(完整word版)南京市20xx年中考数学试卷及答案.doc

合集下载

2020年江苏省南京市中考数学试卷及答案解析

2020年江苏省南京市中考数学试卷及答案解析

2020年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)计算3﹣(﹣2)的结果是()A.﹣5B.﹣1C.1D.52.(2分)3的平方根是()A.9B.√3C.−√3D.±√33.(2分)计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a84.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务5.(2分)关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根6.(2分)如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D .若⊙P 的半径为5,点A 的坐标是(0,8).则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3: . 8.(2分)若式子1−1x−1在实数范围内有意义,则x 的取值范围是 . 9.(2分)纳秒(ns )是非常小的时间单位,1ns =10﹣9s .北斗全球导航系统的授时精度优于20ns .用科学记数法表示20ns 是 s . 10.(2分)计算√3√3+√12的结果是 .11.(2分)已知x 、y 满足方程组{x +3y =−1,2x +y =3,,则x +y 的值为 .12.(2分)方程x x−1=x−1x+2的解是 .13.(2分)将一次函数y =﹣2x +4的图象绕原点O 逆时针旋转90°,所得到的图象对应的函数表达式是 .14.(2分)如图,在边长为2cm 的正六边形ABCDEF 中,点P 在BC 上,则△PEF 的面积为 cm 2.15.(2分)如图,线段AB、BC的垂直平分线11、l2相交于点O,若∠1=39°,则∠AOC =.16.(2分)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(a﹣1+1a+1)÷a2+2aa+1.18.(7分)解方程:x2﹣2x﹣3=0.19.(8分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.20.(8分)已知反比例函数y=kx的图象经过点(﹣2,﹣1).(1)求k的值.(2)完成下面的解答.解不等式组{2−x>1,①kx>1.②解:解不等式①,得.根据函数y=kx的图象,得不等式②的解集.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数18≤x<9350293≤x<1781003178≤x<263344263≤x<348115348≤x<43316433≤x<51817518≤x<60328603≤x<6881根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内;(2)估计该地1万户居民六月份的用电量低于178kW•h的大约有多少户.22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A 处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)24.(8分)如图,在△ABC 中,AC =BC ,D 是AB 上一点,⊙O 经过点A 、C 、D ,交BC 于点E ,过点D 作DF ∥BC ,交⊙O 于点F . 求证:(1)四边形DBCF 是平行四边形; (2)AF =EF .25.(8分)小明和小丽先后从A 地出发沿同一直道去B 地.设小丽出发第xmin 时,小丽、小明离B 地的距离分别为y 1m 、y 2m .y 1与x 之间的函数表达式是y 1=﹣180x +2250,y 2与x 之间的函数表达式是y 2=﹣10x 2﹣100x +2000. (1)小丽出发时,小明离A 地的距离为 m .(2)小丽出发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少? 26.(9分)如图,在△ABC 和△A 'B 'C '中,D 、D '分别是AB 、A 'B '上一点,AD AB=A′D′A′B′.(1)当CD C′D′=AC A′C′=AB A′B′时,求证△ABC ∽△A 'B 'C .证明的途径可以用下面的框图表示,请填写其中的空格.(2)当CDC′D′=ACA′C′=BCB′C′时,判断△ABC与△A'B'C′是否相似,并说明理由.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.2020年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)计算3﹣(﹣2)的结果是()A.﹣5B.﹣1C.1D.5【解答】解:3﹣(﹣2)=3+2=5.故选:D.2.(2分)3的平方根是()A.9B.√3C.−√3D.±√3【解答】解:∵(±√3)2=3,∴3的平方根±√3.故选:D.3.(2分)计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a8【解答】解:(a3)2÷a2=a3×2÷a2=a6﹣2=a4,故选:B.4.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务【解答】解:A.2019年末,农村贫困人口比上年末减少1660﹣551=1109(万人),此选项错误;B.2012年末至2019年末,农村贫困人口累计减少超过9899﹣551=9348(万人),此选项正确;C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上,此选项正确;D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务,此选项正确;故选:A.5.(2分)关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根【解答】解:∵关于x的方程(x﹣1)(x+2)=p2(p为常数),∴x2+x﹣2﹣p2=0,∴△=1+8+4p2=9+4p2>0,∴方程有两个不相等的实数根,∵两个的积为﹣2﹣p2,∴一个正根,一个负根,故选:C.6.(2分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)【解答】解:设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP 与CD交于点G,则PE⊥y轴,PF⊥x轴,∵∠EOF=90°,∴四边形PEOF是矩形,∵PE=PF,PE∥OF,∴四边形PEOF为正方形,∴OE=PF=PE=OF=5,∵A(0,8),∴OA=8,∴AE=8﹣5=3,∵四边形OACB为矩形,∴BC=OA=8,BC∥OA,AC∥OB,∴EG∥AC,∴四边形AEGC为平行四边形,四边形OEGB为平行四边形,∴CG=AE=3,EG=OB,∵PE⊥AO,AO∥CB,∴PG⊥CD,∴CD=2CG=6,∴DB=BC﹣CD=8﹣6=2,∵PD=5,DG=CG=3,∴PG=4,∴OB=EG=5+4=9,∴D (9,2).故选:A .二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3: ﹣1(答案不唯一) . 【解答】解:∵一个负数的绝对值小于3, ∴这个负数大于﹣3且小于0,∴这个负数可能是﹣2、﹣1.5、﹣1、…. 故答案为:﹣1(答案不唯一). 8.(2分)若式子1−1x−1在实数范围内有意义,则x 的取值范围是 x ≠1 . 【解答】解:若式子1−1x−1在实数范围内有意义, 则x ﹣1≠0, 解得:x ≠1. 故答案为:x ≠1.9.(2分)纳秒(ns )是非常小的时间单位,1ns =10﹣9s .北斗全球导航系统的授时精度优于20ns .用科学记数法表示20ns 是 2×10﹣8 s .【解答】解:20ns =20×10﹣9s =2×10﹣8s ,故答案为:2×10﹣8.10.(2分)计算√3√3+√12的结果是 13 .【解答】解:原式=√3√3+2√3=√33√3=13.故答案为:13.11.(2分)已知x 、y 满足方程组{x +3y =−1,2x +y =3,,则x +y 的值为 1 . 【解答】解:{x +3y =−1①2x +y =3②, ①×2﹣②得:5y =﹣5,解得:y =﹣1,①﹣②×3得:﹣5x =﹣10,解得:x =2,则x +y =2﹣1=1,故答案为1.12.(2分)方程x x−1=x−1x+2的解是 x =14 . 【解答】解:方程x x−1=x−1x+2,去分母得:x 2+2x =x 2﹣2x +1,解得:x =14,经检验x =14是分式方程的解.故答案为:x =14.13.(2分)将一次函数y =﹣2x +4的图象绕原点O 逆时针旋转90°,所得到的图象对应的函数表达式是 y =12x +2 .【解答】解:在一次函数y =﹣2x +4中,令x =0,则y =4,∴直线y =﹣2x +4经过点(0,4),将一次函数y =﹣2x +4的图象绕原点O 逆时针旋转90°,则点(0,4)的对应点为(﹣4,0),旋转后得到的图象与原图象垂直,则对应的函数解析式为:y =12x +b ,将点(﹣4,0)代入得,12×(−4)+b =0, 解得b =2,∴旋转后对应的函数解析式为:y =12x +2,故答案为y =12x +2.14.(2分)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为2√3cm2.【解答】解:连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BE,AB=AF,∴BT=FT,∠BAT=∠F AT=60°,∴BT=FT=AB•sin60°=√3,∴BF=2BT=2√3,∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF=12•EF•BF=12×2×2√3=2√3,故答案为2√3.15.(2分)如图,线段AB、BC的垂直平分线11、l2相交于点O,若∠1=39°,则∠AOC =78°.【解答】解:过O作射线BP,∵线段AB、BC的垂直平分线11、l2相交于点O,∴AO=OB=OC,∠BDO=∠BEO=90°,∴∠DOE+∠ABC=180°,∵∠DOE+∠1=180°,∴∠ABC=∠1=39°,∵OA=OB=OC,∴∠A=∠ABO,∠OBC=∠C,∵∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,∴∠AOC=∠AOP+∠COP=∠A+∠ABC+∠C=2×39°=78°,故答案为:78°.16.(2分)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是①②④.【解答】解:①∵二次函数y=﹣(x﹣m)2+m+1(m为常数)与函数y=﹣x2的二次项系数相同,∴该函数的图象与函数y=﹣x2的图象形状相同,故结论①正确;②∵在函数y =﹣(x ﹣m )2+m 2+1中,令x =0,则y =﹣m 2+m 2+1=1,∴该函数的图象一定经过点(0,1),故结论②正确;③∵y =﹣(x ﹣m )2+m 2+1,∴抛物线开口向下,对称轴为直线x =m ,当x >m 时,y 随x 的增大而减小,故结论③错误;④∵抛物线开口向下,当x =m 时,函数y 有最大值m 2+1,∴该函数的图象的顶点在函数y =x 2+1的图象上.故结论④正确,故答案为①②④.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(a ﹣1+1a+1)÷a 2+2a a+1. 【解答】解:原式=(a 2−1a+1+1a+1)÷a(a+2)a+1 =a 2a+1•a+1a(a+2) =a a+2.18.(7分)解方程:x 2﹣2x ﹣3=0.【解答】解:原方程可以变形为(x ﹣3)(x +1)=0x ﹣3=0,x +1=0∴x 1=3,x 2=﹣1.19.(8分)如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C ,求证:BD =CE .【解答】证明:在△ABE 与△ACD 中{∠A =∠AAB =AC ∠B =∠C,∴△ABE ≌△ACD .∴AD =AE .∴BD=CE.20.(8分)已知反比例函数y=kx的图象经过点(﹣2,﹣1).(1)求k的值.(2)完成下面的解答.解不等式组{2−x>1,①kx>1.②解:解不等式①,得x<1.根据函数y=kx的图象,得不等式②的解集0<x<2.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集0<x<1.【解答】解:(1)∵反比例函数y=kx的图象经过点(﹣2,﹣1),∴k=(﹣2)×(﹣1)=2;(2)解不等式组{2−x>1,①kx>1.②解:解不等式①,得x<1.根据函数y=kx的图象,得不等式②的解集0<x<2.把不等式①和②的解集在数轴上表示为:∴不等式组的解集为0<x<1,故答案为:x<1,0<x<2,0<x<1.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数18≤x<9350293≤x<1781003178≤x <263 34 4263≤x <348 11 5348≤x <433 1 6433≤x <518 1 7518≤x <603 2 8 603≤x <688 1根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第 2 组内;(2)估计该地1万户居民六月份的用电量低于178kW •h 的大约有多少户.【解答】解:(1)∵有200个数据,∴六月份的用电量的中位数应该是第100个和第101个数的平均数,∴该地这200户居民六月份的用电量的中位数落在第2组内;故答案为:2;(2)50+100200×10000=7500(户),答:估计该地1万户居民六月份的用电量低于178kW •h 的大约有7500户.22.(8分)甲、乙两人分别从A 、B 、C 这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A 、B 的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是 13 .【解答】解:甲选择的2个景点所有可能出现的结果如下:(1)共有6种可能出现的结果,其中选择A 、B 的有2种,∴P (A 、B )=26=13;(2)用列表法表示所有可能出现的结果如下:共有9种可能出现的结果,其中选择景点相同的有3种,∴P (景点相同)=39=13. 故答案为:13.23.(8分)如图,在港口A 处的正东方向有两个相距6km 的观测点B 、C .一艘轮船从A处出发,沿北偏东26°方向航行至D 处,在B 、C 处分别测得∠ABD =45°、∠C =37°.求轮船航行的距离AD .(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)【解答】解:如图,过点D 作DH ⊥AC 于点H ,在Rt △DCH 中,∠C =37°,∴CH =DH tan37°,在Rt △DBH 中,∠DBH =45°,∴BH =DH tan45°,∵BC =CH ﹣BH ,∴DHtan37°−DHtan45°=6,解得DH≈18,在Rt△DAH中,∠ADH=26°,∴AD=DHcos26°≈20.答:轮船航行的距离AD约为20km.24.(8分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC 于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.【解答】证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE ,∵∠ADF =∠B ,∠ADF =∠AEF ,∴∠AEF =∠B ,∵四边形AECF 是⊙O 的内接四边形,∴∠ECF +∠EAF =180°,∵BD ∥CF ,∴∠ECF +∠B =180°,∴∠EAF =∠B ,∴∠AEF =∠EAF ,∴AE =EF . 25.(8分)小明和小丽先后从A 地出发沿同一直道去B 地.设小丽出发第xmin 时,小丽、小明离B 地的距离分别为y 1m 、y 2m .y 1与x 之间的函数表达式是y 1=﹣180x +2250,y 2与x 之间的函数表达式是y 2=﹣10x 2﹣100x +2000.(1)小丽出发时,小明离A 地的距离为 250 m .(2)小丽出发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少?【解答】解:(1)∵y 1=﹣180x +2250,y 2=﹣10x 2﹣100x +2000,∴当x =0时,y 1=2250,y 2=2000,∴小丽出发时,小明离A 地的距离为2250﹣2000=250(m ),故答案为:250;(2)设小丽出发第xmin 时,两人相距sm ,则s =(﹣180x +2250)﹣(﹣10x 2﹣100x +2000)=10x 2﹣80x +250=10(x ﹣4)2+90, ∴当x =4时,s 取得最小值,此时s =90,答:小丽出发第4min 时,两人相距最近,最近距离是90m .26.(9分)如图,在△ABC 和△A 'B 'C '中,D 、D '分别是AB 、A 'B '上一点,AD AB =A′D′A′B′.(1)当CD C′D′=AC A′C′=AB A′B′时,求证△ABC ∽△A 'B 'C .证明的途径可以用下面的框图表示,请填写其中的空格.(2)当CD C′D′=AC A′C′=BC B′C′时,判断△ABC 与△A 'B 'C ′是否相似,并说明理由. 【解答】(1)证明:∵AD AB =A′D′A′B′, ∴AD A′D′=AB A′B′, ∵CD C′D′=AC A′C′=AB A′B′, ∴CD C′D′=AC A′C′=AD A′D′,∴△ADC ∽△A ′D ′C ,∴∠A =∠A ′,∵AC A′C′=AB A′B′,∴△ABC ∽△A ′B ′C ′.故答案为:CD C′D′=AC A′C′=AD A′D′,∠A =∠A ′.(2)如图,过点D ,D ′分别作DE ∥BC ,D ′E ′∥B ′C ′,DE 交AC 于E ,D ′E ′交A ′C ′于E ′.∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =DE BC =AE AC , 同理,A′D′A′B′=D′E′B′C′=A′E′A′C′, ∵AD AB =A′D′A′B′, ∴DE BC =D′E′B′C′, ∴DE D′E′=BC B′C′,同理,AE AC =A′E′A′C′,∴AC−AE AC =A′C′−A′E′A′C′,即EC AC =E′C′A′C′, ∴EC E′C′=AC A′C′, ∵CD C′D′=AC A′C′=BC B′C′, ∴CD C′D′=DE D′E′=EC E′C′, ∴△DCE ∽△D ′C ′E ′,∴∠CED =∠C ′E ′D ′,∵DE ∥BC ,∴∠CED +∠ACB =90°,同理,∠C ′E ′D ′+∠A ′C ′B ′=180°,∴∠ACB =∠A ′B ′C ′,∵AC A′C′=CB C′B′,∴△ABC ∽△A ′B ′C ′.27.(9分)如图①,要在一条笔直的路边l 上建一个燃气站,向l 同侧的A 、B 两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.【解答】证明:(1)如图②,连接A'C',∵点A,点A'关于l对称,点C在l上,∴CA=CA',∴AC+BC=A'C+BC=A'B,同理可得AC'+C'B=A'C'+BC',∵A'B<A'C'+C'B,∴AC+BC<AC'+C'B;(2)如图③,在点C出建燃气站,铺设管道的最短路线是ACDB,(其中点D是正方形的顶点);如图④,̂+EB,(其中CD,BE都与圆相切)在点C出建燃气站,铺设管道的最短路线是ACD+DE。

2020年江苏省南京市中考数学试卷

2020年江苏省南京市中考数学试卷

2020年江苏省南京市中考数学试卷题号一二三四总分得分一、选择题(本大题共6小题,共12.0分)1.计算3-(-2)的结果是()A. -5B. -1C. 1D. 52.3的平方根是()A. 9B.C. -D. ±3.计算(a3)2÷a2的结果是()A. a3B. a4C. a7D. a84.党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A. 2019年末,农村贫困人口比上年末减少551万人B. 2012年末至2019年末,农村贫困人口累计减少超过9000万人C. 2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D. 为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务5.关于x的方程(x-1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A. 两个正根B. 两个负根C. 一个正根,一个负根D. 无实数根6.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A. (9,2)B. (9,3)C. (10,2)D. (10,3)二、填空题(本大题共10小题,共20.0分)7.写出一个负数,使这个数的绝对值小于3:______.8.若式子1-在实数范围内有意义,则x的取值范围是______.9.纳秒(ns)是非常小的时间单位,1ns=10-9s.北斗全球导航系统的授时精度优于20ns.用科学记数法表示20ns是______s.10.计算的结果是______.11.已知x、y满足方程组,则x+y的值为______.12.方程=的解是______.13.将一次函数y=-2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是______.14.如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为______cm2.15.如图,线段AB、BC的垂直平分线11、l2相交于点O,若∠1=39°,则∠AOC=______.16.下列关于二次函数y=-(x-m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=-x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x 的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是______.三、计算题(本大题共2小题,共15.0分)17.解方程:x2-2x-3=0.18.如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)四、解答题(本大题共9小题,共73.0分)19.计算(a-1+)÷.20.如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.21.已知反比例函数y=的图象经过点(-2,-1).(1)求k的值.(2)完成下面的解答.解不等式组解:解不等式①,得______.根据函数y=的图象,得不等式②的解集______.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集______.22.为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数18≤x<9350293≤x<1781003178≤x<263344263≤x<348115348≤x<43316433≤x<51817518≤x<60328603≤x<6881根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第______组内;(2)估计该地1万户居民六月份的用电量低于178kW•h的大约有多少户.23.甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是______.24.如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.25.小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第x min时,小丽、小明离B地的距离分别为y1m、y2m.y1与x之间的函数表达式是y1=-180x+2250,y2与x之间的函数表达式是y2=-10x2-100x+2000.(1)小丽出发时,小明离A地的距离为______m.(2)小丽出发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?26.如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,=.(1)当==时,求证△ABC∽△A'B'C.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当==时,判断△ABC与△A'B'C′是否相似,并说明理由.27.如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.答案和解析1.【答案】D【解析】解:3-(-2)=3+2=5.故选:D.根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.2.【答案】D【解析】解:∵()2=3,∴3的平方根.故选D.如果一个数的平方等于a,那么这个数就叫做a的平方根,也叫做a的二次方根.一个正数有正、负两个平方根,他们互相为相反数;零的平方根是零,负数没有平方根.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.【答案】B【解析】解:(a3)2÷a2=a3×2÷a2=a6-2=a4,故选:B.根据积的乘方、同底数幂的除法的计算法则进行计算即可.本题考查幂的乘方、同底数幂除法的计算法则,掌握计算法则是正确计算的前提.4.【答案】A【解析】解:A.2019年末,农村贫困人口比上年末减少1660-551=1109(万人),此选项错误;B.2012年末至2019年末,农村贫困人口累计减少超过9899-551=9348(万人),此选项正确;C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上,此选项正确;D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务,此选项正确;故选:A.根据条形统计图中每年末贫困人口的数量,结合各选项逐一分析判断可得答案.本题主要考查条形统计图,解题的关键是根据条形统计图得出解题所需的具体数据.5.【答案】C【解析】解:∵关于x的方程(x-1)(x+2)=p2(p为常数),∴x2+x-2-p2=0,∴△=1+8+4p2=9+4p2>0,∴方程有两个不相等的实数根,∵两个的积为-2-p2,∴一个正根,一个负根,故选:C.先把方程(x-1)(x+2)=p2化为x2+x-2-p2=0,再根据方程有两个不相等的实数根可得△=1+8+4p2>0,由-2-p2>0即可得出结论.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.也考查了根的判别式.6.【答案】A【解析】解:设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD交于点G,则PE⊥y轴,PF⊥x轴,∵∠EOF=90°,∴四边形PEOF是矩形,∵PE=PF,PE∥OF,∴四边形PEOF为正方形,∴OE=OF=PE=OF=5,∵A(0,8),∴OA=8,∴AE=8-5=3,∵四边形OACB为矩形,∴BC=OA=8,BC∥OA,AC∥OB,∴EG∥AC,∴四边形AEGC为平行四边形,四边形OEGB为平行四边形,∴CG=AE=3,EG=OB,∵PE⊥AO,AO∥CB,∴PG⊥CD,∴CD=2CG=6,∴DB=BC-CD=8-6=2,∵PD=5,DG=CG=3,∴PG=4,∴OB=EG=5+4=9,∴D(9,2).故选:A.设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD交于点G,证明四边形PEOF为正方形,求得CG,再根据垂径定理求得CD,进而得PG、DB,便可得D点坐标.本题主要考查了正方形的性质,矩形的性质与判定,圆的切线的性质,垂径定理,勾股定理,关键是求出CG的长度.7.【答案】-1(答案不唯一)【解析】解:∵这个数的绝对值小于3,∴这个数的绝对值等于0、1或2,∴这个负数可能是-2、-1.故答案为:-1(答案不唯一).首先根据这个数的绝对值小于3,可得这个数的绝对值等于0、1或2;然后根据绝对值的含义和求法,求出这个数是多少即可.此题主要考查了绝对值的含义和运用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.8.【答案】x≠1【解析】解:若式子1-在实数范围内有意义,则x-1≠0,解得:x≠1.故答案为:x≠1.直接利用分式有意义的条件分析得出答案.此题主要考查了分式有意义的条件,正确掌握相关定义是解题关键.9.【答案】2×10-8【解析】解:20ns=20×10-9s=2×10-8s,故答案为:2×10-8.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【答案】【解析】解:原式===.故答案为:.直接利用二次根式的性质化简得出答案.此题主要考查了二次根式的混合运算,正确化简各数是解题关键.11.【答案】1【解析】解:,①×2-②得:5y=-5,解得:y=-1,①-②×3得:-5x=-10,解得:x=2,则x+y=2-1=1,故答案为1.求出方程组的解,代入求解即可.本题考查了解二元一次方程组,整式的求值的应用,求得x、y的值是解此题的关键.12.【答案】x=【解析】解:方程=,去分母得:x2+2x=x2-2x+1,解得:x=,经检验x=是分式方程的解.故答案为:x=.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.【答案】y=x+2【解析】解:在一次函数y=-2x+4中,令x=0,则y=4,∴直线y=-2x+4经过点(0,4),将一次函数y=-2x+4的图象绕原点O逆时针旋转90°,则点(0,4)的对应点为(-4,0),旋转后得到的图象与原图象垂直,则对应的函数解析式为:y=x+b,将点(-4,0)代入得,+b=0,解得b=2,∴旋转后对应的函数解析式为:y=x+2,故答案为y=x+2.直接根据一次函数互相垂直时系数之积为-1,进而得出答案.此题主要考查了一次函数图象与几何变换,正确把握互相垂直的两直线系数关系是解题关键.14.【答案】2【解析】解:连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BE,AB=AF,∴BT=FT=AB•sin60°=,∴BF=2BT=2,∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF=•EF•BF=×2×=2,故答案为2.连接BF,BE,过点A作AT⊥BF于T,证明S△PEF=S△BEF,求出△BEF的面积即可.本题考查正多边形与圆,解直角三角形等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.15.【答案】78°【解析】解:过O作射线BP,∵线段AB、BC的垂直平分线11、l2相交于点O,∴AO=OB=OC,∠BDO=∠BEO=90°,∴∠DOE+∠ABC=180°,∵∠DOE+∠1=180°,∴∠ABC=∠1=39°,∵OA=OB=OC,∴∠A=∠ABO,∠OBC=∠C,∵∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,∴∠AOC=∠AOP+∠COP=∠A+∠ABC+∠C=2×39°=78°,故答案为:78°.过O作射线BP,根据线段的垂直平分线的性质得AO=OB=OC和∠BDO=∠BEO=90°,根据四边形的内角和为360°得∠DOE+∠ABC=180°,根据外角的性质得∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,相加可得结论.本题主要考查线段的垂直平分线的性质,等腰三角形的性质,三角形外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.【答案】①②④【解析】解:①∵二次函数y=-(x-m)2+m+1(m为常数)与函数y=-x2的二次项系数相同,∴该函数的图象与函数y=-x2的图象形状相同,故结论①正确;②∵在函数y=-(x-m)2+m2+1中,令x=0,则y=-m2+m2+1=1,∴该函数的图象一定经过点(0,1),故结论②正确;③∵y=-(x-m)2+m2+1,∴抛物线开口向下,对称轴为直线x=m,当x>m时,y随x的增大而减小,故结论③错误;∴该函数的图象的顶点在函数y=x2+1的图象上.故结论④正确,故答案为①②④.利用二次函数的性质一一判断即可.本题考查二次函数的性质,一次函数的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】解:原方程可以变形为(x-3)(x+1)=0x-3=0,x+1=0∴x1=3,x2=-1.【解析】通过观察方程形式,本题可用因式分解法进行解答.熟练运用因式分解法解一元二次方程.注意:常数项应分解成两个数的积,且这两个的和应等于一次项系数.18.【答案】解:如图,过点D作DH⊥AC于点H,在Rt△DCH中,∠C=37°,∴CH=,在Rt△DBH中,∠DBH=45°,∴BH=,∵BC=CH-BH,∴-=6,解得DH≈18,在Rt△DAH中,∠ADH=26°,∴AD=≈20.答:轮船航行的距离AD约为20km.【解析】过点D作DH⊥AC于点H,根据锐角三角函数即可求出轮船航行的距离AD.本题考查了解直角三角形的应用-方向角问题,解决本题的关键是掌握方向角定义.19.【答案】解:原式=(+)÷=•=.【解析】先计算括号内异分母分式的加法、将除式分子因式分解,再将除法转化为乘法,最后约分即可得.20.【答案】证明:在△ABE与△ACD中,∴△ABE≌△ACD.∴AD=AE.∴BD=CE.【解析】要证BD=CE只要证明AD=AE即可,而证明△ABE≌△ACD,则可得AD=AE.考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题得出三角形全等后,再根据全等三角形的性质可得线段相等.21.【答案】x<1 0<x<2 0<x<1【解析】解:(1)∵反比例函数y=的图象经过点(-2,-1),∴k=(-2)×(-1)=2;(2)解不等式组解:解不等式①,得x<1.根据函数y=的图象,得不等式②的解集0<x<2.把不等式①和②的解集在数轴上表示为:∴不等式组的解集为0<x<1,故答案为:x<1,0<x<2,0<x<1.(1)把点(-2,-1)代入y=即可得到结论;(2)解不等式组即可得到结论.本题考查了反比例函数图象上点的坐标特征,解不等式组,在数轴上表示不等式的解集,正确的理解题意是解题的关键.22.【答案】2【解析】解:(1)∵有200个数据,∴六月份的用电量的中位数应该是第100个和第101个数的平均数,∴该地这200户居民六月份的用电量的中位数落在第2组内;故答案为:2;(2)×10000=7500(户),答:估计该地1万户居民六月份的用电量低于178kW•h的大约有7500户.(1)根据中位数的定义即可得到结论;(2)根据题意列式计算即可得到结论.本题考查了中位数,用样本估计总体,频数(率)分布表,正确的理解题意是解题的关键.23.【答案】【解析】解:用列表法表示所有可能出现的结果如下:(1)共有9种可能出现的结果,其中选择A、B的有2种,∴P(A、B)=;(2)共有9种可能出现的结果,其中选择景点相同的有3种,∴P(景点相同)==.故答案为:.(1)用列表法表示所有可能出现的结果情况,进而求出相应的概率;(2)由(1)的列表法,求出两个景点相同的概率.本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.24.【答案】证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴AE=EF.【解析】(1)根据等腰三角形的性质得出∠BAC=∠B,根据平行线的性质得出∠ADF=∠B,求出∠ADF=∠CFD,根据平行线的判定得出BD∥CF,根据平行四边形的判定得出即可;(2)求出∠AEF=∠B,根据圆内接四边形的性质得出∠ECF+∠EAF=180°,根据平行线的性质得出∠ECF+∠B=180°,求出∠AEF=∠EAF,根据等腰三角形的判定得出即可.本题考查了平行线的性质和判定,平行四边形的判定,圆内接四边形,等腰三角形的判定等知识点,能综合运用知识点进行推理是解此题的关键.25.【答案】250【解析】解:(1)∵y1=-180x+2250,y2=-10x2-100x+2000,∴当x=0时,y1=2250,y2=2000,∴小丽出发时,小明离A地的距离为2250-2000=250(m),故答案为:250;(2)设小丽出发第x min时,两人相距sm,则s=(-180x+2250)-(-10x2-100x+2000)=10x2-80x+250=10(x-4)2+90,∴当x=4时,s取得最小值,此时s=90,答:小丽出发第4min时,两人相距最近,最近距离是90m.(1)根据题意和函数解析式,可以计算出小丽出发时,小明离A地的距离;(2)根据题目中的函数解析式和题意,利用二次函数的性质,可以得到小丽出发至小明到达B地这段时间内,两人何时相距最近,最近距离是多少.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.26.【答案】(1)证明:∵=,∴=,∵==,∴==,∴△ADC∽△A′D′C,∴∠A=∠A′,∵=,∴△ABC∽△A′B′C′.故答案为:==,∠A=∠A′.(2)如图,过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC于E,D′E′交A′C′于E′.∴==,同理,==,∵=,∴=,∴=,同理,=,∴=,即=,∴=,∵==,∴==,∴△DCE∽△D′C′E′,∴∠CED=∠C′E′D′,∵DE∥BC,∴∠CED+∠ACB=90°,同理,∠C′E′D′+∠A′C′B′=180°,∴∠ACB=∠A′B′C′,∵=,∴△ABC∽△A′B′C′.【解析】(1)根据两边成比例夹角相等两三角形相似证明即可.(2)过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC于E,D′E′交A′C′于E′.首先证明△CED∽△C′E′D′,推出∠CED=∠C′E′D′,再证明∠ACB=∠A′C′B′即可解决问题.本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.27.【答案】证明:(1)如图②,连接A'C',∵点A,点A'关于l对称,点C在l上,∴CA=CA',∴AC+BC=A'C+BC=A'B,同理可得AC'+C'B=A'C'+BC',∵A'B<A'C'+C'B,∴AC+BC<AC'+C'B;(2)如图③,在点C出建燃气站,铺设管道的最短路线是ACDB,(其中点D是正方形的顶点);如图④,在点C出建燃气站,铺设管道的最短路线是ACD++EB,(其中CD,BE都与圆相切)【解析】(1)由轴对称的性质可得CA=CA',可得AC+BC=A'C+BC=A'B,AC'+C'B=A'C'+BC',由三角形的三边关系可得A'B<A'C'+C'B,可得结论;(2)①由(1)的结论可求;②由(1)的结论可求解.本题是四边形综合题,考查了正方形的性质,圆的有关知识,轴对称的性质,三角形的三边关系,熟练运用这些性质解决问题是本题的关键.。

2023南京市中考数学试卷

2023南京市中考数学试卷

2023南京市中考数学试卷一、选择题(共6小题,每小题2分,共12分.)1.(2分)全国深入践行生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,去年完成造林约3830000公顷.用科学记数法表示3830000是()A.63.8310⨯D.70.38310⨯⨯C.73.8310⨯B.60.383102.(2分)整数a满足1929a<<,则a的值为()A.3B.4C.5D.63.(2分)若一个等腰三角形的腰长为3,则它的周长可能是()A.5B.10C.15D.204.(2分)甲、乙两地相距100km,汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(单位:)h与行驶速度v(单位:/)km h之间的函数图象是()A.B.C.D.5.(2分)我国南宋数学家秦九韶的著作《数书九章》中有一道问题:“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲知为田几何?”问题大意:如图,在ABC∆中,13AC=里,则ABC∆的面积是()AB=里,14BC=里,15A.80平方里B.82平方里C.84平方里D.86平方里6.(2分)如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A .36cmB .40cmC .42cmD .45cm二、填空题(共10小题,每小题2分,共20分.)7.(2分)计算:|2|-=;2(2)-=.8.(2分)若式子12x -在实数范围内有意义,则x 的取值范围是.9.(212618-的结果是.10.(2分)分解因式2363a a -+的结果是.11.(2分)计算345124(8⨯⨯的结果是.12.(2分)某校九年级有8个班级,人数分别为37,a ,32,36,37,32,38,34.若这组数据的众数为32,则这组数据的中位数为.13.(2分)甲车从A 地出发匀速行驶,它行驶的路程y (单位:)km 与行驶的时间x (单位:)min 之间的函数关系如图所示.甲车出发20min 后,乙车从A 地出发沿同一路线匀速行驶.若乙车经过20~30min min 追上甲车,则乙车的速度v (单位:/)km min 的取值范围是.14.(2分)在平面直角坐标系中,点O 为原点,点A 在第一象限,且3OA =.若反比例函数k y x =的图象经过点A ,则k 的取值范围是.15.(2分)如图,O 与正六边形ABCDEF 的边CD ,EF 分别相切于点C ,F .若2AB =,则O 的半径长为.16.(2分)如图,在菱形纸片ABCD 中,点E 在边AB 上,将纸片沿CE 折叠,点B 落在B '处,CB AD '⊥,垂足为F .若4CF cm =,1FB cm '=,则BE =cm.三、解答题(共11小题,共88分.)17.(7分)计算293(1)x x x--÷.18.(8分)解不等式组210143x x x -<⎧⎪-⎨<⎪⎩,并写出它的整数解.19.(7分)如图,在ABCD 中,点M ,N 分别在边BC ,AD 上,且//AM CN ,对角线BD 分别交AM ,CN 于点E ,F .求证BE DF =.20.(8分)社会运转和日常生活离不开物流行业的发展,阅读以下统计图并回答问题.(1)下列结论中,所有正确结论的序号是.①2011~2022年社会物流总费用占GDP比重总体呈先下降后稳定的趋势;②2011~2016年社会物流总费用的波动比2017~2022年社会物流总费用的波动大;③2012~2022年社会物流总费用逐年增加,其中增加的幅度最大的一年是2021年.(2)请结合上图提供的信息,从不同角度写出两个与我国GDP相关的结论.21.(8分)某旅游团从甲、乙、丙、丁4个景点中随机选取景点游览.(1)选取2个景点,求恰好是甲、乙的概率;(2)选取3个景点,则甲、乙在其中的概率为.22.(8分)如图,某校的饮水机有温水、开水两个按钮,温水和开水共用一个出水口.温水的温度为30C ︒,流速为20/ml s ;开水的温度为100C ︒,流速为15/ml s .某学生先接了一会儿温水,又接了一会儿开水,得到一杯280ml 温度为60C ︒的水(不计热损失),求该学生分别接温水和开水的时间.物理常识开水和温水混合时会发生热传递,开水放出的热量等于温水吸收的热量,可以转化为开水的体积⨯开水降低的温度=温水的体积⨯温水升高的温度.23.(8分)如图,为了测量无人机的飞行高度,在水平地面上选择观测点A ,B .无人机悬停在C 处,此时在A 处测得C 的仰角为3652︒';无人机垂直上升5m 悬停在D 处,此时在B 处测得D 的仰角为6326︒'.10AB m =,点A ,B ,C ,D 在同一平面内,A ,B 两点在CD 的同侧.求无人机在C 处时离地面的高度.(参考数据:tan 36520.75︒'≈,tan 6326 2.00︒'≈.)24.(8分)如图,玻璃桌面与地面平行,桌面上有一盏台灯和一支铅笔,点光源O 与铅笔AB 所确定的平面垂直于桌面.在灯光照射下,AB 在地面上形成的影子为CD (不计折射),//AB CD .(1)在桌面上沿着AB 方向平移铅笔,试说明CD 的长度不变.(2)桌面上一点P 恰在点O 的正下方,且36OP cm =,18PA cm =,18AB cm =,桌面的高度为60cm .在点O 与AB 所确定的平面内,将AB 绕点A 旋转,使得CD 的长度最大.①画出此时AB 所在位置的示意图;②CD 的长度的最大值为cm .25.(8分)已知二次函数223(y ax ax a =-+为常数,0)a ≠.(1)若0a <,求证:该函数的图象与x 轴有两个公共点.(2)若1a =-,求证:当10x -<<时,0y >.(3)若该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x -<<<,则a 的取值范围是.26.(9分)如图,在ABC ∆中,AB AC =,O 是ABC ∆的外接圆,过点O 作AC 的垂线,垂足为D ,分别交直线BC , AC 于点E ,F ,射线AF 交直线BC 于点G .(1)求证AC CG =.(2)若点E 在CB 的延长线上,且EB CG =,求BAC ∠的度数.(3)当6BC =时,随着CG 的长度的增大,EB 的长度如何变化?请描述变化过程,并说明理由.27.(9分)在平面内,将一个多边形先绕自身的顶点A 旋转一个角度(0180)θθ︒<<︒,再将旋转后的多边形以点A 为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k ,称这种变换为自旋转位似变换.若顺时针旋转,记作(T A ,顺θ,)k ;若逆时针旋转,记作(T A ,逆θ,)k .例如:如图①,先将ABC ∆绕点B 逆时针旋转50︒,得到△11A BC ,再将△11A BC 以点B 为位似中心缩小到原来的12,得到△22A BC ,这个变换记作(T B ,逆50︒,1)2.(1)如图②,ABC ∆经过(T C ,顺60︒,2)得到△A B C '',用尺规作出△A B C ''.(保留作图痕迹)(2)如图③,ABC ∆经过(T B ,逆α,1)k 得到EBD ∆,ABC ∆经过(T C ,顺β,2)k 得到FDC ∆,连接AE ,AF .求证:四边形AFDE 是平行四边形.(3)如图④,在ABC ∆中,150A ∠=︒,2AB =,1AC =.若ABC ∆经过(2)中的变换得到的四边形AFDE 是正方形.Ⅰ.用尺规作出点D(保留作图痕迹,写出必要的文字说明);Ⅱ.直接写出AE的长.参考答案一、选择题(本大题共6小题,每小题2分,共12分.)1.(2分)全国深入践行生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,去年完成造林约3830000公顷.用科学记数法表示3830000是()A .63.8310⨯B .60.38310⨯C .73.8310⨯D .70.38310⨯解:63830000 3.8310=⨯.故选:A .2.(2分)整数a a <<,则a 的值为()A .3B .4C .5D .6解: <<,5<<∴整数5a =,故选:C .3.(2分)若一个等腰三角形的腰长为3,则它的周长可能是()A .5B .10C .15D .20解: 等腰三角形的腰长为3,33∴-<等腰三角形的底长33<+,即0<等腰三角形的底长6<,6∴<等腰三角形的周长12<,故选:B .4.(2分)甲、乙两地相距100km ,汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (单位:)h 与行驶速度v (单位:/)km h 之间的函数图象是()A .B .C .D .解:根据题意有:100v t =⋅,所以100t v =,故v 与t 之间是反比例函数,其图象在第一象限.故选:D .5.(2分)我国南宋数学家秦九韶的著作《数书九章》中有一道问题:“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲知为田几何?”问题大意:如图,在ABC ∆中,13AB =里,14BC =里,15AC =里,则ABC ∆的面积是()A .80平方里B .82平方里C .84平方里D .86平方里解:如图,过点A 作AD BC ⊥于D ,设BD x =里,则(14)CD x =-里,在Rt ABD ∆中,22213AD x +=,在Rt ADC ∆中,22215(14)AD x =--,22221315(14)x x ∴-=--,2222131519628x x x -=-+-,解得5x =,在Rt ACD ∆中,2213512AD -=(里),ABC ∴∆的面积1114128422BC AD =⋅=⨯⨯=(平方里),故选:C .6.(2分)如图,不等臂跷跷板AB 的一端A 碰到地面时,另一端B 到地面的高度为60cm ;当AB 的一端B 碰到地面时,另一端A 到地面的高度为90cm ,则跷跷板AB 的支撑点O 到地面的高度OH 是()A .36cmB .40cmC .42cmD .45cm 解:如图:过点B 作BC AH ⊥,垂足为C ,OH AC ⊥ ,BC AC ⊥,90AHO ACB ∴∠=∠=︒,BAC OAH ∠=∠ ,AOH ABC ∴∆∆∽,∴OHAOBC AB =,∴60OHAOAB =,如图:过点A 作AD BH ⊥,垂足为D ,OH BD ⊥ ,AD BD ⊥,90OHB ADB ∴∠=∠=︒,ABD OBH ∠=∠ ,ABD OBH ∴∆∆∽,∴OH OB AD AB =,∴90OH OB AB =,∴6090OH OH AO OB AB AB +=+,∴6090OH OH AB AB +=,∴16090OH OH +=,解得:36OH =,∴跷跷板AB 的支撑点O 到地面的高度OH 是36cm ,故选:A .二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)计算:|2|-=2;=.解:|2|2-=2=,故答案为:2,2.8.(2分)若式子12x -在实数范围内有意义,则x 的取值范围是2x ≠.解: 式子12x -在实数范围内有意义,20x ∴-≠.2x ∴≠.故答案为:2x ≠.9.(2-的结果是=-=故答案为:.10.(2分)分解因式2363a a -+的结果是23(1)a -.解:2363a a -+23(21)a a =-+23(1)a =-.故答案为:23(1)a -.11.(2分)计算345124(8⨯⨯的结果是116.解:345124(8⨯⨯333211[24()]4()88=⨯⨯⨯⨯311(24)4864=⨯⨯⨯⨯311464=⨯⨯11464=⨯⨯116=.故答案为:116.12.(2分)某校九年级有8个班级,人数分别为37,a ,32,36,37,32,38,34.若这组数据的众数为32,则这组数据的中位数为35.解: 一组数据37,a ,32,36,37,32,38,34的众数为32,32a ∴=,把这组数据从小到大排列为32,32,32,34,36,37,37,38,排在中间的两个数分别为34,36,所以这组数据的中位数为3436352+=.故答案为:35.13.(2分)甲车从A 地出发匀速行驶,它行驶的路程y (单位:)km 与行驶的时间x (单位:)min 之间的函数关系如图所示.甲车出发20min 后,乙车从A 地出发沿同一路线匀速行驶.若乙车经过20~30min min 追上甲车,则乙车的速度v (单位:/)km min 的取值范围是3925v .解:根据图象,得甲车的速度为91820(/)10km min ÷=,设甲车出发t min 后乙车追上甲车,根据题意,4050t .则9(20)10t v t =-,得0.9992002010(20)10t t v t t t===---,v ∴随t 的增大而减小.当50t =时,v 取最小值,32v =;当40t =时,v 取最大值,95v =,∴3925v ,故答案为:3925v .14.(2分)在平面直角坐标系中,点O 为原点,点A 在第一象限,且3OA =.若反比例函数k y x =的图象经过点A ,则k 的取值范围是902k < .解:由题意可知A 为反比例函数k y x =的图象与直线y x =的交点时,k 的值最大3OA = ,A ∴在直线y x =上时,32(A 32,∴此时32329222k ==, 点A 在第一象限,0k ∴>,k ∴的取值范围是902k < ,故答案为:902k < .15.(2分)如图,O与正六边形ABCDEF的边CD,EF分别相切于点C,F.若2AB=,则O的半径长为433.解:连接CF,OC,OF,过D作DG CF⊥于G,过E作EH CF⊥于H,//EH DG∴,EF,CD是O的切线,90OFE OCD∴∠=∠=︒,多边形ABCDEF是正六边形,120FED CDE∴∠=∠=︒,120COF∴∠=︒,OC OF=,30OCF OFC∴∠=∠=︒,90EFH DCG∴∠=∠=︒,90EHF DGC∠=∠=︒,CD EF=,()CDG FEH AAS∴∆≅∆,FH CG∴=,EH DG=,∴四边形EHGD是矩形,2HG DE∴==,2EF CD == ,60DCG EFH OFE OFH ∠=∠=∠-∠=︒,112FH CG EF ∴===,4CF ∴=,过O 作OM CF ⊥于M ,122CM CF ∴==,cos30CM OC ∴==︒O ∴的半径长为3,故答案为:3.16.(2分)如图,在菱形纸片ABCD 中,点E 在边AB 上,将纸片沿CE 折叠,点B 落在B '处,CB AD '⊥,垂足为F .若4CF cm =,1FB cm '=,则BE =257cm.解:作EH BC ⊥于点H ,则90BHE CHE ∠=∠=︒,4CF cm = ,1FB cm '=,415()B C CF FB cm ∴'=+'=+=,由折叠得5BC B C cm ='=,BCE B CE ∠=∠',四边形ABCD 是菱形,//BC AD ∴,5DC BC cm ==,B D ∠=∠,CB AD '⊥ 于点F ,90BCB CFD ∴∠'=∠=︒,11904522BCE B CE BCB ∴∠=∠'=∠'=⨯︒=︒,3()DF cm ===,45HEC BCE ∴∠=∠=︒,CH EH ∴=, 4sin sin 5EH CF B D BE DC ====,3cos cos 5BH DF B D BE DC ====,45CH EH BE ∴==,35BH BE =,∴43555BE BE +=,257BE cm ∴=,故答案为:257.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算293(1)x x x--÷.解:293(1x x x --÷2293x x x x -=⋅-2(3)(3)3x x x x x +-=⋅-3x x+=.18.(8分)解不等式组210143x x x -<⎧⎪-⎨<⎪⎩,并写出它的整数解.解:210143x x x -⎧⎪⎨-⎪⎩①②,由①得:12x <,由②得:3x >-,∴不等式组的解集为132x -<<,则原不等式组的整数解是2-,1-,0.19.(7分)如图,在ABCD 中,点M ,N 分别在边BC ,AD 上,且//AM CN ,对角线BD 分别交AM ,CN 于点E ,F .求证BE DF =.【解答】证明:连接AC 交BD 于O ,四边形ABCD 是平行四边形,AO OC ∴=,BO DO =,//AM CN ,EAC FCA ∴∠=∠,在AEO ∆与CFO ∆中,EAC FCO AO CO AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AOE COF ASA ∴∆≅∆,OE OF ∴=,BO OE OD OF ∴-=-,BE DF ∴=.20.(8分)社会运转和日常生活离不开物流行业的发展,阅读以下统计图并回答问题.(1)下列结论中,所有正确结论的序号是①③.①2011~2022年社会物流总费用占GDP比重总体呈先下降后稳定的趋势;②2011~2016年社会物流总费用的波动比2017~2022年社会物流总费用的波动大;③2012~2022年社会物流总费用逐年增加,其中增加的幅度最大的一年是2021年.(2)请结合上图提供的信息,从不同角度写出两个与我国GDP相关的结论.解:(1)2011~2022年社会物流总费用占GDP比重总体呈先下降后稳定的趋势,故①正确;2011~2016年社会物流总费用的波动范围为2.7,2017~2022年社会物流总费用的波动范围为5.7,故2011~2016年社会物流总费用的波动比2017~2022年社会物流总费用的波动小,故②错误;2012~2022年社会物流总费用逐年增加,其中增加的幅度最大的一年是2021年,故③正确.故正确的结论序号为:①③.故答案为:①③;(2)根据统计图可得,从2011年到2022年我国的GDP逐年稳步增加;GDP的循环规律是5到7年增长,2年持平或衰退.21.(8分)某旅游团从甲、乙、丙、丁4个景点中随机选取景点游览.(1)选取2个景点,求恰好是甲、乙的概率;(2)选取3个景点,则甲、乙在其中的概率为12.解:(1)画树状图如下:共有12种等可能的结果,其中恰好是甲、乙的结果有2种,∴恰好是甲、乙的概率21126==;(2)画树状图如下:共有24种等可能的结果,其中甲、乙在其中的结果有12种,∴甲、乙在其中的概率为121242=,故答案为:12.22.(8分)如图,某校的饮水机有温水、开水两个按钮,温水和开水共用一个出水口.温水的温度为30C ︒,流速为20/ml s ;开水的温度为100C ︒,流速为15/ml s .某学生先接了一会儿温水,又接了一会儿开水,得到一杯280ml 温度为60C ︒的水(不计热损失),求该学生分别接温水和开水的时间.物理常识开水和温水混合时会发生热传递,开水放出的热量等于温水吸收的热量,可以转化为开水的体积⨯开水降低的温度=温水的体积⨯温水升高的温度.解:设该学生接温水的时间为x s,根据题意可得:20(6030)(28020)(10060)⨯-=-⨯-,x x解得8x=,ml∴⨯=,208160()-=,ml280160120()∴÷=,120158()s∴该学生接温水的时间为8s,接开水的时间为8s.23.(8分)如图,为了测量无人机的飞行高度,在水平地面上选择观测点A,B.无人机悬停在C处,此时在A处测得C的仰角为3652︒';无人机垂直上升5m悬停在D处,此时在B处测得D的仰角为6326=,点A,B,C,D在同一平面内,A,B两点在AB m︒'.10CD的同侧.求无人机在C处时离地面的高度.(参考数据:tan36520.75︒'≈.)︒'≈,tan6326 2.00解:延长DC交AB于点E,由题意得:DE AB⊥,5CD m=,设BE x=m,10,=AB m∴=+=+,AE AB BE x m(10)在Rt ACE∠=︒',∆中,3652CAE∴=⋅︒'≈+,CE AE x mtan36520.75(10)在Rt BDE∠=︒',∆中,6326DBE∴=⋅︒'≈,tan63262()DE BE x m,+=DC CE DE∴++=,50.75(10)2x x解得:10x=,CE x m∴=+=,0.75(10)15()∴无人机在C处时离地面的高度约为15m.24.(8分)如图,玻璃桌面与地面平行,桌面上有一盏台灯和一支铅笔,点光源O与铅笔AB 所确定的平面垂直于桌面.在灯光照射下,AB在地面上形成的影子为CD(不计折射),AB CD.//(1)在桌面上沿着AB方向平移铅笔,试说明CD的长度不变.(2)桌面上一点P恰在点O的正下方,且36=,桌面的高=,18AB cmOP cm=,18PA cm度为60cm.在点O与AB所确定的平面内,将AB绕点A旋转,使得CD的长度最大.①画出此时AB所在位置的示意图;②CD的长度的最大值为80cm.解:(1)设AB平移到EF,EF在地面上形成的影子为MN.//AB CD ,~OAB OCD ∴∆∆,~OEF OMN ∆∆,~OEB OMD ∆∆,∴AB OB CD OD =,EF OE MN OM =,OB OE OD OM =,∴EF AB MN CD=,EF AB = ,MN CD ∴=,∴沿着AB 方向平移时,CD 长度不变.(2)①以A 为圆心,AB 长为半径画圆,当OQ 与A 相切于H 时,此时CD 最大为CQ .此时AB 所在位置为AH .②HGA PGO ∠=∠ ,90AHG OPG ∠=∠=︒,~GHA GPO ∴∆∆,∴181362GA AH GO OP ===,∴设GA x =,则2GO x =,在Rt OPG ∆中,222OP PG OG +=,22236(18)(2)x x ∴++=,2125400x x ∴--=,130x ∴=,218x =-(舍去),30AG ∴=,由①OP AG OR CQ =,∴36303660CQ=+,80CQ ∴=,即CD 的长度的最大值为80cm .25.(8分)已知二次函数223(y ax ax a =-+为常数,0)a ≠.(1)若0a <,求证:该函数的图象与x 轴有两个公共点.(2)若1a =-,求证:当10x -<<时,0y >.(3)若该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x -<<<,则a 的取值范围是3a >或1a <-.【解答】证明:(1)因为22(2)43412a a a a --⨯⨯=-,又因为0a <,所以40a <,30a -<,所以24124(3)0a a a a -=->,所以该函数的图象与x 轴有两个公共点.(2)将1a =-代入函数解析式得,2223(1)4y x x x =-++=--+,所以抛物线的对称轴为直线1x =,开口向下.则当10x -<<时,y 随x 的增大而增大,又因为当1x =-时,0y =,所以0y >.(3)因为抛物线的对称轴为直线212a x a-=-=,且过定点(0,3),又因为该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x -<<<,所以当0a >时,230a a -+<,解得3a >,故3a >.当0a <时,230a a ++<,解得1a <-,故1a <-.综上所述,3a >或1a <-.故答案为:3a >或1a <-.26.(9分)如图,在ABC ∆中,AB AC =,O 是ABC ∆的外接圆,过点O 作AC 的垂线,垂足为D ,分别交直线BC , AC 于点E ,F ,射线AF 交直线BC 于点G .(1)求证AC CG =.(2)若点E 在CB 的延长线上,且EB CG =,求BAC ∠的度数.(3)当6BC =时,随着CG 的长度的增大,EB 的长度如何变化?请描述变化过程,并说明理由.【解答】(1)证明:过A 作直径AM ,AB AC = ,90E EOM ∴∠+∠=︒,AC EF ⊥ ,90OAD AOD ∴∠+∠=︒,E OAD ∴∠=∠,OA OF = ,OAD DAF AFO E G ∴∠+∠=∠=∠+∠,DAF G ∴∠=∠,AC CG =;(2)解:BAG AB AC == ,AM BC ⊥,BAM CAM ∴∠=∠,设2BAM CAM α∠=∠=,1(180)9022ABC ACB BAC α∴∠=∠=︒-∠=︒-,AC CG = ,45CAG CGA α∴∠=∠=︒-,2245453BAG αααα∴∠=++︒-=︒+,如图:连AE ,EF AC ⊥ ,又EF 过圆心,EF ∴垂直平分AC ,EC AE ∴=,BH HC = ,又EB CG =,HE HG ∴=,AM ∴垂直平分EG ,AE AG ∴=,EC AG ∴=,EB CG = ,EB BC BC CG ∴+=+,EC BG ∴=,BAG ABG ∴∠=∠,453902αα∴︒+=︒-,9α∴=︒,436BAC α∴∠==︒;(3)答:当6CG =,0BE =;当6CG 时,BE 随CG 的增大而增大;当36CG <<时,BE 随CG 的增大而减小.说明:①当0BE =时,即点E 与B重合,在BOH ∆和AOD ∆中,BHO ADO BOH AOD OB OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BOH AOD AAS ∴∆≅∆,3AD BH ∴==,26AC AD ∴==,6AB AC BC ∴===,ABC ∴∆为等边三角形,60BAC ACB ∴∠=∠=︒,30CAG ∴∠=︒,60CAG G ∠+∠=︒,30G CAG ∴∠=︒=∠,6CA CG ∴==;②当6CG 时,如图:E CAH∠=∠,90EDC AHC∠=∠=︒,~ACH ECD∴∆∆,∴HC CD AC EC=,∴32AC AC EC=,∴326CG CG BE=+,2166BE CG∴=-,BE∴随CG的增大而增大.③当36CG<<时,如图,ACM DCE∠=∠,90EDC AMC∠=∠=︒,~AMC EDC∴∆∆,∴MC CD AC CE=,∴32ACAC BC BE=-,∴326CG CG BE=-,2166BE CG∴=-+,BE∴随CG的增大而减小.综上所述:当6CG =,0BE =;当6CG 时,BE 随CG 的增大而增大;当36CG <<时,BE 随CG 的增大而减小.27.(9分)在平面内,将一个多边形先绕自身的顶点A 旋转一个角度(0180)θθ︒<<︒,再将旋转后的多边形以点A 为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k ,称这种变换为自旋转位似变换.若顺时针旋转,记作(T A ,顺θ,)k ;若逆时针旋转,记作(T A ,逆θ,)k .例如:如图①,先将ABC ∆绕点B 逆时针旋转50︒,得到△11A BC ,再将△11A BC 以点B 为位似中心缩小到原来的12,得到△22A BC ,这个变换记作(T B ,逆50︒,1)2.(1)如图②,ABC ∆经过(T C ,顺60︒,2)得到△A B C '',用尺规作出△A B C ''.(保留作图痕迹)(2)如图③,ABC ∆经过(T B ,逆α,1)k 得到EBD ∆,ABC ∆经过(T C ,顺β,2)k 得到FDC ∆,连接AE ,AF .求证:四边形AFDE 是平行四边形.(3)如图④,在ABC ∆中,150A ∠=︒,2AB =,1AC =.若ABC ∆经过(2)中的变换得到的四边形AFDE 是正方形.Ⅰ.用尺规作出点D (保留作图痕迹,写出必要的文字说明);Ⅱ.直接写出AE 的长.【解答】(1)解:如图1,1.以B 为圆心,BC 为半径画弧,以C 为圆心,BC 为半径画弧,两弧在BC 的上方交于点D ,分别以A ,C 为圆心,以AC 为半径画弧,两弧交于点E ,2.延长CD 至B ',使DB CD '=,延长CE 至A ',使A E CE '=,连接A B '',则△A B C ''就是求作的三角形;(2)证明:EBD ∆ 和ABC ∆位似,FDC ∆与ABC ∆位似,EBD ABC ∴∠=∠,BE BD AB BC =,DF AB CD BC =,EBA DBC ∴∠=∠,EBA DBC ∴∆∆∽,∴AE AB CD BC =,∴AE DF CD CD=,AE DF ∴=,同理可得:DE AF =,∴四边形AFDE 是平行四边形;(3)解:如图2,1.以BC 为边在BC 上方作等边三角形GBC ,2.作等边三角形BCG 的外接圆O ,作直径BD ,连接CD ,3.作DBE ABC ∠=∠,BDE ACB ∠=∠,延长BA ,交O 于F ,连接CF ,DF ,则四边形AFDE 是正方形,证明:由上知:EBA DBC ∆∆∽,FAC DBC ∆∆∽,BAE DCB ∴∠=∠,FAC DBC ∠=∠,2AE AB CD BC BC ==,1AF AC BD BC BC==,BAE FAC DBC DBC ∴∠+∠=∠+∠,要使AFDE 是正方形,应使90EAF ∠=︒,AE AF =,270BAE FAC BAC ∴∠+∠+∠=︒,2BD CD =,270270150120BAE FAC BAC ∴∠+∠=︒-∠=︒-︒=︒,120DBC DCB ∴∠+∠=︒,60BDC ∴∠=︒,∴作等边BCG ∆,保证60BDC G ∠=∠=︒,作直径BD ,保证2BD CD =,这样得出作法;30ABE DBC ∠=∠=︒ ,90AEB BCD ∠=∠=︒,2AB =,AE ∴==。

(完整word版)2019年江苏省南京市中考数学试卷(word版含详解)

(完整word版)2019年江苏省南京市中考数学试卷(word版含详解)

南京市2019年初中学业水平考试数学注意事项:1.本试卷共6页,全卷满分120分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须0.5毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置.......上)1.2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13 000亿美元,用科学计数法表示13 000是()A.0.13×105B.1.3×104C.13×103D.130×102【答案】B.【考点】科学记数法.【分析】把一个大于10或小于1的正数写成a×10n的形式,其中:1≤a<10,n是整数.应用方法:把小数点移动到第一个不是0的数字后面,移几位就乘以10的几次幂(小数点向左移则指数为正,向右移则指数为负。

)注意:本题要审题,用科学记数法表示的数:是不带单位的13 000,而不是13 000亿.【解答】解:13 000=1.3×104.故选B.2.计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【答案】D.【考点】幂的运算:(a m)n=a mn,(ab)n=a n b n.【分析】利用幂的运算法则直接计算.【解答】解:原式=a2×3×b3.=a6b3.3.面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【答案】B.若x2=a(a≥0),则x叫做a的平方根,a(a≥0)的平方根表示为± a ;正数的正的平方根也叫它的算术平方根,a(a≥0)的算术平方根表示为 a ;若x3=a,则x叫做a的立方根,a的立平方根表示为3a ;求一个数a的平方根的运算,叫做开平方,求一个数的立方根的运算叫做开立方;a(a≥0)开平方的结果表示为± a .【分析】正方形的边长是正数,所以边长为正方形面积的算术平方根.【解答】边长为正方形面积的正的平方根,即:算术平方根,故选:B.4.实数a、b、c满足a>b,且ac<bc,它们在数轴上的对应点的位置可以是()【答案】A.【考点】在数轴上,右边的点表示的数大于左边的点表示的数.不等式的性质:(1)不等式的两边都加上(或都减去)同一个数或同一个整式,不等号的方向不变.如:a>b→a±c>b±c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,如a>b,c>0→ac>bc;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,如a>b,c<0→ac<bc.【分析】由a>b得:在数轴上数a表示的点在数b表示的点的右边;由ac<bc得:a、b同时乘以数c后,不等号改变了方向,所以数c是负数.【解答】在数轴上数a表示的点在数b表示的点的右边,数c是负数,故选:A.5.下列整数中,与10-13 最接近的是()A.4 B.5 C.6 D.7【答案】C.【考点】估算.【分析】用平方法分别估算13 的取值范围,借助数轴进而估算出10-13 的近似值.【解答】□解法1:估算10 :∵32=9,42=16.∴3<13 <4.∵3.52=12.25.∴6<10-13 <6.5 .□解法2:借助数轴估算:13 的近似值.画数轴:观察数轴可得:3.5<13 <4.∴6<10-13 <6.5.故选:C.6.如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④【答案】D.【考点】轴对称的有关性质:如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.平移的有关性质:对应线段平行(或在同一条直线上)且相等,对应点所连的线段平行(或在同一条直线上)且相等.旋转的有关性质:对应点到旋转中心的距离相等,对应点与旋转中心连线所成的角彼此相等.中心对称的有关性质:成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. 【分析】利用轴对称、旋转的性质,先进行1次旋转或轴对称,计作△A″B″C″,不妨将B与B′经过一次变换先重合,再进行二次变换,看二次变换后△A″B″C″能否与△A′B′C′重合.【解答】■结论①1次旋转:不妨以线段BB′的中点O为旋转中心.故①错,A错■结论②1次旋转和1次轴对称:1次旋转——以线段BB′的中点O为旋转中心.1次轴对称——以A′A″的中垂线为对称轴.或1次轴对称——以C′C″的中垂线为对称轴.故②错,B、C错至此,通过排除法即可得:选项D正确,验证如下. ■结论③2次旋转.1次旋转:以线段BB′的中点O为旋转中心;2次旋转:以线段A ″A ′的中点为旋转中心.两次旋转后图形重合.■结论④2次轴对称.1次轴对称:以BB ′的中垂线为对称轴;2次轴对称:以C ″C ′的中垂线为对称轴. 两次轴对称后图形重合.故选:D.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相....应位置...上) 7.-2的相反数是______;12 的倒数是_________. 【答案】2;2.【考点】相反数、倒数的概念.若两个数的积等于1,这两个数互为倒数;a ≠0时,a 的相反数表示为1a ,0没有倒数.表示为-a.【分析】利用相反数、倒数的概念直接写出答案.【解答】-2的相反数是-(-2)=2;∵12×2=1,∴12的倒数是2.8.计算147-28 的结果是_____________.【答案】0.【考点】二次根式的化简.【分析】根据二次根式运算法则进行化简,掌握常用化简方法、结论即可;本题涉及到的运算法则:(a)2=a(a≥0);常用结论:m2n =m n (m≥0,n≥0).【解答】147-28 .=1477 ·7-22×7 . =1477-27 .=27 -27 .=0.9.分解因式(a-b)2+4ab的结果是________________.【答案】(a+b)2.【考点】完全平方公式:(a±b)2=a2±2ab+b2及逆用完全平方公式分解因式:a2±2ab+b2=(a±b)2.【分析】本题无公因式可提取,也不能直接应用公式进行解法分解因式,先将(a-b)2应用完全平方公式展开,再合并同类项,会发现,其可逆用完全平方公式进行分解因式.【解答】(a-b)2+4ab.=a2-2ab+b2+4ab.=a2+2ab+b2.=(a+b)2.10.已知2+ 3 是关于x的方程x2-4x+m=0的一个跟,则m=____________.【答案】1.一元二次方程a x 2+b x +c =0(a ≠0)根与系数的关系:x 1+x 2=-b a ,x 1·x 2=ca . 【分析】解法有2种:解法一:根据根的定义,把根“2+ 3 ”代入原方程中,得到两个关于m 的方程,解此方程即可求解;解法二:根据一元二次方程a x 2+b x +c =0(a ≠0)根与系数的关系,设另一个根为:x 1. 根与系数的关系列出含有x 1与m 的方程组,解此方程组即可.【解答】解法一:根据题意,得:(2+ 3 )2-4(2+ 3 )+m =0. 解这个方程,得:m =1. 解法二:设这个方程的另一个根为x 1.根据题意得:⎩⎨⎧2+ 3 +x 1=4 ①(2+ 3 )x 1=m ②.由①得:x 1=2- 3 ③.把③代入②得:m =(2+ 3 )(2- 3 ). 即:m =1.比较上述两种解法,解法一、二都比较便捷.11.结合下图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵______________________ ∴a ∥b.【答案】∠1+∠3=180°.【考点】三线八角——同旁内角的识别:在截线c 的同侧,夹在截线a 、b 之间,呈“U ”字型.【分析】图形中呈现了不同关系的角:对顶角(如∠2与∠4)、邻补角(如∠2与∠3)、同位角(如∠1与∠2)、内错角(如∠1与∠4)、同旁内角(∠1与∠3);考试时需要根据题意进行识别. “同旁内角互补,两直线平行”的符号语言只能选择“∠1与∠3”. 【解答】∵∠1+∠3=180°.∴a ∥b.12.无盖圆柱形杯子的展开图如图所示,将一根长20cm 的细木筷斜放在杯子内,木筷露在杯子外面的部分至少有_________cm.【答案】5.【考点】圆柱的侧面展开图,勾股定理等.【分析】如图1,画出圆柱体及其侧面展开图,确定对应线段的长度;图1 图2 图3根据题意“细木筷斜放在杯子内,木筷露在杯子外面的部分至少多少cm ”,确定细木筷斜放在杯子内中位置——最多在杯子内的长度,显然应置杯底与杯口斜对角位置(如图2),即圆柱体截面图中的对角线位置(如图3),其与杯高与底面直径构成直角三角形(图3中Rt △ABC ),利用勾股定理即可求出此时杯内木筷的长度.【解答】AB =12²+9² .=15.露在外面的长度=20-15=5(cm ).13.为了了解某区初中生学生视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:根据抽样调查结果,估计该区12 000名初中学生视力不低于4.8的人数是_____________. 【答案】7200. 【考点】样本估计总体.【分析】利用样本中“视力不低于4.8人数的频率”可以近似看做总体中“视力不低于4.8人数的频率”;样本中“视力不低于4.8人数的频率”=视力不低于4.8人数样本容量 .【解答】12000×80+93+127500 =7200.14.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,点C 、D 在⊙O 上,若∠P =102°,则∠A +∠C =_____°.【答案】219.【考点】圆的切线垂直于经过切点的半径,同(等)弧所对的圆周角等于它所对的圆心角的一半,直径所对的圆周角是直角等;常规辅助线:过切点的半(直)径,构造直径所对的圆周角等;由特殊到一般的数学思想方法等.【分析】本题求“∠A +∠C 等于多少度”,显然其是一个定值,其与点D 在圆上的位置没有关系,根据图示,只要点D 在图中优弧︵AC 上即可,根据由特殊到一般的数学思想方法,可将点D 在优弧︵AC 上移动到一个特殊位置,即弦AD (或AC )经过圆心,不妨让弦AD 经过圆心,即AD 为⊙O 的直径,如图1;AD 为直径时:(1)由于PA 为切线,所以∠A =90°;(2)AD 所对圆周角为直角,连接AC ,∠C =∠1+∠2=90°+∠2,如图2;∠2等于︵AB 所对圆心角的一半,所以连接OB ,∠2=12 ∠3,∠4=90°,如图3; ∠3放在四边形OAPB 中即可求得为39°. ∴“∠A +∠C ”=90°+90°+39°=219°.如果是一般的图形,只要作直径AE 连接EC ,如图4.由于∠1=∠2,所以∠DAP +∠DCB =∠EAP +∠ECP ,也就转化为图1了.图1 图2 图3 图4【解答】以下给出的是一般情况下的求解过程,在考试时,可选择用特殊情况下的图形来求解,其结果是不变的.如图,作直径AE ,连接EC 、AC 、OB .∵∠1=∠2.∴∠DAP +∠DCB =∠EAP +∠ECP. ∵PA 、PB 为切线. ∴∠OAP =∠5=90°.∴∠4=360°-∠OAP -∠5-∠P. ∵∠P =102°. ∴∠4=78°. ∴∠3=12 ∠4=39°. ∵AE 为直径. ∴∠ECA =90°.∴∠EAP +∠ECP =∠EAP +∠ECA +∠3.=90°+90°+39°. =219°.即:∠DAP +∠DCB =219°.15.如图,在△ABC 中,BC 的垂直平分线MN 交AB 于点D ,CD 平分∠ACB.若AD =2,BD =3,则AC 的长为_____________.【答案】10 .【考点】线段垂直平分线性质及基本图形,如图1,角平分线性质及基本图形如图2、图3,图形的相似等图1中:DB=DC,两个Rt△全等;图2中:作DG⊥AC,则DE=DG,△DCE≌△DCG等;图3中:作DF∥AC,则∠1=∠2=∠3,DF=FC,△BDF∽△BAC等;综合图1~3,除了上述结论外,还可应用勾股定理等.【分析】与已知条件中长度联系最紧的是相似,依此逐步推理:如图4,DF∥AC→△BDF∽△BAC→DFAC=BDBA=35,设DF=3k,AC=5k,则FC=DF=3k.;DF∥AC→△BDF∽△BAC→BFBC=BDBA→BFFC=BDDA=32→BF=92k,则BC=152k,BE=EC=154k,EF=34k;根据勾股定理:BD²-BE²=DF²-EF²=DE²即可求出k的值.据上分析,本题不需要应用图2的结论.【解答】如图,作DF∥AC交BC于点F,设MN交BC于点E.则:∠2=∠3.∵DC平分∠ACB.∴∠1=∠2.∴∠1=∠3.∴DF=FC.∵DF∥AC.∴△BDF∽△BAC.DF AC=BDBA=BFBC.∵AD=2,BD=3∴DFAC=BFBC=35,设DF=3k.则AC=5k,FC=DF=3k.∵BFBC=35.∴BFFC=32.∴BF =92 k. 则BC =152 k. ∵E 为BC 中点. ∴BE =EC =154 k. EF =EC -FC =34 k. 在Rt △ADE 与Rt △DFE 中. BD ²-BE ²=DF ²-EF ²=DE ².∴3²-(154 k )²=(3k )²-(34 k )². 解得:k =105 (负值舍去). ∴AC =5k =10 .16.在△ABC 中,AB =4,∠C =60°,∠A >∠B ,则BC 的长的取值范围是____________________. 【答案】4<BC ≤8 33 .【考点】线段的运动与变化,三角函数,斜边大于直角边等.【分析】■可利用含60°的三角板直观演示点A 运动过程中线段AB 、BC 的变化规律,注意AB 在运动过程中的特殊位置,即△ABC 为直角三角形、等腰三角形等.图1 图2 图3 图4 图5图1:起始图,点A 与点C 重合,初步演示观察,不难发现:点A 沿三角板斜边所在的射线向左上方的运动过程中,∠A 逐渐减小,∠B 逐渐增大,BC 长线增大,然后又逐渐减小;图2:点A 沿三角板斜边所在的射线运动,此时∠A 为钝角,此过程中∠A >∠B ,BC 逐渐增大; 图3:点A 运动到第一个特殊位置,∠A =90°,此过程中∠A >∠B ,BC 达到最大,应用三角函数可求得其最大值为8 33 ;图4:点A 运动到第二个特殊位置,∠A =60°,此过程中∠A >∠B ,BC 逐渐减小,当∠A =60°时,∠B =60°;可见BC >4图5:点A 继续运动,则∠BAC <60°,∠B >60°,此过程中,∠A <∠B ,不满足题意.■也可从特殊的三角形开始分析,即∠A =∠B ,此时△ABC 为等边三角形,如图6;此时,若点A 沿射线CA 方向运动,则∠A <60°(如图7),故点A 只能沿射线AC 方向运动,其运动过程中的特殊位置为∠A =90°(如图9);满足条件的一般图形分两类:60°<∠A <90°,90°<∠A <180°,即∠A 分别为锐角或钝角(如图9、10).图6 图7 图8 图9 图10 【解答】(1)当∠A =60°时.△ABC 为等边三角形,BC =AB =4. (2)当∠A =90°时.△ABC 为Rt △,BC =AB sinC =8 33 . (3)当60°<∠A <90°.作BD ⊥AC 于D. BD =BC ·sinC. 在Rt △ABD 中. BD <AB. ∴BC ·sinC <AB. BC ·sin60°<4. 即:BC <8 33 .(4)当90°<∠A <180°.作BD ⊥AC 交CA 延长线于D.同(3)解法:BC <8 33 . 综上:4<BC ≤8 33 .三、解答题(本大题共11小题,共88分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(x +y )(x 2-xy +y 2). 【考点】多项式乘以多项式,合并同类项.【分析】直接应用多项式乘以多项式法则,注意不要漏乘. 【解答】原式=x 3-x 2y +xy 2+x 2y -xy 2+y 3.=x 3+y 3.【考点】多项式乘以多项式,合并同类项.【分析】直接应用多项式乘以多项式法则,注意不要漏乘. 【解答】18.(7分)解方程x x -1 -1=3x 2-1 .【考点】分式方程的解法.【分析】根据解分式方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1、检验等即可得解 .注意点主要有:去分母时不要漏乘,去分母后分子如是多项式需要添加括号.本题将x 2-1分解因式,确定最简公分母后,去分母即可转化为整式方程. 【解答】原方程可转化为:x x -1 -1=3(x +1)(x -1). 方程两边乘(x +1)(x -1),得:x (x +1)-(x +1)(x -1)=3. 整理,得:x +1=3. 解得:x =2.检验:当x =2时,(x +1)(x -1)≠0. ∴原分式方程的解为:x =2.19.(7分)如图,D 是△ABC 的边AB 的中点,DE ∥BC ,CE ∥AB ,AC 与DE 相交于点F. 求证:△ADF ≌CEF.【考点】中点的定义;三角形全等的判定:SAS、ASA、AAS、SSS,HL;平行四边形的判定:两组对边分别平行,两组对边分别相等,一组对边平行且相等,对角线互相平分.【分析】对照已知条件,观察图形不难发现四边形DBCE是平行四边形,根据D为AB中点,即可得到AD =BD=CE,欲证的两个三角形由平行可得两组内角(均为内错角)相等.【解答】证明:∵DE∥BC,CE∥AB.∴四边形DBCE是平行四边形.∴BD=CE.∵D是AB中点.∴AD=BD.∴AD=CE.∵CE∥AB.∴∠A=∠1,∠2=∠E.∴△ADF≌CEF.20.(8分)下图是某市连续5天的天气情况(1)利用方差判断该市这五天的日最高气温波动大还是日最低气温波动大;(2)根据上图提供的信息,请再写出两个不同类型的结论.【考点】从图中获取信息,方差的意义与计算,数据与客观世界之间的联系,分析与综合的能力.【分析】问题(1)利用方差计算公式直接计算,方差越大,波动越大;方差计算分两步,先求平均数,再计算方差:-x =1 n (x 1+x 2+…x n ).s 2=1 n 〔(x 1--x )2+(x 2--x )2+…(x n --x )2〕.问题(2)数据与客观世界之间的联系,可以从不同的角度来分析:天气现象与最高气温、天气现象与最低气温,天气现象与温差、天气现象与空气质量等. 【解答】这五天的日最高气温和日最低气温的平均数分别为: (1)-x 高=1 5 (23+25+23+25+24)=24 -x 低=1 5 (21+22+15+15+17)=18. 方差分别为:s 2高=15 〔(23-24)2+(25-24)2+(23-24)2+(25-24)2+(24-24)2〕=0.8.s 2低=1 5 〔(21-18)2+(22-18)2+(15-18)2+(15-18)2+(17-18)2〕=8.8.∵s 2高< s 2低.∴这五天的日最低气温波动较大.(2)本题答案不唯一,下列解法供参考.如:①25日、26日、27日、28日、29日的天气现象依次是大雨、中雨、晴、晴、多云,日温差依次是2℃、3℃、8℃、10℃、7℃,可以看出雨天的日温差较小;②25日、26日、27日的天气现象依次是大雨、中雨、晴,空气质量依次是良、优、优,说明下雨后空气质量改善了;③27日、28日、29日天气现象依次是晴、晴、多云,最低气温分别为15℃、15℃、17℃,说明晴天的最低气温较低.21.(8分)某校计划在暑期第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动. (1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天.....,其中有一天是星期二的概率是_________. 【考点】概率的计算方法,枚举法、树状图、列表法在求概率中的应用.【分析】选用适当分析工具(枚举法、列表法、树状图)确定所有等可能的结果与符合条件的结果是解决此类问题的常用方法.选择不同的分析工具,解答过程会有差异, 繁简程度也有区别.【解答】(1)枚举法:甲同学随机选择两天,所有可能出现的结果共有6中,即:(星期一,星期二)、(星期一,星期三)、(星期一,星期四)、(星期二、星期三)、(星期二、星期四)、(星期三、星期四).这些结果出现的可能性相等,所有的结果中,满足有一天是星期二(记为事件A )的结果有3种,即(星期一,星期二)、(星期二、星期三)、(星期二、星期四).∴P (A )=36 =12 . 列表法:所有可能出现的结果共有12中,这些结果出现的可能性相等,所有的结果中,满足有一天是星期二(记为事件A )的结果有6种.∴P (A )=612 =12 . 树状图:所有可能出现的结果共有12中,这些结果出现的可能性相等,所有的结果中,满足有一天是星期二(记为事件A )的结果有6种.∴P (A )=612 =12 .(2)枚举法:乙同学随机选择连续的两天,所有可能出现的结果共有3中,即:(星期一,星期二)、(星期二、星期三)、(星期三、星期四).这些结果出现的可能性相等,所有的结果中,满足有一天是星期二(记为事件A )的结果有2种,即(星期一,星期二)、(星期二、星期三).∴P (A )=23 . 列表法:所有可能出现的结果共有6中,这些结果出现的可能性相等,所有的结果中,满足有一天是星期二(记为事件A )的结果有4种.∴P (A )=46 =23 . 树状图:所有可能出现的结果共有6中,这些结果出现的可能性相等,所有的结果中,满足有一天是星期二(记为事件A )的结果有4种.∴P (A )=46 =23 .22.(7分)如图,⊙O 的弦AB 、CD 的延长线相交于点P ,且AB =CD 求证:PA =PC.【考点】弦、弧之间的关系,圆周角与弧之间的关系,垂径定理,三角形全等等.【分析】本题条件比较简单,需要结合圆的有关知识进行一般推理:弦等可以得出弧等、圆周角相等,弦可以联想垂径定理,构造垂径定理的基本图形,可进一步得到全等三角形.据此分析,由弦等连接AC,只要证∠A=∠C;若构造垂径定理的基本图形,可用全等来证.【解答】方法一:如图,连接AC.∵AB=CD.∴︵AB =︵CD .∴︵AB +︵BD =︵CD +︵BD .即︵AD =︵BC .∴∠A=∠C.∴PA=PC.方法二:如图,连接AD、BC.∵AB =CD. ∴︵AB =︵CD .∴︵AB +︵BD =︵CD +︵BD . 即︵AD =︵BC . ∴AD =BC. ∵∠1=∠2. ∴∠3=∠4. 又∵∠A =∠C. ∴△PAD ≌△PCB. ∴PA =PC. 方法三:如图,连接OA 、OC 、OP ,作OE ⊥AB 于E ,OF ⊥CD 于F.∵OE ⊥AB ,OF ⊥CD. ∴AE =12 AB ,CF =12 CD. ∵AB =CD. ∴AE =CF. ∵OA =OC.∴Rt △AOE ≌Rt △COF ∴OE =OF. 又∵OP =OP.∴Rt △POE ≌Rt △POF. ∴PE =PF.∴PE +AE =PF +CF 即:PA =PC.23.(8分)已知一次函数y1=kx+2(k为常数,k≠0)和y2=x-3.(1)当k=-2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图像,直接写出k的取值范围.【考点】一次函数的图像和性质,三个“一次”的关系,一次函数图像与k、b值之间的关系等.【分析】问题(1)可用代入法并建立不等式解答,也可利用函数图像解答.问题(2)关键积累并熟悉函数图像随着k值的变化,y=kx(k≠0)、y=kx+b(k≠0)函数图像变化规律,即“操作实践经验”:实数范围内,当k>0时,在k值逐渐增大过程中,y=kx(k≠0)位于第一象限的图像与x轴正方向的夹角逐渐增大,并且向y轴无限接近,简单的看成其图像绕原点作逆时针旋转;k<0时,在k值逐渐增大过程中,y=kx(k≠0)位于第二象限的图像与x轴正方向的夹角逐渐增大,并且向x轴无限接近,简单的看成绕原点作逆时针旋转,如图1.图1 图2y=kx+b(k≠0)的图像即把y=kx(k≠0)的图像平移|b|单位后所得,在k值逐渐增大过程中,其图像的变化与y=kx(k≠0)的图像类似:当k>0时,在k值逐渐增大过程中,y=kx+b(k≠0)位于x轴上方的图像与x轴正方向的夹角逐渐增大,并且向y轴无限接近,简单的看成其图像绕点(0,b)作逆时针旋转;k<0时,在k值逐渐增大过程中,y=kx+b(k≠0)位于x轴上方的图像与x轴正方向的夹角逐渐增大,并且向过点(0,b)且平行于x轴的直线无限接近,简单的看成绕点(0,b)作逆时针旋转,如图2.两个图像不重合的一次函数y1=k1x+b1(k1≠0)与y2=k2x+b2(k2≠0)且b1≠b2的位置关系:当k1≠k2时,y1与y2相交,当y1=y2时,y1与y2平行,如图3.图3本题首先求出x =1时,两函数图像的交点坐标为A (1,-2),此点是分析问题的关键点,同时过点(1,0)作垂直于x 轴的直线l ;y 1 的b =2,可知y 1 过点(0,2),设为点B ,此时y 1即为直线AB ,可以求出此时k =-4,发现当x <1时,即在直线l 的左侧y 1>y 2,故k =-4是符合题意的解,如图4;只要点A 沿着y 1的图像向右上方移动,即y 1绕点B 逆时针旋转,所得到的k 值均符合题意,如图5、图6;随着k 的增大,A 沿着y 1的图像向右上方移动,当k =1时,y 1的图像∥y 2的图像,符合题意,如图7; 当k >1时, y 1与y 2图像交点在第四象限,如图8,此时图像上存在y 1<y 2的点,即当x <x A ′时,y 1<y 2,故不符合题意.图4(k =-4) 图5(k =-1) 图6(k =14 ) 图7(k =1)图8(k =3)注意,已知条件中k ≠0.综上分析,k 的取值范围为:-4≤k ≤1,且k ≠0. 【解答】-4≤k ≤1,且k ≠0.24.(8分)如图,山顶有一塔AB ,塔高33m.计划在塔的正下方沿直线CD 开通穿山隧道EF.从与点E 相距80m 的C 处测得A 、B 的仰角分别为27°、22°,从与F 点相距50m 的D 处测得A 的仰角为45°.求隧道EF 的长度.(参考数据:tan22°≈0.40,tan27°≈0.51)【考点】三角函数的应用.【分析】三角函数的应用通常需要构造直角三角形,解法有两种,其一为直接计算,其二为不能直接计算时需要建立方程(组)进行解答,方程模型通常有:线段的和差、三角函数式、勾股方程等.本题可以通过延长AB 交CD 于点G ,则AG ⊥AD 来构造直角三角形,如图1.图1已知条件中CE =80,DF =50,只要求出CD 长,即可求出EF 长.从而构造出三个直角三角形中,公共边AG 是连接三个三角形之间的桥梁,不难发现DG =AG ,Rt △ACG 、Rt △BCG 的公共边CG 是联系两个直角三角形的桥梁,方程可以由:AG -BG =AB (33m )建立,只要选择一个线段长为未知数(x ),把AG 、BG 分别用x 的代数式表示出来即可求解,显然,选择CG 为未知数最为合适.【解答】如图,延长AB 交CD 于点G ,则AG ⊥AD ,设CG =x .在Rt △ACG 中,∠ACG =27° ∵kan ∠ACG =AG CG .∴AG =CG ·tan ∠ACG =x ·tan27°. 在Rt △BCG 中,∠BCG =22°∵kan ∠BCG =BGCG .∴BG =CG ·tan ∠ACG =x ·tan22°. ∵AB =AG -BG.x ·tan27°-x ·tan22°=33. 解得:x ≈300. ∴CG ≈300.∴AG =x ·tan27°≈153. 在Rt △ADG 中,∠ADG =45° ∵kan ∠ADG =AGDG . ∴AD =AG =153. ∴EF =CD -CE -DF.=CG +DG -CE -DF. =300+153-80-50. =323.∴隧道EF 的长度约为323m .25.(8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m ,宽40m.要求扩充后的矩形广场长与宽的比为3∶2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩建区域都铺设地砖.铺设地砖费用每平方米100元.如果计划总费用642 000元,扩充后广场的长和宽应分别是多少米?【考点】二元一次方程组的应用.【分析】根据题意描述的相等关系,选择适当的设未知数的方法进行解答即可.本题描述的数量关系有:扩充后:矩形广场长∶宽的比=3∶2;扩建费用+铺地砖的费用=642 000.【解答】设扩充后广场的长为3xm ,宽为2xm.根据题意,得:30(3x ·2x -50×40)+3x ·2x ·100=642 000. 解得:x 1=30,x 2=-30(不合题意,舍去). ∴3x =90,2x =60.答:扩充后广场的长和宽应分别为90m 和60m.26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.【考点】菱形的判定,直线与圆的位置关系,相似三角形,实践与操作经验等.【分析】问题(1)由已知可得DG∥EF,DG=DE=EF,易证四边形DEFG是菱形;问题(2)随着点D的位置变化,DG的长度也在变化,作法的第2步,弧与直线AB和线段AB交点的个数也发生变化,弧与直线AB和线段AB交点的个数由弧的半径(DE长)与点D到直线AB的距离(表示为DM)大小关系来决定,不妨看作点D从点C开始沿CA方向移动,随着CD的增大,DE长度逐渐增大,D到直线AB的距离(DM长)逐渐减小:当DM>DG时,弧与AB没有交点,不能作出菱形,如图1;当DM=DG时,弧与AB相切,只有1个公共点M,即点E,可作出1个菱形DEFG,如图2;当DM<DG时,分为以下几种情况:1)弧与线段AB有2个交点,点E1、E2,可作出2个菱形DE1F1G和DE2F2G,如图3;2)弧与线段AB有2个交点,点E1、E2,其中点E1与点A重合,可作出2个菱形DE1F1G和DE2F2G,此时DG=DA,如图4;3)弧与直线AB有2个交点,与线段AB只有1个交点,点E1、E2,其中点E1在直线AB上,不在线段AB上(即在点A的左侧),可作出1个菱形DE2F2G,如图5;4)弧与直线AB有2个交点,与线段AB只有1个交点,点E1、E2,其中点E1在直线AB上,不在线段AB上(即在点A的左侧),DE2与BC平行,即点F2与点B重合,可作出1个菱形DE2F2G,如图6;5)弧与直线AB有2个交点,与线段AB没有交点,不能作出菱形,如图7.图1 图2 图3图4 图5 图6图7只要求出图2、图4、图6中线段CD的长即可,根据△CDG∽△CAB及相似三角形的有关性质即可求得对应的CD长.【解答】(1)证明:∵DG=DE,DE=EF.∴DG=EF.∵DG∥EF.所有四边形DEFG是平行四边形.又∵DE=EF.∴□DEFG是菱形.(2)参考解法:图2中:设DG=x.DG=DM,四边形DMFG为特殊菱形,即正方形.作CH⊥AB于H,交DG于点N.则:DG=DE=NH=x.由DG∥AB可得:△CDG∽△CAB.AC=3,BC=4,根据勾股定理:AB=5AB·CH=AC·BC=2S△ABC,求得:CH=12 5.由△CDG ∽△CAB 得: DG AB =CN CH →DG AB =CH -NH CH →x 5 =125 -x 125 →x =6037 →DG =6037 .由△CDG ∽△CAB 得:CD CA =DG AB →CD 3 =60375 →CD =3637 . 图4中:AD =DG.由△CDG ∽△CAB 得:DG AB =CD CA →DG CD =AB CA =53 . 【注:也可用cos ∠CDG =cos ∠CAB →CD DG =CA AB =35 】 设DG =5y ,CD =3y. 则AD =DG =5y.由CD +AD =AC →3y +5y =3→y =38 →CD =3y =98 . 图6中:DG =BG.与图4的解法一样:DG CG =AB BC =54 . 设DG =5n ,CG =4n. 则BG =DG =5n.由CG +BG =BC →5n +4n =4→n =49 →CG =169 ,DG =209 . 由DG CD =AB CA =53 →CD =43∴当0≤CD <3637 或43 <CD ≤3时,菱形的个数为0; 当CD =3637 或98 <CD ≤43 时,菱形的个数为1; 当3637 <CD ≤98 时,菱形的个数为2.27.(11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1-x2|+|y1-y2|.【数学理解】(1)①已知点A(-2,1),则d(O,A)=__________;②函数y=-2x+4(0≤x≤2)的图像如图①所示,B是图像上一点,d(O,B)=3,则点B的坐标是___________________.①②③(2)函数y=4x(x>0)的图像如图②所示.求证:该函数的图像上不存在点C,使d(O,C)=3.(3)函数y=x2-5x+7(x≥0)的图像如图③所示,D是图像上一点,求d(O,D)的最小值及对应的点D 的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)【考点】.新概念的理解与应用,含绝对值的代数式的化简,分式方程的解法,一元二次方程根与系数的关系,二次函数最值的解法,【分析】.问题(1)①根据新概念直接代入计算即可.②根据函数表达式,设B(x,-2x+4),根据新概念,。

2020年江苏省南京市中考数学试卷 (解析版)

2020年江苏省南京市中考数学试卷 (解析版)

2020年江苏省南京市中考数学试卷一、选择题(共6小题).1.(2分)计算3(2)--的结果是( ) A .5-B .1-C .1D .52.(2分)3的平方根是( )A .9B .3C .3-D .3±3.(2分)计算322()a a ÷的结果是( ) A .3aB .4aC .7aD .8a4.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是( ) A .2019年末,农村贫困人口比上年末减少551万人B .2012年末至2019年末,农村贫困人口累计减少超过9000万人C .2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D .为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务5.(2分)关于x 的方程2(1)(2)(x x p p -+=为常数)的根的情况,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根6.(2分)如图,在平面直角坐标系中,点P 在第一象限,P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D .若P 的半径为5,点A 的坐标是(0,8).则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3: . 8.(2分)若式子111x --在实数范围内有意义,则x 的取值范围是 . 9.(2分)纳秒()ns 是非常小的时间单位,9110ns s -=.北斗全球导航系统的授时精度优于20ns .用科学记数法表示20ns 是 s .10.(23312+的结果是 .11.(2分)已知x 、y 满足方程组31,23,x y x y +=-⎧⎨+=⎩,则x y +的值为 .12.(2分)方程112x x x x -=-+的解是 . 13.(2分)将一次函数24y x =-+的图象绕原点O 逆时针旋转90︒,所得到的图象对应的函数表达式是 .14.(2分)如图,在边长为2cm 的正六边形ABCDEF 中,点P 在BC 上,则PEF ∆的面积为 2cm .15.(2分)如图,线段AB 、BC 的垂直平分线11、2l 相交于点O ,若139∠=︒,则AOC ∠= .16.(2分)下列关于二次函数22()1(y x m m m =--++为常数)的结论:①该函数的图象与函数2y x =-的图象形状相同;②该函数的图象一定经过点(0,1);③当0x >时,y 随x 的增大而减小;④该函数的图象的顶点在函数21y x =+的图象上.其中所有正确结论的序号是 .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算212(1)11a aa a a +-+÷++. 18.(7分)解方程:2230x x --=.19.(8分)如图,点D 在AB 上,点E 在AC 上,AB AC =,B C ∠=∠,求证:BD CE =.20.(8分)已知反比例函数ky x=的图象经过点(2,1)--. (1)求k 的值.(2)完成下面的解答.解不等式组21,1xkx->⎧⎪⎨>⋅⎪⎩①②解:解不等式①,得.根据函数kyx=的图象,得不等式②的解集.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:)kW h进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数1893x<50293178x<1003178263x<344263348x<115348433x<16433518x<17518603x<28603688x<1根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内;(2)估计该地1万户居民六月份的用电量低于178kW h的大约有多少户.22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26︒方向航行至D处,在B、C处分别测得45ABD∠=︒、37C∠=︒.求轮船航行的距离AD.(参考数据:sin260.44︒≈,cos260.90︒≈,tan260.49︒≈,sin370.60︒≈,cos370.80︒≈,tan 370.75︒≈.)24.(8分)如图,在ABC ∆中,AC BC =,D 是AB 上一点,O 经过点A 、C 、D ,交BC 于点E ,过点D 作//DF BC ,交O 于点F . 求证:(1)四边形DBCF 是平行四边形; (2)AF EF =.25.(8分)小明和小丽先后从A 地出发沿同一直道去B 地.设小丽出发第x min 时,小丽、小明离B 地的距离分别为1y m 、2y m .1y 与x 之间的函数表达式是11802250y x =-+,2y 与x 之间的函数表达式是22101002000y x x =--+.(1)小丽出发时,小明离A 地的距离为 m .(2)小丽出发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少? 26.(9分)如图,在ABC ∆和△A B C '''中,D 、D '分别是AB 、A B ''上一点,AD A D AB A B ''=''.(1)当CD AC ABC D A C A B ==''''''时,求证ABC ∆∽△A B C ''. 证明的途径可以用下面的框图表示,请填写其中的空格.(2)当CD AC BCC D A C B C==''''''时,判断ABC∆与△A B C'''是否相似,并说明理由.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A B'与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC CB AC C B'+<'+.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.参考答案一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.(2分)计算3(2)--的结果是( ) A .5-B .1-C .1D .5解:3(2)325--=+=. 故选:D .2.(2分)3的平方根是( )A .9B C .D .解:2(3)3±=,3∴的平方根.故选:D .3.(2分)计算322()a a ÷的结果是( ) A .3aB .4aC .7aD .8a解:322322624()a a a a a a ⨯-÷=÷==, 故选:B .4.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是( ) A .2019年末,农村贫困人口比上年末减少551万人B .2012年末至2019年末,农村贫困人口累计减少超过9000万人C .2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D .为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务解:A .2019年末,农村贫困人口比上年末减少166********-=(万人),此选项错误; B .2012年末至2019年末,农村贫困人口累计减少超过98995519348-=(万人),此选项正确;C .2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上,此选项正确;D .为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务,此选项正确; 故选:A .5.(2分)关于x 的方程2(1)(2)(x x p p -+=为常数)的根的情况,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根解:关于x 的方程2(1)(2)(x x p p -+=为常数),2220x x p ∴+--=,∴△22184940p p =++=+>,∴方程有两个不相等的实数根,两个的积为22p --, ∴一个正根,一个负根,故选:C .6.(2分)如图,在平面直角坐标系中,点P 在第一象限,P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D .若P 的半径为5,点A 的坐标是(0,8).则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)解:设O 与x 、y 轴相切的切点分别是F 、E 点,连接PE 、PF 、PD ,延长EP 与CD 交于点G ,则PE y ⊥轴,PF x ⊥轴, 90EOF ∠=︒, ∴四边形PEOF 是矩形,PE PF =,//PE OF , ∴四边形PEOF 为正方形,5OE OF PE OF ∴====,(0,8)A , 8OA ∴=, 853AE ∴=-=,四边形OACB 为矩形,8BC OA ∴==,//BC OA ,//AC OB , //EG AC ∴,∴四边形AEGC 为平行四边形,四边形OEGB 为平行四边形,3CG AE ∴==,EG OB =, PE AO ⊥,//AO CB , PG CD ∴⊥, 26CD CG ∴==,862DB BC CD ∴=-=-=, 5PD =,3DG CG ==, 4PG ∴=,549OB EG ∴==+=,(9,2)D ∴.故选:A .二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3: 1-(答案不唯一) . 解:这个数的绝对值小于3, ∴这个数的绝对值等于0、1或2, ∴这个负数可能是2-、1-.故答案为:1-(答案不唯一). 8.(2分)若式子111x --在实数范围内有意义,则x 的取值范围是 1x ≠ . 解:若式子111x --在实数范围内有意义, 则10x -≠, 解得:1x ≠. 故答案为:1x ≠.9.(2分)纳秒()ns 是非常小的时间单位,9110ns s -=.北斗全球导航系统的授时精度优于20ns .用科学记数法表示20ns 是 8210-⨯ s .解:98202010210ns s s --=⨯=⨯,故答案为:8210-⨯.10.(2解:原式13===. 故答案为:13. 11.(2分)已知x 、y 满足方程组31,23,x y x y +=-⎧⎨+=⎩,则x y +的值为 1 . 解:3123x y x y +=-⎧⎨+=⎩①②, ①2⨯-②得:55y =-,解得:1y =-,①-②3⨯得:510x -=-,解得:2x =,则211x y +=-=, 故答案为1.12.(2分)方程112x x x x -=-+的解是 x = 解:方程112x x x x -=-+, 去分母得:22221x x x x +=-+, 解得:14x =, 经检验14x =是分式方程的解. 故答案为:14x =. 13.(2分)将一次函数24y x =-+的图象绕原点O 逆时针旋转90︒,所得到的图象对应的函数表达式是 122y x =+ . 解:在一次函数24y x =-+中,令0x =,则4y =,∴直线24y x =-+经过点(0,4),将一次函数24y x =-+的图象绕原点O 逆时针旋转90︒,则点(0,4)的对应点为(4,0)-, 旋转后得到的图象与原图象垂直,则对应的函数解析式为:12y x b =+, 将点(4,0)-代入得,1(4)02b ⨯-+=, 解得2b =,∴旋转后对应的函数解析式为:122y x =+, 故答案为122y x =+. 14.(2分)如图,在边长为2cm 的正六边形ABCDEF 中,点P 在BC 上,则PEF ∆的面积为 23 2cm . 解:连接BF ,BE ,过点A 作AT BF ⊥于TABCDEF 是正六边形,//CB EF ∴,AB AF =,120BAF ∠=︒,PEF BEF S S ∆∆∴=,AT BE ⊥,AB AF =,BT FT ∴=,60BAT FAT ∠=∠=︒,sin 603BT FT AB ∴==︒=,223BF BT ∴==,120AFE ∠=︒,30AFB ABF ∠=∠=︒,90BFE ∴∠=︒, 112232322PEF BEF S S EF BF ∆∆∴===⨯⨯=, 故答案为23.15.(2分)如图,线段AB 、BC 的垂直平分线11、2l 相交于点O ,若139∠=︒,则AOC ∠=78︒ .解:过O 作射线BP ,线段AB 、BC 的垂直平分线11、2l 相交于点O ,AO OB OC ∴==,90BDO BEO ∠=∠=︒,180DOE ABC ∴∠+∠=︒,1180DOE ∠+∠=︒,139ABC ∴∠=∠=︒,OA OB OC ==,A ABO ∴∠=∠,OBC C ∠=∠,AOP A ABO ∠=∠+∠,COP C OBC ∠=∠+∠,23978AOC AOP COP A ABC C ∴∠=∠+∠=∠+∠+∠=⨯︒=︒,故答案为:78︒.16.(2分)下列关于二次函数22()1(y x m m m =--++为常数)的结论:①该函数的图象与函数2y x =-的图象形状相同;②该函数的图象一定经过点(0,1);③当0x >时,y 随x 的增大而减小;④该函数的图象的顶点在函数21y x =+的图象上.其中所有正确结论的序号是 ①②④ .解:①二次函数2()1(y x m m m =--++为常数)与函数2y x =-的二次项系数相同, ∴该函数的图象与函数2y x =-的图象形状相同,故结论①正确; ②在函数22()1y x m m =--++中,令0x =,则2211y m m =-++=,∴该函数的图象一定经过点(0,1),故结论②正确;③22()1y x m m =--++,∴抛物线开口向下,对称轴为直线x m =,当x m >时,y 随x 的增大而减小,故结论③错误; ④抛物线开口向下,当x m =时,函数y 有最大值21m +,∴该函数的图象的顶点在函数21y x =+的图象上.故结论④正确,故答案为①②④.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算212(1)11a a a a a +-+÷++. 解:原式211(2)()111a a a a a a -+=+÷+++ 211(2)a a a a a +=++ 2a a =+. 18.(7分)解方程:2230x x --=.解:原方程可以变形为(3)(1)0x x -+=30x -=,10x +=13x ∴=,21x =-.19.(8分)如图,点D 在AB 上,点E 在AC 上,AB AC =,B C ∠=∠,求证:BD CE =.【解答】证明:在ABE ∆与ACD ∆中A A AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩,ABE ACD ∴∆≅∆.AD AE ∴=.BD CE ∴=.20.(8分)已知反比例函数k y x =的图象经过点(2,1)--. (1)求k 的值. (2)完成下面的解答.解不等式组21,1x k x ->⎧⎪⎨>⋅⎪⎩①② 解:解不等式①,得 1x < .根据函数k y x=的图象,得不等式②的解集 . 把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集 .解:(1)反比例函数k y x=的图象经过点(2,1)--, (2)(1)2k ∴=-⨯-=;(2)解不等式组21,1x k x ->⎧⎪⎨>⋅⎪⎩①② 解:解不等式①,得1x <.根据函数k y x=的图象,得不等式②的解集02x <<. 把不等式①和②的解集在数轴上表示为:∴不等式组的解集为01x <<,故答案为:1x <,02x <<,01x <<.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:)kW h 进行调查,整理样本数据得到下面的频数分布表. 组别用电量分组 频数 1893x < 50 293178x < 100 3178263x < 34 4263348x < 11 5348433x < 1 6433518x < 1 7518603x < 2 8 603688x <1 根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第 2 组内;(2)估计该地1万户居民六月份的用电量低于178kW h 的大约有多少户.解:(1)有200个数据,∴六月份的用电量的中位数应该是第100个和第101个数的平均数,∴该地这200户居民六月份的用电量的中位数落在第2组内;故答案为:2;(2)50100100007500200+⨯=(户), 答:估计该地1万户居民六月份的用电量低于178kW h 的大约有7500户.22.(8分)甲、乙两人分别从A 、B 、C 这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A 、B 的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是13. 解:用列表法表示所有可能出现的结果如下:(1)共有9种可能出现的结果,其中选择A 、B 的有2种,(,)29A B P ∴=; (2)共有9种可能出现的结果,其中选择景点相同的有3种, ()3193P ∴==景点相同. 故答案为:13. 23.(8分)如图,在港口A 处的正东方向有两个相距6km 的观测点B 、C .一艘轮船从A 处出发,沿北偏东26︒方向航行至D 处,在B 、C 处分别测得45ABD ∠=︒、37C ∠=︒.求轮船航行的距离AD .(参考数据:sin 260.44︒≈,cos 260.90︒≈,tan 260.49︒≈,sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈.)解:如图,过点D 作DH AC ⊥于点H ,在Rt DCH ∆中,37C ∠=︒,tan 37DH CH ∴=︒, 在Rt DBH ∆中,45DBH ∠=︒,tan 45DH BH ∴=︒, BC CH BH =-,∴6tan 37tan 45DH DH -=︒︒, 解得18DH ≈,在Rt DAH ∆中,26ADH ∠=︒,20cos 26DH AD ∴=≈︒. 答:轮船航行的距离AD 约为20km .24.(8分)如图,在ABC ∆中,AC BC =,D 是AB 上一点,O 经过点A 、C 、D ,交BC 于点E ,过点D 作//DF BC ,交O 于点F .求证:(1)四边形DBCF 是平行四边形;(2)AF EF =.【解答】证明:(1)AC BC =,BAC B ∴∠=∠,//DF BC , ADF B ∴∠=∠,BAC CFD ∠=∠,ADF CFD ∴∠=∠,//BD CF ∴,//DF BC ,∴四边形DBCF 是平行四边形;(2)连接AE ,ADF B ∠=∠,ADF AEF ∠=∠,AEF B ∴∠=∠, 四边形AECF 是O 的内接四边形,180ECF EAF ∴∠+∠=︒,//BD CF ,180ECF B ∴∠+∠=︒,EAF B ∴∠=∠,AEF EAF ∴∠=∠,AE EF ∴=.25.(8分)小明和小丽先后从A 地出发沿同一直道去B 地.设小丽出发第x min 时,小丽、小明离B 地的距离分别为1y m 、2y m .1y 与x 之间的函数表达式是11802250y x =-+,2y 与x 之间的函数表达式是22101002000y x x =--+.(1)小丽出发时,小明离A 地的距离为 250 m .(2)小丽出发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少? 解:(1)11802250y x =-+,22101002000y x x =--+,∴当0x =时,12250y =,22000y =,∴小丽出发时,小明离A 地的距离为22502000250()m -=,故答案为:250;(2)设小丽出发第xmin 时,两人相距sm ,则222(1802250)(101002000)108025010(4)90s x x x x x x =-+---+=-+=-+, ∴当4x =时,s 取得最小值,此时90s =,答:小丽出发第4min 时,两人相距最近,最近距离是90m .26.(9分)如图,在ABC ∆和△A B C '''中,D 、D '分别是AB 、A B ''上一点,AD A D AB A B ''=''.(1)当CD AC AB C D A C A B ==''''''时,求证ABC ∆∽△A B C ''. 证明的途径可以用下面的框图表示,请填写其中的空格.(2)当CD AC BC C D A C B C ==''''''时,判断ABC ∆与△A B C '''是否相似,并说明理由. 【解答】(1)证明:AD A D AB A B ''='', ∴AD AB A D A B ='''', CD AC ABC D A C A B =='''''', ∴CD AC AD C D A C A D =='''''', ADC ∴∆∽△A D C '',A A ∴∠=∠',AC ABA C AB ='''', ABC ∴∆∽△A B C '''.故答案为:CD AC AD C D A C A D =='''''',A A ∠=∠'. (2)如图,过点D ,D '分别作//DE BC ,//D E B C '''',DE 交AC 于E ,D E ''交A C ''于E './/DE BC ,ADE ABC ∴∆∆∽, ∴AD DE AE AB BC AC==, 同理,A D D E A E AB BC A C ''''''=='''''', AD A DAB A B ''='', ∴DE D E BC B C ''='', ∴DE BC D E B C ='''', 同理,AE A E AC A C ''='', ∴AC AE A C A E AC A C -''-''='',即EC E C AC A C ''='', ∴EC AC E C A C ='''', CD AC BCC D A C B C =='''''', ∴CD DE EC C D D E E C =='''''', DCE ∴∆∽△D C E ''',CED C E D ∴∠=∠''',//DE BC ,90CED ACB ∴∠+∠=︒,同理,180C E D A C B ∠'''+∠'''=︒,ACB A B C ∴∠=∠''',AC CBA C CB ='''', ABC ∴∆∽△A B C '''.27.(9分)如图①,要在一条笔直的路边l 上建一个燃气站,向l 同侧的A 、B 两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A 关于l 的对称点A ',线段A B '与直线l 的交点C 的位置即为所求,即在点C 处建燃气站,所得路线ACB 是最短的.为了证明点C 的位置即为所求,不妨在直线1上另外任取一点C ',连接AC '、BC ',证明AC CB AC C B '+<'+.请完成这个证明.(2)如果在A 、B 两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.【解答】证明:(1)如图②,连接A C '',点A ,点A '关于l 对称,点C 在l 上,CA CA '∴=,AC BC A C BC A B ''∴+=+=,同理可得AC C B A C BC '''''+=+,A B A C C B ''''<+,AC BC AC C B ''∴+<+;(2)如图③,在点C出建燃气站,铺设管道的最短路线是ACDB,(其中点D是正方形的顶点);如图④,在点C出建燃气站,铺设管道的最短路线是ACD DE EB++,(其中CD,BE都与圆相切)。

2020年江苏省南京市中考数学试题及参考答案(word解析版)

2020年江苏省南京市中考数学试题及参考答案(word解析版)

南京市2020年初中学业水平考试数学(满分120分,考试时间120分钟)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.计算3﹣(﹣2)的结果是()A.﹣5 B.﹣1 C.1 D.52.3的平方根是()A.9 B.C.﹣D.±3.计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a84.党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务5.关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根6.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)二、填空题(本大题共10小题,每小题2分,共20分)7.写出一个负数,使这个数的绝对值小于3:.8.若式子1﹣在实数范围内有意义,则x的取值范围是.9.纳秒(ns)是非常小的时间单位,1ns=10﹣9s.北斗全球导航系统的授时精度优于20ns.用科学记数法表示20ns是s.10.计算的结果是.11.已知x、y满足方程组,则x+y的值为.12.方程=的解是.13.将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是.14.如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.15.如图,线段AB、BC的垂直平分线11、l2相交于点O,若∠1=39°,则∠AOC=.16.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是.三、解答题(本大题共11小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(a﹣1+)÷.18.(7分)解方程:x2﹣2x﹣3=0.19.(8分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.20.(8分)已知反比例函数y=的图象经过点(﹣2,﹣1).(1)求k的值.(2)完成下面的解答.解不等式组解:解不等式①,得.根据函数y=的图象,得不等式②的解集.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数1 8≤x<93 502 93≤x<178 1003 178≤x<263 344 263≤x<348 115 348≤x<433 16 433≤x<518 17 518≤x<603 28 603≤x<688 1根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内;(2)估计该地1万户居民六月份的用电量低于178kW•h的大约有多少户.22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)24.(8分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.25.(8分)小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第xmin时,小丽、小明离B地的距离分别为y1m、y2m.y1与x之间的函数表达式是y1=﹣180x+2250,y2与x之间的函数表达式是y2=﹣10x2﹣100x+2000.(1)小丽出发时,小明离A地的距离为m.(2)小丽出发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?26.(9分)如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,=.(1)当==时,求证△ABC∽△A'B'C.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当==时,判断△ABC与△A'B'C′是否相似,并说明理由.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB <AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.计算3﹣(﹣2)的结果是()A.﹣5 B.﹣1 C.1 D.5【知识考点】有理数的减法.【思路分析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解题过程】解:3﹣(﹣2)=3+2=5.故选:D.【总结归纳】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.2.3的平方根是()A.9 B.C.﹣D.±【知识考点】平方根.【思路分析】如果一个数的平方等于a,那么这个数就叫做a的平方根,也叫做a的二次方根.一个正数有正、负两个平方根,他们互相为相反数;零的平方根是零,负数没有平方根.【解题过程】解:∵()2=3,∴3的平方根.故选:D.【总结归纳】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a8【知识考点】幂的乘方与积的乘方;同底数幂的除法.【思路分析】根据幂的乘方、同底数幂的除法的计算法则进行计算即可.【解题过程】解:(a3)2÷a2=a3×2÷a2=a6﹣2=a4,故选:B.【总结归纳】本题考查幂的乘方、同底数幂除法的计算法则,掌握计算法则是正确计算的前提.4.党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务【知识考点】条形统计图.【思路分析】根据条形统计图中每年末贫困人口的数量,结合各选项逐一分析判断可得答案.【解题过程】解:A.2019年末,农村贫困人口比上年末减少1660﹣551=1109(万人),此选项错误;B.2012年末至2019年末,农村贫困人口累计减少超过9899﹣551=9348(万人),此选项正确;C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上,此选项正确;D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务,此选项正确;故选:A.【总结归纳】本题主要考查条形统计图,解题的关键是根据条形统计图得出解题所需的具体数据.5.关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根【知识考点】根的判别式;根与系数的关系.【思路分析】先把方程(x﹣1)(x+2)=p2化为x2+x﹣2﹣p2=0,再根据方程有两个不相等的实数根可得△=1+8+4p2>0,由﹣2﹣p2>0即可得出结论.【解题过程】解:∵关于x的方程(x﹣1)(x+2)=p2(p为常数),∴x2+x﹣2﹣p2=0,∴△=1+8+4p2=9+4p2>0,∴方程有两个不相等的实数根,根据根与系数的关系,方程的两个根的积为﹣2﹣p2<0,∴一个正根,一个负根,故选:C.【总结归纳】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.6.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)【知识考点】坐标与图形性质;矩形的性质;切线的性质.【思路分析】设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD 交于点G,证明四边形PEOF为正方形,求得CG,再根据垂径定理求得CD,进而得PG、DB,便可得D点坐标.【解题过程】解:设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD交于点G,则PE⊥y轴,PF⊥x轴,∵∠EOF=90°,∴四边形PEOF是矩形,∵PE=PF,PE∥OF,∴四边形PEOF为正方形,∴OE=PF=PE=OF=5,∵A(0,8),∴OA=8,∴AE=8﹣5=3,∵四边形OACB为矩形,∴BC=OA=8,BC∥OA,AC∥OB,∴EG∥AC,∴四边形AEGC为平行四边形,四边形OEGB为平行四边形,∴CG=AE=3,EG=OB,∵PE⊥AO,AO∥CB,∴PG⊥CD,∴CD=2CG=6,∴DB=BC﹣CD=8﹣6=2,∵PD=5,DG=CG=3,∴PG=4,∴OB=EG=5+4=9,∴D(9,2).故选:A.【总结归纳】本题主要考查了正方形的性质,矩形的性质与判定,圆的切线的性质,垂径定理,勾股定理,关键是求出CG的长度.二、填空题(本大题共10小题,每小题2分,共20分)7.写出一个负数,使这个数的绝对值小于3:.【知识考点】正数和负数;15:绝对值.【思路分析】首先根据一个负数的绝对值小于3,可得这个负数大于﹣3且小于0;然后根据绝对值的含义和求法,求出这个数是多少即可.【解题过程】解:∵一个负数的绝对值小于3,∴这个负数大于﹣3且小于0,∴这个负数可能是﹣2、﹣1.5、﹣1、….故答案为:﹣1(答案不唯一).【总结归纳】此题主要考查了绝对值的含义和运用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.若式子1﹣在实数范围内有意义,则x的取值范围是.【知识考点】分式有意义的条件.【思路分析】直接利用分式有意义的条件分析得出答案.【解题过程】解:若式子1﹣在实数范围内有意义,则x﹣1≠0,解得:x≠1.故答案为:x≠1.【总结归纳】此题主要考查了分式有意义的条件,正确掌握相关定义是解题关键.9.纳秒(ns)是非常小的时间单位,1ns=10﹣9s.北斗全球导航系统的授时精度优于20ns.用科学记数法表示20ns是s.【知识考点】科学记数法—表示较小的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:20ns=20×10﹣9s=2×10﹣8s,故答案为:2×10﹣8.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.计算的结果是.【知识考点】分母有理化;二次根式的混合运算.【思路分析】直接利用二次根式的性质化简得出答案.【解题过程】解:原式===.故答案为:.【总结归纳】此题主要考查了二次根式的混合运算,正确化简各数是解题关键.11.已知x、y满足方程组,则x+y的值为.【知识考点】97:二元一次方程组的解;98:解二元一次方程组.【思路分析】求出方程组的解,代入求解即可.【解题过程】解:,①×2﹣②得:5y=﹣5,解得:y=﹣1,①﹣②×3得:﹣5x=﹣10,解得:x=2,则x+y=2﹣1=1,故答案为1.【总结归纳】本题考查了解二元一次方程组,整式的求值的应用,求得x、y的值是解此题的关键.12.方程=的解是.【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:方程=,去分母得:x2+2x=x2﹣2x+1,解得:x=,经检验x=是分式方程的解.故答案为:x=.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是.【知识考点】一次函数图象与几何变换.【思路分析】利用直线与两坐标轴的交点坐标,求得旋转后的对应点坐标,然后根据待定系数法即可求得.【解题过程】解:在一次函数y=﹣2x+4中,令x=0,则y=4,令y=0,则x=2,∴直线y=﹣2x+4经过点(0,4),(2,0)将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,则点(0,4)的对应点为(﹣4,0),(2,0)的对应点是(0,2)设对应的函数解析式为:y=kx+b,将点(﹣4,0)、(0,2)代入得,解得,∴旋转后对应的函数解析式为:y=x+2,故答案为y=x+2.【总结归纳】此题主要考查了一次函数图象与几何变换,正确把握互相垂直的两直线系数关系是解题关键.14.如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.【知识考点】三角形的面积;正多边形和圆.【思路分析】连接BF,BE,过点A作AT⊥BF于T,证明S△PEF=S△BEF,求出△BEF的面积即可.【解题过程】解:连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BE,AB=AF,∴BT=FT,∠BAT=∠FAT=60°,∴BT=FT=AB•sin60°=,∴BF=2BT=2,∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF=•EF•BF=×2×=2,故答案为2.【总结归纳】本题考查正多边形与圆,解直角三角形等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.15.如图,线段AB、BC的垂直平分线11、l2相交于点O,若∠1=39°,则∠AOC=.【知识考点】线段垂直平分线的性质.【思路分析】解法一:过O作射线BP,根据线段的垂直平分线的性质得AO=OB=OC和∠BDO =∠BEO=90°,根据四边形的内角和为360°得∠DOE+∠ABC=180°,根据外角的性质得∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,相加可得结论.解法二:连接OB,同理得AO=OB=OC,由等腰三角形三线合一得∠AOD=∠BOD,∠BOE =∠COE,由平角的定义得∠BOD+∠BOE=141°,最后由周角的定义可得结论.【解题过程】解:解法一:过O作射线BP,∵线段AB、BC的垂直平分线11、l2相交于点O,∴AO=OB=OC,∠BDO=∠BEO=90°,∴∠DOE+∠ABC=180°,∵∠DOE+∠1=180°,∴∠ABC=∠1=39°,∵OA=OB=OC,∴∠A=∠ABO,∠OBC=∠C,∵∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,∴∠AOC=∠AOP+∠COP=∠A+∠ABC+∠C=2×39°=78°;解法二:连接OB,∵线段AB、BC的垂直平分线11、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∵∠DOE+∠1=180°,∠1=39°,∴∠DOE=141°,即∠BOD+∠BOE=141°,∴∠AOD+∠COE=141°,∴∠AOC=360°﹣(∠BOD+∠BOE)﹣(∠AOD+∠COE)=78°;故答案为:78°.【总结归纳】本题主要考查线段的垂直平分线的性质,等腰三角形的性质,三角形外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是.【知识考点】二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换.【思路分析】利用二次函数的性质一一判断即可.【解题过程】解:①∵二次函数y=﹣(x﹣m)2+m+1(m为常数)与函数y=﹣x2的二次项系数相同,∴该函数的图象与函数y=﹣x2的图象形状相同,故结论①正确;②∵在函数y=﹣(x﹣m)2+m2+1中,令x=0,则y=﹣m2+m2+1=1,∴该函数的图象一定经过点(0,1),故结论②正确;③∵y=﹣(x﹣m)2+m2+1,∴抛物线开口向下,对称轴为直线x=m,当x>m时,y随x的增大而减小,故结论③错误;④∵抛物线开口向下,当x=m时,函数y有最大值m2+1,∴该函数的图象的顶点在函数y=x2+1的图象上.故结论④正确,故答案为①②④.【总结归纳】本题考查二次函数的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共11小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(a﹣1+)÷.【知识考点】分式的混合运算.【思路分析】先计算括号内异分母分式的加法、将除式分子因式分解,再将除法转化为乘法,最后约分即可得.【解题过程】解:原式=(+)÷=•=.【总结归纳】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.18.(7分)解方程:x2﹣2x﹣3=0.【知识考点】解一元二次方程﹣因式分解法.【思路分析】通过观察方程形式,本题可用因式分解法进行解答.【解题过程】解:原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.【总结归纳】熟练运用因式分解法解一元二次方程.注意:常数项应分解成两个数的积,且这两个的和应等于一次项系数.19.(8分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.【知识考点】全等三角形的判定与性质.【思路分析】要证BD=CE只要证明AD=AE即可,而证明△ABE≌△ACD,则可得AD=AE.【解题过程】证明:在△ABE与△ACD中,∴△ABE≌△ACD(ASA).∴AD=AE.∴BD=CE.【总结归纳】考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题得出三角形全等后,再根据全等三角形的性质可得线段相等.20.(8分)已知反比例函数y=的图象经过点(﹣2,﹣1).(1)求k的值.(2)完成下面的解答.解不等式组解:解不等式①,得.根据函数y=的图象,得不等式②的解集.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集.【知识考点】在数轴上表示不等式的解集;反比例函数的图象;反比例函数图象上点的坐标特征.【思路分析】(1)把点(﹣2,﹣1)代入y=即可得到结论;(2)解不等式组即可得到结论.【解题过程】解:(1)∵反比例函数y=的图象经过点(﹣2,﹣1),∴k=(﹣2)×(﹣1)=2;(2)解不等式组解:解不等式①,得x<1.根据函数y=的图象,得不等式②的解集0<x<2.把不等式①和②的解集在数轴上表示为:∴不等式组的解集为0<x<1,故答案为:x<1,0<x<2,0<x<1.【总结归纳】本题考查了反比例函数图象上点的坐标特征,解不等式组,在数轴上表示不等式的解集,正确的理解题意是解题的关键.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数1 8≤x<93 502 93≤x<178 1003 178≤x<263 344 263≤x<348 115 348≤x<433 16 433≤x<518 17 518≤x<603 28 603≤x<688 1根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内;(2)估计该地1万户居民六月份的用电量低于178kW•h的大约有多少户.【知识考点】用样本估计总体;频数(率)分布表;中位数.【思路分析】(1)根据中位数的定义即可得到结论;(2)根据题意列式计算即可得到结论.【解题过程】解:(1)∵有200个数据,∴六月份的用电量的中位数应该是第100个和第101个数的平均数,∴该地这200户居民六月份的用电量的中位数落在第2组内;故答案为:2;(2)×10000=7500(户),答:估计该地1万户居民六月份的用电量低于178kW•h的大约有7500户.【总结归纳】本题考查了中位数,用样本估计总体,频数(率)分布表,正确的理解题意是解题的关键.22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.【知识考点】列表法与树状图法.【思路分析】(1)列举出甲选择的2个景点所有可能出现的结果情况,进而求出相应的概率;(2)用列表法表示所有可能出现的结果,再求出两个景点相同的概率.【解题过程】解:甲选择的2个景点所有可能出现的结果如下:(1)共有6种可能出现的结果,其中选择A、B的有2种,∴P(A、B)==;(2)用列表法表示所有可能出现的结果如下:共有9种可能出现的结果,其中选择景点相同的有3种,∴P(景点相同)==.故答案为:.【总结归纳】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】过点D作DH⊥AC于点H,根据锐角三角函数即可求出轮船航行的距离AD.【解题过程】解:如图,过点D作DH⊥AC于点H,在Rt△DCH中,∠C=37°,∴CH=,在Rt△DBH中,∠DBH=45°,∴BH=,∵BC=CH﹣BH,∴﹣=6,解得DH≈18,在Rt△DAH中,∠ADH=26°,∴AD=≈20.答:轮船航行的距离AD约为20km.【总结归纳】本题考查了解直角三角形的应用﹣方向角问题,解决本题的关键是掌握方向角定义.24.(8分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.【知识考点】等腰三角形的判定与性质;平行四边形的判定与性质;圆周角定理.【思路分析】(1)根据等腰三角形的性质得出∠BAC=∠B,根据平行线的性质得出∠ADF=∠B,求出∠ADF=∠CFD,根据平行线的判定得出BD∥CF,根据平行四边形的判定得出即可;(2)求出∠AEF=∠B,根据圆内接四边形的性质得出∠ECF+∠EAF=180°,根据平行线的性质得出∠ECF+∠B=180°,求出∠AEF=∠EAF,根据等腰三角形的判定得出即可.【解题过程】证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴∠EAF=∠B,∴∠AEF=∠EAF,∴AF=EF.【总结归纳】本题考查了平行线的性质和判定,平行四边形的判定,圆内接四边形,等腰三角形的判定等知识点,能综合运用知识点进行推理是解此题的关键.25.(8分)小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第xmin时,小丽、小明离B地的距离分别为y1m、y2m.y1与x之间的函数表达式是y1=﹣180x+2250,y2与x之间的函数表达式是y2=﹣10x2﹣100x+2000.(1)小丽出发时,小明离A地的距离为m.(2)小丽出发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?【知识考点】二次函数的应用.【思路分析】(1)根据题意和函数解析式,可以计算出小丽出发时,小明离A地的距离;(2)根据题目中的函数解析式和题意,利用二次函数的性质,可以得到小丽出发至小明到达B 地这段时间内,两人何时相距最近,最近距离是多少.【解题过程】解:(1)∵y1=﹣180x+2250,y2=﹣10x2﹣100x+2000,∴当x=0时,y1=2250,y2=2000,∴小丽出发时,小明离A地的距离为2250﹣2000=250(m),故答案为:250;(2)设小丽出发第xmin时,两人相距sm,则s=(﹣180x+2250)﹣(﹣10x2﹣100x+2000)=10x2﹣80x+250=10(x﹣4)2+90,∴当x=4时,s取得最小值,此时s=90,答:小丽出发第4min时,两人相距最近,最近距离是90m.【总结归纳】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.26.(9分)如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,=.(1)当==时,求证△ABC∽△A'B'C.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当==时,判断△ABC与△A'B'C′是否相似,并说明理由.【知识考点】相似三角形的判定.【思路分析】(1)根据两边成比例夹角相等两三角形相似证明即可.(2)过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC于E,D′E′交A′C′于E′.首先证明△CED∽△C′E′D′,推出∠CED=∠C′E′D′,再证明∠ACB=∠A′C′B′即可解决问题.【解题过程】(1)证明:∵=,∴=,∵==,∴==,∴△ADC∽△A′D′C,∴∠A=∠A′,∵=,∴△ABC∽△A′B′C′.故答案为:==,∠A=∠A′.(2)如图,过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC于E,D′E′交A′C′于E′.∵DE∥BC,∴△ADE∽△ABC,∴==,同理,==,∵=,∴=,∴=,同理,=,∴=,即=,∴=,∵==,∴==,∴△DCE∽△D′C′E′,∴∠CED=∠C′E′D′,∵DE∥BC,∴∠CED+∠ACB=90°,同理,∠C′E′D′+∠A′C′B′=180°,∴∠ACB=∠A′B′C′,∵=,∴△ABC∽△A′B′C′.【总结归纳】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB <AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.【知识考点】四边形综合题.【思路分析】(1)由轴对称的性质可得CA=CA',可得AC+BC=A'C+BC=A'B,AC'+C'B=A'C'+BC',由三角形的三边关系可得A'B<A'C'+C'B,可得结论;(2)①由(1)的结论可求;②由(1)的结论可求解.【解题过程】证明:(1)如图②,连接A'C',∵点A,点A'关于l对称,点C在l上,∴CA=CA',∴AC+BC=A'C+BC=A'B,同理可得AC'+C'B=A'C'+BC',∵A'B<A'C'+C'B,∴AC+BC<AC'+C'B;(2)如图③,在点C出建燃气站,铺设管道的最短路线是ACDB,(其中点D是正方形的顶点);如图④,在点C出建燃气站,铺设管道的最短路线是ACD++EB,(其中CD,BE都与圆相切)【总结归纳】本题是四边形综合题,考查了正方形的性质,圆的有关知识,轴对称的性质,三角形的三边关系,熟练运用这些性质解决问题是本题的关键.。

最新江苏省南京市中考数学十年真题汇编试卷附解析

最新江苏省南京市中考数学十年真题汇编试卷附解析

江苏省南京市中考数学十年真题汇编试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,PB 为⊙O 的切线,B 为切点,连结 PO 交⊙O 于点 A ,PA =2,PO= 5,则 PB 的长为( )A .4B .10C .26D .432.右边物体的主视图是( )3.如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.5的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离约为( ) A .4.5m B .4.6m C .6m D .8m 4.圆锥的底面直径是8,母线长为12,则这个圆锥的侧面展开图的圆心角是( ) A . 60°B . 120°C . 150°D . 180°5.下列命题中,正确的是( ) A .凡是等腰三角形必相似 B .凡是直角三角形都相似 C .凡是等腰直角三角形必相似D .凡是钝角三角形都相似6.抛物线2255y x x =++与坐标轴...的交点个数是( ) A .O 个 B .1个C . 2个D .3 个7.某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百 分率为x ,则下列方程中正确的是( ) A .55 (1+x )2=35 B .35(1+x )2=55 C .55 (1-x )2=35 D .35(1-x )2=55 8.下列图形中,中心对称图形的是( )A .B .C .D .9.直线142y x =-与x 轴的交点坐标为( ) A .(0,一4) B .(一4,0) C .(0,8)D .(8,O )10.在△ABC 中,三个内角满足以下关系:∠A=12∠B=13∠C ,那么这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .任意三角形11.在下列方程中:①1383x +=;②2243x y -+=;③331x y +=;④251x y =+;⑤y x =;⑥2()3()2yx y x x y --+=+,是二元一次方程的有( ) A .2 个B . 3个C .4 个D .5 个12.下列说法正确的是( )A .无限小数是无理数B .不循环小数是无理数C .无理数的相反数还是无理数D .两个无理数的和还是无理数13.1134(1)324-⨯-⨯的结果是( ) A .112B .142C .748-D .748二、填空题14.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于 .15.已知⊙O 的半径为 4 cm ,直线l 与⊙O 相切,则圆心0到直线l 的距离为 cm . 16.如图,⊙O 的直径为 10,弦 AB 的长为8,M 是弦 AB 上的动点,则OM 的长的取值范围是 .17.如图,由四个全等的直角三角形拼成“赵爽弦图”.Rt ABF △中,90AFB ∠=,3AF =,AB=5.四边形EFGH 的面积是.18.平行四边形ABCD 的两条对角线交于点O ,若△BOC 的面积为6,AB=3,则AB ,CD 间的距离为____________.19.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:所剪次数 1 2 3 4 … n 正三角形个数471013…a n则n解答题 20.如果21(3)(4)34x A Bx x x x +=+-+-+,那么A= ,B= . 21.随机抽取某城市30天空气污染指数统计如下:污染指 数(W) 40 70 90 110 120 140 天数(f)4610 541(W ≤50,空气质量为优;若50<W ≤100,空气质量为良;若l00<W ≤150,空气质量为轻微污染)则该城市这30天中,污染指数为 的天数最多,空气质量为良的共有 天,空气质量为轻微污染的天数占 %. 22.把139500 四舍五人取近似数,保留 3 个有效数字是 .23.上海浦东磁悬浮铁路全长30 km ,单程运行时间约8 min ,那么磁悬浮列车的平均速度用科学记数法表示约为 m /min .24.老师在同一直角坐标系中画了一个反比例函数的图象以及正比例函数y=-x 的图象,请同学们观察.甲同学发现:两个图像有两个交点;乙同学发现:双曲线上任意一点到两坐标轴的距离的积都为5.请根据以上信息,写出反比例函数的解析式: . 25.已知代数式 2m 的值是 4,则代数式231m m -+的值是 .三、解答题26.已知二次函数图象经过(23)-,,对称轴1x =,抛物线与x 轴两交点距离为4,求这个二次函数的解析式?27.已知:如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,点E 、F 、G 分别在边AB 、BC 、CD•上,AE=GF=GC .(1)求证:四边形AEFG 是平行四边形;(2)当∠FGC=2∠EFB 时,求证:四边形AEFG 是矩形.28.为了解某初中学生的体能情况,•抽取若干名学生在单位时间内进行引体向上测试,将所得数据整理后,画出频数分布直方图(如图),•图中从左到右依次为第1,2,3,4,5组.(1)求抽取了多少名学生参加测试.(2)处于哪个次数段的学生数最多(答出是第几组即可)?(3)若次数在5次(含5次)以上为达标,求这次测试的达标率.29.解下列方程:(1)0.511 0.20.3x x+-=(2)0.40.950.030.020.520.03x x x+-+-=30.国家卫生部信息统计中心根据国务院新闻办公室授权发布的全国内地5月21日至5月25日非典型性肺炎发病情况,按年龄段进行统计分析中,各年龄段发病的总人数如图所示(发病的病人年龄在0~80岁之间),请你观察图形,回答下面的问题:(1)全国内地5月21日至5月25日平均每天有人患非典型性肺炎;(2)年龄在29.5~39.5这一组的频数是;频率是;(3)根据统计图,年龄在范围内的人发病最多.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.A4.B5.C6.B7.C8.B9.D10.A11.B12.C13.D二、填空题14.2415.416.3≤OM≤5 17.118.819.3n+120.-1,121.90,16,33.3 22.1.40×10523.3.75×10324.y=-5 x25.-1三、解答题26.∵抛物线与x轴两交点距离为4,且以1x 为对称轴.∴抛物线与x 轴两交点的坐标为(10)(30)-,,,.设抛物线的解析式(1)(3)y a x x =+-,将点(23)-,代入解得1a =. ∴二次函数的解析式为223y x x =--.27.证明:(1) ∵AE=GF=GC ,∴∠GFC=∠C=∠B ,∴AB ∥GF ,∴四边形AEFG 是平行四边形;(2)由条件∠GFC=EFB FGC ∠-=∠- 902180,∴∠EFB+∠GFC=90°,∴∠EFG=90°.∵四边形AEFG 是平行四边形,∴四边形AEFG 是矩形.28.(1)100名,(2)第3组,(3)达标率为65%29.(1)1310x =(2)9x = 30.⑴20; ⑵ 25,0.25; ⑶19.5~29.5.。

2022年江苏省南京市中考数学真题试卷附解析

2022年江苏省南京市中考数学真题试卷附解析

2022年江苏省南京市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图1表示正六棱柱形状的高大建筑物,图2表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在( ) A .P 区域B .Q 区域C .M 区域D .N 区域2.已知关于x 的一元二次方程221()04x R r x d -++=无实数根,其中 R 、r 分别是⊙O 1、⊙O 2的半径,d 为两圆的圆心距,则⊙O 1、⊙O 2的位置关系为( ) A .外切B .内切C .外离D .外切或内切3.在拼图游戏中,从如图左边的四张纸片中,任取两张纸片,能拼成如图右边的“小房子”的概率等于( ) A .1B . 12C .13D .234.小明和五名女同学和另四名男同学玩丢手帕游戏,小明随意将手帕丢在一名同学的后面,那么这名同学是女生的概率是( ) A .59B .49C .12D . 455.如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC 的大小是 ( ) A .40°B .45°C .50°D .60°6.一个跳水运动员从10米高台上跳水,他每一时刻所在的高度(单位:米)与所用时间(单位:秒)的关系是h =-5(t -2)(t +1).则运动员起跳到入水所用的时间( ) A .-5B .-1C .1D . 27.下列说法中,正确的个数是( )①样本的方差越小,波动性越小,说明样本稳定性越好;②一组数据的方差一定是正数;③一组数据的方差的单位与原数据的单位是一致的; ④一组数据的标准差越大,则这组数据的方差一定越大. A .1个B .2个C .3个D .4个8.若))(3(152n x x mx x ++=-+,则m 的值为 ( ) A .5-B .5C .2-D .29.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,•除颜色外其他全部相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的概率为15%和45%,则口袋中白色球的个数很可能是( ) A .6 B .16C .18D .2410.如图,在△ABC 中,DE 是边AB 的垂直平分线,BC=8cm ,AC=5cm 则△ADC 的周长为( ) A .14 cm B .13 cm C .11 cm D .9 cm11.下面的图表是护士统计的一位病人一天的体温变化情况:时间 6:00 10:00 14:00 18:00 22:00 体温/℃37.638.338.039.137.9通过图表,估计这个病人下午16:00时的体温是( ) A .38.0℃ B .39.1℃ C .37.6℃ D .38.6℃ 12.16的平方根是±4,用算式表示正确的是( ) A .164=± B .164±= C .164±=± D .164±=± 13.若a a ±=-时,a 是( )A . 全体实数B . 正实数C .负实数D .零 二、填空题14. 如图,在高为 2m ,坡角为 30°的楼梯上铺地毯,则地毯长度至少要 m .15.如图,四边形BDEF 是RtΔABC 的内接正方形,若AB =6,BC =4,则DE = . 16.如图,用一个半径为R ,圆心角为90°的扇形做成一个圆锥的侧面,•设圆锥底面半径为r ,则R :r=________.17.已知△ABC ,可以画△ABC 的外接圆且只能画 个;对于给定的⊙O ,可以画⊙O 的个内接三角形.18.如图,矩形纸片ABCD 中,AD=9,AB=3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为________.19.如图,直线 DE 经过点 A ,且∠1 =∠B ,∠2=50°,则∠3= .20.长、宽分别为a 、b 的矩形硬纸片拼成的一个“带孔”正方形如图所示.利用面积的不同表示方法,写出一个代数恒等式 . 21.如图,(1)能用一个大写字母表示的角是 ; (2)以A 为顶点的角是 ;(3)图中共有 个角(小于平角的角),它们分别是 .22.如果2x =-是方程10kx k +-=的解,那么k = . 23.比较大小:310.三、解答题24.如图,甲转盘被分成 3 个面积相等的扇形,乙转盘被分成 4 个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,求出点(),x y 落在第二象限内的概率; (2)直接写出点(),x y 落在函数1y x=-图象上的概率.25.某科技馆座落在山坡M 处,从山脚A 处到科技馆的路线如图所示.已知A 处海拔高度 为103.4m ,斜坡AB 的坡角为30,40m AB =,斜坡BM 的坡角为18,60m BM =,那么科技馆M 处的海拔高度是多少?(精确到0.1m )(参考数据:sin180.309= cos180.951= tan180.324=)26. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点P ,若AB=2 , AC=3. 求:(1)∠A 的度数; (2) ⌒CD 的长; (3)弓形CBD 的面积.27. 四张大小、质地均相同的卡片上分别标有数字1,2,3,4,5,6,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张卡片(不放回),再从桌子上剩下的5张中随机抽取第二张卡片.(1)用画状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况; (2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?28.如图,AD 平分∠BAC ,AB =AC ,则BD =CD ,试说明理由.29.配套的桌椅高度之间存在着一定的数量关系. 现测得两套不同的标准桌椅,相应的高度为:桌高 75.0 cm,椅子高 40. 5 cm;桌高70.2cm,椅子高37.5 cm.已知配套的桌高 y(cm)与椅子高 x(cm)之间存在的关系为y ax b=+.现有一套办公桌椅,椅子高为 44 cm,办公桌高为 80. 5 cm .请你判断一下这套办公桌椅是否配套.30.小惠的牡丹卡上还有余款 260 元,小惠想买一件衬衣和一件连衣裙,衬衣价格为 98 元/件,连衣裙价格为 180 元/件,小惠用牡丹卡购买这两件商品会透支吗?用有理数加法说明理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.D4.A5.B6.D7.B8.C9.B10.B11.D12.C13.D二、填空题 14.(2+15.12516. 417.1,无数18.10 19.50°20.ab b a b a 4)()(22=--+(答案不唯一)21.(1)∠C 、∠B (2)∠CAD 、∠DAB 、∠CAB (3)7;∠B 、∠C 、∠l 、∠2、∠CAD 、∠DAB 、∠CAB22.-l23.<三、解答题 24.解:由题意,画树状图:由上图可知,点P (x,y )的坐标共有12种等可能的结果,其中点(x,y )落在第二象限的共有2种,∴点P (点(x,y )落在第二象限)=61. (2)点P (点(x,y )落在xy 1-=图象上)=41123=.25.解:过B 向水平线AC 作垂线BC ,垂足为C ,过M 向水平线BD 作垂线MD , 垂足为D ,则11402022BC AB ==⨯=. sin18MD BM =600.309=⨯18.54=.∴科技馆M 处的海拔高度是:103.42018.54141.94141.9(m)++=≈. 26.(1)30度;(2)π32;(3)4331-π.27.(1)略 (2)1528.△ABD ≌△ACD (SAS ),则BD=CD .29.配套30.会透支。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京市 2016年初中毕业生学业考试数学一.选择题1.为了方便市民出行.提倡低碳交通,近几年南京市大力发展公共自行车系统.根据规划,全市公共自行车总量明年将达70 000 辆.用科学计数法表示70 000 是A . 0.7 105 B. 7 104 C. 7 105 D. 701032.数轴上点A、 B 表示的数分别是5、 -3,它们之间的距离可以表示为A .- 3+5 B. - 3- 5 C. |- 3+5| D. |- 3- 5|3.下列计算中,结果是a6的是A . B. a2ga3 C.a12a2 D.4、下列长度的三条线段能组成钝角三角形的是A.3,4,4 B. 3,4,5 C. 3,4,6 D. 3,4,75.己知正六边形的边长为2,则它的内切圆的半径为A. B.3 C.2 D.2 36、若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9 的方差相等,则x 的值为A. B. C.或6 D.或二.填空题7. 化简:8 =______;3 8 =______.8. 若式子x x 1 在实数范围内有意义,则x 的取值范围是________.9.分解因式10.比较大小:1 11.方程x 2的结果是 _______.55 2- 3________ .(填“ >””或<“”=号”)23的解是 _______.x12.设x1, x2是方程的两个根,且x1x2- x1x2=1,则 x1 x2______, =_______.13. 如图,扇形OAB 的圆心角为122 °, C 是弧 AB 上一点,则_____ °.14. 如图,四边形ABCD 的对角线AC 、 BD 相交于点O,△ ABO ≌△ ADO ,下列结论① AC ⊥ BD ;② CB=CD ;③△ ABC ≌△ ADC ;④ DA=DC ,其中正确结论的序号是_______.15.如图, AB 、CD 相交于点 O,OC=2,OD=3 ,AC ∥ BD.EF 是△ ODB 的中位线,且 EF=2,则AC 的长为 ________.16.如图,菱形ABCD 的面积为120,正方形AECF 的面积为50,则菱形的边长为_______.三 .解答题17. 解不等式组并写出它的整数解.18.计算19.某校九年级有 24 个班,共 1000 名学生,他们参加了一次数学测试,学校统计了所有学生的乘积,得到下列统计图,( 1)求该校九年级学生本次数学测试成绩的平均数;( 2)下列关于本次数学测试说法正确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取 300 名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数。

20.我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表 .21.(8 分)用两种方法证明“三角形的外角和等于360°” . 如图,∠ BAE 、∠ CBF 、∠ ACD 是△ ABC 的三个外角。

求证:∠ BAE+ ∠ CBF+ ∠ACD=36 0°证法1:∵∴ ∠BAE+∠ 1 + ∠CBF+∠2+∠ACD+∠3=180°×3=540°∴ ∠BAE+ ∠CBF+ ∠ ACD= 540° -( ∠ 1+∠2+∠3) 360°∵∴ ∠BAE+ ∠CBF+ ∠ ACD= 540° -180 ° =360°请把证法1补充完整,并用不同方法完成证法2。

22.某景区 7 月 1 日 -7 月 7 日一周天气预报如下,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率;(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.423.下图中的折线ABC 表示某汽车的耗油量y(单位: L/km) 与速度 x(单位: km/h)之间的函数关系( 30≤x≤120),已知线段 BC 表示的函数关系中,该汽车的速度每增加1km/h ,耗油量增加 0.002L/km.(1) 当速度为 50km/h 、100km/h 时,该汽车的耗油量分别为_____L/km 、 ____L/km.(2) 求线段 AB 所表示的 y 与 x 之间的函数表达式(3) 速度是多少时,该汽车的耗油量最低?最低是多少?24.如图,在四边形ABCD 中, E 是 AD 上一点,延长 CE 到点 F,使.(1)求证:(2)用直尺和圆规在 AD 上作出一点 P,使△ BPC ∽△ CDP(保留作图痕迹,不写作法)。

25.图中是抛物线形拱桥,P 处有一照明灯,水面OA 宽 4m,从 O、 A 两处观测P 处,仰角分别为,且,,以O为原点,OA所在直线为x 轴建立直角坐标系.(1)求点 P 的坐标(2) 水面上升1m,水面宽多少(取1.41,结果精确到0.1m )?26.如图, O 是△ ABC 内一点,与BC相交于F、G两点,且与AB 、 AC 分别相切于点D 、E, DE∥ BC。

连接 DF、 EG。

(1) 求证: AB=AC(2) 已知 AB=10 ,BC=12 ,求四边形DFGE 是矩形时的半径.27.( 11 分)如图,把函数y x 的图像上各点的纵坐标变为原来的 2 倍,横坐标不变,得到函数 y 2x 的图像;也可以把函数 yx 的图像上各点的横坐标变为原来的1倍,纵坐标不2变,得到函数 y 2x 的图像。

类似地,我们可以认识其他函数。

( 1)把函数 y1倍,横坐标不变,得到函的图像上各点的纵坐标变为原来的6x1数 y的图像;也可以把函数y倍,x 的图像上各点的横坐标变为原来的x纵坐标不变,得到函数y6 的图像。

x1 个 ( 2)已知下列变化: ①向下平移2 个单位长度; ②向右平移 1 个单位长; ③向右平移2单位长度;④纵坐标变为原来的4 倍,横坐标不变;⑤横坐标变原来的1倍,纵坐2标不变;⑥横坐标变原来的2 倍,纵坐标不变。

(ⅰ)函数 yx 2 的图像上所有的点经过④→②→①,得到函数的图像;(ⅱ)为了得到函数 y1( x 1) 2 2 的图像,可以把函数 yx 2 的图像上所有的点 ()4A. ①→⑤→③B.①→⑥→③C. ①→②→⑥D.①→③→⑥( 3)函数 y 12x 1的图像可以经过怎样的变化得到函数y的图像?(写出一种即可)x2x 4南京市 2016年初中毕业生学业考试数学一.选择题1.为了方便市民出行.提倡低碳交通,近几年南京市大力发展公共自行车系统.根据规划,全市公共自行车总量明年将达70 000 辆.用科学计数法表示70 000 是A . 0.7 105 B. 7 104 C. 7 105 D. 70 103答案:B考点:本题考查科学记数法。

解析:科学记数的表示形式为 a 10n形式,其中 1 | a | 10 ,n为整数,70000=7×104。

故选 B 。

2.数轴上点 A、 B 表示的数分别是5、 -3,它们之间的距离可以表示为A .- 3+5 B. -3- 5 C. |- 3+5| D. |- 3- 5|答案:D考点:数轴,数形结合思想。

解析: AB 之间的距离为:|-3- 5|或| 5-(- 3)|,所以,选 D 。

3.下列计算中,结果是a6的是A . B. a2ga3 C. a12 a2 D.答案:D考点:单项式的运算。

解析:A 中,不是同类项不能相加减; B 中,a2ga3=a5,故错误, C 中a12 a2 =a12 2 a10,错误。

D 是正确的。

4、下列长度的三条线段能组成钝角三角形的是A.3,4,4 B. 3, 4,5 C. 3,4,6 D. 3,4,7答案:C考点:构成三角形的条件,勾股定理的应用,钝角三角形的判断。

解析:由两边之和大于第三边,可排除 D ;由勾股定理:a2b2c2,当最长边比斜边 c 更长时,最大角为钝角,即满足 a2b2c2,所以,选C。

5.己知正六边形的边长为2,则它的内切圆的半径为A . B. 3 C. 2 D.2 3答案:B考点 :正六边形、正三角形的性质,勾股定理。

解析 :如下图,由正六边形的性质知,三角形AOB 为等边形三角形,所以, OA = OB = AB =2, AC = 1,由勾股定理,得内切圆半径: OC =36、若一组数据 2,3,4,5,x的方差与另一组数据 5,6,7,8,9 的方差相等,则 x 的值为A .B.C. 或 6D. 或答案:C考点 :数据的方差,一元二次方程。

解析 :数据 5,6,7,8,9 的的平均数为: 7,方差为: 1(4+ 1+ 0+1+ 4)= 2,5数据 2,3,4,5,x 的平均数为:14 1x ,5 5因为两组数据的方差相等,所以,1[ ( 4 x)2+ ( 1 x) 2+ ( 6x )2 + (11 x ) 2 + ( 14 4x ) 2 ]= 25 5 5 5 5 5 5 5 5 5 5 1 [ (4 x)2 + (1 x) 2 + (6 x) 2 + (11 x) 2 + (14 4 x)2 ]= 2 125解得: x =1 或 6。

二.填空题7. 化简:8 = ______; 3 8 = ______.答案:22,2考点 :算术平方根,三次方根,根式的运算。

解析:8 4 2=22,38=28. 若式子 x x 1 在实数范围内有意义,则x 的取值范围是 ________.答案 : x 1考点 :二次根式的意义。

解析 :由二次根式的意义,得: x 1 0,解得: x 1。

9. 分解因式的结果是_______. 答案: (b c)(2 a3)考点:因式分解,提公因式法。

解析:原式= (b c)(2 a3)10.比较大小: 55 2- 3________ .(填“ >””或<“”=号”)2答案:<考点:二次根式的估算。

解析:由于2< 5 <3,所以, 5 -3<0,5 2> 0,所以,填空“<”。

211.方程 12 3的解是 _______.x x答案: x 3考点:分式方程。

解析:去分母,得:x 3( x 2) ,化简,得:x 3 ,经检验 x 3 是原方程的解。

12.设x1, x2是方程的两个根,且 x1 x2- x1x2=1,则 x1 x2______, =_______.答案: 4,3考点:一元二次方程根与系数的关系。

解析:由韦达定理,得: x1 x2 4, x1x2 m ,化入: x1 x2- x1 x2=1,得:4- m= 1,解得: m= 3,所以填4,3。

相关文档
最新文档