测试信号分析与处理试验报告
数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。
二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。
2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。
实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。
由此讨论原时域信号不失真地由频域抽样恢复的条件。
实验三:由X32(k)恢复X(z)和X(e jw)。
四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。
实验一 LabVIEW中的信号分析与处理

实验一LabVIEW中的信号分析与处理一、实验目的:1、熟悉各类频谱分析VI的操作方法;2、熟悉数字滤波器的使用方法;3、熟悉谐波失真分析VI的使用方法。
二、实验原理:1、信号的频谱分析是指用独立的频率分量来表示信号;将时域信号变换到频域,以显示在时域无法观察到的信号特征,主要是信号的频率成分以及各频率成分幅值和相位的大小,LabVIEW中的信号都是数字信号,对其进行频谱分析主要使用快速傅立叶变换(FFT)算法:·“FFT Spectrum(Mag-Phase).vi”主要用于分析波形信号的幅频特性和相频特性,其输出为单边幅频图和相频图。
·“FFT.vi”以一维数组的形式返回时间信号的快速傅里叶运算结果,其输出为双边频谱图,在使用时注意设置FFT Size为2的幂。
·“Amplitude and Phase Spectrum .vi”也输出单边频谱,主要用于对一维数组进行频谱分析,需要注意的是,需要设置其dt(输入信号的采样周期)端口的数据。
2、数字滤波器的作用是对信号进行滤波,只允许特定频率成份的信号通过。
滤波器的主要类型分为低通、高通、带通、带阻等,在使用LabVIEW中的数字滤波器时,需要正确设置滤波器的截止频率(注意区分模拟频率和数字频率)和阶数。
3、“Harmonic Distortion Analyzer .vi”用于分析输入的波形数据的谐波失真度(THD),该vi还可分析出被测波形的基波频率和各阶次谐波的电平值。
三、实验内容:(1) 时域信号的频谱分析设计一个VI,使用4个Sine Waveform.vi(正弦波形)生成频率分别为10Hz、30Hz、50Hz、100Hz,幅值分别为1V、2V、3V、4V的4个正弦信号(采样频率都设置为1kHz,采样点数都设置为1000点),将这4个正弦信号相加并观察其时域波形,然后使用FFT Spectrum(Mag-Phase).vi对这4个正弦信号相加得出的信号进行FFT频谱分析,观察其幅频和相频图,并截图保存。
信号分析与处理实验报告

《信号分析与处理》实验报告华北电力大学前言1.实验总体目标通过实验,巩固掌握课程的讲授内容,使学生对信号分析与线性系统分析的基本理论及分析方法有一个感性认识和更好地理解,使学生在分析问题与解决问题的能力及实践技能方面有所提高。
2.适用专业自动化专业本科生3.先修课程信号分析与处理4.实验课时分配5需要配置微机及MATLAB工具软件。
6.实验总体要求1、掌握信号分解的基本思想及信号在时域、频域和变换域进行分解的基本理论及描述方法,用MATLAB编程语言实现基本信号的表示及可视化,计算和分析信号的频谱;2、掌握在时域、频域和变换域分析LTI系统的方法,及系统在时域、频域和变换域的描述方法,用MATLAB编程语言实现LTI系统的时域分析及频率分析。
3、掌握信号的调制与解调,用MATLAB编程语言仿真分析信号的调制与解调。
⒎ 本实验的重点、难点及教学方法建议实验通过MATLAB编程语言来实现基本信号的表示及可视化,计算分析信号的频谱,实现LTI系统的时域分析及频率分析,并仿真分析信号的调制与解调,使学生对信号分析与线性系统分析的基本理论及分析方法有一个感性认识和更好地理解。
实验的重点及难点是:掌握基本信号的数学表示,信号的频谱特点,计算LTI系统的典型响应,掌握信号的调制与解调。
在这样的理论基础上,学会用MATLAB编程语言来实现对信号与系统响应的可视化及对数字滤波器进行设计。
教学建议:打好理论基础,熟练编程语言。
目录实验一信号的时域与频域分析 3实验二信号的时域与频域处理 4实验三数字滤波器的设计 5实验一一、实验目的1、熟悉MATLAB 平台,高效的数值计算及符号计算功能;2、实现基本信号的表示及可视化计算;3、分析信号的频谱。
二、 实验类型验证型 三、 实验仪器微机,MATLAB 工具软件。
四、 实验原理MATLAB 是功能强大的数学软件,它提供了计算周期连续函数和周期离散序列的频谱的一系列函数。
信号分析与处理实验报告

华北电力大学实验报告||实验名称FFT的软件实现实验(Matlab)IIR数字滤波器的设计课程名称信号分析与处理||专业班级:电气化1308 学生姓名:袁拉麻加学号: 2 成绩:指导教师:杨光实验日期: 2015-12-17快速傅里叶变换实验一、实验目的及要求通过编写程序,深入理解快速傅里叶变换算法(FFT)的含义,完成FFT和IFFT算法的软件实现。
二、实验内容利用时间抽取算法,编写基2点的快速傅立叶变换(FFT)程序;并在FFT程序基础上编写快速傅里叶反变换(IFFT)的程序。
三:实验要求1、FFT和IFFT子程序相对独立、具有一般性,并加详细注释;2、验证例6-4,并能得到正确结果。
3、理解应用离散傅里叶变换(DFT)分析连续时间信号频谱的数学物理基础。
四、实验原理:a.算法原理1、程序输入序列的元素数目必须为2的整数次幂,即N=2M,整个运算需要M 级蝶形运算;2、输入序列应该按二进制的码位倒置排列,输出序列按自然序列排列;3、每个蝶形运算的输出数据军官占用其他输入数据的存储单元,实现“即位运算”;4、每一级包括N/2个基本蝶形运算,共有M*N/2个基本蝶形运算;5、第L级中有N/2L个群,群与群的间隔为2L。
6、处于同一级的各个群的系数W分布相同,第L级的群中有2L-1个系数;7、处于第L级的群的系数是(p=1,2,3,…….,2L-1)而对于第L级的蝶形运算,两个输入数据的间隔为2L-1。
b.码位倒置程序流程图开始检测A序列长度nk=0j=1x1(j)=bitget(k,j);j=j+1Yj<m?Nx1=num2str(x1);y(k+1)=bin2dec(x1);clear x1k=k+1c.蝶形运算程序流程图五、程序代码与实验结果a.FFT程序:%%clear all;close all;clc;%输入数据%A=input('输入x(n)序列','s');A=str2num(A);% A=[1,2,-1,4]; %测试数据%%%%校验序列,%n=length(A);m=log2(n);if (fix(m)~=m)disp('输入序列长度错误,请重新输入!');A=input('输入x(n)序列','s');A=str2num(A);elsedisp('输入正确,请运行下一步')end%%%码位倒置%for k=0:n-1for j=1:m %取M位的二进制数%x1(j)=bitget(k,j); %倒取出二进制数%endx1=num2str(x1); %将数字序列转化为字符串%y(k+1)=bin2dec(x1); %二进制序列转化为十进制数%clear x1endfor k=1:nB(k)=A(y(k)+1); %时间抽取序列%endclear A%%%计算%for L=1:m %分解为M级进行运算%LE=2^L; %第L级群间隔为2^L%LE1=2^(L-1); %第L级中共有2^(L-1)个Wn乘数,进行运算蝶运算的两数序号相隔LE1%W=1;W1=exp(-1i*pi/LE1);for R=1:LE1 %针对第R个Wn系数进行一轮蝶运算,共进行LE1次%for P=R:LE:n %每个蝶的大小为LE% Q=P+LE1;T=B(Q)*W;B(Q)=B(P)-T;B(P)=B(P)+T;endW=W*W1;endendB %输出X(k)%%%验证结果:例6-4b.IFFT程序:%%clear all;close all;clc;%输入数据%A=input('输入X(k)序列','s');A=str2num(A);% A=[6,2+2i,-6,2-2i]; %测试数据%%%%校验序列,%n=length(A);m=log2(n);if (fix(m)~=m)disp('输入序列长度错误,请重新输入!');A=input('输入x(n)序列','s');A=str2num(A);elsedisp('输入正确,请运行下一步')end%%%码位倒置%for k=0:n-1for j=1:m %取M位的二进制数%x1(j)=bitget(k,j); %倒取出二进制数%endx1=num2str(x1); %将数字序列转化为字符串%y(k+1)=bin2dec(x1); %二进制序列转化为十进制数%clear x1endfor k=1:nB(k)=A(y(k)+1); %时间抽取序列%endclear A%%%计算%for L=1:m %分解为M级进行运算%LE=2^L; %第L级群间隔为2^L%LE1=2^(L-1); %第L级中共有2^(L-1)个Wn乘数,进行运算蝶运算的两数序号相隔LE1%W=1;W1=exp(-1i*pi/LE1);for R=1:LE1 %针对第R个Wn系数进行一轮蝶运算,共进行LE1次%for P=R:LE:n %每个蝶的大小为LE%Q=P+LE1;T=B(Q)*W;B(Q)=B(P)-T;B(P)=B(P)+T;endW=W*W1;endendB=conj(B); %取共轭%B=B/n %输出x(n)%验证结果:六、实验心得与结论本次实验借助于Matlab软件,我避开了用C平台进行复杂的复数运算,在一定程度上简化了程序,并添加了简单的检错代码,码位倒置我通过查阅资料,使用了一些函数,涉及到十-二进制转换,数字-文本转换,二-文本转换,相对较复杂,蝶运算我参考了书上了流程图,做些许改动就能直接实现。
《信号分析与处理》实验报告

序号:号项目名称:《信号分析与处理》实验报告学生学院:信息工程学院专业班级:学生学号:学生姓名:指导老师:朱铮涛2013年12月25日目录实验一、基本信号的产生和时频域抽样实验 (1)一、实验目的 (1)二、实验内容及所得图表 (1)三、思考题解答 (15)实验二、连续和离散系统分析 (16)一、实验目的 (16)二、实验内容和要求 (16)三、思考题解答 (22)实验三、用FFT实现谱分析实验 (23)一、实验目的 (23)二、实验原理 (23)三、实验内容及实验得到的结果 (23)四、实验结论 (26)五、思考题解答 (26)实验四、IIR数字滤波器设计和应用 (27)一、实验目的 (27)二、实验原理 (27)三、实验内容和结果 (27)四、思考题解答 (33)实验五、FIR数字滤波器设计和应用 (34)一、实验目的 (34)二、FIR数字滤波器的设计基本原理 (34)三、实验内容和实验结果 (37)四、思考题解答 (40)实验一、基本信号的产生和时频域抽样实验一、实验目的1、学习使用matlab产生基本信号波形、实现信号的基本运算;2、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;3、加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。
二、实验内容及所得图表1、用Matlab产生以下序列的样本,并显示其波形:(a):()(0.9)cos(0.2/3),020nx n n nππ=+≤≤(b):)20()5()(---=nununx(c):)*5.0exp()(n nx-=(d):(e):(f):)()sin()(t u tAetx taΩ=-α2 设(a):求其傅里叶变换;对进行采样,求出采样所得离散时间信号的傅里叶变(b):用频率Fs=5000Hz对进行采样,求出采样所得离散时间信号的傅里叶变换;换;再用频率Fs=1000Hz(c):分别针对(b)中采样所得离散时间信号和,重建出对应的连续时间信号和,并分别与原连续时间信号进行比较;根据抽样定理(即Nyquist定理)的知识,说明采样频率对信号重建的影响。
信号处理实验报告总结

信号处理实验报告总结引言信号处理是一门研究如何对信号进行处理和分析的学科,它在许多领域中都有着广泛的应用,如通信、图像处理、音频处理等。
本实验旨在通过实际操作与理论结合的方式,帮助学生深入理解信号处理的原理和方法。
理论背景信号处理的理论基础包括信号与系统、傅里叶分析、滤波器设计等方面的知识。
在本次实验中,我们主要了解了离散傅里叶变换(DFT)和数字滤波器的原理和应用,以及常见的信号处理算法。
实验过程与结果本次实验分为两个部分:DFT算法实现和数字滤波器设计。
DFT算法实现我们首先实现了离散傅里叶变换的算法,并通过MATLAB软件进行了验证。
实验中,我们使用了一个正弦信号,并通过DFT算法将其转换为频域表示。
实验结果显示,离散傅里叶变换能够准确地将时域信号转换为频域信号,且图像频谱与理论结果一致。
数字滤波器设计在第二个实验中,我们学习了数字滤波器的设计方法和常见的滤波器类型。
我们采用了巴特沃斯滤波器设计方法,并使用MATLAB软件进行了参数设计。
实验结果表明,数字滤波器能够有效地滤除输入信号中不需要的频率成分,并保留我们感兴趣的信号。
实验总结通过本次实验,我们对信号处理的理论知识有了更深入的了解,并通过实际操作加深了对信号处理方法的理解和应用能力。
通过实验,我们对离散傅里叶变换和数字滤波器的原理和应用有了更深入的了解。
然而,在实验过程中也遇到了一些困难。
例如,在DFT算法实现中,我们需要对算法进行优化以提高运行效率。
在数字滤波器设计中,我们还需要更深入地学习滤波器设计的原理和方法,以便更好地应用在实际工程中。
总的来说,本次实验使我们更加深入地了解了信号处理的原理和方法,并对信号处理的应用有了更为清晰的认识。
在今后的学习和工作中,我们将进一步巩固这方面的知识,并不断探索更多的信号处理方法和算法。
参考文献[1] Oppenheim, A. V., & Schaffer, J. R. (1998). Discrete-time signal processing. Prentice Hall.[2] Proakis, J. G., & Manolakis, D. G. (1996). Digital signal processing: principles, algorithms, and applications. Prentice Hall.附录本次实验的MATLAB代码如下:matlab% DFT算法实现N = length(x);for k = 0:N-1X(k+1) = 0;for n = 0:N-1X(k+1) = X(k+1) + x(n+1)*exp(-1i*2*pi*k*n/N);endend% 数字滤波器设计fs = 100; % 采样频率fpass = 10; % 通带频率fstop = 20; % 阻带频率Rp = 1; % 通带最大衰减Rs = 60; % 阻带最小衰减wp = 2*pi*fpass/fs;ws = 2*pi*fstop/fs;[N, wn] = buttord(wp, ws, Rp, Rs);[b, a] = butter(N, wn);y = filter(b, a, x);以上是本次信号处理实验的总结,通过实验我们深入理解了信号处理的原理和方法,也发现了一些问题,期望在今后的学习和工作中能够进一步探索和应用信号处理技术。
信号分析与处理实验报告

信号分析与处理实验报告一、实验目的1.了解信号分析与处理的基本概念和方法;2.掌握信号分析与处理的基本实验操作;3.熟悉使用MATLAB进行信号分析与处理。
二、实验原理信号分析与处理是指利用数学和计算机技术对信号进行分析和处理的过程。
信号分析的目的是了解信号的特性和规律,通过对信号的频域、时域和幅频特性等进行分析,获取信号的频率、幅度、相位等信息。
信号处理的目的是对信号进行数据处理,提取信号的有效信息,优化信号的质量。
信号分析和处理的基本方法包括时域分析、频域分析和滤波处理。
时域分析主要是对信号的时变过程进行分析,常用的方法有波形分析和自相关分析。
频域分析是将信号转换到频率域进行分析,常用的方法有傅里叶级数和离散傅里叶变换。
滤波处理是根据信号的特性选择适当的滤波器对信号进行滤波,常用的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
三、实验内容1.信号的时域分析将给定的信号进行波形分析,绘制信号的时域波形图;进行自相关分析,计算信号的自相关函数。
2.信号的频域分析使用傅里叶级数将信号转换到频域,绘制信号的频域图谱;使用离散傅里叶变换将信号转换到频域,绘制信号的频域图谱。
3.滤波处理选择合适的滤波器对信号进行滤波处理,观察滤波前后的信号波形和频谱。
四、实验步骤与数据1.时域分析选择一个信号进行时域分析,记录信号的波形和自相关函数。
2.频域分析选择一个信号进行傅里叶级数分析,记录信号的频谱;选择一个信号进行离散傅里叶变换分析,记录信号的频谱。
3.滤波处理选择一个信号,设计适当的滤波器对信号进行滤波处理,记录滤波前后的信号波形和频谱。
五、实验结果分析根据实验数据绘制的图像进行分析,对比不同信号在时域和频域上的特点。
观察滤波前后信号波形和频谱的变化,分析滤波效果的好坏。
分析不同滤波器对信号的影响,总结滤波处理的原理和方法。
六、实验总结通过本次实验,我们了解了信号分析与处理的基本概念和方法,掌握了信号分析与处理的基本实验操作,熟悉了使用MATLAB进行信号分析与处理。
数字信号处理综合实验报告

综合实验1. 实验目的能综合利用信号处理的理论和Matlab 工具实现对信号进行分析和处理(1)熟练对信号进行时域和频域分析;(2)熟练进行滤波器设计和实现;(3)掌握对信号的滤波处理和分析。
2.实验原理设计并实现滤波器对信号进行分析和处理是信号处理课程学习的主要内容。
通过对信号进行频谱分析,能发现信号的频率特性,以及组成信号的频率分量。
对信号进行滤波处理,能改善信号的质量,或者为数据处理(如传输,分类等)提供预处理,等。
本次实验是对特定信号进行分析并进行滤波处理,需要综合应用之前的实验内容,主要有以下几个方面。
(1)离散时间信号与系统的时域分析Matlab 为离散时间信号与系统的分析提供了丰富且功能强大的计算函数和绘图分析函数,便于离散时间信号和系统的时域表示和分析。
(2)信号的频域分析信号处理课程主要学习了离散信号和系统的频域分析方法与实现,以及滤波器的设计与实现。
离散信号与系统的频域分析包括DTFT DFT Z变换等,FFT则是DFT的快速实现。
用Matlab分析信号的频谱可以用freqz函数或者FFT函数。
(3)滤波器设计滤波器的设计首先要确定滤波器的类型,即低通、高通、带通还是带阻。
滤波器的边缘频率可以通过对信号的频谱分析得到,滤波器的幅度指标主要有阻带最小衰减As 和通带最大衰减Ap。
一般来说,As越大,对截止通过的频率分量的衰减越大;Ap越小,对需要保留的频率分量的衰减越小。
因此,As 越大,Ap 越小,滤波器的性能越好,但随之而来,滤波器的阶数越大,实现的代价(包括计算时间和空间)越大。
由此,滤波器的设计需要对滤波器性能和实现代价进行均衡考虑。
另外根据冲激响应的长度可以分为IIR 和FIR 两种类型。
两种类型的滤波器各有特点。
用FIR 滤波器可以设计出具有严格线性相位的滤波器,但在满足同样指标的条件下,FIR 滤波器的阶数高于IIR 滤波器。
Matlab 为各种类型的滤波器的设计提供了丰富的函数,可以借助这些函数方便地设计出符合要求地滤波器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《测试信号分析与处理》实验一差分方程、卷积、z变换一、实验目的通过该实验熟悉matlab软件的基本操作指令,掌握matlab软件的使用方法,掌握数字信号处理中的基本原理、方法以及matlab函数的调用。
二、实验设备1、微型计算机1台;2、matlab软件1套三、实验原理Matlab 软件是由mathworks公司于1984年推出的一套科学计算软件,分为总包和若干个工具箱,其中包含用于信号分析与处理的sptool工具箱和用于滤波器设计的fdatool工具箱。
它具有强大的矩阵计算和数据可视化能力,是广泛应用于信号分析与处理中的功能强大且使用简单方便的成熟软件。
Matlab软件中已有大量的关于数字信号处理的运算函数可供调用,本实验主要是针对数字信号处理中的差分方程、卷积、z变换等基本运算的matlab函数的熟悉和应用。
差分方程(difference equation)可用来描述线性时不变、因果数字滤波器。
用x表示滤波器的输入,用y表示滤波器的输出。
ay[n]+ay[n-1]+…+ay[n-N]=bx[n]+bx[n-1]+…+bx[n-M] (1)M01N10ak,bk 为权系数,称为滤波器系数。
N为所需过去输出的个数,M 为所需输入的个数卷积是滤波器另一种实现方法。
y[n]= ∑x[k] h[n-k] = x[n]*h[n] (2)等式定义了数字卷积,*是卷积运算符。
输出y[n] 取决于输入x[n] 和系统的脉冲响应h[n]。
传输函数H(z)是滤波器的第三种实现方法。
H(z)=输出/输入= Y(z)/X(z) (3)即分别对滤波器的输入和输出信号求z变换,二者的比值就是数字滤波器的传输函数。
序列x[n]的z变换定义为-n (4)X (z)=x[n]z∑把序列x[n] 的z 变换记为Z{x[n]} = X(z)。
-1{X(z)}。
的逆变换z x[n] = Z x[n] 计算由X(z) 进行-1变换才有意义,而且同Z 的幂级数,只有当此级数收敛,Z 变换是Z一个Z 变换等式,收敛域不同,可以代表不同序列的Z 变换函数。
这三种数字滤波器的表示方法之间可以进行相互转换。
四、实验步骤1、熟悉matlab软件基本操作指令。
读懂下列matlab程序指令,键入程序并运行,观察运行结果。
Conv.m% 计算两个序列的线性卷积;%-----------------------------------------------------------------clear;N=5;M=6;L=N+M-1;x=[1,2,3,4,5];h=[6,2,3,6,4,2];y=conv(x,h);nx=0:N-1;nh=0:M-1;ny=0:L-1;subplot(231);stem(nx,x,'.k');xlabel('n');ylabel('x(n)');grid on;subplot(232);stem(nh,h,'.k');xlabel('n');ylabel('h(n)');grid on;subplot(233);stem(ny,y,'.k');xlabel('n');ylabel('y(n)');grid on;filter.m;%求一个离散系统的输出;clear;x=ones(100);t=1:100;b=[.001836,.007344,.011016,.007374,.001836];a=[1,-3.0544,3.8291,-2.2925,.55075];y=filter(b,a,x);clear;impz .m% 计算滤波器的冲击响应b=[.001836,.007344,.011016,.007374,.001836];a=[1,-3.0544,3.8291,-2.2925,.55075];[h,t]=impz(b,a,40);subplot(221)stem(t,h,'.');grid on;ylabel('h(n)')xlabel('n')filter.m% 计算滤波器的阶跃响应x=ones(100);t=1:100;y=filter(b,a,x);subplot(222)plot(t,x,'g.',t,y,'k-');grid on;ylabel('x(n) and y(n)')xlabel('n')例题运行结果图66806044)))nnn40(((hyx2220000105040052nnn2、编程求出下列问题的解1)、滤波器的差分方程为:y[n]=x[n]-0.8x[n-1]-0.5y[n-1]求出此滤波器脉冲响应和阶跃响应的前十个采样值。
clear;%impz.m% 计算滤波器的冲击响应b=[1,-.8];a=[1,.5];[h,t]=impz(b,a,10);stem(t,h,'.');gird on;)'h(n)'ylabel(xlabel('n')10.0)n(-0.5-1-1.59867201345n clear;%filter.m% 计算滤波器的阶跃响应x=ones(10);t=1:10;b=[1,-.8];a=[1,.5];y=filter(b,a,x);;on'g.'plot(t,x,,t,y,'k.');gird'x(n) and y(n)'ylabel()'n'xlabel()10.0.60.4n(y dna 0.2n(-0.2-0.410965781234n-n用卷积求系统的阶跃响应。
h[n]=e(u[n]-u[n-3]),2 )、系统的脉冲响应为N=25;M=3;L=N+M-1;x=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];h=[1,.3679,.1353];y=conv(x,h);nx=0:N-1;nh=0:M-1;ny=0:L-1;subplot(231);stem(nx,x,'.k');xlabel('n');ylabel('x(n)');grid on;subplot(232);stem(nh,h,'.k');xlabel('n');ylabel('h(n)');grid on;subplot(233);stem(ny,y,'.k');xlabel('n');ylabel('y(n)');grid on;1121.5)))nn0.0.5(((hy0.5000422002040001nnn实验讨论和分析五、1、差分方程、卷积、z变换和傅里叶变换之间如何进行转换?答:差分方程;a0y[n]+a1y[n-1]+a2y[n-2]+`````+aNy[n-N]=b0x[n]+b1x[n-1]+……+bMx[n-M] 卷积是由输入x[n]所引起的全部输出y[n]是所有这些加权脉冲相应之和。
即y{n}=x[n]*h[n]只要知道脉冲响应和输入就可以得到输出Z变换是把时域信号向频域进行转换X(z)=∑x[n]zˇ-n Y(z)=∑y[n]zˇ-n 脉冲响应是传输函数的逆z变换傅里叶变换X(Ω)=∑x[n]eˇ-jnΩ2、边界效应是如何产生的?它对信号的滤波效果有何影响?当脉冲响应与未知的的输采样开始之前的输入情况是未知的,多数情况下,答:入采样点重叠时,由于实际的输出值可能受采样开始之前输入信号的影响,所以无法准确的计算输出。
计算的开始和末尾都存在这种现象。
仅当输入序列与脉冲响应完全重叠时,计算才有意义,这种现象就是边界效应。
当一个系统开始运行或条件改变时,输出需要一些时间过渡到新的稳态。
边界效应会产生输出的暂态部分和稳态部分,会影响滤波效果,并且会导致失真现象出现。
实验二数字滤波器综合设计一、实验目的通过该设计实验掌数字滤波器设计的一般步骤,掌握利用matlab 软件设计数字滤波器的方法,熟悉sptool工具箱的使用方法。
二、实验设备1、微型计算机1台;2、matlab软件1套三、实验原理一)、滤波器的形状及重要参数理想滤波器的形状是矩形,图 1 给出非理想滤波器。
图1通带:增益高的频率范围,信号可以通过,称为滤波器的通带。
.阻带:增益低的频率范围,滤波器对信号有衰减或阻塞作用,称滤波器的阻带。
滤波器截止频率:增益为最大值的0.707倍时所对应的频率为滤波器截止频率增益通常用分贝(dB)表示。
增益(dB)= 20log(增益)增益为0.707 时对应-3dB,因此截止频率常被称为-3dB。
滤波器的带宽:对于低通滤波器宽带是从0 ~ - 3dB对于高通滤波器宽带是从- 3dB~采样频率的一半对于带通滤波器带宽是截止频率之间的频率距离二)加窗低通FIR 滤波器的设计1. 在过渡带宽度的中间,选择通带边缘频率(Hz):f1=所要求的通带边缘频率+(过渡带宽度)/22. 计算Ω1=2πf1/fs,并将此值代入理想低通滤波器的脉冲响应h1[n] 中:h1[n] = sin(nΩ1)/nπ3. 从表中选择满足阻带衰减及其他滤波器要求的窗函数,用表中N 的公式计算所需要的非零项数目。
选择奇数项,这样脉冲响应可以完全对称,避免了滤波器产生相位失真,对于|n|≤(N-1)/2,计算窗函数w[n]。
4. 对于|n|≤(N-1)/2,从式h[n]=h1[n]w[n]计算(有限)脉冲响应,对于其他n 值h[n]=0,此脉冲响应是非因果的。
5. 将脉冲响应右移(N-1)/2,确保第一个非零值在n=0处,使此低通滤波器为因果的。
三)、设计低通巴特沃斯滤波器:1) 确定待求通带边缘频率fp1 Hz 、待求阻带边缘频率fs1 Hz 和待求阻带衰减- 20logδsdB(或待求阻带增益20logδsdB)。
通带边缘频率对应–3dB增益。
2) 用式Ω=2πf/fs 把由Hz 表示的待求边缘频率转成由弧度表示的数字频率,得到Ωp1 和Ωs1 。
3) 计算预扭曲模拟频率以避免双线性变化带来的失真。
由ω=2fs tan(Ω/2)求得ωp1和ωs1,单位是弧度/秒。
4) 由已给定的阻带衰减- 20logδs(或增益- 20logδs)确定阻带边缘增益δs 。
5) 计算所需滤波器的阶数n 取整数。
6)把ωp1代入n 阶模拟巴特沃斯滤波器传输函数H(s)中,并对H(s) 进行双线性变换得到n 阶数字传输函数H(z)。