江苏专用高考数学二轮复习专题五解析几何第1讲直线与圆练习文苏教版

合集下载

老高考适用2023版高考数学二轮总复习第2篇经典专题突破核心素养提升专题5解析几何第1讲直线与圆课件

老高考适用2023版高考数学二轮总复习第2篇经典专题突破核心素养提升专题5解析几何第1讲直线与圆课件

F=0,
则16+4D+F=0, 16+4+4D+2E+F=0,
F=0,
解得D=-4, E=-2,
所以圆的方程为 x2+y2-4x-2y=0,
即(x-2)2+(y-1)2=5; 若过(0,0),(4,2),(-1,1),
F=0,
则1+1-D+E+F=0, 16+4+4D+2E+F=0,
F=0Байду номын сангаас 解得D=-83,
因为 OP⊥OQ,故 1+ 2p×(- 2p)=0⇒p=12, 抛物线 C 的方程为:y2=x, 因为⊙M 与 l 相切,故其半径为 1, 故⊙M:(x-2)2+y2=1.
(2)设 A1(x1,y1),A2(x2,y2),A3(x3,y3).
当 A1,A2,A3 其中某一个为坐标原点时(假设 A1 为坐标原点时),
A2+B2
3.两条平行直线 l1:Ax+By+C1=0,l2:Ax+By+C2=0(A,B 不
同时为零)间的距离
d=
|C1-C2| . A2+B2
典例1 (1)(2022·辽宁高三二模)若两直线l1:(a-1)x-3y-2=0
与l2:x-(a+1)y+2=0平行,则a的值为
(A )
A.±2
B.2
C.-2
y0=-x0+5, 设所求圆的圆心坐标为(x0,y0),则x0+12=y0-x20+12+16. 解得xy00= =32, 或xy00= =1-1,6. 因此所求圆的方程为(x-3)2+(y-2)2=16 或(x-11)2+(y+6)2=144.
6.(2021·全国甲卷)抛物线C的顶点为坐标原点O,焦点在x轴上,直 线l:x=1交C于P,Q两点,且OP⊥OQ.已知点M(2,0),且⊙M与l相 切.

高考数学 二轮复习直线和圆课件 苏教版

高考数学 二轮复习直线和圆课件 苏教版

3 已知x,y满足x2 + y2 = 1, 则 (1)y+ 2 的范围是___________ x+ 1 (2)2x+ y的范围是___________
2 = 1相切且在坐标轴上 4 与圆x 2 + (y + 2) 截距相等的直线有_____条.
例1
(1)过点(0, 1 )作直线l,若l与圆x 2 ( y 1) 2 1 有公共点,则直线 l的倾斜角的范围是________ (2)两个圆x 2 y 2 4与x 2 y 2 4 x 2 y 6 0交 于两点M,N,则公共弦MN长为 __________ ___ (3)若直线ax by 2和圆x 2 y 2 4相切, 则a b 的最大值是__________ ____ (4)若圆( x 1) ( y 1) R 上有且只有两点到直
2
(1)证明:当点A运动时,MN为定值; (2)当OB是OM与ON的等差中项时,试 判断抛物线C的准线与圆A的位置关 系,并说明理由.
图象
课后训练
1 与圆x ( y 2) 2相切, 并且在两坐标轴
2 2
4 上的截距的绝对值相等 的直线有 _______ 条
2 已知P是直线3 x 4 y 8 0上的动点, PA, PB是圆x 2 y 2 2 x 2 y 1 0的两条切线, A、B是切点, C是圆心, 则四边形PACB面积的 2 2 最小值为__________ _ 3 已知圆C:x 2 y 2 2 x 4 y 4 0, 若存在 斜率为 1的直线l,使l被圆C截得的弦AB为直 y x 4或y x 1 径的圆经过原点,则 l的方程为 __________
个斜率,应写出过该点且与x轴垂直的 另一条切线.

江苏省高考数学二轮复习专题五解析几何第1讲直线与圆学案

江苏省高考数学二轮复习专题五解析几何第1讲直线与圆学案

第1讲 直线与圆[考情考向分析] 高考考查重点是求直线和圆的方程、直线间的平行和垂直关系、距离、直线与圆的位置关系,此类问题难度属于中档,偶尔出现解答题.其中直线方程和圆的标准方程与一般方程是C 级要求.热点一 直线、圆的方程例1 (1)在平面直角坐标系xOy 中,过点M (1,0)的直线l 与圆x 2+y 2=5交于A ,B 两点,其中点A 在第一象限,且BM →=2MA →,则直线l 的方程为____________. 答案 x -y -1=0解析 方法一 易知l 的斜率必存在,设l :y =k (x -1).由BM →=2MA →,可设BM =2t ,MA =t ,如图,过原点O 作OH ⊥l 于点H ,则BH =3t 2.设OH =d ,在Rt△OBH 中,d 2+⎝ ⎛⎭⎪⎫3t 22=r 2=5,在Rt△OMH 中,d 2+⎝ ⎛⎭⎪⎫t 22=OM 2=1,解得d 2=12.所以d 2=k 2k 2+1=12,解得k =1或k =-1,因为点A 在第一象限,BM →=2MA →,由图知k =1,所以l :x -y -1=0.方法二 设A (x 1,y 1),B (x 2,y 2),所以BM →=(1-x 2,-y 2),MA →=(x 1-1,y 1).因为BM →=2MA →,所以有⎩⎪⎨⎪⎧1-x 2=2(x 1-1),-y 2=2y 1,即⎩⎪⎨⎪⎧-x 2=2x 1-3,-y 2=2y 1.又⎩⎪⎨⎪⎧x 21+y 21=5,x 22+y 22=5,代入可得⎩⎪⎨⎪⎧x 21+y 21=5,(2x 1-3)2+4y 21=5,解得x 1=2,代入可得y 1=±1,又点A 在第一象限,故A (2,1),由点A 和点M 的坐标可得直线AB 的方程为x -y -1=0.(2)已知圆M 的圆心在x 轴上,且圆心在直线l 1:x =-2的右侧,若圆M 截直线l 1所得的弦长为23,且与直线l 2:2x -5y -4=0相切,则圆M 的方程为________.答案 (x +1)2+y 2=4解析 由已知,可设圆M 的圆心坐标为(a,0),a >-2,半径为r ,则⎩⎪⎨⎪⎧(a +2)2+(3)2=r 2,|2a -4|4+5=r ,a >-2,解得⎩⎪⎨⎪⎧a =-1,r =2,∴圆M 的方程为(x +1)2+y 2=4.思维升华 求具备一定条件的直线或圆的方程时,其关键是寻找确定直线或圆的两个几何要素,待定系数法也是经常使用的方法,解题时要注意平面几何知识的应用.跟踪演练1 (1)过点P (-4,0)的直线l 与圆C :(x -1)2+y 2=5相交于A ,B 两点,若点A 恰好是线段PB 的中点,则直线l 的方程为________. 答案 x ±3y +4=0解析 设AB 的中点为D ,则CD ⊥AB , 设CD =d ,AD =x ,则PA =AB =2x ,在Rt△ACD 中,由勾股定理得d 2+x 2=r 2=5,① 在Rt△PDC 中,由勾股定理得d 2+9x 2=CP 2=25,② 由①②解得d 2=52.易知直线l 的斜率一定存在,设为k , 则l :y =k (x +4),圆心C (1,0)到直线l 的距离为d =|5k |k 2+1=102,解得k 2=19,k =±13,所以直线l 的方程为y =±13(x +4),即为x ±3y +4=0.(2)若圆上一点A (2,3)关于直线x +2y =0的对称点仍在圆上,且圆与直线x -y +1=0相交的弦长为22,则圆的方程为________________________. 答案 (x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244 解析 设圆的方程为(x -a )2+(y -b )2=r 2, 点A (2,3)关于直线x +2y =0的对称点仍在圆上, 说明圆心在直线x +2y =0上,即a +2b =0,①且(2-a )2+(3-b )2=r 2.②而圆与直线x -y +1=0相交的弦长为22,故r 2-⎝⎛⎭⎪⎫a -b +122=2,③由①②③,解得⎩⎪⎨⎪⎧a =6,b =-3,r 2=52或⎩⎪⎨⎪⎧a =14,b =-7,r 2=244.所以所求圆的方程为(x -6)2+(y +3)2=52 或(x -14)2+(y +7)2=244.热点二 直线与圆、圆与圆的位置关系例2 (2018·江苏仪征中学检测)如图,在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A ()-1,0, B ()1,2.(1)若直线l 平行于AB ,与圆C 相交于M ,N 两点,MN =AB ,求直线l 的方程;(2)在圆C 上是否存在点P ,使得PA 2+PB 2=12 ?若存在,求点P 的个数;若不存在,请说明理由.解 (1)圆C 的标准方程为()x -22+y 2=4,所以圆心C ()2,0,半径为2.因为l ∥AB, A ()-1,0, B ()1,2,所以直线l 的斜率为2-01-()-1=1,设直线l 的方程为x -y +m =0, 则圆心C 到直线l 的距离为d =||2-0+m 2=||2+m 2.因为MN =AB =22+22=22,而CM 2=d 2+⎝ ⎛⎭⎪⎫MN 22,所以4=()2+m 22+2,解得m =0或m =-4,故直线l 的方程为x -y =0或x -y -4=0. (2)假设圆C 上存在点P ,设P ()x ,y , 则()x -22+y 2=4,PA 2+PB 2=()x +12+()y -02+()x -12+()y -22=12,即x 2+y 2-2y -3=0,即x 2+()y -12=4,因为||2-2<()2-02+()0-12<2+2,所以圆()x -22+y 2=4与圆x 2+()y -12=4相交,所以点P 的个数为2.思维升华 (1)判断直线与圆的位置关系的常见方法: ①几何法:利用d 与r 的关系; ②代数法:联立方程之后利用Δ判断;③点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. (2)判断圆与圆的位置关系,一般用几何法,其步骤为: ①确定两圆的圆心坐标和半径长;②利用平面内两点间的距离公式求出圆心距d ,r 1+r 2,|r 1-r 2|; ③比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.跟踪演练2 (1)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若AB =23,则圆C 的面积为________. 答案 4π解析 圆C :x 2+y 2-2ay -2=0,即C :x 2+(y -a )2=a 2+2,圆心为C (0,a ),半径r =a 2+2,C 到直线y =x +2a 的距离d =|0-a +2a |2=|a |2.又由AB =23, 得⎝⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2, 所以圆C 的面积为π(a 2+2)=4π.(2)(2018·苏锡常镇调研)在平面直角坐标系xOy 中,已知圆C :(x +1)2+y 2=2,点A (2,0),若圆C 上存在点M ,满足MA 2+MO 2≤10,则点M 的纵坐标的取值范围是________.答案⎣⎢⎢⎡⎦⎥⎥⎤-72, 72 解析 设点M (x ,y ),因为MA 2+MO 2≤10,所以(x -2)2+y 2+x 2+y 2≤10, 即x 2+y 2-2x -3≤0, 因为(x +1)2+y 2=2,所以y 2=2-(x +1)2, 所以x 2+2-(x +1)2-2x -3≤0, 化简得x ≥-12.因为y 2=2-(x +1)2,所以y 2≤74,所以-72≤y ≤72.热点三 直线、圆的综合问题例3 如图所示,已知圆A 的圆心在直线y =-2x 上,且该圆存在两点关于直线x +y -1=0对称,又圆A 与直线l 1:x +2y +7=0相切,过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .(1)求圆A 的方程;(2)当MN =219时,求直线l 的方程;(3)(BM →+BN →)·BP →是否为定值?如果是,求出此定值;如果不是,请说明理由.解 (1)由圆存在两点关于直线x +y -1=0对称知圆心A 在直线x +y -1=0上.由⎩⎪⎨⎪⎧y =-2x ,x +y -1=0,得A (-1,2),设圆A 的半径为R ,∵圆A 与直线l 1:x +2y +7=0相切,∴R =|-1+4+7|5=25,∴圆A 的方程为(x +1)2+(y -2)2=20.(2)当直线l 与x 轴垂直时,易知x =-2符合题意;当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +2),即kx -y +2k =0,连结AQ ,则AQ ⊥MN , ∵MN =219,∴AQ =20-19=1. 由AQ =|k -2|k 2+1=1,得k =34,∴直线l 的方程为3x -4y +6=0,∴所求直线l 的方程为x =-2或3x -4y +6=0. (3)∵AQ ⊥BP ,∴AQ →·BP →=0,∴(BM →+BN →)·BP →=2BQ →·BP →=2(BA →+AQ →)·BP → =2BA →·BP →;当直线l 与x 轴垂直时,得P ⎝ ⎛⎭⎪⎫-2,-52, 则BP →=⎝ ⎛⎭⎪⎫0,-52,又BA →=(1,2),∴(BM →+BN →)·BP →=2BA →·BP →=-10;当直线l 的斜率存在时,设直线l 的方程为y =k (x +2), 由⎩⎪⎨⎪⎧y =k (x +2),x +2y +7=0,解得P ⎝⎛⎭⎪⎫-4k -71+2k ,-5k 1+2k ,∴BP →=⎝ ⎛⎭⎪⎫-51+2k ,-5k 1+2k , ∴(BM →+BN →)·BP →=2BA →·BP →=2⎝ ⎛⎭⎪⎫-51+2k -10k 1+2k =-10, 综上所述,(BM →+BN →)·BP →为定值-10.思维升华 直线、圆的综合问题包括和圆有关的定点定值问题、范围问题及探究性问题.解决的基本思路有两种:代数法和几何法,解题时要注意充分利用方程、向量及图形的特征. 跟踪演练3 (2016·江苏)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程; (3)设点T (t,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围. 解 (1)圆M 的方程化为标准形式为(x -6)2+(y -7)2=25,圆心M (6,7),半径r =5, 由题意,设圆N 的方程为(x -6)2+(y -b )2=b 2(b >0). 且(6-6)2+(b -7)2=b +5.解得b =1,∴圆N 的标准方程为(x -6)2+(y -1)2=1. (2)∵k OA =2,∴可设l 的方程为y =2x +m ,即2x -y +m =0. 又BC =OA =22+42=2 5.由题意,圆M 的圆心M (6,7)到直线l 的距离为d =52-⎝ ⎛⎭⎪⎫BC 22=25-5=2 5.即|2×6-7+m |22+(-1)2=25,解得m =5或m =-15. ∴直线l 的方程为2x -y +5=0或2x -y -15=0.(3)由TA →+TP →=TQ →,则四边形AQPT 为平行四边形, 又∵P ,Q 为圆M 上的两点,∴PQ ≤2r =10. ∴TA =PQ ≤10,即(t -2)2+42≤10, 解得2-221≤t ≤2+221.故所求t 的取值范围为[2-221,2+221].1.(2018·江苏)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为________. 答案 3解析 设A (a,2a ),则a >0.又B (5,0),故以AB 为直径的圆的方程为(x -5)(x -a )+y (y -2a )=0. 由题意知C ⎝⎛⎭⎪⎫a +52,a .由⎩⎪⎨⎪⎧(x -5)(x -a )+y (y -2a )=0,y =2x ,解得⎩⎪⎨⎪⎧x =1,y =2或⎩⎪⎨⎪⎧x =a ,y =2a .∴D (1,2).又AB →·CD →=0,AB →=(5-a ,-2a ),CD →=⎝ ⎛⎭⎪⎫1-a +52,2-a , ∴(5-a ,-2a )·⎝⎛⎭⎪⎫1-a +52,2-a =52a 2-5a -152=0, 解得a =3或a =-1. 又a >0,∴a =3.2.圆心在直线y =-4x 上,且与直线x +y -1=0相切于点P (3,-2)的圆的标准方程为____________.答案 (x -1)2+(y +4)2=8解析 方法一 设圆心为(a ,-4a ),则有r =|a -4a -1|2=(a -3)2+(-4a +2)2,解得a =1,r =22,则圆的方程为(x -1)2+(y +4)2=8.方法二 过点P (3,-2)且垂直于直线x +y -1=0的直线方程为x -y -5=0,联立方程组⎩⎪⎨⎪⎧x -y -5=0,y =-4x ,解得⎩⎪⎨⎪⎧x =1,y =-4,则圆心坐标为(1,-4),半径为r = (1-3)2+(-4+2)2=22,故圆的方程为(x -1)2+(y +4)2=8.3.(2018·江苏省南京师大附中模拟)已知直线x -y +b =0与圆x 2+y 2=9交于不同的两点A ,B .若O 是坐标原点,且|OA →+OB →|≥22|AB →|,则实数b 的取值范围是______. 答案 (-32,-6]∪[6,32)解析 设AB 的中点为D ,则OA →+OB →=2OD →,故|OD →|≥24|AB →|,即||OD →2≥18||AB →2,再由直线与圆的弦长公式可得,AB =2r 2-d 2(d 为圆心到直线的距离),又直线与圆相交,故d <r ,得||b 2<3,所以-32<b <32,根据||OD→2≥18||AB →2,||AB →2=4()9-|OD →|2得,||OD →2≥3,由点到直线的距离公式可得||OD→2=b 22,即b 22≥3,所以b ≥6或b ≤-6,综上可得,b 的取值范围是(-32,-6]∪[6,32).4.已知圆M 的圆心M 在x 轴上,半径为1,直线l :y =43x -12被圆M 所截的弦长为3,且圆心M 在直线l 的下方. (1)求圆M 的方程;(2)设A (0,t ),B (0,t +6)(-5≤t ≤-2),若圆M 是△ABC 的内切圆,求△ABC 的面积S 的最大值和最小值.解 (1)设圆心M ()a ,0,由已知得M 到l :8x -6y -3=0的距离为12-⎝⎛⎭⎪⎫322=12, ∴||8a -382+()-62=12,又∵M 在l 的下方,∴8a -3>0,∴8a -3=5,a =1. 故圆M 的方程为()x -12+y 2=1.(2)由已知可设AC 的斜率为k 1,BC 的斜率为k 2,则直线AC 的方程为y =k 1x +t ,直线BC 的方程为y =k 2x +t +6.由方程组⎩⎪⎨⎪⎧y =k 1x +t ,y =k 2x +t +6,得C 点的横坐标为x 0=6k 1-k 2. ∵AB =t +6-t =6,∴S =12⎪⎪⎪⎪⎪⎪6k 1-k 2×6=18k 1-k 2,∵圆M 与AC 相切,∴1=||k 1+t 1+k 21,∴k 1=1-t22t , 同理, k 2=1-()t +622()t +6,∴k 1-k 2=3()t 2+6t +1t 2+6t ,∴S =6()t 2+6t t 2+6t +1=6⎝ ⎛⎭⎪⎫1-1t 2+6t +1,∵-5≤t ≤-2,∴-2≤t +3≤1,∴-8≤t 2+6t +1≤-4,∴S max =6×⎝ ⎛⎭⎪⎫1+14=152,S min =6×⎝ ⎛⎭⎪⎫1+18=274,∴△ABC 的面积S 的最大值为152,最小值为274.A 组 专题通关1.直线过点(-5,4)且与坐标轴正半轴围成的三角形面积为5,则此直线方程为________. 答案 2x +5y -10=0解析 设所求直线在x 轴上的截距为a ,在y 轴上的截距为b ,则直线方程为x a +yb=1,a >0,b >0.依题意有⎩⎪⎨⎪⎧-5a +4b =1,12a ·b =5,解得⎩⎪⎨⎪⎧a =5,b =2,故所求直线方程为2x +5y -10=0.2.已知圆心在x 轴上,半径为5的圆O 位于y 轴左侧,且与直线x +2y =0相切,则圆O 的方程是________________________________________________________________________. 答案 (x +5)2+y 2=5 解析 设圆心为(a,0)(a <0), 则r =|a +2×0|12+22=5,解得a =-5. 所以圆O 的方程是(x +5)2+y 2=5.3.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为______. 答案2555解析 圆心为点(2,-1),半径r =2.圆心到直线的距离d =|2+2×(-1)-3|1+4=355,所以弦长为2r 2-d 2=2 22-⎝⎛⎭⎪⎫3552=2555. 4.已知点P (t,2t )(t ≠0)是圆O :x 2+y 2=1内一点,直线tx +2ty =m 与圆O 相切,则直线x +y +m =0与圆O 的位置关系是________.答案 相交解析 由点P (t,2t )(t ≠0)是圆O :x 2+y 2=1内一点, 得5|t |<1.因为直线 tx +2ty =m 圆O 相切,所以|m |5|t |=1, 所以|m |<1.又圆O :x 2+y 2=1的圆心O (0,0)到直线x +y +m =0的距离d =|m |2<1=r .所以位置关系为“相交”.5.过原点O 作圆x 2+y 2-6x -8y +20=0的两条切线,设切点分别为P ,Q ,则线段PQ 的长为________________. 答案 4解析 ∵圆的标准方程为 (x -3)2+(y -4)2=5, 可知圆心为C (3,4),半径为 5. 如图可知,CO =5,∴OP =25-5=2 5. 设OC 与PQ 的交点为M , 在Rt△POC 中,OC ·PM =OP ·PC ,∴PM =25×55=2.∴PQ =2PM =4.6.(2018·无锡期末)过圆x 2+y 2=16内一点P (-2,3)作两条相互垂直的弦AB 和CD ,且AB =CD ,则四边形ACBD 的面积为________. 答案 19解析 根据题意画图,连结OP ,OA ,过O 作OE ⊥AB ,OF ⊥CD ,∴E 为AB 的中点,F 为CD 的中点,又AB ⊥CD ,AB =CD ,∴四边形EPFO 为正方形,由圆的方程得圆心O (0,0),半径r =4 ,OP 2=()-22+32=13,OE 2=132 AE 2=OA 2-OE 2=16-132=192, ∴AE =192,∴AB =CD =38, ∴S 四边形ACBD =12AB ·CD =19.7.若⊙O 1:x 2+y 2=5与⊙O 2:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是________. 答案 4解析 由题意知O 1(0,0),O 2(m,0),且5<|m |<35, 又O 1A ⊥AO 2,∴m 2=(5)2+(25)2=25,∴m =±5, ∴AB =2×5×255=4. 8.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则PM +PN 的最小值为________. 答案 52-4解析 由条件可知,两圆的圆心均在第一象限,先求PC 1+PC 2的最小值,作点C 1关于x 轴的对称点C 1′(2,-3),则(PC 1+PC 2)min =C 1′C 2=5 2. 所以(PM +PN )min =52-4.9.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为____________. 答案 x +y -3=0解析 由题意,设所求的直线方程为x +y +m =0, 设圆心坐标为(a,0),则由题意知,⎝ ⎛⎭⎪⎫|a -1|22+2=(a -1)2,解得a =3或-1, 又因为圆心在x 轴的正半轴上,所以a =3, 故圆心坐标为(3,0).因为圆心(3,0)在所求的直线上, 所以3+0+m =0,即m =-3, 故所求的直线方程为x +y -3=0.10.已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN . 解 (1)由题设可知,直线l 的方程为y =kx +1, 因为l 与C 交于两点,所以|2k -3+1|1+k2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得 (1+k 2)x 2-4(1+k )x +7=0. ∵x 1,2=4(1+k )±-12k 2+32k -122(1+k 2), ∴x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8.由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程为y =x +1. 故圆心C 在l 上,所以MN =2.B 组 能力提高11.圆心M 在曲线y 2=-18x 上,圆M 与y 轴相切且与圆C :(x +2)2+(y -3)2=1外切,则圆M 的方程为________________.答案 ⎝ ⎛⎭⎪⎫x +122+(y -3)2=14或(x +2)2+(y -6)2=4解析 设圆M :(x -a )2+(y -b )2=r 2, ∵b 2=-18a ,r =|a |,∴a =-b 218,r =b 218,圆心C (-2,3),r c =1,又圆M 与圆C 外切,则MC =r +r c , 即(a +2)2+(b -3)2=r +1, 即⎝ ⎛⎭⎪⎫-b 218+22+(b -3)2=b 218+1,解得b =3或b =6.∴圆M 的方程为⎝ ⎛⎭⎪⎫x +122+(y -3)2=14或(x +2)2+(y -6)2=4.12.已知以O 为圆心的圆与直线l :y =mx +(3-4m )(m ∈R )恒有公共点,且要求圆O 的面积最小,则圆O 的方程为________________. 答案 x 2+y 2=25解析 因为直线l :y =mx +(3-4m )过定点T (4,3), 由题意知,要使圆O 的面积最小, 定点T (4,3)在圆上, 所以圆O 的方程为x 2+y 2=25.13.已知圆O 的半径为1,PA ,PB 为该圆的两条切线,A ,B 为两切点,那么PA →·PB →的最小值为________. 答案 -3+2 2 解析 如图所示,设PA =PB =x (x >0),∠APO =α, 则∠APB =2α,PO =1+x 2, sin α=11+x2.PA →·PB →=|PA →||PB →|cos 2α=x 2(1-2sin 2α)=x 2(x 2-1)x 2+1=x 4-x 2x 2+1,令PA →·PB →=y ,则y =x 4-x 2x 2+1,即x 4-(1+y )x 2-y =0.因为x 2是实数,所以Δ=[-(1+y )]2-4×1×(-y )≥0,y 2+6y +1≥0,解得y ≤-3-22或y ≥-3+2 2.又因为x2>0,所以⎩⎪⎨⎪⎧1+y >0,-y >0,所以y ∈[)-3+22,0. 故(PA →·PB →)min =-3+2 2.14.(2018·江苏省如皋中学月考)已知圆O :x 2+y 2=4.(1)直线l 1:3x +y -23=0与圆O 相交于A ,B 两点,求弦AB 的长度;(2)如图,设M ()x 1,y 1, P ()x 2,y 2是圆O 上的两个动点,点M 关于原点的对称点为M 1,点M 关于x 轴的对称点为M 2,如果直线PM 1,PM 2与y 轴分别交于()0,m 和()0,n ,问mn 是否为定值?若是,求出该定值;若不是,请说明理由.解 (1)由于圆心()0,0到直线l 1:3x +y -23=0的距离d =||-232= 3.圆的半径r =2,所以AB =2r 2-d 2=2.(2)由于M (x 1,y 1),点M 关于原点的对称点为M 1,点M 关于x 轴的对称点为M 2,可得M 1()-x 1,-y 1,M 2()x 1,-y 1, 由M (x 1,y 1),P (x 2,y 2)是圆O 上的两个动点, 可得x 21+y 21=4, x 22+y 22=4. 直线PM 1的方程为y +y 1y 2+y 1=x +x 1x 2+x 1,令x =0, 求得y =m =x 1y 2-x 2y 1x 2+x 1.直线PM 2的方程为y +y 1y 2+y 1=x -x 1x 2-x 1,令x =0, 求得y =n =-x 1y 2-x 2y 1x 2-x 1.mn =x 22y 21-x 21y 22x 22-x 21= x 22()4-x 21-x 21()4-x 22x 22-x 21=4.故mn为定值.。

创新设计(江苏专用)高考数学二轮复习 上篇 专题整合突破 专题五 解析几何 第1讲 直线与圆练习 理

创新设计(江苏专用)高考数学二轮复习 上篇 专题整合突破 专题五 解析几何 第1讲 直线与圆练习 理

专题五 解析几何 第1讲 直线与圆练习 理一、填空题1.(2015·北京卷改编)圆心为(1,1)且过原点的圆的方程是________.解析 因为圆心为(1,1)且过原点,所以该圆的半径r =12+12=2,则该圆的方程为(x -1)2+(y -1)2=2. 答案 (x -1)2+(y -1)2=22.(2014·江苏卷)在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析 圆心为(2,-1),半径r =2.圆心到直线的距离d =|2+2×(-1)-3|1+4=355,所以弦长为2r 2-d 2=222-⎝ ⎛⎭⎪⎫3552=2555.答案25553.(2016·南京、盐城模拟)过点P (-4,0)的直线l 与圆C :(x -1)2+y 2=5相交于A ,B 两点,若点A 恰好是线段PB 的中点,则直线l 的方程为________.解析 设AB 的中点为点D ,则CD ⊥AB ,设CD =d ,AD =x ,则PA =AB =2x ,在直角三角形ACD 中,由勾股定理得d 2+x 2=r 2=5.在直角三角形PDC 中,由勾股定理得d 2+9x 2=CP 2=25,解得d 2=52.易知直线l 的斜率一定存在,设为k ,则l :y =k (x +4),圆心C (1,0)到直线l 的距离为d =|5k |k 2+1=102,解得k 2=19,k =±13,所以直线l 的方程为y =±13(x +4),即为x ±3y+4=0.答案 x ±3y +4=04.(2016·苏州调研)若直线l 1:y =x +a 和直线l 2:y =x +b 将圆(x -1)2+(y -2)2=8分成长度相等的四段弧,则a 2+b 2=________.解析 由弧长相等得弧所对的圆心角相等,所以四段弧所对的圆心角都是90°,直线l 1,l 2分布在圆心的两侧,且圆心到直线l 1,l 2的距离d =22r =2,即|a -1|2=2,|b -1|2=2,所以a =22+1,b =-22+1或a =-22+1,b =22+1,所以a 2+b 2=(22+1)2+(-22+1)2=18.答案 185.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M 、N 分别是圆C 1、C 2上的动点,P 为x 轴上的动点,则PM +PN 的最小值为________.解析 由条件可知,两圆的圆心均在第一象限,先求PC 1+PC 2的最小值,作点C 1关于x 轴的对称点C 1′(2,-3),则(PC 1+PC 2)min =C 1′C 2=5 2. 所以(PM +PN )min =52-4. 答案 52-46.(2016·全国Ⅲ卷)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若AB =23,则CD =________.解析 设AB 的中点为M ,由题意知,圆的半径R =23,AB =23,所以OM =3,解得m=-33,由⎩⎨⎧x -3y +6=0,x 2+y 2=12解得A (-3, 3),B (0,23),则AC 的直线方程为y -3=-3(x +3),BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0),所以CD =4. 答案 47.(2016·江西七校第二次联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=14a 2的切线,切点为E ,直线EF 交双曲线右支于点P ,若OE →=12(OF →+OP →),则双曲线的离心率是________.解析 如图,∵OE →=12(OF →+OP →),∴E 为FP 的中点,又O 为FF ′的中点,∴OE 为△PFF ′的中位线, ∴OE ∥PF ′,OE =12PF ′,∵OE =12a ,∴PF ′=a ,∵PF 切圆O 于E ,∴OE ⊥PF ,∴PF ′⊥PF , ∵FF ′=2c ,PF -PF ′=2a , ∴PF =2a +a =3a ,∴由勾股定理得a 2+9a 2=4c 2, ∴10a 2=4c 2,∴e =c a =102. 答案1028.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间距离的最小值为________. 解析 根据题意画出图形,如图所示,过点O 作OC ⊥AB 于C ,因为△AOB 为等腰直角三角形,所以C 为弦AB 的中点,又OA =OB =1,根据勾股定理得AB =2, ∴OC =12AB =22.∴圆心到直线的距离为12a 2+b2=22, 即2a 2+b 2=2,即a 2=-12b 2+1≥0.∴-2≤b ≤ 2.则点P (a ,b )与点(0,1)之间距离d =(a -0)2+(b -1)2=a 2+b 2-2b +1=12b 2-2b +2. 设f (b )=12b 2-2b +2=12(b -2)2,此函数为对称轴为x =2的开口向上的抛物线,∴当-2≤b ≤2<2时,函数为减函数.∵f (2)=3-22,∴d 的最小值为3-22=(2-1)2=2-1. 答案2-1二、解答题9.(2015·全国Ⅰ卷)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN . 解 (1)由题设,可知直线l 的方程为y =kx +1, 因为l 与C 交于两点, 所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得 (1+k 2)x 2-4(1+k )x +7=0.解方程易得:x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程为y =x +1. 故圆心C 在l 上,所以MN =2.10.(2013·江苏卷)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.解 (1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3,由题意,得|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为MA =2MO , 所以x 2+(y -3)2=2 x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4, 所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤CD ≤2+1, 即1≤a 2+(2a -3)2≤3. 整理得-8≤5a 2-12a ≤0. 由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125.所以点C 的横坐标a 的取值范围是⎣⎢⎡⎦⎥⎤0,125.11.已知双曲线x 2-y 23=1.(1)若一椭圆与该双曲线共焦点,且有一交点P (2,3),求椭圆方程.(2)设(1)中椭圆的左、右顶点分别为A 、B ,右焦点为F ,直线l 为椭圆的右准线,N 为l 上的一动点,且在x 轴上方,直线AN 与椭圆交于点M .若AM =MN ,求∠AMB 的余弦值; (3)设过A 、F 、N 三点的圆与y 轴交于P 、Q 两点,当线段PQ 的中点为(0,9)时,求这个圆的方程.解 (1)∵双曲线焦点为(±2,0),设椭圆方程为x 2a 2+y 2b 2=1(a >b >0).则⎩⎪⎨⎪⎧a 2-b 2=4,4a 2+9b2=1.∴a 2=16,b 2=12.故椭圆方程为x 216+y 212=1.(2)由已知,A (-4,0),B (4,0),F (2,0),直线l 的方程为x =8.设N (8,t )(t >0). ∵AM =MN ,∴M ⎝ ⎛⎭⎪⎫2,t 2.由点M 在椭圆上,得t =6. 故所求的点M 的坐标为M (2,3).所以MA →=(-6,-3),MB →=(2,-3),MA →·MB →=-12+9=-3. cos ∠AMB =MA →·MB →|MA →|·|MB →|=-336+9·4+9=-6565.(3)设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),将A 、F 、N 三点坐标代入,得⎩⎪⎨⎪⎧16-4D +F =0,4+2D +F =0,64+t 2+8D +Et +F =0,得⎩⎪⎨⎪⎧D =2,E =-t -72t,F =-8.圆的方程为x 2+y 2+2x -⎝⎛⎭⎪⎫t +72t y -8=0,令x =0,得y 2-⎝ ⎛⎭⎪⎫t +72t y -8=0.设P (0,y 1),Q (0,y 2),则y 1,2=t +72t±⎝ ⎛⎭⎪⎫t +72t 2+322.由线段PQ 的中点为(0,9),得y 1+y 2=18,t +72t=18,此时,所求圆的方程为x 2+y 2+2x -18y -8=0.。

二轮复习解析几何第1讲 直线与圆

二轮复习解析几何第1讲 直线与圆

解析几何第1讲直线与圆一、单项选择题1.直线l经过两条直线x-y+1=0和2x+3y+2=0的交点,且平行于直线x-2y+4=0,则直线l的方程为()A.x-2y-1=0 B.x-2y+1=0C.2x-y+2=0 D.2x+y-2=02.(2022·福州)已知A(-3,0),B(3,0),C(0,3),则△ABC外接圆的方程为() A.(x-1)2+y2=2B.(x-1)2+y2=4C.x2+(y-1)2=2D.x2+(y-1)2=43.(2022·新高考全国Ⅱ)图1是中国古代建筑中的举架结构,AA′,BB′,CC′,DD′是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为DD1OD1=0.5,CC1DC1=k1,BB1CB1=k2,AA1BA1=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3等于()A.0.75 B.0.8C.0.85 D.0.94.过圆C:(x-1)2+y2=1外一点P作圆C的两条切线P A,PB,切点分别为A,B,若P A⊥PB,则点P到直线l:x+y-5=0的距离的最小值为()A.1 B. 2C.2 2 D.3 25.与直线x-y-4=0和圆(x+1)2+(y-1)2=2都相切的半径最小的圆的方程是() A.(x+1)2+(y+1)2=2B.(x+1)2+(y+1)2=4C.(x-1)2+(y+1)2=2D .(x -1)2+(y +1)2=46.已知圆O :x 2+y 2=94,圆M :(x -a )2+(y -1)2=1,若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得∠APB =π3,则实数a 的取值范围是( ) A .[-15,15]B .[-3,3]C .[3,15]D .[-15,-3]∪[3,15]7.已知圆C 1:(x +6)2+(y -5)2=4,圆C 2:(x -2)2+(y -1)2=1,M ,N 分别为圆C 1和C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的取值范围是( )A .[6,+∞)B .[7,+∞)C .[10,+∞)D .[15,+∞)8.(2022·菏泽质检)瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上.这条直线被后人称为三角形的“欧拉线”.在平面直角坐标系中作△ABC ,|AB |=|AC |,点B (-1,1),点C (3,5),过其“欧拉线”上一点Р作圆O :x 2+y 2=4的两条切线,切点分别为M ,N ,则|MN |的最小值为( ) A. 2B .2 2 C. 3D .2 3二、多项选择题9.已知直线l 过点(3,4),点A (-2,2),B (4,-2)到l 的距离相等,则l 的方程可能是( )A .x -2y +2=0B .2x -y -2=0C .2x +3y -18=0D .2x -3y +6=010.在平面直角坐标系中,圆C 的方程为x 2+y 2-4x =0.若直线y =k (x +1)上存在一点P ,使过点P 所作的圆的两条切线相互垂直,则实数k 的可能取值是( )A .1B .2C .3D .411.(2022·南通)已知P 是圆O :x 2+y 2=4上的动点,直线l 1:x cos θ+y sin θ=4与l 2:x sin θ-y cos θ=1交于点Q ,则( )A .l 1⊥l 2B .直线l 1与圆O 相切C .直线l 2与圆O 截得弦长为2 3D .|PQ |长的最大值为17+212.(2022·龙岩质检)已知点P (x 0,y 0)是直线l :x +y =4上的一点,过点P 作圆O :x 2+y 2=2的两条切线,切点分别为A ,B ,连接OA ,OB ,则( )A .当四边形OAPB 为正方形时,点P 的坐标为(2,2)B .|P A |的取值范围为[6,+∞)C .当△P AB 为等边三角形时,点P 的坐标为(1,3)D .直线AB 过定点⎝⎛⎭⎫12,12三、填空题13.与直线2x -y +1=0关于x 轴对称的直线的方程为__________________.14.过点P (2,2)的直线l 与圆(x -1)2+y 2=1相切,则直线l 的方程为____________________.15.(2022·杭州模拟)在平面直角坐标系中,已知第一象限内的点A 在直线l :y =2x 上,B (5,0),以AB 为直径的圆C 与直线l 的另一个交点为D .若AB ⊥CD ,则圆C 的半径等于________.16.若抛物线y =x 2+ax +b 与坐标轴分别交于三个不同的点A ,B ,C ,则△ABC 的外接圆恒过的定点坐标为________.。

(江苏版)高考数学二轮复习 专题六 第1讲 直线与圆 理

(江苏版)高考数学二轮复习 专题六 第1讲 直线与圆 理

专题六解析几何第1讲直线与圆一、填空题1. (必修2 P106习题7改编)圆x2-2x+y2-3=0的圆心到直线x+3y-3=0的距离为.2. (2013·陕西高考改编)若直线l:ax+by=1与圆C:x2+y2=1相交,则点P(a,b)与圆C的位置关系是.3. 若圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,-2),则圆C的方程为.4. (2013·南通三模)在平面直角坐标系xOy中,设点P为圆C:(x-1)2+y2=4上的任意一点,已知点Q(2a,a-3)(a∈R),则线段PQ长度的最小值为.5. (2013·南京、盐城三模)在平面直角坐标系xOy中,已知圆C:x2+y2-(6-2m)x-4my+5m2-6m=0,直线l经过点(1,0).若对任意的实数m,定直线l被圆C截得的弦长为定值,则直线l的方程为.6. 已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被该圆所截得的弦长为22,则圆C的标准方程为.7. (2013·苏、锡、常二模)已知圆C:(x-a)2+(y-a)2=1(a>0)与直线y=3x相交于P,Q两点,若∠PCQ=90°,则实数a= .8. 已知圆x2+y2+x-6y+3=0上的两点P,Q关于直线kx-y+4=0对称,且OP⊥OQ(O为坐标原点),则直线PQ的方程为.二、解答题9. 已知圆x2+y2+2ax-2ay+2a2-4a=0(0<a≤4)的圆心为C,直线l:y=x+m.(1) 若m=4,求直线l被圆C所截得弦长的最大值;(2) 若直线l是圆心C下方的切线,当a在(0,4]上变化时,求m的取值范围.10. 在平面直角坐标系xOy中,已知圆O:x2+y2=64,圆O1与圆O相交,圆心为O1(9,0),且圆O1上的点与圆O上的点之间的最大距离为21.(1) 求圆O1的标准方程;(2) 过定点P(a,b)作动直线l与圆O,圆O1都相交,且直线l被圆O,圆O1截得的弦长分别为d,d1.若d 与d1的比值总等于同一常数λ,求点P的坐标及λ的值.11. (2013·南通二模)在平面直角坐标系xOy中,已知圆C:x2+y2=r2和直线l:x=a(其中r和a均为常数,且0<r<a),M为l上一动点,A1,A2为圆C与x轴的两个交点,直线MA1,MA2与圆C的另一个交点分别为P,Q.(1) 若r=2,点M的坐标为(4,2),求直线PQ的方程;(2) 求证:直线PQ过定点,并求定点的坐标.专题六解析几何第1讲直线与圆1. 12. 在圆外3. (x-2)2+(y+3)2=54.5-25. 2x+y-2=06. (x-3)2+y2=47.58. y=-12x+32或y=-12x+549. (1) 因为x2+y2+2ax-2ay+2a2-4a=0,即(x+a)2+(y-a)2=4a,所以圆心为C(-a,a),半径为r=2a.设直线l被圆C所截得的弦长为2t,圆心C到直线l的距离为d,m=4时,直线l:x-y+4=0, 圆心C到直线l的距离22t2=(2a)2-2(a-2)2=-2a2+12a-8=-2(a-3)2+10,又0<a≤4,所以当a=3时,t2最大为10,t最大为10,即直线l被圆C所截得弦长的值最大,其最大值为210.(2) 圆心C到直线l的距离d=|--|2a a m+=|-2|2m a,因为直线l是圆C的切线,所以d=r,即|-2|2m a=2a,所以m=2a±22a.因为直线l在圆心C的下方,所以-a-a+m<0,m<2a,所以m=2a-22a=(2a-1)2-1,因为a∈(0,4],所以m∈[-1,8-42].10. (1) 由题设,得圆O1的半径为4,所以圆O1的标准方程为(x-9)2+y2=16.(2) 当直线l的斜率存在时,设直线l为y-b=k(x-a),即kx-y-ak+b=0.则点O,O1到直线l的距离分别为2-1ka bk +,h12-9-1k ka bk++,从而d 1.由1dd =λ,得64-22(-)1ka b k+=22(-9-)16-1k ka b k ⎡⎤+⎢⎥+⎣⎦λ2, 整理得[64-a 2-16λ2+λ2(a-9)2]k 2+2b[a-λ2(a-9)]k+64-b 2-λ2(16-b 2)=0. 由题意,上式对于任意实数k 恒成立,所以2222222264--16(a-9)0,2[-(a-9)]0,64--(16-)0,a b a b b λλλλ⎧+=⎪=⎨⎪=⎩由2b[a-λ2(a-9)]=0,得b=0或a-λ2(a-9)=0.①如果b=0,则64-16λ2=0,解得λ=2(舍去负值).从而a=6或18, 所以λ=2,点P(6,0),P(18,0).②如果a-λ2(a-9)=0,显然a=9不满足,从而λ2=-9aa ,所以3a 2-43a+192=0.但Δ=432-4×3×192=-455<0,因此该方程无实数根,舍去.当点P 的坐标为(6,0)时,若直线l 的斜率不存在,此时d=47,d 1=27,所以1d d =2,也满足.综上所述,满足题意的λ=2,点P 有两个,坐标分别为(6,0)和(18,0). 11. (1) 当r=2,M(4,2),则A 1(-2,0),A 2(2,0). 直线MA 1的方程为x-3y+2=0,解224,-320,x y x y ⎧+=⎨+=⎩得P 86,55⎛⎫⎪⎝⎭.直线MA 2的方程为x-y-2=0,解224,--20,x y x y ⎧+=⎨=⎩得Q(0,-2).所以直线PQ 的方程为2x-y-2=0.(2) 由题设得A 1(-r,0),A 2(r,0).设M(a,t),直线MA 1的方程为y=ta r +(x+r),直线MA 2的方程为y=-t a r (x-r) .解222,(x r),x y r t y a r ⎧+=⎪⎨=+⎪+⎩得P 222222()-r 2(),()()r a r t tr a r a r t a r t ⎛⎫++ ⎪++++⎝⎭. 解222,(x-r),-x y r t y a r ⎧+=⎪⎨=⎪⎩得Q 222222-r(a-r)2(-),-(-)(-)rt tr a r a r t a r t ⎛⎫⎪++⎝⎭. 于是直线PQ 的斜率k PQ =2222--ata t r ,直线PQ 的方程为y-222()()tr a r a r t +++=22222222()-r ---()at r a r t x a t r a r t ⎛⎫+ ⎪++⎝⎭.上式中令y=0,得x=2r a ,是一个与t 无关的常数.故直线PQ 过定点2,0r a ⎛⎫ ⎪⎝⎭.。

专题五解析几何直线与圆教学课件2021届新高考数学二轮复习

专题五解析几何直线与圆教学课件2021届新高考数学二轮复习

故|MA|·|MB|≤225(当且仅当|MA|=|MB|=5 2 2时取“=”).
答案
(1)A
25 (2) 2
探究提高 1.求解两条直线平行的问题时,在利用A1B2-A2B1=0建立方程求出参 数的值后,要注意代入检验,排除两条直线重合的可能性. 2.求直线方程时应根据条件选择合适的方程形式利用待定系数法求解,同时要考虑 直线斜率不存在的情况是否符合题意.
【例 2】 (1)(2020·石家庄模拟)古希腊数学家阿波罗尼斯在其巨著《圆锥曲线论》中
提出“在同一平面上给出三点,若其中一点到另外两点的距离之比是一个大于零且
不等于 1 的常数,则该点轨迹是一个圆”.现在,某电信公司要在甲、乙、丙三地搭
建三座 5G 信号塔来构建一个特定的三角形信号覆盖区域,以实现 5G 商用,已知甲、
解析 (1)由题意知m(1+m)-2×1=0,解得m=1或-2,当m=-2时,两直线重 合,舍去;当m=1时,满足两直线平行,所以m=1.
(2)由题意可知,直线 l1:kx-y+4=0 经过定点 A(0,4),直线 l2:x+ky-3=0 经过 定点 B(3,0),注意到直线 l1:kx-y+4=0 和直线 l2:x+ky-3=0 始终垂直,点 M 又是两条直线的交点,则有 MA⊥MB,所以|MA|2+|MB|2=|AB|2=25.
热点三 直线(圆)与圆的位置关系
角度 1 圆的切线问题
【例 3】 (1)(2020·全国Ⅲ卷)若直线 l 与曲线 y= x和圆 x2+y2=15都相切,则 l 的方程
为( ) A.y=2x+1
B.y=2x+12
C.y=12x+1
D.y=12x+12
(2)(多选题)在平面直角坐标系xOy中,圆C的方程为x2+y2-4x=0.若直线y=k(x+1)

15第一部分 板块二 专题五 解析几何 第1讲 直线与圆(小题)

15第一部分 板块二 专题五 解析几何 第1讲 直线与圆(小题)

第1讲 直线与圆(小题)热点一 直线的方程及应用 1.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.求直线方程要注意几种直线方程的局限性.点斜式、斜截式方程要求直线不能与x 轴垂直,两点式不能表示与坐标轴垂直的直线,而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线. 3.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2(A 2+B 2≠0).(2)点(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2(A 2+B2≠0). 例1 (1)(2019·宝鸡模拟)若直线x +(1+m )y -2=0与直线mx +2y +4=0平行,则m 的值是( )A .1B .-2C .1或-2D .-32(2)我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆x 2+y 2=2的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( ) A .x +(2-1)y -2=0 B .(1-2)x -y +2=0 C .x -(2+1)y +2=0D .(2-1)x -y +2=0跟踪演练1 (1)已知直线l 1:x ·sin α+y -1=0,直线l 2:x -3y ·cos α+1=0,若l 1⊥l 2, 则sin 2α等于( ) A.23 B .±35 C .-35 D.35(2)已知直线l 的斜率为3,在y 轴上的截距为直线x -2y -4=0的斜率的倒数,则直线l 的方程为( ) A .y =3x +2 B .y =3x -2 C .y =3x +12D .y =-3x +2热点二 圆的方程及应用 1.圆的标准方程当圆心为(a ,b ),半径为r 时,其标准方程为(x -a )2+(y -b )2=r 2,特别地,当圆心在原点时,方程为x 2+y 2=r 2. 2.圆的一般方程x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0,表示以⎝⎛⎭⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆.3.解决与圆有关的问题一般有两种方法(1)几何法:通过研究圆的性质、直线与圆、圆与圆的位置关系,进而求得圆的基本量和方程. (2)代数法:即用待定系数法先设出圆的方程,再由条件求得各系数.例2 (1)(2018·天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为____________.方法二 画出示意图如图所示,则△OAB 为等腰直角三角形, 故所求圆的圆心为(1,0),半径为1, ∴所求圆的方程为(x -1)2+y 2=1, 即x 2+y 2-2x =0.(2)抛物线x 2=4y 的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当△FPM 为等边三角形时,则△FPM 的外接圆的方程为________.跟踪演练2 (1)(2019·黄冈调研)已知圆x 2+y 2+2k 2x +2y +4k =0关于y =x 对称,则k 的值为( )A .-1B .1C .±1D .0(2)(2019·河北省级示范性高中联合体联考)已知A ,B 分别是双曲线C :x 2m -y 22=1的左、右顶点,P (3,4)为C 上一点,则△P AB 的外接圆的标准方程为________________. 热点三 直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离,判断的方法 (1)点线距离法.(2)判别式法:设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0(A 2+B 2≠0),方程组⎩⎪⎨⎪⎧Ax +By +C =0,(x -a )2+(y -b )2=r 2, 消去y ,得到关于x 的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.3.圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.例3 (1)(2019·莆田质检)直线y =x +m 与圆x 2+y 2=4相交于M ,N 两点.若|MN |≥22,则m 的取值范围是( ) A .[-2,2] B .[-4,4]C .[0,2]D .(-22,-2]∪[2,22)(2)(2019·长沙市长郡中学模拟)已知圆C 1:(x -2)2+(y -2)2=r 21(r 1>0),圆C 2:(x +1)2+(y +1)2=r 22(r 2>0),圆C 1与圆C 2相切,并且两圆的一条外公切线的斜率为7,则r 1r 2为________. 跟踪演练3 (1)(2019·柳州模拟)已知点M 是抛物线y 2=2x 上的动点,以点M 为圆心的圆被y 轴截得的弦长为8,则该圆被x 轴截得的弦长的最小值为( ) A .10 B .4 3 C .8 D .215(2)(2019·绵阳诊断)已知圆C 1:x 2+y 2=r 2,圆C 2:(x -a )2+(y -b )2=r 2(r >0)交于不同的A (x 1,y 1),B (x 2,y 2)两点,给出下列结论:①a (x 1-x 2)+b (y 1-y 2)=0;②2ax 1+2by 1=a 2+b 2;③x 1+x 2=a ,y 1+y 2=b .其中正确结论的个数是( ) A .0 B .1 C .2 D .3真题体验1.(2018·全国Ⅲ,文,8)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]2.(2016·全国Ⅱ,文,6)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a 等于( )A .-43B .-34C. 3 D .23.(2018·全国Ⅰ,文,15)直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________. 押题预测1.圆(x -2)2+y 2=1与直线3x +4y +2=0的位置关系是( ) A .相交 B .相切C .相离D .以上三种情况都有可能2.若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________. 3.甲、乙两人参加歌咏比赛的得分(均为两位数)如茎叶图所示,甲的平均数为b ,乙的众数为a ,且直线ax +by +8=0与以A (1,-1)为圆心的圆交于B ,C 两点,且∠BAC =120°,则圆A 的标准方程为________.A 组 专题通关1.(2019·衡水质检)直线2x ·sin 210°-y -2=0的倾斜角是( ) A .45° B .135° C .30° D .150°2.(2019·黄冈调研)过点A (1,2)的直线在两坐标轴上的截距相等,则该直线方程为( ) A .y -x =1B .y +x =3C .2x -y =0或x +y =3D .2x -y =0或-x +y =13.(2019·厦门模拟)在直角坐标系xOy 中,以O 为圆心的圆与直线x -3y =4相切,则圆O 的方程为( ) A .x 2+(y -1)2=4 B .(x -1)2+y 2=4 C .(x +1)2+(y -1)2=4D .x 2+y 2=44.(2019·湘赣十四校联考)圆(x +2)2+(y -3)2=9上到直线x +y =0的距离等于2的点有( ) A .4个 B .3个 C .2个 D .1个5.(2019·黄山质检)直线2x -y -3=0与y 轴的交点为P ,点P 把圆(x +1)2+y 2=36的直径分为两段,则较长一段与较短一段的长度的比值等于( ) A .2 B .3 C .4 D .56.若直线ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0,则(a -2)2+(b -2)2的最小值为( )A. 5 B .5 C .2 5 D .107.(2019·河北省五个一名校联盟诊断)已知点P 为圆C :(x -1)2+(y -2)2=4上一点,A (0,-6),B (4,0),则|P A →+PB →|的最大值为( ) A.26+2 B.26+4 C .226+4D .226+28.(2019·菏泽模拟)已知点P 是直线l :3x +4y -7=0上的动点,过点P 引圆C :(x +1)2+y 2=r 2(r >0)的两条切线PM ,PN .M ,N 为切点,当∠MPN 的最大值为π3时,则r 的值为( )A .4B .3C .2D .1 9.(2019·宝鸡模拟)设D 为椭圆x 2+y 25=1上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使得|PD |=|BD |,则点P 的轨迹方程为( ) A .x 2+(y -2)2=20 B .x 2+(y -2)2=5 C .x 2+(y +2)2=20D .x 2+(y +2)2=510.(2019·德阳模拟)已知点P (-3,0)在动直线m (x -1)+n (y -3)=0上的投影为点M ,若点N ⎝⎛⎭⎫2,32,那么|MN |的最小值为( ) A .2 B.32 C .1 D.1211.已知圆C :x 2+y 2=1,点P 为直线x +2y -4=0上一动点,过点P 向圆C 引两条切线分别为P A ,PB ,A ,B 为切点,则直线AB 经过定点( ) A.⎝⎛⎭⎫12,14 B.⎝⎛⎭⎫14,12 C.⎝⎛⎭⎫34,0D.⎝⎛⎭⎫0,34 12.(2019·南昌模拟)已知A (-3,0),B (3,0),P 为圆x 2+y 2=1上的动点,AP →=PQ →,过点P 作与AP 垂直的直线l 交直线QB 于点M ,则M 的横坐标的取值范围是( ) A .|x |≥1 B .|x |>1 C .|x |≥2D .|x |≥2213.(2019·福建四校联考)已知直线3x +4y -3=0,6x +my +14=0平行,则它们之间的距离是________.14.(2019·天津市十二重点中学联考)已知圆C 的圆心在x 轴的正半轴上,且y 轴和直线3x +4y +4=0均与圆C 相切,则圆C 的标准方程为________.15.(2019·晋中模拟)已知圆C 经过点A (1,3),B (4,2),与直线2x +y -10=0相切,则圆C 的标准方程为________.16.(2019·宝鸡质检)圆x 2+y 2=1的任意一条切线与圆x 2+y 2=4相交于A (x 1,y 1),B (x 2,y 2)两点,O 为坐标原点,则x 1x 2+y 1y 2=________.B 组 能力提高17.(2019·齐齐哈尔模拟)已知半圆C :x 2+y 2=1(y ≥0),A ,B 分别为半圆C 与x 轴的左、右交点,直线m 过点B 且与x 轴垂直,点P 在直线m 上,纵坐标为t ,若在半圆C 上存在点Q 使∠BPQ =π3,则t 的取值范围是( )A.⎣⎡⎭⎫-233,0∪(0,3] B .[-3,0)∪⎝⎛⎦⎤0,233C.⎣⎡⎭⎫-33,0∪⎝⎛⎦⎤0,33 D.⎣⎡⎭⎫-233,0∪⎝⎛⎦⎤0,233 18.(2019·淮南模拟)在平面直角坐标系中,设点P (x ,y ),定义[OP ]=|x |+|y |,其中O 为坐标原点,对于下列结论:①符合[OP ]=2的点P 的轨迹围成的图形面积为8;②设点P 是直线l 1:3x +2y -2=0上任意一点,则[OP ]min =1;③设点P 是直线l 2:y =kx +1(k ∈R )上任意一点,则使得“[OP ]最小的点P 有无数个”的充要条件是k =1;④设点P 是圆x 2+y 2=2上任意一点,则[OP ]max =2. 其中正确的结论序号为( ) A .①②③ B .①③④ C .②③④ D .①②④。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲 直线与圆1.若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________. [解析] 由题意知21+k2>1,解得-3<k <3.[答案] (-3, 3)2.(2019·扬州期末)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为________. [解析] 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.因为3-2<d <3+2,所以两圆相交.[答案] 相交3.已知动直线l 0:ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),且Q (4,0)到动直线l 0的最大距离为3,则12a +2c的最小值为________.[解析] 动直线l 0:ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),所以a +bm +c -2=0. 又Q (4,0)到动直线l 0的最大距离为3,所以 (4-1)2+(0-m )2=3,解得m =0.所以a +c =2. 又a >0,c >0,所以12a +2c =12(a +c )⎝ ⎛⎭⎪⎫12a +2c =12⎝ ⎛⎭⎪⎫52+c 2a +2a c ≥12⎝ ⎛⎭⎪⎫52+2c 2a ·2a c =94,当且仅当c =2a =43时取等号.[答案] 944.已知以原点O 为圆心的圆与直线l :y =mx +(3-4m ),(m ∈R )恒有公共点,且要求使圆O 的面积最小,则圆O 的方程为________.[解析] 因为直线l :y =mx +(3-4m )过定点T (4,3),由题意,要使圆O 的面积最小,则定点T (4,3)在圆上,所以圆O 的方程为x 2+y 2=25.[答案] x 2+y 2=255.(2019·南京高三模拟)在平面直角坐标系xOy 中,圆M :(x -a )2+(y +a -3)2=1(a >0),点N 为圆M 上任意一点.若以N 为圆心,ON 为半径的圆与圆M 至多有一个公共点,则a 的最小值为________.[解析] 由题意可得圆N 与圆M 内切或内含,则|ON |≥2恒成立,即|ON |min =|OM |-1≥2,|OM |≥3,即a 2+(a -3)2≥9,又a >0,得a ≥3,则a 的最小值是3.[答案] 36.(2019·苏锡常镇四市高三调研)已知直线l :mx +y -2m -1=0,圆C :x 2+y 2-2x -4y =0,当直线l 被圆C 所截得的弦长最短时,实数m =________.[解析] 直线l 被圆C :(x -1)2+(y -2)2=5所截得的弦长最短,即圆心C 到直线l 的距离最大,d =|1-m |m 2+1=(1-m )2m 2+1=1-2mm 2+1,当d 取最大值时,m <0,此时d =1+2(-m )+1-m ≤2,当且仅当-m =1,即m =-1 时取等号,即d 取得最大值,弦长最短.[答案] -17.(2019·江苏省六市高三调研)在平面直角坐标系xOy 中,已知圆C 1:(x -4)2+(y -8)2=1,圆C 2:(x -6)2+(y +6)2=9.若圆心在x 轴上的圆C 同时平分圆C 1和圆C 2的圆周,则圆C 的方程是________.[解析] 因为所求圆的圆心在x 轴上,所以可设所求圆的方程为x 2+y 2+Dx +F =0.用它的方程与已知两圆的方程分别相减得,(D +8)x +16y +F -79=0,(D +12)x -12y +F -63=0,由题意,圆心C 1(4,8),C 2(6,-6)分别在上述两条直线上,从而求得D =0,F =-81,所以所求圆的方程为x 2+y 2=81.[答案] x 2+y 2=818.(2019·南京模拟)过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.[解析] 令P (2,0),如图,易知|OA |=|OB |=1,所以S △AOB =12|OA |·|OB |·sin ∠AOB=12sin ∠AOB ≤12,当∠AOB =90°时,△AOB 的面积取得最大值,此时过点O 作OH ⊥AB 于点H ,则|OH |=22,于是sin ∠OPH =|OH ||OP |=222=12,易知∠OPH 为锐角,所以∠OPH =30°,则直线AB 的倾斜角为150°,故直线AB 的斜率为tan 150°=-33.[答案] -339.(2019·南京市四校第一学期联考)已知圆O :x 2+y 2=1,半径为1的圆M 的圆心M 在线段CD :y =x -4(m ≤x ≤n ,m <n )上移动,过圆O 上一点P 作圆M 的两条切线,切点分别为A ,B ,且满足∠APB =60°,则n -m 的最小值为______.[解析] 设M (a ,a -4)(m ≤a ≤n ),则圆M 的方程为(x -a )2+(y -a +4)2=1.连结MP ,MB ,则MB =1,PB ⊥MB .因为∠APB =60°,所以∠MPB =30°,所以MP =2MB =2,所以点P在以M 为圆心,2为半径的圆上.连结OM ,又点P 在圆O 上,所以点P 为圆x 2+y 2=1与圆(x -a )2+(y -a +4)2=4的公共点,所以2-1≤OM ≤2+1,即1≤a 2+(a -4)2≤3,得⎩⎪⎨⎪⎧2a 2-8a +15≥0,2a 2-8a +7≤0,解得2-22≤a ≤2+22.所以n ≥2+22,m ≤2-22,所以n -m ≥2.[答案] 210.(2019·苏北四市高三质量检测)已知A ,B 是圆C 1:x 2+y 2=1上的动点,AB =3,P 是圆C 2:(x -3)2+(y -4)2=1上的动点,则|PA →+PB →|的取值范围为________.[解析] 取AB 的中点C ,则|PA →+PB →|=2|PC →|,C 的轨迹方程是x 2+y 2=14,C 1C 2=5,由题意,|PC →|的最大值为5+1+12=132,最小值为5-1-12=72,所以|PA →+PB →|的取值范围为[7,13].[答案] [7,13]11.(2019·南通模拟)已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. [解] (1)由已知可得l 2的斜率存在,且k 2=1-a . 若k 2=0,则1-a =0,a =1.因为l 1⊥l 2,直线l 1的斜率k 1必不存在,即b =0.又因为l 1过点(-3,-1),所以-3a +4=0,即a =43(矛盾).所以此种情况不存在,所以k 2≠0.即k 1,k 2都存在,因为k 2=1-a ,k 1=a b,l 1⊥l 2, 所以k 1k 2=-1,即a b(1-a )=-1.①又因为l 1过点(-3,-1),所以-3a +b +4=0.② 由①②联立,解得a =2,b =2.(2)因为l 2的斜率存在,l 1∥l 2,所以直线l 1的斜率存在,k 1=k 2,即ab=1-a .③又因为坐标原点到这两条直线的距离相等,且l 1∥l 2, 所以l 1,l 2在y 轴上的截距互为相反数,即4b=b ,④联立③④,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.所以a =2,b =-2或a =23,b =2.12.(2019·江苏高考研究原创卷)已知圆心为C 的圆满足下列条件:圆心C 位于x 轴的正半轴上,圆C 与直线3x -4y +7=0相切,且被y 轴截得的弦长为23,圆C 的面积小于13.(1)求圆C 的标准方程;(2)设过点M (0,3)的直线l 与圆C 交于不同的两点A ,B ,以OA ,OB 为邻边作平行四边形OADB ,是否存在这样的直线l ,使得直线OD 与MC 恰好平行?如果存在,求出直线l 的方程;如果不存在,请说明理由.[解] (1)设圆C :(x -a )2+y 2=R 2(a >0),由题意知⎩⎪⎨⎪⎧|3a +7|32+(-4)2=Ra 2+3=R,解得a =1或a =138. 又圆C 的面积S =πR 2<13,所以a =1, 所以圆C 的标准方程为(x -1)2+y 2=4.(2)当直线l 的斜率不存在时,直线l :x =0,不满足题意.当直线l 的斜率存在时,设直线l :y =kx +3,A (x 1,y 1),B (x 2,y 2),又直线l 与圆C 相交于不同的两点,联立⎩⎪⎨⎪⎧y =kx +3(x -1)2+y 2=4,消去y 得(1+k 2)x 2+(6k -2)x +6=0, 所以Δ=(6k -2)2-24(1+k 2)=12k 2-24k -20>0, 解得k <1-263或k >1+263,x 1+x 2=-6k -21+k 2,y 1+y 2=k (x 1+x 2)+6=2k +61+k2. 在▱OADB 中,OD →=OA →+OB →=(x 1+x 2,y 1+y 2),MC →=(1,-3),假设OD ∥MC ,则-3(x 1+x 2)=y 1+y 2,所以3×6k -21+k 2=2k +61+k 2,解得k =34.但34∈/(-∞,1-263)∪(1+263,+∞), 所以不存在直线l ,使得直线OD 与MC 恰好平行.13.(2019·江苏省高考名校联考(三))如图,在平面直角坐标系xOy 中,已知圆O :x 2+y 2=4,F (0,2),点A ,B 是圆O 上的动点,且FA ·FB =4.(1)若FB =1,且点B 在第二象限,求直线AB 的方程;(2)是否存在与动直线AB 恒相切的定圆?若存在,求出该圆的方程;若不存在,请说明理由.[解] (1)显然直线FB 的斜率存在,故可设直线FB 的方程为y =kx +2(k >0), 联立方程得⎩⎪⎨⎪⎧y =kx +2x 2+y 2=4,消去y 得,(k 2+1)x 2+4kx =0, 得⎩⎪⎨⎪⎧x B=-4k k 2+1y B =2-2k 2k 2+1,故FB =1+k 2⎪⎪⎪⎪⎪⎪0-⎝ ⎛⎭⎪⎫-4k k 2+1=4|k |k 2+1=1,得k =1515,点B ⎝ ⎛⎭⎪⎫-154,74. 因为FB =1,且FA ·FB =4,所以FA =4, 又圆O 的半径为2,所以A (0,-2), 故直线AB 的方程为y =-15x -2.(2)由(1)的求解方法易知,若FB =1,且点B 在第一象限, 则直线AB 的方程为y =15x -2, 故若存在符合题意的圆,则圆心在y 轴上.设圆心坐标为(0,m ),易知当AB ∥x 轴时,直线AB 的方程为y =1, 故|m -1|=|m +2|15+1=|m +2|4,解得m =25或m =2.若直线FB ,FA 的斜率存在,不妨设直线FB ,FA 的方程分别为y =k 1x +2,y =k 2x +2(k 1≠k 2),由(1)的求解方法易知,B ⎝ ⎛⎭⎪⎫-4k 1k 21+1,2-2k 21k 21+1,A ⎝ ⎛⎭⎪⎫-4k 2k 22+1,2-2k 22k 22+1,FB =4|k 1|k 21+1,FA =4|k 2|k 22+1. 又FA ·FB =4,所以4|k 1|k 21+1·4|k 2|k 22+1=4,化简得15k 21k 22=k 21+k 22+1(*). 当直线AB 的斜率存在且不等于0时,直线AB 的方程为x -⎝ ⎛⎭⎪⎫-4k 1k 21+1-4k 2k 22+1-⎝ ⎛⎭⎪⎫-4k 1k 21+1=y -2-2k 21k 21+12-2k 22k 22+1-2-2k 21k 21+1, 化简得(k 1+k 2)x +(k 1k 2-1)y +2(k 1k 2+1)=0, 则点(0,2)到直线AB 的距离d =|4k 1k 2|(k 1+k 2)2+(k 1k 2-1)2=|4k 1k 2|k 21k 22+k 21+k 22+1,把(*)代入上式得d =1.又|m -1|=1=d ,故存在定圆x 2+(y -2)2=1与动直线AB 恒相切.同理点⎝ ⎛⎭⎪⎫0,25到直线AB 的距离d =⎪⎪⎪⎪⎪⎪125k 1k 2+85(k 1+k 2)2+(k 1k 2-1)2=⎪⎪⎪⎪⎪⎪125k 1k 2+85|4k 1k 2|,显然不是定值,故不符合题意.当直线AB 的斜率不存在时,易知可取A (1,3),B (1,-3),或A (-1,3),B (-1,-3),显然直线AB 与圆x 2+(y -2)2=1相切.综上所述,存在定圆:x 2+(y -2)2=1与动直线AB 恒相切.14.(2019·南京市高三年级第三次模拟考试)如图,某摩天轮底座中心A 与附近的景观内某点B 之间的距离AB 为160 m .摩天轮与景观之间有一建筑物,此建筑物由一个底面半径为15 m 的圆柱体与一个半径为15 m 的半球体组成.圆柱的底面中心P 在线段AB 上,且PB 为45 m .半球体球心Q 到地面的距离PQ 为15 m .把摩天轮看作一个半径为72 m 的圆C ,且圆C 在平面BPQ 内,点C 到地面的距离CA 为75 m .该摩天轮匀速旋转一周需要30 min ,若某游客乘坐该摩天轮(把游客看作圆C 上一点)旋转一周,求该游客能看到点B 的时长.(只考虑此建筑物对游客视线的遮挡)[解] 以点B 为坐标原点,BP 所在直线为x 轴,建立如图所示的平面直角坐标系,则B (0,0),Q (45,15),C (160,75).过点B 作直线l 与半圆Q 相切,与圆C 交于点M ,N ,连结CM ,CN ,过点C 作CH ⊥MN ,垂足为H .设直线l 的方程为y =kx ,即kx -y =0, 则点Q 到l 的距离为|45k -15|k 2+1=15,解得k =34或k =0(舍).所以直线l 的方程为y =34x ,即3x -4y =0.所以点C (160,75)到直线l 的距离CH =|3×160-4×75|32+(-4)2=36. 因为在Rt △CHM 中,CH =36,CM =72, 所以cos ∠MCH =3672=12.又∠MCH ∈(0,π2),所以∠MCH =π3,所以∠MCN =2∠MCH =2π3,所以该游客能看到点B 的时长为30×2π32π=10(min).。

相关文档
最新文档