煤矿井下供电系统
煤矿井下供电系统的规划与改造

煤矿井下供电系统的规划与改造井下供电系统在煤矿的安全生产中起着至关重要的作用。
合理的规划与改造能够确保供电系统的稳定性和安全性,提高矿井的生产效率。
本文将探讨煤矿井下供电系统的规划与改造,旨在为相关从业人员提供参考。
一、现状评估与规划在进行井下供电系统规划和改造之前,首先需要对现有的供电系统进行全面的评估。
评估主要包括以下几个方面:1.供电设备状态评估:检查井下供电设备的老化程度、运行状态和安全隐患,包括电缆、变压器、配电箱等。
2.供电线路评估:评估供电线路的可靠性和负荷情况,确定是否需要进行线路的拓展和改造。
3.电力负荷评估:分析矿井的用电负荷情况,确保供电系统能够满足矿井的正常生产需求。
在评估完成后,可以进行供电系统的规划。
规划应根据评估结果和矿井的实际情况进行,明确以下几个方面内容:1.设备更新换代计划:根据供电设备的老化情况,确定逐步更换的计划,并制定相应的预算。
2.电缆敷设和布线方案:考虑井下环境的复杂性,选择适合的电缆类型和敷设方式,并制定合理的布线方案。
3.可行性分析和决策:对规划方案进行可行性分析,包括经济性、可操作性等,最终确定最佳的规划方案。
二、改造与优化在规划完成后,需要进行井下供电系统的改造与优化。
改造与优化主要包括以下几个方面内容:1.设备改造与新设备引进:根据规划方案,逐步进行设备的改造和新设备的引进,确保设备的安全、可靠和高效。
2.电缆敷设和布线:根据规划方案进行电缆的敷设和布线,确保电缆的正常运行和使用寿命。
3.配电系统改进:对配电系统进行改进,提高供电系统的灵活性和可靠性,确保电力负荷的合理分配。
4.安全措施完善:改造过程中要充分考虑矿井的安全因素,采取相应的安全措施,确保改造过程的安全性。
三、运行与维护供电系统的运行与维护对于煤矿的安全生产至关重要。
在改造完成后,需要确保供电系统的正常运行,并进行日常的维护和检修。
主要包括以下几个方面:1.运行监测与管理:对供电系统进行实时监测,及时发现和排除运行故障,提高供电系统的可靠性。
矿井供电系统与井下供电安全

1、深井供电系统 深井供电系统采用三级供电方式,即地面变电站、井
下中央变电所、采区变电所。
(1)从地面变电站两段不同的6KV母线上引出两条高压输 电电缆,通过井筒入井送到井下中央变电所。在井下中 央变电所通过高压配电装置将电能分配给井底车场附近 的高压用电设备。如主排水泵、变流设备,并向各采区 变电所供电。同时在井下中央变电所还设置了动力变压 器将6KV电压降到660V,向井底车场附近巷道、硐室的 低压动力设备供电。此外,还设置了照明、信号综合保 护装置,将660V电压进一步降到127V,供井底车场及附 近硐室照明、信号专用。
7
2、10KV电压直接向井下供电 目前,一些大型矿井甚至特大型矿井,由
安全生产的需要,已采用10KV电压直接向下井。 由于井下供电电压越高,电网对地电容电
流越大,接地电火花能量越大,人身触电伤亡的危 险性及瓦斯、煤尘爆炸的可能性也越大。因此,必 须采取以下供电安全措施及规定: (1)采用10KV矿用电气设备,必须通过指定检验机构 的技术鉴定。 (2)10KV系统投入前,必须按有关规定进行验收、检 查、试验。
压
6 4
3 8
5
12
深井供电系统示意图
13
(四)变压器的中性点运行方式
1、变压器中性点 变压器接入正弦交流电、正弦交流电是按正弦规
律随时间做周期性变化的电量,其最大值、角频率、 初相角称为正弦交流电的三要素;三相正弦交流电则 是频率相同,最大值相等,相位差120°的三个交流电 。各相电压相等且对称Ua=Ub=Uc 其矢量如图1所示。各 相对地的绝缘电阻等相 ra=rb=rc ,可看成是星形负 载,有以下关系:
18
(2)随着供电线路的延长,电网对地电容也在增大, 由此产生的危害不容忽视。因此,在变压器中性点不 接地系统中必须考虑电网电容和绝缘电阻的共同影响 ,采取必要的措施。
矿井供电系统概述

矿井供电系统概述矿井供电系统是指为了确保矿井正常生产和安全生产而配置的配电系统。
矿井供电系统与一般工业用电、民用电相比有其独特的要求和特点,因为矿井地下工作环境的特殊性,矿井供电系统必须具有可靠的供电能力,确保电力设备和安全设施的正常运行,同时也能够在遇到事故时能够及时切断供电,确保人员安全。
本文将从矿井供电系统的原理、组成和应用方面进行介绍和概括。
一、矿井供电系统的原理矿井供电系统的原理就是通过接入电网或汽油发电机将外部能源输入矿井内部,将交流电源变成直流电源,通过矿用变压器调节电压和电流,并且在矿井内部通过集中控制操作系统控制配电设备的开关状态以实现矿井设备的正常电力供应,确保人员和设备安全运行。
二、矿井供电系统的组成1. 输电线路:输电线路是矿井供电系统的起点,负责实现从电网或发电机输出能源到矿井的电力输送。
2. 变电站及其设备:变电站包含变压器、低压电气设备和中央控制系统等组成,主要负责将外部高压电源转化为业务电压通过各级变压器调压,利用开关控制设备整合电能负荷,充分利用能源。
3. 调压装置:矿井中不同电力设备的电压要求各不相同,调压装置负责将高电压转换成其适合的低电压,并保持其稳定的输出状态,同时还可以提高电路的效率和电力品质。
4. 配电系统:矿井配电系统包含高压和低压电缆、开关设备、保护装置和各类控制系统等,它们协同工作,将电力送往指定位置,满足设备的需求,避免电力过载和短路,确保运行稳定和可靠。
5. 防爆电器设备:矿井内部处于极端的高温、高压、低氧等极端环境,所以需选择防爆电器设备,保证存在爆炸风险区域内的电气装置能够提供可靠性的保护措施。
6. 照明设备:照明设备是矿井中非常必要的电气设施,为工作人员提供良好的工作环境,并且减少人员意外伤害事故。
三、矿井供电系统应用1. 铁路煤矿由于铁路煤矿处于山区,煤炭资源分布广泛,所以需要在山区建设煤矿,这些煤矿需要长期稳定地进行供电。
在这方面,矿井供电系统无疑是最佳选择,它可以保证时刻为煤矿提供安全可靠的电力环境,促进工作人员的工作效率。
煤矿井下供电系统的三大保护

• 对于电子式高压综合保护器,按电流互感器二次额定电
流值(5A)的1、2、3、4、5、6、7、8、9倍分级整定,
其整定值按公式(14)选择:
•
n≥ I QC K X I e
K Ib ge
.....(14)
• 式中: n----互感器二次额定电流(5A)的倍数。
• Ige----高压配电装置额定电流,A。
• 式中: IR----熔体额定电流,A。
•
IQC、∑Ie----含义同公式⑶。
•
1.8~2.5----当容量最大的电动机起动时,保证熔体不熔化
系数。对不经常启动和轻载起动的可取2.5;对于频繁起动和带负
载起动的则可取 1.8~2。
第一节 过电流保护
• ②对保护电缆支线的装置按公式⑽选择:
•
I
QC
• R、 X ----短路回路内一相电阻,电抗值总和,Ω。
•
Xx ----根据三相短路容量计算的系统电抗值, Ω。
•
R1、X1 ----高压电缆的电阻、电抗值,Ω。
•
Kb ----矿用变压器变比。
•
Rb、Xb ----矿用变压器的电阻、电抗值,Ω。
•
R2、X2 ----低压电缆的电阻、电抗值,Ω。
• (一)、一般规定
• 1、短路电流的计算方法
• 1)选择短路保护装置的整定电流时,需要计算两相短路电流值,可按 公式(1)计算:
•
I = (2) d
2
UN2
R 2
X
(2 1)
X X xX1
K X X 2
b
b
2
R R1
K R R 2
b
b
2
煤矿井下供电监控及防越级跳闸系统的设计

煤矿井下供电监控及防越级跳闸系统的设计煤矿是我们能源生产的重要组成部分,而井下供电系统是煤矿生产中至关重要的一环。
为了保障煤矿井下供电系统的安全稳定运行,需要进行严格的监控和管理。
随着科技的不断发展,煤矿井下供电监控及防越级跳闸系统的设计变得越来越重要。
本文将就这一话题展开探讨,介绍该系统的设计原理以及在煤矿实际生产中的应用。
一、井下供电监控系统的设计原理1. 设备选择:在井下供电监控系统的设计中,首先需要选择一些关键的设备,如智能型断路器、传感器、监控控制器等。
这些设备将构成整个井下供电监控系统的核心部分,用于实时监测井下供电系统的运行状态。
2. 网络通信:井下供电监控系统需要具备远程监控的功能,因此在设计中需要考虑如何进行数据的传输和通信。
通常采用无线通信或者有线通信的方式,确保监控数据能够及时传输到地面监控中心。
3. 数据处理:一旦从井下传感器采集到了监控数据,还需要对这些数据进行处理和分析,以便于监控人员及时发现问题并采取相应的措施。
在设计中需要考虑如何对数据进行存储、处理和分析。
4. 远程控制:为了能够及时处理井下供电系统出现的故障,井下供电监控系统还需要具备远程控制的功能。
这样监控人员可以通过远程控制器进行操作,对井下供电系统进行控制和维护。
二、防越级跳闸系统的设计原理1. 设备选择:在煤矿井下供电系统中,防越级跳闸系统是非常重要的一部分。
该系统通常由越级跳闸器、控制器、故障指示器等设备组成,用于防止供电系统在发生故障时造成更大的事故。
2. 故障监测:防越级跳闸系统需要能够及时监测井下供电系统的运行状态,当发生故障时能够及时发出警报。
在设计中需要选择一些高可靠性的传感器和监测设备,确保能够对供电系统的运行状态进行实时监测。
3. 跳闸控制:一旦监测到井下供电系统发生了越级跳闸的情况,防越级跳闸系统需要能够及时采取措施进行跳闸。
在设计中需要考虑如何设计一个可靠的跳闸控制系统,确保能够在最短的时间内对井下供电系统进行跳闸。
煤矿井下供电设计规范GB50417

煤矿井下供电设计规范GB50417
首先,规范明确了井下供电系统的设计原则。
根据井下设备的特点和动力需求,要选择适当的供电电压等级,并确保供电系统的可靠性和稳定性,以保障井下设备的正常运行。
其次,在电气设备选择方面,规范要求根据矿井的实际情况,选择具有防爆性能的电气设备,并根据不同区域的防爆要求,对设备进行分类和标志,以确保井下供电系统的安全可靠。
在电气设备的安装要求方面,规范要求井下电缆的敷设应符合国家相关标准,并对电缆井、电缆桥架等设施的布置和绝缘接地进行了详细的规定,以确保井下供电系统的安全运行。
同时,规范还对井下供电系统的设备保护和维护提出了要求。
例如,要建立健全的井下设备保护装置和系统,确保故障时能够及时切断电源,防止电气设备的受损和事故的发生。
另外,还对设备的巡视、检修和保养提出了要求,以保证井下供电系统的长期稳定运行。
最后,规范还详细规定了井下电力系统的布线方式,包括电力线路的敷设、井下分级变电站的设置等。
规范要求布线应合理、经济,尽可能减少线路的长度和损耗,确保电能传输的效率和质量。
煤矿井下采区供电系统设计

煤矿井下采区供电系统设计一、供电线路设计1.煤矿井下采区供电线路应采用三相四线制,线路电压为380/660V,频率为50Hz。
2.采用0.4/0.69kV双皮带电缆供电,采用Y型接线方式,配电箱与电缆的连接采用专用接头,保证安全可靠。
3.供电线路应采用集中供电和分散供电相结合的方式,根据井下设备的不同需求进行合理配电。
二、配电装置设计1.采用箱式变电站作为供电系统主要配电装置,箱式变电站应具备防尘、防水、防爆等功能,能够在恶劣的井下环境中正常工作。
2.配电装置应根据井下采区的实际情况进行合理布置,确保供电系统的可靠性和安全性。
3.配电装置应具备过载、短路、漏电等保护功能,并及时报警或切断电源,确保井下设备和人员的安全。
三、电缆敷设设计1.电缆应采用阻燃、耐磨损的特殊材料,具备良好的绝缘性能和机械性能,能够在井下恶劣环境中长期稳定运行。
2.电缆敷设应避免与锚杆、滚筒等设备相接触,避免外力磨损和机械损坏。
3.电缆敷设应采用固定夹具或线槽等形式固定,确保电缆的安全可靠运行。
四、绝缘电缆保护设计1.在采区内应设置绝缘保护装置,控制电缆的绝缘电阻,确保电缆与井壁不发生电击事故。
2.绝缘保护装置应具有自动断电功能,在电缆故障发生时能够及时切断电源,避免事故扩大发生。
3.绝缘电缆保护装置应定期检查和维护,确保其正常工作。
以上是一份关于煤矿井下采区供电系统设计的基本内容,为确保井下电气设备的安全运行,设计应遵循相关的国家标准和规范,并定期进行检查和维护。
同时,设计人员还需要根据煤矿井下采区的具体情况,合理安排供电线路、配电装置和电缆敷设等。
只有确保供电系统的可靠性和安全性,才能保障煤矿井下电气设备的正常运行。
煤矿井下供电设计

煤矿井下供电设计1.供电系统的选择和布置供电系统的选择和布置是煤矿井下供电设计的首要任务。
一般来说,煤矿井下供电系统选择交流供电,因为交流电具有输送能量高、输电损耗小、运行稳定等优点。
同时,煤矿井下供电系统应该采用多回路供电结构,以确保在井下故障发生时仍能保持正常供电。
2.供电线路的设计供电线路的设计是煤矿井下供电设计的重点之一、供电线路应该按照国家相关标准进行设计,线路材质应该选用耐磨、耐张力和耐腐蚀的特殊材料。
同时,供电线路的敷设应该采用优化的线路布局,以避免互相干扰和故障。
3.供电变压器的选型和布置供电变压器的选型和布置是煤矿井下供电设计的关键环节之一、供电变压器的选型应该根据井下的负荷需求和供电距离来确定,同时还需要考虑供电变压器的可靠性和安全性。
供电变压器的布置应该采用合理的位置和结构,以避免井下的振动和温度变化对其造成影响。
4.井下配电设备的选购和布置井下配电设备的选购和布置是煤矿井下供电设计的另一个重要环节。
井下配电设备的选购应该根据其负荷能力、安全性和可靠性来确定。
井下配电设备的布置应该考虑到易用性和可维护性,以方便井下工作人员进行操作和检修。
5.井下照明设计井下照明设计是煤矿井下供电设计的另一个重要方面。
井下的照明设备应该选择符合国家标准的矿用灯具,以确保足够的照明强度和可靠性。
同时,井下的照明设计应该考虑到不同部位的照明需求,以提高照明效果和安全性。
6.电气保护与自动化系统设计电气保护与自动化系统设计是煤矿井下供电设计的最后一个环节。
电气保护系统应该设置合适的保护装置,以保护供电设备免受过电流、过电压等故障的影响。
自动化系统设计应该考虑到井下环境的特殊性,以提高煤矿供电系统的运行效率和安全性。
总之,煤矿井下供电设计是一个复杂而关键的设计工作。
设计人员应该根据国家相关标准和煤矿的实际情况,选用合适的供电系统、线路、设备和保护措施,并进行合理的布置和调整,以确保煤矿井下供电的正常运行和安全生产。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈煤矿井下供电系统
摘要:井下供电系统中高压多采用单母线分段结构、低压供电多采用辐射状网络结构。
因此井下供电系统结构复杂、路长短不一,供电网络复杂多变,点多、线长,面广,给运行维护检修带来很大的困难。
该文结合笔者所在煤炭企业(开滦集团公司东欢坨矿业分公司)实际情况,对矿山的供电系统做出阐释。
关键词:煤矿供电继电保护供电系统
1 供电系统的现状
电力是煤矿生产的主要能源。
对煤矿井下进行可靠、安全、经济合理的供电,对提高产品质量,提高经济效益及保证安全生产等方面都有十分重要的意义。
为确保安全和正常生产的需要,合理优化井下供电系统就显得更为重要。
当今,随着矿井供电电压等级的不断提高,井下低压供电系统的范围也在不断扩大。
对于供电路径而言,由地面110kv(或35kv)变电站到井下中央变电所,再由井下中央变电所到采区变电所,再由采区变电所到采掘工作面移动配电点。
对于高压来说,所用电压等级35kv/6kv。
井下供电高压采用10kv或6kv。
就高产高效综采工作面而言,若工作面供电电源引自采区变电所6000v分段母线上,则工作面就存在6000v,3300v,1140v 和660v等4种动力电压等级。
而对其他普通综采工作面,低压供电系统也有1140v和660v两种动力电压。
2煤矿高压供电系统由于低压电缆外径、线径等原因的限制,其低压供电半径一般在800~1200m(分660v和1140v),而工作面的长度已经达到1500~
3000m,甚至更大范围。
因此煤矿高压供电线路已经深入采掘等工作面中心。
其高压供电的安全可靠性问题,不仅影响产量,也影响到工程进度。
如果遇上大水矿井,其用电量占矿井用电量的一半还多,高压排水设备的广泛应用,尤其显得高压供电的重要,因此煤矿高压供电在供电系统中有很重要的地位。
高压供电不仅与系统本身设计有关,还与系统中组件中的安全可靠性有关。
因此构件煤矿井下高压供电系统中各个部件中只要有一部件出现故障,整个系统就会终止运行。
为此需对系统做出合理的预防、检修和维护。
一般煤矿常见故障有以下几种。
2.1 高压线路故障
第一是高压线路在巷道中被挤压刮伤而造成的线路停电;第二是系统接地后另一相也同时接地从而造成的两相分别对地短路故障。
第三是电缆连接附件绝缘薄弱而造成的漏电故障。
第四是线路中有一部分电缆在使用过程中绝缘降低而导致故障。
因此高压线路的检修周期、检修质量关系着能否正常可靠供电的关键。
2.2 高爆开关故障
一是高爆开关机构老化,一般高爆开关采用弹簧操作机构(现在很多矿井都使用永磁机构),随着使用,机构磨损老化,导致开关拒动。
二是高爆开关智能保护显示通信故障、保护失效、整定出错等原因,造成掉电不能合闸操作。
三是高爆开关无屏显,由于一二次熔断器烧毁而造成的停电。
四是高爆开关一般矿井的高爆开关绝非一个厂家,厂家的众多,而又频繁的自动化改造,打破了高爆
开关二次线路合理布局。
从而导致线路与图纸不符,故障时无从查找,给检修维护带来困难。
只有定期的对高爆开关试验、检修才能降低事故率。
2.3 继电保护问题
一般矿井供电系统运行方式复杂、各级配电室众多,这就对继电保护校验提出了更高的要求。
第一、极差的问题,极差校订不好,容易出现越级跳闸,极差太大,会出现短路时,本身该跳闸的开关拒动,后备保护不起作用。
第二、对于扩建后的矿井,原有下级配电室的互感器选型过小,短路时,短路电流大,互感器磁通饱和,不能正确反映继电保护动作情况,造成短路拒动现象从而出现越级跳闸。
第三、供电系统运行方式复杂,改变系统运行方式后,就有可能原有的继电保护整定值不符合要求,出现系统短路时发生不可估量的事故。
第四、由于接地选线装置需要和消弧线圈匹配,发生接地时才能准确选择出接地线路。
由于接地选线装置的厂家众多,这就要求在继电保护校验时对馈出终端的漏电保护设定。
太大,不起作用,太小,就会因为干扰或者断路器同期性误动作而影响正常供电。
第五、现代化矿井有的采用上防越级跳闸保护装置,该保护借鉴变压器差动保护来实现,目前在试验阶段。
虽然保护的发展更新了,但放越级保护的现场试验方法还没有科学有效的手段。
继电保护的整定校验关系着矿井的供电安全、可靠性,只有充分的挖掘继电保护的四大特性,合理选择保护类型才能有效的降低事故率。
2.4 系统接地故障
矿井环境复杂、遇大水矿井就电力线路显得特别潮湿,尤其在雨季,井下环境湿度非常大,有的线路甚至临水。
容易造成电缆连接附件绝缘过低,从而导致系统接地。
煤矿规程规定:系统按地允许运行两小时。
但接地故障的查找是相当困难。
如果采用拉路法,对于供电网络复杂的矿井难于在2h内排除故作。
虽然接地选线装置可以选择接地线路,但必须与之配合的消弧线圈相适应。
不然就难于判断是消弧线圈的补偿电流还是接地电流、还是电网容流。
目前市场上的按地选线装置没有100%准确判断处故障线路的。
必须小电流按地选线加拉路查找系统接地线路。
3 低压供电系统
如果说高压供电系统是确保四大件的运行依据,那么低压供电系统则是保证煤炭开采的必要条件。
因此低压供电在生产开采中占有重要地位。
低压供电的安全可靠性直接影响着煤矿生产的经济效益。
而局扇通风、局部排水是保证工作面正常开采的先决条件。
3.1 漏电问题
煤矿三大保护有漏电保护、过电流短路保护和接地保护。
其中发生危害最大的还是漏电。
第一、漏电火花可以引发瓦斯、煤尘爆炸事故。
第二、当漏电电流超过50ma时,可引发电雷管早爆。
第三、发生人身触电事故:50ma以上人就有生命危险。
第四、漏电长期存在,引起相间短路。
一般漏电整定设置为30ma,0s。
当低压供电线路中有总馈电和分支馈电时,建议采用选择性漏电保护,对低总馈电开关采用30ma,0.35s,分支馈电采用30ma,0s。
能有效的
选择出漏电分支电网。
缩小事故范围。
3.2 局部通风排水问题
局扇“三专”供电按照《煤矿安全规程》规定煤矿井下的局部扇风机供电必须满足“三专”的要求。
即专用开关、专用变压器、专用电缆线路。
局扇与掘进工作面煤(岩)与瓦斯(二氧化碳)突出矿井中的所有掘进工作面应装设风电闭锁、瓦电闭锁。
但是根据实际供电运行情况来看,有些掘进工作面往往达不到这个要求,均不同程度地存在着缺陷。
或者是没有实现“三专”供电,或者是缺少瓦电闭锁等。
局部排水是采掘工作面的重中之重,由于漏电等原因而造成的停电故障严重的影响着供电的安全可靠性。
铺设专用排水线路是解决排水问题的关键。
4 结语
总之,煤矿井下供电系统庞大而复杂。
工作起来是一项复杂而又艰巨的任务。
它需要每一位工作者细心对待,不能放过系统中任何一个小的隐患。
是一项既需要动脑也需要动手的工作。
煤矿供电,任重而道远。