t t t f x t t --⎛⎫-+-⋅++ ⎪⎝⎭== 222222221332112111921111[2)()999948948t t t t t t t t t t t -++-+-⎛⎫⎛⎤===+-=---=--+ ⎪ ⎥⎝⎭⎝⎦ 1t ≥,101t ∴<≤,则当114t =时,函数取得最大值为18,此时4t =,即2314x +=,1x =±时,取等号,故选B .7.【解析】由12030x x -≥⎧⎨-≥⎩,得312x ≤≤,即函数的定义域为[3,12],又观察得函数y y ==[3,12]上递减,所以函数()f x =在[3,12]上递减,所以函数的最大值为(3)3f =,最小值为(12)3f =-, 即函数的值域为[3,3]-,故选:C .8.【解析】22222222224412222x x x y x x x x --+-==-=-=-+++++,222x +,211022x ∴<+,则24022x <+,241112x ∴-<-++. 即函数2222x y x-=+的值域是(1-,1].故选:A . 9.【解析】定义域应满足240x x -+≥,即04,22x y ≤≤==-,∴当2x =时,min 0y =;当0x =或4时,max 2y =,所以函数的值域为[]0,2,故选C. 10.【解析】设0t =≥,则23x t=+,由=1fx =可得()24f t t t =++,所以,函数()y f x =的解析式为()24f x x x =++,其中0x ≥.()211524f x x ⎛⎫=++ ⎪⎝⎭,则该函数在[)0,+∞上单调递增,则()()min 04f x f ==.因此,函数()y f x =的值域为[)4,+∞,故选B.11.【解析】因为202020x x x x ≥⎧⎪-≥⎨⎪-≥⎩,所以[]0,2x ∈,即()f x 定义域为[]0,2;t=且22t=+[]2222,4t =+=+,所以2t ⎤∈⎦,所以()()222132442t f x t t -=-+=--+,当且仅当2t =时()f x 有最大值32,当2t =2=,所以1x =满足;故选:B.12.【解析】2222235211x x y x x x x ++==++-+-, 因为221551244x x x ⎛⎫+-=+-- ⎪⎝⎭,所以21415x x ≤-+-或2101x x >+-, 则25221x x +≤-+-或25221x x +>+-,即(,2](2,)y ∈-∞-⋃+∞. 故答案为:(,2](2,)-∞-⋃+∞13.【解析】212212121x x xy +-==-++, x R ∈,20x ∴>,20221x ∴<<+,211121x∴-<-<+, ∴函数的值域为(1,1)-,故答案为:(1,1)-.14.【解析】:因为y =所以401830x x -≥⎧⎨-≥⎩解得46x ≤≤,令242sin x t =+,0,2t π⎡⎤∈⎢⎥⎣⎦则y t t ==3t π⎛⎫=+ ⎪⎝⎭,所以3y t π⎛⎫=+ ⎪⎝⎭,因为0,2t π⎡⎤∈⎢⎥⎣⎦,所以5,336t πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以1sin ,132t π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦所以y ∈15.【解析】由题意,函数()31xf x =-的值域为[]2,2a b ,所以0b a >≥,而函数()31xf x =-在[0,)+∞上是单调递增函数,所以满足312312a b a b⎧-=⎪⎨-=⎪⎩,解得0101a b =⎧⎨=⎩或或,因为b a >,所以0,1a b ==,所以1a b -=-.16.【解析】设y x =+,则y x -=所以2223y xy x y ≥⎧⎪-⎨=⎪-⎩,即2223y y y -≥- 整理得232023y y y -+≥-. 解得312y ≤<或2y ≥ ,故答案为: 3[1,)[2,)2+∞. 17.【解析】(1)因为()01f =,所以1c =,所以()()210f x ax bx a =++≠; 又因为()()12f x f x x +-=,所以()()()2211112a x b x ax bx x ⎡⎤++++-++=⎣⎦,所以22ax a b x ++=,所以220a a b =⎧⎨+=⎩,所以11a b =⎧⎨=-⎩,即()21f x x x =-+;(2)因为()21f x x x =-+,所以()f x 对称轴为12x =且开口向上, 所以()f x 在11,2⎡⎫-⎪⎢⎣⎭递减,在1,12⎡⎤⎢⎥⎣⎦递增,所以()min 111312424f x f ⎛⎫==-+= ⎪⎝⎭, 又()()211113f -=-++=,()211111f =-+=,所以()max 3f x =,所以()f x 在[]1,1-上的值域为:3,34⎡⎤⎢⎥⎣⎦. 18.【解析】(1)211,1,1x +≥≥≤-,21y =-≤∴,函数2y =-(,1]-∞;(2)235,[2,3]y x x =-∈-,当[2,0]x ∈-时单调递减,当[0,3]x ∈时单调递增,min max 0,5,3,22x y x y ∴==-==, 所以函数235,[2,3]y x x =-∈-的值域是[5,22]-;(3)1221,0,1111x y y x x x -==--≠∴≠+++, 所以函数11x y x -=+的值域是(,1)(1,)-∞⋃+∞;(4)222223441,11,40111x y x x x x -==-+≥∴-≤-<+++ 243111x -≤-<+,所以函数2231x y x -=+值域是[3,1)-;(5)|1||3|y x x =++-,当1x ≤-时,224y x =-+≥, 当13x -<≤时,4y =,当3,224x y x >=->, 所以函数|1||3|y x x =++-的值域是[4,)+∞; (6)212y x x =-++定义域为{|1x x ≠-且2}x ≠, 2211192()24y x x x ==-++--+,219()024x --+<∴或21990()244x <--+≤,0y ∴<或49y ≥,所以函数212y x x =-++的值域是4(,0),9⎡⎫-∞⋃+∞⎪⎢⎣⎭.19.【解析】(1)由于()f x 为奇函数,所以()()f x f x -=-,()()0f x f x -+=,即2202121x x x x a a--+++=--,12201221x x x x a a +⋅++=--,()()1212120212121xx x x x xa a a a -+-++⋅-==---,()()1210xa a -+-=, 所以1a =.所以()()21021x x f x x +=≠-.(2)由(1)得()2121221212121x x x x xf x +-+===+---, 所以()[()2][()1]g x f x f x =+-()22302121x xx ⎛⎫=+⋅≠ ⎪--⎝⎭,令()2021x t x =≠-,由于211x ->-且210x -≠,所以2221x t =<--或2021xt =>-.则()g x 的表达式变为 ()22393324y t t t t t ⎛⎫=+⋅=+=+- ⎪⎝⎭,其中2t <-或0t >,二次函数的对称轴为32t =-,开口向上,()()22322-+⨯-=-,所以232y t t =+>-,也即()g x 的值域为()2,-+∞.20.【解析】(1)9222x ≤≤,19x ∴≤≤,由于函数()f x 在区间[1,9]上单调递增则2min 3max 3()(1)2log 12,()(9)2log 34f x f f x f ==+===+=故函数()f x 的值域为[2,4](2)()()222233[()]2log log 2y f x f x x x =+=+++()()22333log 6log 6log 33x x x =++=+-函数()f x 的定义域为[1,9]()22[()]y f x f x ∴=+中的x 必须满足21919x x ⎧⎨⎩,解得13x 30log 1x ∴,613y ∴,∴当3x =时,y 取最大值,最大值为132021届高三一轮复习题型专题训练- 11 -21.【解析】()1()()22426xx f x =-⨯- 令()20x t t =>,则()()22462100y t t t t =--=-->,当2t =时,即1x =,有最小值10min y =-,值域为[10,)-+∞.()2当02x ≤≤时,02222x ≤≤,即14t ≤≤当4t =时,即2x =,有最大值6max y =-,所以6a ≤-.22.【解析】(1)2a =,不等式()1f x ≥即为24511x x x -+≥-, 化简为(1)(2)(3)0x x x ---≥且1x ≠,所以不等式的解集为:(1,2][3,)+∞;(2)当0a <时,243()311x x a a f x x x x -++==-+--, 又3y x =-在(1,3]上为增函数,1a y x =-在(1,3]上也增函数, 则()31a f x x x =-+-为增函数, 又(3)33312a a f =-+=-,当1x →时,()f x →-∞, 所以()f x 在(1,3]x ∈的值域为(,]2a -∞.。
高三文科数学一轮复习第二节函数的值域与解析式

第二节 函数的值域与解析式1.函数的值域在函数y =f (x )中,与自变量x 的值相对应的y 的值叫函数值,函数值的集合叫函数的值域.求函数的值域与最值没有通性通法,只能根据函数解析式的结构特征来选择对应的方法求解,常见的有:(1)形如y =ax +b cx +d(c ≠0)的函数,可用分离常数法,将函数化为y =a c +m cx +d(其中m 为常数)形式. (2)形如y =a x +b a x +c 或y =sin x -1sin x +2的函数可用反解法. (3)二次函数y =ax 2+bx +c (a ≠0)及二次型函数y =a [f (x )]2+b [f (x )]+c (a ≠0)可用配方法及换元法.(4)形如y =ax +b ±cx +d (a ,b ,c ,d 为常数,ac ≠0)的函数,可用换元法. 设cx +d =t (t ≥0),转化为二次函数求值域.(5)形如y =x +k x (k >0,x >0)的函数可用均值不等式法或函数单调性求解,注意使用均值不等式时要满足条件“一正二定三相等”.(6)对于分段函数或含有绝对值符号的函数(如y =|x -1|+|x +4|)可用分段求值域(最值)或数形结合法.[温馨提示] (1)熟记基本初等函数的值域①y =kx +b (k ≠0)的值域是R .②y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞;当a <0时,值域为⎝⎛⎦⎥⎤-∞,4ac -b 24a .③y =k x (k ≠0)的值域是{y |y ∈R 且y ≠0}.④y =a x (a >0且a ≠1)的值域是(0,+∞).⑤y =log a x (a >0且a ≠1)的值域是R .⑥y =sin x ,y =cos x 的值域是[-1,1].⑦y =tan x 的值域是R .(2)利用配方法、判别式法、基本不等式求值域时,一定注意等号是否成立,必要时注明“=”成立的条件.2.函数解析式的求法(1)换元法:若已知f []g (x )的表达式,求f (x )的解析式,通常是令g (x )=t ,从中解出x =φ(t ),再将g (x )、x 代入已知解析式求得f (t )的解析式,即得函数f (x )的解析式,这种方法叫做换元法,需注意新设变量“t ”的范围.(2)待定系数法:若已知函数类型,可设出所求函数的解析式,然后利用已知条件列方程(组),再求系数.(3)消去法:若所给解析式中含有f (x )、f ⎝ ⎛⎭⎪⎫1x 或f (x )、f (-x )等形式,可构造另一个方程,通过解方程组得到f (x ).(4)配凑法或赋值法:依据题目特征,能够由一般到特殊或由特殊到一般寻求普遍规律,求出解析式.[小题速练]1.(2018·河南平顶山模拟)已知函数f (x )=2x +1(1≤x ≤3),则( )A .f (x -1)=2x +2(0≤x ≤2)B .f (x -1)=2x -1(2≤x ≤4)C .f (x -1)=2x -2(0≤x ≤2)D .f (x -1)=-2x +1(2≤x ≤4)[解析] 因为f (x )=2x +1,所以f (x -1)=2x -1.因为函数f (x )的定义域为[1,3],所以1≤x -1≤3,即2≤x ≤4,故f (x -1)=2x -1(2≤x ≤4).选B.[答案] B2.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( )A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x[解析] 用待定系数法,设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧ a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧ a =3,b =-2,c =0,∴g (x )=3x 2-2x ,选B.[答案] B3.函数f (x )=33x -3的值域为( ) A .(-∞,-1)B .(-1,0)∪(0,+∞)C .(-1,+∞)D .(-∞,-1)∪(0,+∞) [解析] 由3x -3≠0,得x ≠1,所以3x -3>-3且3x -3≠0.当-3<3x -3<0时,33x -3<-1;当3x -3>0时,33x -3>0.故f (x )的值域为(-∞,-1)∪(0,+∞).[答案] D4.已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )=________. [解析] 令2x +1=t ,则x =2t -1,∴f (t )=lg 2t -1. ∴f (x )=lg 2x -1,x ∈(1,+∞). [答案] lg 2x -1,x ∈(1,+∞) 5.函数y =x 2+2x 在x ∈[0,3]时的值域为________.[解析] y =x 2+2x =(x +1)2-1,y =(x +1)2-1在[0,3]上为增函数,∴0≤y ≤15,即函数y =x 2+2x 在x ∈[0,3]的值域为[0,15].[答案] [0,15]考点一 求函数的值域——基础考点求下列函数的值域:(1)y =x -3x +1; (2)y =x -1-2x ;(3)y =x 2+x +1x +1; (4)y =log 3x +log x 3-1.[思路引导] (1)分离常数法.(2)换元法,令1-2x =t (t ≥0)转化为二次函数的值域或利用函数单调性求最值.(3)去分母,转化为关于x 的二次方程,利用判别式“Δ”求y 的取值范围.(4)均值不等式.[解] (1)y =x -3x +1=x +1-4x +1=1-4x +1. 因为4x +1≠0,所以1-4x +1≠1, 即函数的值域是{y |y ∈R ,y ≠1}.(2)解法一:令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎩⎨⎧y ⎪⎪⎪⎭⎬⎫y ≤12. 解法二:函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12,所以y ≤f ⎝ ⎛⎭⎪⎫12=12,即函数的值域是⎩⎨⎧ y ⎪⎪⎪⎭⎬⎫y ≤12. (3)x ≠-1且由已知得x 2+(1-y )x +1-y =0(*)方程有解,∴Δ=(1-y )2-4(1-y )≥0,即y 2+2y -3≥0解得y ≥1或y ≤-3由x =-1不满足(*)∴函数的值域为(-∞,-3]∪[1,+∞)(4)函数定义域为{x |x ∈R ,x >0,且x ≠1}.当x >1时,log 3x >0,于是y =log 3x +1log 3x -1≥2 log 3x ·1log 3x -1=1;当0<x <1时,log 3x <0,于是y =log 3x +1log 3x -1=-⎣⎢⎡⎦⎥⎤(-log 3x )+⎝ ⎛⎭⎪⎫1-log 3x -1≤-2-1=-3.故函数的值域是(-∞,-3]∪[1,+∞).[拓展探究] (1)若本例中(1)变为y =x -3x +1,x ∈[1,+∞)时,其值域如何求?(2)若本例中(3)变为y =x 2+x +1x +1(x >-1)其值域如何求? (3)若本例中(3)变为y =x 2+4x +1x 2+1,则其值域是________. [解析] (1)y =x -3x +1=1-4x +1, ∵函数y =1-4x +1在[1,+∞)上是增函数, ∴y ≥1-41+1=-1,故该函数的值域为[-1,+∞). (2)y =x 2+x +1x +1=(x +1)+1x +1-1,当x >-1时,(x +1)+1x +1≥2,y ≥1,当且仅当x +1=1x +1,即x =0时取等号. (3)由原函数整理得(1-y )x 2+4x +1-y =0.当1-y =0,即y =1时,x =0;当1-y ≠0,即y ≠1时,Δ=16-4(1-y )2≥0,即(1-y )2≤4, 解得-1≤y ≤3,所以-1≤y ≤3且y ≠1.综上,所求函数的值域为[-1,3].[答案] (1)[-1,+∞) (2)[1,+∞) (3)[-1,3](1)求函数值域,一定要注意到函数的定义域;(2)利用换元法时,要及时确定新变量的取值范围;(3)本例中(3)及拓展探究(3)均用了判别式“Δ”法,此方法适用y =ax 2+bx +c px 2+qx +r(ap ≠0,x ∈R )类型(即f (x )是分式函数且分子或分母至少有一个二次式,且没有公因式.解此类问题一定要检验所求最值,在定义域内是否有对应的x 值,还要注意对二次项系数是否为零的讨论),但若给定x 一个范围,则此方法不再适用,可考虑转化为其他方法求解,即拓展探究(2).[跟踪演练]1.函数y =5x -14x +2,x ∈[-3,-1]的值域为__________. [解析] 由y =5x -14x +2可得y =54-74(2x +1).∵-3≤x ≤-1,∴720≤-74(2x +1)≤74,∴85≤y ≤3,即y ∈⎣⎢⎡⎦⎥⎤85,3. [答案] y ∈⎣⎢⎡⎦⎥⎤85,3 2.函数y =2x +1-2x 的值域为__________.[解析] (代数换元法)令t =1-2x ,则x =1-t 22.∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54(t ≥0). ∴当t =12,即x =38时,y 取最大值,y max =54,且y 无最小值,∴函数的值域为⎝⎛⎦⎥⎤-∞,54. [答案] ⎝ ⎛⎦⎥⎤-∞,54 3.函数y =2-sin x 2+sin x的值域为________.[解析] 解法一:y =2-sin x 2+sin x =-1+42+sin x,因为-1≤sin x ≤1,所以1≤2+sin x ≤3,所以43≤42+sin x ≤4,所以13≤-1+42+sin x≤3,故函数的值域为⎣⎢⎡⎦⎥⎤13,3. 解法二:由已知得sin x =2-2y 1+y ,∵sin ∈[-1,1],∴-1≤2-2y 1+y≤1,即⎝ ⎛⎭⎪⎫2-2y 1+y 2≤1,解得13≤y ≤3. [答案] ⎣⎢⎡⎦⎥⎤13,3 4.函数y =|x +1|+|x -2|的值域为________.[解析] y =|x +1|+|x -2|=⎩⎪⎨⎪⎧ -2x +1,x <-1,3,-1≤x ≤2,2x -1,x >2当x <-1时,y >3;当x >2时,y >3,故函数的值域为[3,+∞).[答案] [3,+∞)考点二 求函数的解析式——冷考点求下列函数的解析式:(1)已知f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x ). (2)已知f (1-cos x )=sin 2x ,求f (x )的解析式.(3)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ).(4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1,求f (x ).[思路引导] (1)观察x +1x 与x 2+1x 2的关系.(2)令t =1-cos x ,换元法求f (t ).(3)待定系数法,令f (x )=ax +b (a ≠0).(4)用1x 代替式中x ,解方程组求f (x ).[解] (1)∵f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2, 又x +1x ≥2或x +1x ≤-2.∴f (x )=x 2-2(x ≥2或x ≤-2).(2)∵f (1-cos x )=sin 2x =1-cos 2x ,设1-cos x =t (0≤t ≤2),则cos x =1-t ,∴f (t )=1-(1-t )2=-t 2+2t .故f (x )=-x 2+2x (0≤x ≤2).(3)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. (4)在f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中,用1x 代替x , 得f ⎝ ⎛⎭⎪⎫1x =2f (x )x -1,将f ⎝ ⎛⎭⎪⎫1x =2f (x )x -1代入f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中,得f (x )=23x +13.本例中(1)看出x +1x 与x 2+1x 2之间的关系,若令t =x +1x ,则用t表示x 并不好表示,即换元法不易求f (x ),而用配凑法却易找到关系,同时注意到x +1x 的范围.本例(2)适宜用换元法.求函数解析式的3种方法:(1)配凑法、换元法:已知f [g (x )]的解析式求f (x ),可考虑配凑或换元法.(2)待定系数法:如本例中(3),一般已知所求函数的类型或具体形式可用此法.(3)解方程组法:如本例中(4),只适用于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (x )与f (-x )类型的表达式,代换后通过解方程组求出f (x ),这种方法有局限性.[跟踪演练]1.已知f (x +1)=x +2x ,求f (x ).[解] ∵f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,∴f (x )=x 2-1(x ≥1).2.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,试求f (x )的表达式.[解] 设f (x )=ax 2+bx +c (a ≠0),由f (0)=0知c =0,f (x )=ax 2+bx .又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,故有⎩⎪⎨⎪⎧ 2a +b =b +1,a +b =1,⇒a =b =12.因此,f (x )=12x 2+12x .3.定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.[解] 当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① -x ∈(-1,1),以-x 代替x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).考点三 函数的综合问题——热考点(1)(2015·山东卷)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.(2)设f (x )=⎩⎨⎧(x -a )2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2][思路引导] (1)利用指数函数的单调性→建立关于a ,b的方程组→解出a ,b(2)分别求出每一段的最小值→比较最小值列式→求出a 的范围[解析] (1)当a >1时,函数f (x )=a x +b 在[-1,0]上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,无解.当0<a <1时,函数f (x )=a x +b 在[-1,0]上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎨⎧a =12,b =-2,所以a +b=-32.(2)由函数f (x )的解析式,得f (0)=a 2;当x ≤0时,f (x )≥0;当x >0时,f (x )≥2+a .∵f (0)是f (x )的最小值,∴a 2≤a +2,且a ≥0.解得0≤a ≤2.[答案] (1)-32 (2)D(1)对定义域、值域的综合问题,要注意定义域对函数值域的限制作用.即在定义域内用相应方法求值域.(2)若解析式中含有参数,要注意参数对函数值域的 影响,即要考虑分类讨论.(3)解题时要注意数形结合思想的应用,即借助图象确定函数的值域.[跟踪演练](2018·广东深圳调研)设函数f (x )=⎩⎪⎨⎪⎧2x +a ,x >2,x +a 2,x ≤2.若f (x )的值域为R ,则常数a 的取值范围是( )A .(-∞,-1]∪[2,+∞)B .[-1,2]C .(-∞,-2]∪[1,+∞)D .[-2,1][解析] 因为f (x )的值域是R ,且两段函数都是递增函数,所以4+a ≤2+a 2,解得a ≤-1或a ≥2,故选A.[答案] A利用几何意义或导数法求函数的值域素养解读:函数的值域或最值及其求法是近几年高考考查的重点内容之一.函数的值域是函数在定义域内对应的函数值的取值范围,其求解关键是确定相应的最值.因此,求解函数的值域时要求出定义域内的所有极值和端点处的函数值,并进行比较,得到函数的最值.在高考中主要考查求解函数的值域问题,从而带动对函数的最值等相关问题的考查,其应用广泛,综合性强,且解法灵活多变.在实际求解中,各种方法往往可以相互渗透,也可以多法并举.下面就几何法及导数法进行一简单介绍,后面要继续学习.(1)函数f (x )=sin x 2-cos x的值域是( )A.⎣⎢⎡⎦⎥⎤-33,33B .[-1,1]C .[-2,2]D .[-3,3](2)求函数f (x )=ln(1+x )-14x 2在[0,2]上的值域.[切入点] (1)根据式子的结构特点联想其几何意义,数形结合求解.(2)对于含有对数式的函数的值域问题,利用导数求解即可.[关键点] (1)转化为斜率型函数值域问题.(2)准确求导,利用导数求最值.[规范解答] (1)可以看成过A (2,0),B (cos x ,-sin x )两点直线的斜率,B 点在单位圆上运动.如图:易求得k 1=33,k 2=-33.∴y ∈⎣⎢⎡⎦⎥⎤-33,33.(2)由题意知,函数f (x )的定义域为(-1,+∞), 又f ′(x )=11+x -12x =(1-x )(x +2)2(1+x ),令f ′(x )=0,可得x =1或x =-2(舍去).当0≤x <1时,f ′(x )>0,f (x )单调递增;当1<x ≤2时,f ′(x )<0,f (x )单调递减.所以f (1)=ln2-14为函数f (x )在[0,2]上的最大值.又f (0)=0,f (2)=ln3-1>0,所以f (0)=0为函数f (x )在[0,2]上的最小值,故函数f (x )=ln(1+x )-14x 2在[0,2]上的值域为⎣⎢⎡⎦⎥⎤0,ln2-14.[答案] (1)A (2)⎣⎢⎡⎦⎥⎤0,ln2-14(1)几何法求值域步骤(2)求导法可以用来处理高次函数(大于等于三次)、分式函数或含有对数式的函数等相对比较复杂的函数的值域或最值问题,其关键是正确求导,利用导数与单调性的关系来求最值或值域.[感悟体验]1.函数f (x )=x 2-2x +2+x 2-4x +8的值域为________. [解析] f (x )=(x -1)2+(0-1)2+(x -2)2+(0+2)2表示x 轴上的动点P (x,0)与两定点A (1,1)和B (2,-2)的距离之和.由图可知,|P A |+|PB |≥|AB |.|AB |=10,故函数f (x )的值域为[10,+∞). [答案] [10,+∞)2.(2017·天津红桥区二模)试求函数f (x )=ln x -12x 2在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值.[解] 由于f ′(x )=1x -x =1-x 2x ,1e ≤x ≤e.令f ′(x )>0,得1e ≤x <1;令f ′(x )<0,得1<x ≤e.故f (x )在⎣⎢⎡⎭⎪⎫1e ,1上单调递增,在(1,e]上单调递减,故f (x )max =f (1)=-12.课时跟踪训练(五)[基础巩固]一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,f (x -3),x >0,则f (5)=( )A .32B .16 C.12D.132[解析] f (5)=f (5-3)=f (2)=f (2-3)=f (-1)=2-1=12,故选C. [答案] C2.(2018·烟台模拟)函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( )A .(-∞,0)∪⎝ ⎛⎦⎥⎤12,2B .(-∞,2] C.⎝ ⎛⎭⎪⎫-∞,12∪[2,+∞) D .(0,+∞)[解析] ∵x ∈(-∞,1)∪[2,5), 则x -1∈(-∞,0)∪[1,4). ∴2x -1∈(-∞,0)∪⎝ ⎛⎦⎥⎤12,2.[答案] A3.(2017·北京东城第一学期联考)若函数f (sin x )=3-cos2x ,则f (cos x )=( )A .3-cos2xB .3-sin2xC .3+cos2xD .3+sin2x[解析] f (sin x )=3-cos2x =2+2sin 2x ,所以f (cos x )=2+2cos 2x =3+cos2x .[答案] C4.下列函数中,值域是(0,+∞)的是( ) A .y =15-+1B .y =⎝ ⎛⎭⎪⎫12x-1 C .y =⎝ ⎛⎭⎪⎫131-xD .y =1-2x[解析] A 项,因为5-x +1>1,所以函数值域为(0,1);B 、D 项的函数值域为[0,+∞);C 项,因为1-x ∈R ,根据指数函数的性质可知函数的值域为(0,+∞),故选C.[答案] C5.已知f ⎝⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( ) A .(x +1)2 B .(x -1)2 C .x 2-x +1D .x 2+x +1[解析] f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =⎝ ⎛⎭⎪⎫x +1x 2-x +1x +1,令x +1x =t ,得f (t )=t 2-t +1,即f (x )=x 2-x +1.[答案] C6.(2018·江西临川一中月考)若函数y =ax 2+2ax +3的值域为[0,+∞),则a 的取值范围是( )A .(3,+∞)B .[3,+∞)C .(-∞,0]∪[3,+∞)D .(-∞,0)∪[3,+∞)[解析] 令f (x )=ax 2+2ax +3,∵函数y =ax 2+2ax +3的值域为[0,+∞),∴f (x )=ax 2+2ax +3的函数值取遍所有的非负实数,∴a 为正实数,∴该函数图象开口向上,∴只需ax 2+2ax +3=0的判别式Δ=(2a )2-12a ≥0,即a 2-3a ≥0,解得a ≥3或a ≤0(舍去).故选B.[答案] B 二、填空题7.函数y =1-x2x +5的值域为________.[解析] y =1-x 2x +5=-12(2x +5)+722x +5=-12+722x +5.∵722x +5≠0,∴y ≠-12, ∴函数y =1-x 2x +5的值域为⎩⎨⎧⎭⎬⎫y |y ≠-12. [答案] ⎩⎨⎧⎭⎬⎫y |y ≠-128.已知f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2,则f (3)=________.[解析] ∵f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x -1x 2+2(x ≠0),∴f (x )=x 2+2,∴f (3)=32+2=11.[答案] 119.若函数y =log 2(ax 2+2x +1)的值域为R ,则a 的取值范围为________.[解析] 设f (x )=ax 2+2x +1,由题意知, f (x )取遍所有的正实数.当a =0时, f (x )=2x +1符合条件;当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ=4-4a ≥0,解得0<a ≤1.所以0≤a ≤1. [答案] [0,1] 三、解答题10.求下列函数的值域: (1)y =1-x 21+x 2;(2)y =-2x 2+x +3; (3)y =x +1x +1; (4)y =x +4-x 2.[解] (1)y =1-x 21+x 2=-1-x 2+21+x 2=-1+21+x 2.由1+x 2≥1,得0<21+x 2≤2,所以-1<-1+21+x 2≤1.故函数的值域为(-1,1]. (2)y =-2x 2+x +3=-2⎝ ⎛⎭⎪⎫x -122+258. 由0≤-2⎝⎛⎭⎪⎫x -122+258≤258,得0≤y ≤524.故函数的值域为⎣⎢⎡⎦⎥⎤0,524. (3)当x >0时,x +1x ≥2,当且仅当x =1时取等号,所以x +1x +1≥3;当x <0时,x +1x =-⎝ ⎛⎭⎪⎫-x +1-x ≤-2,当且仅当x =-1时取等号,所以x +1x +1≤-1. 故函数的值域为(-∞,-1]∪[3,+∞). (4)设x =2cos θ(0≤θ≤π),则y =x +4-x 2 =2cos θ+4-4cos 2θ=2cos θ+2sin θ =22sin ⎝⎛⎭⎪⎫θ+π4由0≤θ ≤π,得π4≤θ+π4≤5π4,所以-22≤sin ⎝ ⎛⎭⎪⎫θ+π4≤1,-2≤y ≤22, 故函数的值域为[-2,22].[能力提升]11.下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x[解析] 选项A ,f (2x )=|2x |=2|x |,2f (x )=2|x |,故f (2x )=2f (x );选项B ,f (2x )=2x -|2x |=2x -2|x |,2f (x )=2x -2|x |,故f (2x )=2f (x );选项C ,f (2x )=2x +1,2f (x )=2x +2,故f (2x )≠2f (x );选项D ,f (2x )=-2x,2f (x )=-2x ,故f (2x )=2f (x ).故选C.[答案] C12.已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1] B.⎝ ⎛⎭⎪⎫-1,12 C.⎣⎢⎡⎭⎪⎫-1,12 D.⎝ ⎛⎭⎪⎫0,12 [解析] 因为当x ≥1时, f (x )=ln x ≥0, f (x )的值域为R ,所以当x <1时,f (x )=(1-2a )x +3a 的值域包含一切负数.当a =12时,(1-2a )x +3a =32不成立;当a >12时,(1-2a )x +3a >1+a ,不成立;当a <12时,(1-2a )x +3a <1+a .由1+a ≥0,得a ≥-1.所以-1≤a <12.故选C.[答案] C13.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于__________.[解析] 由已知得1⊕x =⎩⎪⎨⎪⎧1 -2≤x ≤1,x2 1<x ≤2,当x ∈[-2,2]时,2⊕x =2,∴f (x )=⎩⎪⎨⎪⎧x -2,-2≤x ≤1,x 3-2,1<x ≤2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.[答案] 614.(2013·安徽卷)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________________.[解析] 当-1≤x ≤0时,有0≤x +1≤1,所以f (1+x )=(1+x )[1-(1+x )]=-x (1+x ),又f (x +1)=2f (x ),所以f (x )=12f (1+x )=-x (x +1)2.[答案] -x (x +1)215.已知函数f (x )=(1-a 2)x 2+3(1-a )x +6. (1)若f (x )的定义域为R ,求实数a 的取值范围; (2)若f (x )的值域为[0,+∞),求实数a 的取值范围. [解] (1)①若1-a 2=0,即a =±1,(ⅰ)当a =1时,f (x )=6,定义域为R ,符合要求; (ⅱ)当a =-1时, f (x )=6x +6,定义域不为R .②若1-a 2≠0,g (x )=(1-a 2)x 2+3(1-a )x +6为二次函数, ∵f (x )的定义域为R ,∴g (x )≥0,∀x ∈R 恒成立,∴⎩⎪⎨⎪⎧1-a 2>0,Δ=9(1-a )2-24(1-a 2)≤0 ⇔⎩⎪⎨⎪⎧-1<a <1,(a -1)(11a +5)≤0⇒-511≤a <1. 综合①②得a 的取值范围是⎣⎢⎡⎦⎥⎤-511,1.(2)∵函数f (x )的值域为[0,+∞),∴函数g (x )=(1-a 2)x 2+3(1-a )x +6取一切非负实数,①当1-a 2≠0时有⎩⎪⎨⎪⎧1-a 2>0,Δ=9(1-a )2-24(1-a 2)≥0 ⇔⎩⎪⎨⎪⎧-1<a <1,(a -1)(11a +5)≥0⇒-1<a ≤-511. ②当1-a 2=0时a =±1,当a =1时,f (x )=6不合题意. 当a =-1时,f (x )=6x +6的值域为[0,+∞),符合题目要求.故所求实数a 的取值范围为⎣⎢⎡⎦⎥⎤-1,-511. 16.已知二次函数f (x )=ax 2+bx (a 、b 是常数,且a ≠0)满足条件:f (2)=0,且方程f (x )=x 有两个相等实根.(1)求f (x )的解析式;(2)是否存在实数m 、n (m <n ),使f (x )的定义域和值域分别为[m ,n ]和[2m,2n ]?如存在,求出m 、n 的值;如不存在,说明理由.[解] (1)方程f (x )=x ,即ax 2+bx =x , 亦即ax 2+(b -1)x =0,由方程有两个相等实根,得Δ=(b -1)2-4a ×0=0, ∴b =1.①由f (2)=0,得4a +2b =0,②由①、②得,a =-12,b =1,故f (x )=-12x 2+x . (2)假设存在实数m 、n 满足条件,由(1)知, f (x )=-12x 2+x =-12(x -1)2+12≤12, 则2n ≤12,即n ≤14.∵f (x )=-12(x -1)2+12的对称轴为x =1, ∴当n ≤14时,f (x )在[m ,n ]上为增函数.于是有⎩⎪⎨⎪⎧f (m )=2m ,f (n )=2n ,即⎩⎪⎨⎪⎧-12m 2+m =2m ,-12n 2+n =2n ,∴⎩⎪⎨⎪⎧m =-2或m =0,n =-2或n =0. 又m <n ≤14,∴⎩⎪⎨⎪⎧m =-2,n =0.故存在实数m =-2,n =0,使f (x )的定义域为[m ,n ],值域为[2m,2n ].[延伸拓展]设f (x ),g (x )都是定义在实数集上的函数,定义函数(f ·g )(x ):∀x∈R ,(f ·g )(x )=f [g (x )].若f (x )=⎩⎪⎨⎪⎧ x ,x >0,x 2,x ≤0,g (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,则( )A .(f ·f )(x )=f (x )B .(f ·g )(x )=f (x )C .(g ·f )(x )=g (x )D .(g ·g )(x )=g (x )[解析] 对于A ,(f ·f )(x )=f [f (x )]=⎩⎪⎨⎪⎧f (x ),f (x )>0,f 2(x ),f (x )≤0,当x >0时,f (x )=x >0,(f ·f )(x )=f (x )=x ;当x <0时,f (x )=x 2>0,(f ·f )(x )=f (x )=x 2;当x =0时,(f ·f )(x )=f 2(x )=0=02,因此对任意的x ∈R ,有(f ·f )(x )=f (x ),故A 正确,选A.[答案] A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学案函数值域和最值(二)
一、课前准备:
【自主梳理】.求函数的值域或最值不能只看解析式,要重视定义域对值域的影响.
.会把稍复杂函数的值域转化为基本函数求值域,转化的方法是化简变形,换元等方法..数形结合是求值域的重要思想,能画图像的尽量画图,可直观看出函数最值.
【自我检测】
.函数的定义域为,则其值域为.
.定义在上的函数的值域为,则的值域为.
.的值域为.
.的值域为.
.的值域为.
.的值域为.
二、课堂活动:
【例】求下列函数的值域:
..
..
..
.若函数的定义域和值域均为,则的值.
【例】求函数的值域
【例】用表示三个数中的最小值,
设
求的最大值.
三、课后作业
.已知,的值域为,则的范围是..函数的值域为.
.已知定义在
上的函数的值域为,则的值域为.
.函数值域为.
.函数在区间上最大值比最小值大,则的值为..函数的值域为.
.在区间上有最大值,则的值为.
.已知,求的最大值.
.提高过江大桥的车辆通行能力可改善整个城市的交通状况。
在一般情况下,大桥四、纠错分析
【自我检测】。