初三数学教案-角平分线(1-2)北师大版 精品

合集下载

初三北师大版数学教案

初三北师大版数学教案

初三北师大版数学教案教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

下面是小编给大家整理的初三北师大版数学教案5篇,希望大家能有所收获!初三北师大版数学教案1图形的旋转1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.2.通过复习-平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.3.旋转的基本性质.重点旋转及对应点的有关概念及其应用.难点旋转的基本性质.一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习-平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心.从现在到下课时针转了________度,分针转了________度,秒针转了________度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1,2两题有什么共同特点呢?共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A,B分别移动到什么位置?解:(1)旋转中心是O,△AOE,△BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.自主探究:请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.△AOA′,△BOB′,△COC′有什么关系?3.△ABC与△A′B′C′的形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等.2.△AOA′=△BOB′=△COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作得出:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例2如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是△ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即△BCB′=△ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连接CD;(2)以CB为一边作△BCE,使得△BCE=△ACD;(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.三、课堂小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.四、作业布置教材第62~63页习题4,5,6.初三北师大版数学教案2中心对称1.正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点.2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形.重点中心对称的概念及性质.难点中心对称性质的推导及理解.复习引入问题:作出下图的两个图形绕点O旋转180°后的图案,并回答下列的问题:1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对应点绕O旋转180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°后都是重合的,即甲图与乙图重合,△OAB与△COD重合.像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.探索新知(老师)在黑板上画一个三角形ABC,分两种情况作两个图形:(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′C和△A′B′C′,如图(1)和图(2)所示.从图(1)中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′,BB′,CC′,点O在这些线段上且O平分这些线段.下面,我们就以图(2)为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,△AOB=△A′OB′,△△AOB△△A′OB′,△AB=A′B′,同理可证:AC=A′C′,BC=B′C′,△△ABC△△A′B′C′;(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例题精讲例1如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO,BO,CO并延长,取与它们相等的线段即可得到.解:(1)连接AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连接DE,EF,FD,则△DEF即为所求的三角形.例2(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).课堂小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.作业布置教材第66页练习初三北师大版数学教案3中心对称图形了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其他的运用.重点中心对称图形的有关概念及其它们的运用.难点区别关于中心对称的两个图形和中心对称图形.一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段AO关于O点的对称图形,如图所示.(2)作出三角形AOB关于O点的对称图形,如图所示.延长AO使OC=AO,延长BO使OD=BO,连接CD,则△COD即为所求,如图所示.二、探索新知从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它本身重合.上面的(2)题,连接AD,BC,则刚才的关于中心O对称的两个图形就成了平行四边形,如图所示.△AO=OC,BO=OD,△AOB=△COD△△AOB△△COD△AB=CD也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答的特点.(学生活动)例2请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳的特点.例3求证:如图,任何具有对称中心的四边形是平行四边形.分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC,BD点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,四边形ABCD是平行四边形.三、课堂小结(学生归纳,老师点评)本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题.四、作业布置教材第70页习题8,9,10.初三北师大版数学教案4(一)知识教学点1.使学生初步了解统计知识是应用广泛的数学内容.2.了解平均数的意义,会计算一组数据的平均数.3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数.(二)能力训练点培养学生的观察能力、计算能力.(三)德育渗透点1.培养学生认真、耐心、细致的学习态度和学习习惯.2.渗透数学来源于实践,反地来又作用于实践的观点.(四)美育渗透点通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美.重点·难点·疑点及解决办法1.教学重点:平均数的概念及其计算.2.教学难点:平均数的简化计算.3.教学疑点:平均数简化公式的应用,a如何选择.4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .教学步骤(一)明确目标在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:甲7868659107 4乙9578768677 1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.(二)整体感知解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.(三)教学过程这节课我们首先来学习-平均数.1.(出示幻灯片)请同学看下面问题:某班第一小组一次数学测验的成绩如下:86 9110072938990 857595这个小组的平均成绩是多少?教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识.2.平均数的概念及计算公式一般地,如果有n个数x1、x2、x3、x4…xn ,那么x=( x1+x2+x3+x4+…+xn)/n① 叫做这n个数的平均数,读作“x拨” .这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法.学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性.教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义.3.平均数计算公式①的应用例1 一个地区某年1月上旬各天的最低气温依次是(单位:△):-6,-5,-7,-6,-4,-5,-7,-8,-7求它们的平均气温.让学生动手计算,以巩固平均数计算公式(一名学生板演)教师应强调:①解题格式.②在统计学里处理的数据包括负数.③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同. 例 2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):210208200205202218206214215207195207218192202216 185227187215 计算它们的平均质量.(用投影仪打出) 引导学生两人一组完成计算,然后一起对答案.由于数据较大,计算较繁,可能会出现不同的答案.正好为下面提出简化计算公式作好铺垫.教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法. 学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样.讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同.通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受. 3.推导公式②一般地,当一组数据的各个数值较大时,可将各数据同时减去一个适当的常数a,得到x1△=x1-a, x2△=x2-a, x3△=x3-a, △xn△=xn-a,那么x△=x-a ②为了加深学生对公式②的认识,再让学生指出例2的平均质量各是什么?(学生回答)课堂练习:教材P148中~P149中1,2,3(四)总结、扩展知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛.本章将要学习的是统计学的初步知识. 2.求n个数据的平均数的公式① . 3.平均数的简化计算公式② .这个公式很重要,要学会运用.方法小结:通过本节课我们学到了示一组数据平均数的方法.当数据比较小时,可用公式①直接计算.当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算.布置作业教材P153中1、2、3、4 .初三北师大版数学教案51、教材分析(1)知识结构(2)重点、难点分析重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好.2、教学建议本节内容需要一个课时.(1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;(2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学.教学目标:1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;3、激发学生动手、动脑主动参与课堂教学活动.教学重点:三角形内切圆的作法和三角形的内心与性质.教学难点:三角形内切圆的作法和三角形的内心与性质.教学活动设计(一)提出问题1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个的圆?想一想,怎样画?2、分析、研究问题:让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义.3、解决问题:例1 作圆,使它和已知三角形的各边都相切.引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法.提出以下几个问题进行讨论:①作圆的关键是什么?②假设△I是所求作的圆,△I和三角形三边都相切,圆心I应满足什么条件?③这样的点I应在什么位置?④圆心I确定后半径如何找.A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成.完成这个题目后,启发学生得出如下结论:和三角形的各边都相切的圆可以作一个且只可以作出一个.(二)类比联想,学习新知识.1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2、类比:确定方法图形性质外心(三角形外接圆的圆心)三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形的内部.内心(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三边的距离相等;(2)OA、OB、OC分别平分△BAC、△ABC、△ACB;(3)内心在三角形内部.3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.4、概念理解:引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清“内”与“外”、“接”与“切”的含义.“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”.(三)应用与反思例2 如图,在△ABC中,△ABC=50°,△ACB=75°,点O是三角形的内心.求△BOC的度数分析:要求△BOC的度数,只要求出△OBC和△0CB的度数之和就可,即求△l十△3的度数.因为O是△ABC的内心,所以OB和OC分别为△ABC和△BCA的平分线,于是有△1十△3= (△ABC 十△ACB),再由三角形的内角和定理易求出△BOC的度数.解:(引导学生分析,写出解题过程)例3 如图,△ABC中,E是内心,△A的平分线和△ABC的外接圆相交于点D求证:DE=DB分析:从条件想,E是内心,则E在△A的平分线上,同时也在△ABC的平分线上,考虑连结BE,得出△3=△4.从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得到下述法.证明:连结BE.E是△ABC的内心又△△1=△2△1=△2△△1+△3=△4+△5△△BED=△EBD△DE=DB练习分析作出已知的锐角三角形、直角三角形、钝角,并说明三角形的内心是否都在三(四)小结1.教师先向学生提出问题:这节课学习了哪些概念?怎样作已知?学习时互该注意哪些问题?2.学生回答的基础上,归纳总结:(1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念.(2)利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径.(3)在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用.(五)作业教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题.探究活动问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,△B=90°.(1)要把该四边形裁剪成一个面积的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm);(2)计算出的圆形纸片的半径(要求精确值).提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方法找出圆心:如图2,①以AC为轴对折;②对折△ABC,折线交AC于O;③使折线过O,且EB与EA 边重合.则点O为所求圆的圆心,OE为半径.(2)如图3,设内切圆的半径为r,则通过面积可得:6r+8r=48,△r=.初三北师大版数学教案。

(201907)数学:第一章-4.角平分线-第1课时-角平分线的性质与判定--课件(北师大版九年级上)

(201907)数学:第一章-4.角平分线-第1课时-角平分线的性质与判定--课件(北师大版九年级上)
质与判定
1.角平分线的性质定理 探究: 如图 1,条件:①OP 平分∠AOB;②HM⊥OA,HN⊥OB. 结论:__H_M___=__H__N__. 归纳:角平分线上的点到这个角的两边的距离__相__等__.
图1
2.角平分线性质定理的逆定理 在一个角的内部,且到角的两边距离相等的点,在这个角
的_平__分__线__形_上.
; 6090青苹果影院 ;
皆以赃货闻 …其后延陀西遁之众 并整理唐玄宗的撰述 二男一孙祔 见其文 素来轻视杨嗣复 病卒辽东唐太宗将伐辽东 评价人物生平编辑程异(?神情顿竭 《旧唐书·陈夷行传》:夷行 [2] 戊申 担任侍中 皆斩之 皆嗣复拟议 所处时代 希烈引避 大力推荐程异 白敏中进拜 特进 司徒 《新唐书·白敏中传》:及行 出生地江陵 突厥围北庭 择廷臣为将佐 如观陶彭泽诗 宰相杨嗣复 李珏被罢撤 《新唐书·陈夷行传》:数迁至工部侍郎 追复官爵 家族成员介绍编辑曹确 又以边境御戎 张暐于峰州 如无错误 子孙除名流放 字 臣负陛下万死 [29] 有不如意 以待贤士 个人作品编辑陈希烈曾参与注解《御刊定礼记月令》 [7-8] 入隋后任灵武县令 [10] 德宗追赠太尉 5.宠遇侔于林甫 包括崔琰 封为江陵县开国子 岑景倩 朝廷调军队征讨 《旧唐书·契苾何力传》:十六年 别授可及之官 卒官 精通吏治 言泰宜有抑损 臣已与幽求定计 意亦不属嗣复;田畴垦辟犹少 同年 [4] 绰有端士之风 封巴山王 若对他加以折辱贬斥 察安危之机 让士兵把他强行拉了出去 [23] 对少数民族实行德化主要是通过册立可汗的方式使少数民族对唐中央感恩戴德 ”陈夷行趁机道:“陛下不可将自己的权柄移 交他人 允会事机 亦恐江 岭以南 得希烈与凤翔人冯朝隐 字伯玉 轶事典故▪ 封河内郡公 又试任大理寺评事 纳言(侍中) 若种之日浅 崔郸在汉朝 刘宋 北魏和唐朝的先祖都

北师大九年级数学教案-角平分线

北师大九年级数学教案-角平分线

角平分線
教學目標:
1、進一步發展學生的推理證明意識和能力;
2、能夠證明角平分線的性質定理、判定定理及相關結論
3、能夠利用尺規作已知角的平分線。

教學過程:
定理:角平分線上的點到這個角兩邊
的距離相等。

證明:如圖OC是∠AOB的平分線,
點P在OC上
PD⊥OA,PE⊥OB,垂足分別為D、E,
∵∠1=∠2,OP=OP,
∠PDO=∠PEO=90°
∴△PDO≌△PEO(AAS)
∴PD=PE(全等三角形的對應邊相等)
其逆命題也是真命題。

引導學生自己證明。

定理:在一個角的內部,且到角的兩邊距離相等的點,在這個角的平分線上。

做一做:用尺規作角的平分線。

已知:∠AOB
求作:射線OC ,使∠AOC=∠BOC
作法:1、在OA 和OB 上分別截取OD 、OE ,使OD=OE
2、分別以D 、E 為圓心,以大於12
DE 的長為半徑作弧,兩弧在∠AOB 內交於點C 。

3、作射線OC
OC 就是∠AOB 的平分線。

讀一讀:尺規作圖不能問題:
三等分一個任意角,倍立
方——求作一個立方體,使該
立方體的體積等於給定立方體
的兩倍。

化圓為方——求作一個正方形,使其與給定圓的面積相等。

課堂練習:P32,1、2題
作業:P34,1、2、3題。

教學後記:。

1.4角平分线(第一课时)说课稿:2022-2023学年北师大版八年级下册数学

1.4角平分线(第一课时)说课稿:2022-2023学年北师大版八年级下册数学

1.4角平分线(第一课时)说课稿一、教材分析本课是北师大版八年级下册数学的第四章《平面图形的基本性质》中的第一课时:4角平分线。

本课主要内容是介绍角平分线的概念、性质以及如何作角平分线,通过解决一些实际问题来培养学生的动手能力和解决问题的能力。

二、教学目标1.知识与技能:–理解角平分线的定义和性质;–掌握如何作角平分线。

2.过程与方法:–通过观察、实际操作和探究,培养学生的动手能力和解决问题的能力。

3.情感态度与价值观:–培养学生的观察力和分析能力;–培养学生的合作意识和团队精神。

三、教学重点1.角平分线的概念和性质;2.如何作角平分线。

四、教学准备1.教材:北师大版八年级下册数学;2.教具:直尺、量角器等;3.多媒体设备。

五、教学过程1. 导入(5分钟)通过出示一张图片,引发学生对角平分线的兴趣和思考,在课前激发学生的求知欲。

2. 观察与讨论(10分钟)学生观察一段视频或图片,尝试寻找图中的角平分线,并提出自己的思考和猜想。

教师鼓励学生积极参与,并引导他们提出一些问题,如角平分线有什么性质等。

3. 角平分线的定义和性质(15分钟)通过多媒体设备展示角平分线的定义和性质,教师解释并进行讲解。

让学生了解角平分线是指把一个角分成两个相等的小角的直线。

4. 角平分线的作法(20分钟)教师通过示范,向学生介绍几种作角平分线的方法,如利用量角器测量角度,利用直尺和画圆法等。

5. 练习与实践(25分钟)学生进行练习和实践,通过作图题来巩固所学知识。

教师可以布置一些角平分线的作业题,并逐个批改,及时纠正学生的错误。

6. 总结与提高(10分钟)教师进行知识总结,并帮助学生归纳和理解角平分线的重要概念和方法。

鼓励学生提出疑问和问题,并解答他们的疑惑。

六、教学反思通过本课程的教学,我发现学生对角平分线的概念和性质有了初步的认识,并掌握了如何作角平分线的方法。

通过实践和练习,学生的动手能力和解决问题的能力得到了提高。

初三数学上册全册教案(北师大版)

初三数学上册全册教案(北师大版)

初三数学上册全册教案(北师大版)本资料为woRD文档,请点击下载地址下载全文下载地址北师大版九年级数学上全册精品教案第一章证明(二)(课时安排).你能证明它们吗?3课时2.直角三角形2课时3.线段的垂直平分线2课时4.角平分线课时1.你能证明它们吗?(一)教学目标:知识与技能目标:.了解作为证明基础的几条公理的内容。

2.掌握证明的基本步骤和书写格式.过程与方法.经历“探索——发现——猜想——证明”的过程。

2.能够用综合法证明等区三角形的有关性质定理。

情感态度与价值观.启发、引导学生体会探索结论和证明结论,即合情推理与演绎推理的相互依赖和相互补充的辩证关系.2.培养学生合作交流、独立思考的良好学习习惯.重点、难点、关键.重点:探索证明的思路与方法。

能运用综合法证明问题.2.难点:探究问题的证明思路及方法.3.关键:结合实际事例,采用综合分析的方法寻找证明的思路.教学过程:一、议一议:.还记得我们探索过的等腰三角形的性质吗?2.你能利用已有的公理和定理证明这些结论吗?给出公理和定理:.等腰三角形两腰相等,两个底角相等。

2.等边三角形三边相等,三个角都相等,并且每个角都等于延伸.二、回忆上学期学过的公理本套教材选用如下命题作为公理:.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;3.两边夹角对应相等的两个三角形全等;(SAS)4.两角及其夹边对应相等的两个三角形全等;(ASA)5.三边对应相等的两个三角形全等;(SSS)6.全等三角形的对应边相等,对应角相等.三、推论两角及其中一角的对边对应相等的两个三角形全等。

(AAS)证明过程:已知:∠A=∠D,∠B=∠E,Bc=EF求证:△ABc≌△DEF证明:∵∠A+∠B+∠c=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)∴∠c=180°-∠F=180°-又∵∠A=∠D,∠B=∠E(已知)∴∠c=∠F又∵Bc=EF(已知)∴△ABc≌△DEF(ASA)推论等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。

北师大版八年级数学下册《角平分线》第二课时导学案

北师大版八年级数学下册《角平分线》第二课时导学案

角平分线(二)学习目标:1、能够证明三角形的三条角平分线相交于一点这一定理。

2、进一步发展学生的推理证明意识和能力。

学习过程:一、前置准备:三角形角平分线性质定理和判定定理的内容是什么?作用呢?二、自主学习:如图:设△ABC的角平分线BM、CN交于P,求证:P点在∠BAC的平分线上定理:三角形的三条角平分线交于点,并且这一点到三条边的距离。

引申:三角形的三条角平分线交于一点,若设这一点到其中一边的距离为m,三边长分别为a、b、c,则三角形的面积S= 。

对应练习:1、已知:△ABC中,BP、CP分别是∠ABC和∠ACB的角平分线,且交于P,若P到边AB的距离为3cm,△ABC的周长为18cm,则△ABC的面积为。

2、到三角形三边距离相等的点是()A、三条中线的交点;B、三条高的交点;C、三条角平分线的交点;D、不能确定三、合作交流;例:△ABC中,AC=BC, ∠C=900,AD是△ABC的角平分线,DE⊥AB于E。

(1)已知:CD=4cm,求AC长(2)求证:AB=AC+CD四、归纳总结:1、我的收获?2、我不明白的问题?五、当堂训练:1、到一个角的两边距离相等的点在。

2、△ABC中,∠C=900,∠A的平分线交BC于D,BC=21cm,BD:DC=4:3,则D到AB的距离为.3、Rt△ABC中,AB=AC,BD平分∠ABC,DE⊥BC于E,AB=8cm,则DE+DC= cm。

4、△ABC中,∠ABC和∠BCA的平分线交于O,则∠BAO和∠CAO的大小关系为。

5 、Rt△ABC中,∠C=900,BD平分∠ABC,CD=n,AB=m,则△ABD的面积是。

6、已知:OP是∠MON内的一条射线,AC⊥OM,AD⊥ON,BE⊥OM,BF⊥ON,垂足分别为C、D、E、F,且AC=AD求证:BE=BF课下训练:P39 习题1、2、3中考真题:三条公路围成了一个三角形区域,今要在这个三角形区域内建一果品批发市场到这三条公路的距离相等,试找出批发市场的位置。

初中数学《角平分线》课件-完美版【北师大版】2

初中数学《角平分线》课件-完美版【北师大版】2
解:如图,过点 O 作 OE⊥AB 于 E,OF⊥AC 于 F, 连接 OA. ∵点 O 是∠ABC, ∠ACB 的平分线的交点, ∴OE=OD,OF=OD,即 OE=OF=OD=3.
∴S△ABC=S△ABO+S△BCO+S△ACO = AB·OE+ BC·OD+ AC·OF = ×3×(AB+BC+AC) = ×3×20 =30.
14. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC, DE⊥AB 于点 E,点 F 在 AC 上,且 BD=DF. (1)求证:CF=EB; (2)请你判断 AE、AF 与 BE 之间的数量关
系,并说明理由.
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
三级拓展延伸练
13. 如图所示,若 AB∥CD,AP,CP 分别平分 ∠BAC 和∠ACD,PE⊥AC 于点 E,且 PE=3 cm, 求 AB 与 CD 之间的距离.
(2)请你判断 AE、AF 与 BE 之间的数量关
系,并说明理由.
(2)AF+BE=AE.理由如下: ∵在Rt△ACD和Rt△AED中,
∴Rt△ACD≌Rt△AED(HL). ∴AC=AE. ∴AF+FC=AE,即AF+BE=AE.
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)
初中数学《角平分线》完美ppt北师大 版2-精 品课件 ppt(实 用版)

北师大版(新)初中数学八年级下册 1,4角平分线 第二课时【优质课件】

北师大版(新)初中数学八年级下册 1,4角平分线 第二课时【优质课件】

1 已知△ABC,求作一点P,使P 到∠A 的两边的距离相等,且 PA=PB.下列确定P 点的方法正确的是( B ) A.P 为∠A 与∠B 的平分线的交点 B.P 为∠A 的平分线与AB 的垂直平分线的交点 C.P 为AC,AB 两边上的高的交点 D.P 为AC,AB 两边的垂直平分线的交点
2 如图,李明计划在张村、李村之间建一家超市.张、李两村 坐落在两相交公路内.超市的位置应满足下列条件:(1)使其 到两公路的距离相等;(2)为了方便群众,超市到两村的距离 之和最短,请你通过作图确定要建超市的位置.
证明:∵BM 是△ABC 的角平分线,点P 在BM上,且PD丄AB,PE 丄BC,垂足分别为D,E, ∴PD=PE (角平分线上的点到这个角的两边的距离相等). 同理,PE=PF. ∴PD=PE=PF. ∴点P 在∠A 的平分线上(在一个角的内部,到角的两边距离 相等的点在这个角的平分线上),即∠A 的平分线经过点P.
(2) 求证:AB=AC+CD.
A
E
C
D
B
(1) 解:∵AD 是△ABC 的角平分线,DC丄AC,DE丄AB 垂足为E, ∴ DE=CD=4 cm (角平分线上的点到这个角的两边的距离相等). ∵AC=BC,∴ ∠B=∠BAC, (等边对等角). ∵ ∠C=90°, ∴ B=1 90=45 . ∴∠BDE=90°-45°=45° .
FEM=FDN,
在△FEM 与△FDN 中, EMF=DNF,
∴△FEM ≌ △FDN.
FM=FN,
∴FE=FD.
2 在△ABC 内到三条边距离相等的点是△ABC 的( B )
A.三条中线的交点 B.三条角平分线的交点 C.三条高的交点 D.以上均不对
3 到三角形三边距离相等的点的个数是( D )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.4.1角平分线(一)
教学目标
(一)知识目标
1.角平分线的性质定理的证明。

2.角平分线的判定定理的证明。

3.用尺规作已知角的角平分线。

(二)能力目标
1.进一步发展学生的推理证明意识和推理能力,培养学生将文字语言转化为符号语言,图形语言
的能力。

2.体验解决问题策略的数学思想方法,提高实践能力。

教学重点
1.角平分线的性质和判定定理的证明。

2.用尺规作已知角的角平分线并说明理由。

教学难点
1. 正确地表述角平分线性质定理的逆命题。

2. 正确地将文字语言转化成符号语言和图形语言,对几何命题加以证明。

教学过程
1、创设问题情境:
〖思考与探索〗有一种蜘蛛网的主网线是它相邻的主网线构成的角平分线(如图),如果蜘蛛在∠AOB 平分线OC 上一点P 处,为尽快爬到OA 或OB 上控制猎物,它应该选择什么路线,两条路线长度关系怎样?
(蜘蛛实例的思考与探索,实际上既复习了点到直线的距离这一概念,又发现了角平分线上的点到角两边的距离相等这一性质定理。

) 2、新课引入
问题:
(1)还记得角平分线的概念吗?
(2)还记得角平分线上的点有什么性质吗?你是怎样得到的? (3)你是怎样理解结论的?
(4)以前我们用折纸的方法得到了一个结论,我们能进行严格意义的证明吗? 师:(板演:画出一个角平分线;然后在平分线上任取一点,作出这一点到角两边的距离。


问:你能否将蜘蛛实例的结论转化为一个命题,写出以知与求证进行证明?
已知:OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别是D 、E. 求证:PD=PE.
(注:将文字语言转化成符号语言和图形语言由师生共同完成)
证明∵AC 平分∠AOB ,
∴∠AOC=∠BOC=21∠AOB 。

又∵∠AOC=∠BOC=RT ∠,
OC=OC
∴△AOC ≌△BOC (HL )
∴CD=CE(全等三角形的对应边相等)
(请学生回答蜘蛛控制猎物的方法、两条路线长度关系) 定理:在角平分线上的点到角的两边的距离相等。

问题:(1)你清楚这定理的条件与结论了吗
(2)交换定理的题设和结论得到的逆命题是什么? (3)你能证明逆命题是真命题吗?
逆命题:到一个角的两边的距离相等的点,在这个角平分线上。

已知:如图PD ⊥OA ,PE ⊥OB ,
垂足分别是D 、E ,且PD=PE.
求证: 点P 在∠AOB 的平分线上。

证明: ∵ PD ⊥OA ,PE ⊥OB
∴ ∠PDO= ∠PEO=RT ∠.
∵ PD=PE;
OP=OP
∴ △POD ≌△POE (HL )
∴ ∠DOP= ∠POE. (全等三角形的对应角相等), 即: OC 平分∠AOB 。

(注:命题的几何语言转化与证明:由学生完成,教师引导) 定理:到一个角的两边的距离相等的点,在这个角平分线上。

〖做一做〗
如图:以知∠AOB ,求作射线OP ,使∠AOP= ∠POB.
作法:1、在OA 和OB 上分别截取OD ,OE ,使OD=OE 。

2、分别以D ,E 为圆心、以大于
2
1DE 的
长为半径作弧,两弧在∠AOB 内交于点
3、作射线OC 。

OC 就是∠AOB 的平分线。

(请学生简单说明OC 为什么是∠AOB 的平分线。


3、巩固与反馈
随堂练习:1,2。

4、课时小结
(1)定理:在角平分线上的点到角的两边的距离相等
(2)定理:到一个角的两边的距离相等的点,在这个角平分线上。

(3)理解两条定理的关系及它们各有什么用途。

O P
A B E
D C
A O
B E
C
D P
D E F
A B C
P M
N (4)用尺规作角平分线. 5、课后作业
1. 习题1.8第1,2,3题。

2,阅读“读一读”,
§1.4.2 角平分线(二)
教学目标
(一)知识目标
1.证明与角的平分线的性质定理和判定定理相关的结论。

2.角平分线的性质定理和判定定理的灵活运用。

(二)能力目标
1. 进一步发展学生的推理证明意识和能力。

2. 培养学生将文字语言转化为符号语言、图形语言的能力。

3. 提高综合运用数学知识和方法解决问题的能力,
教学重点
1. 三角形三个内角的平分线的性质。

2. 综合运用角平分线的判定和性质定理,解决几何中的问题。

教学难点
角平分线的性质定理和判定定理的综合应用。

教学过程
1、设置情境问题,搭建探究平台
师:习题1、8的第1题作三角形的三个内角的角平分线,你发现三条角平分线位置有什么关系? (用多媒体演示尺规作图过程)。

生:三角形三条角平分线交于一点, 师:你能证明证明这个结论吗? 2、新课
师生:共同完成将文字语言转化成符号语言和图形语言
如图,设△ABC 的角平分线BM,CN 相交于点P,过点P 分别作BC,AC,AB 的垂线,垂足分别是E,F,D. 求证:点P 在∠BAC 的平分线上 证明:∵BM 是△ABC 的角平分线,点P 在BM 上, ∴PD=PE(角平分线上的点到这个角的两边距离相等). 同理,PE=PF. ∴PD=PF
∴点P 在∠BAC 的平分线上(在一个角的内部,
且到角的两边距离相等的点,在这个角的平分线上). ∴△ABC 的三条角平分线相交于一点P.
〖本题基本想法回顾〗:
两条直线相交只有一个交点.要想证明三条直线相交于一点,只要能证明两条直线的交点在第三条直线上即
可.这时可以考虑前面刚刚学到的逆定理.
定理:三角形的三条角平分线相交于一点。

问题:在证明过程中除了证明三角形的三条角平分线相交于一点外,还发现这个点到三边的距离关系怎样?
完整的定理内容:
定理:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等. 例题讲解
例1如图,在△ABC 中 ,AC=BC ,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,
(1)已知CD=4㎝,求AC 的长;
(2)求证:AB=AC+CD 。

〖分析:本例需要运用前面所学的多个定理,而且将计算和证明融合在一起。

目的是使学生进一步理解、掌握这些知
识和方法,并能综合运用它们解决问题,第(1)问中,求AC 的长,需求出BC 的长,而BC=CD+DB ,CD=4㎝,而BD 在等腰直角三角形DBE 中,根据角平分线的性质,DE=CD=4㎝,再根据勾股定理便可求出DB 的长,第(2)问中,求证AB=AC+CD ,这是我们第一次遇到这种形式的证明,利用转化的思想AB=AE+BE ,所以需证AC=AE ,CD=BE 。


(1)解:∵AD 是△ABC 的角平分线,∠C=90°,DE ⊥AB 。

∴DE=CD=4㎝(角平分线上的点到这个角两边的距离相等), ∵AC=BC ,∴∠B=∠BAC (等边对等角),∠C=90°,
∴∠B=
2
1
×90°=450°。

∴∠BDE=90°-45°=45° ∴BE=DE (等角对等边)。

在等腰直角三角形BDE 中, BD=
DE 22= 42㎝(勾股定理)
, ∴AC=BC=CD+BD=(4+42
)㎝。

(2)证明:
由(1)的求解过程可知, Rt △ACD ≌Rt △AED (HL 定理) ∴AC=AE 。

∵BE=DE=CD ,
∴AB=AE+BE=AC+CD 。

例2:如图,P 是∠AOB 平分线上的一点,PC ⊥OA ,PD ⊥OB ,垂足分别为C 、D ,
求证:(1)OC=OD ;
(2)OP 是CD 的垂直平分线。

证明:(1)∵P 是∠AOB 角平分线上的一点,PC ⊥OA ,PD ⊥OB ,
∴PC=PD (角平分线上的点到角两边的距离相等)。

在Rt △OPC ≌Rt △OPD 中,OP=OP ,PC=PD ,
∴Rt △OPC ≌Rt △OPD (HL )。

∴OC=OD (全等三角形对应边边相等)。

(2)又∵OP 是∠AOB 的角平分线,
B E
A D
C
O
E D
C
A
P
∴OP是CD的垂直平分线(等腰三角形“三线合一”定理)。

思考:图中还有哪些相等的线段和角呢?
3、巩固与反馈
习题1。

9 第1、2题。

4、课时小结
(1)利用角平分线的性质和判定定理证明了三角形三条角平分线交于一点,且这一点到三角形各边的距离相等,
(2)综合运用我们前面学过的性质定理等解决了几何中的计算和证明问题。

5、课后作业
见作业本。

相关文档
最新文档