2009学年第一学期期中考试九年级数学试卷_4
初中试卷名称

第一学期平时卷:1、高桥东陆学校2008学年第一学期预备年级11月月考试卷附答案2、浦东新区2009学年第一学期六年级数学第二次质量检测试题3、市西实验中学2009学年第一学期预备年级10月月考试卷4、2009学年第一学期六年级数学第二次月考试卷期中卷:1、黄浦区2009学年第一学期期中考试六年级数学学科试卷附答案2、娄山中学2009学年第一学期期中考试六年级数学试卷3、娄山中学2009学年度第一学期期中考试六年级数学调研交流卷4、上外附中2009学年第一学期中预年级第二次月考数学试卷5、新复兴中学2009学年度第一学期六年级数学期中试卷期末卷:1、建平实验中学2009学年第一学期预备年级《圆和扇形》期终复习题2、闵行区2009学年第一学期六年级期末质量调研考试数学试卷附答案(期末试卷)3、上海市崇明县2009学年第一学期期末考试六年级数学试卷附答案(期末试卷)4、上海市虹口区2009学年度第一学期期终中预年级数学学科教学质量监控测试题附答案(期末试卷)5、上海市嘉定区2009学年第一学期六年级数学期末试卷附答案(期末试卷)6、上海市民办新虹桥中学2009学年第一学期六年级数学期终考试试卷(期末试卷)7、上海市浦东新区2009学年度第一学期期末质量抽测六年级数学试卷附答案(期末试卷)8、松江区2009学年第一学期期末考试六年级数学试卷9、松江区2009学年第一学期期末考试六年级数学试卷(期末试卷)10、新虹桥中学2009学年第一学期六年级数学期终考试试卷平时卷:1、市西实验中学2008学年第二学期预备年级3月份月考数学试卷2、市西实验中学2008学年第二学期预备年级数学测试卷二3、市西实验中学2008学年第二学期预备年级数学测试卷一4、徐汇区2008学年第二学期六年级数学3月月考试卷期中卷:1、航华中学09学年第二学期六年级数学期中试卷2、黄浦区2009学年第二学期期中考试六年级数学试卷附答案3、上外附中2009学年第二学期中预年级数学期末试卷4、仙霞高级中学2008学年度第二学期六年级数学期中考试试卷5、七一中学小六第二学期期中20086、上海市第一中学2008学年度第二学期期中考试六年级数学试卷7、上海市华东模范中学2008学年第二学期六年级数学期中试卷8、上海市静安区2008学年第二学期期中三校联考考试预备年级数学试题9、上海外国语大学附属浦东外国语学校小六第二学期期中考试卷期末卷1、虹口区2009学年度第二学期期终中预年级数学学科期终教学质量监控测试题2、静安区2006学年度第二学期期末教学质量检测数学期末试卷(2007.6)六年級3、浦东新区2005学年度第二学期期末质量抽测六年级数学试卷4、浦东新区2006学年度六年级第二学期期末质量抽测(2007.6)5、普教院附校2008学年第二学期六年级数学期末复习卷附答案6、新会中学2008学年第二学期六年级期末数学测试卷附答案7、2007学年第二学期六年级期末考试数学试卷8、六年级第二学期期末考试数学试卷(2005.6)七年级第一学期平时卷:1、上海市市西实验中学2008学年第一学期数学年级12月月考试试卷初一2、市西初一分式期中卷:1、保德中学2008学年度第一学期七年级数学期中试卷2、朝阳中学2008学年第一学期初一年级数学学科期中模拟卷3、风华初级中学2008学年第一学期七年级期中模拟试题4、共康中学2008学年第一学期初一年级数学期中练习卷5、古田中学2008学年第一学期初一数学期中练习卷6、恒丰中学2008学年第一学期七年级期中考试数学模拟卷7、华灵中学2008学年第一学期七年级数学期中模拟卷附答案8、黄浦区2009学年第一学期期中考试七年级数学学科试卷附答案9、回民中学2008学年第一学期七年级数学期中试卷10、岭南中学2008学年第一学期初一数学期中练习卷11、怒江中学2009学年第一学期七年级数学期中复习卷(八)12、怒江中学2009学年第一学期七年级数学期中复习卷(十)13、怒江中学2009学年第一学期七年级数学期中复习卷(十一)14、怒江中学2009学年第一学期七年级数学期中复习卷(十二)15、怒江中学2009学年第一学期七年级数学期中复习卷(十三)16、怒江中学2009学年第一学期七年级数学期中复习卷(十四)17、彭浦初级中学2009学年第一学期七年级数学期中练习卷18、彭浦三中2008学年第一学期七年级数学期中练习卷19、彭浦四中2008学年第一学期七年级期中练习卷20、青云中学2008学年第一学期七年级数学学科期中练习卷附答案21、三泉中学2008年度第一学期七年级数学期中练习卷22、向东中学2008学年第一学期期中考试七年级数学试卷23、闸北二中2008学年度第一学期七年级数学期中试卷期末卷:1、上海市曹杨二中附属学校2009学年第一学期初一年级数学期末复习试卷附答案(期末试卷)2、上海市丰庄中学2009年第一学期七年级期末复习达标样题数学试卷(4套)(期末试卷)3、上海市丰庄中学2009年第一学期七年级期末复习达标样题数学试卷(4套)(期末试卷)4、上海市闵行区2008学年第一学期期终考试28校联考七年级数学试卷(期末试卷)5、上海市某中学2009-2010学年七年级上数学期末考试试卷6、上海市浦东新区2009学年度第一学期期末质量抽测七年级数学试卷(期末试卷)7、上海市七宝实验中学2009学年第一学期期终考试初一数学试卷附答案(期末试卷)8、上海市徐汇区2008学年第一学期初一年级数学学科期终学习能力诊断卷附答案(期末试卷)9、上海市杨浦区2009学年第一学期期末质量抽测初一数学试卷10、上海市杨浦区2009学年第一学期期末质量抽测初一数学试卷附答案(期末试卷)第二学期平时卷:无期中卷:1、华漕中学基地附中2009学年第二学期七年级期中考试数学试卷2、黄浦区2009学年第二学期期中考试七年级数学试卷附答案3、市三女中2008学年第二学期七年级数学期中考试4、同济二附中2008学年第二学期七年级数学科期中考试5、向明中学2008学年第二学期初一年级数学期中试题6、延安初级中学2009学年第二学期期中考试初一数学试卷7、张庄中学2008~2009学年度第二学期期中考试七年级数学试卷含答案8、上海市梅陇中学2009学年第二学期七年级数学期中复习卷(期中试卷)9、上海市闵行区2008学年第二学期期中考试七年级数学23校联考试卷附答案(期中试卷)10、上海市普陀区教育学院附属学校2009学年第二学期七年级数学期中复习卷(期中试卷)期末卷:1、上海市延安初级中学2009学年第二学期期末考试初一数学试卷(期末试卷)2、上海外国语大学附属外国语学校2009学年第二学期初一年级数学期末试卷(期末试卷)八年级第一学期平时卷:1、松江区八年级数学练习题期中卷:1、黄浦区2009学年第一学期期中考试八年级数学学科试卷附答案2、江宁中学2008学年第一学期八年级数学期中考试试卷3、梅陇中学2009学年度第一学期初二数学期中复习试卷附答案4、市十中学2008学年第一学期初二数学期中复习附答案5、市西实验中学2009学年第一学期期中考试八年级数学试卷附答案6、桃浦中学2009学年度第一学期初二数学期中复习试卷附答案7、铜川中学2009学年第一学期初二数学期中复习试卷附答案8、徐汇中学2009学年第一学期八年级期中考试数学试卷9、杨浦初级中学2009学年度第一学期初二年级数学期中练习卷10、杨浦初级中学2009学年度第一学期期中考试初二年级数学试卷期末卷:1、上海市晋元高级中学附属学校2009学年度第一学期八年级数学期末综合复习卷(期末试卷)2、上海市七宝实验中学2009学年第一学期八年级数学期末考试卷附答案(期末试卷)3、上海市延安初级中学2009学年第一学期期末考试初二数学试卷(期末试卷)4、上海市杨浦区2009学年度第一学期期末质量抽查初二数学试卷附答案(期末试卷)5、延安初级2009学年第一学期期末考试初二数学试卷6、育鹰学校2009学年度第一学期初二数学期末复习卷17、育鹰学校2009学年度第一学期初二数学期末复习卷2第二学期平时卷:1、上外双语一次函数单元测试期中卷:1、闵行五中2009学年第二学期期中试卷八年级数学学科试卷DDD2、东昌南校2009学年第二学期中考数学模拟试卷八年級3、虹口区2009学年度第二学期初二年级数学学科期中教学质量监控测试题4、黄浦区2009学年第二学期期中考试八年级数学试题附答案5、交大二附中2009学年第二学期期中考试八年级数学试卷6、娄山中学2009学年度第二学期期中考试八年级数学试卷7、浦东新区2009学年度第二学期初二年级数学期中试卷8、上海市田家炳中学2008学年第二学期八年级数学学科期中练习卷9、上南中学2009学年第二学期期中考试八年级数学试题10、天山初级中学2008学年度第二学期八年级数学期中考试卷11、位育初级中学2008学年第二学期期中考试初二年级数学试卷12、西南位育中学2009学年第二学期初二数学期中考试13、仙霞中学2008学年度第二学期八年级数学期中考试含答案14、徐汇区2008学年八年级第二学期数学期中南片联考试卷含答案15、徐教院附中2008学年第二学期八年级数学期中试卷16、玉华中学2009学年度第一学期初二数学期中复习试卷附答案17、真光中学2009学年度第一学期初二数学期中复习试卷附答案18、上海市梅陇中学2009学年第二学期八年级数学期中复习试卷附答案(期中试卷)19、上海市闵行区2008学年第二学期期中考试八年级数学28校联考试卷附答案(期中试卷)20、上海市闵行区2008学年度第二学期八年级数学七校期中试卷21、上海市七宝实验中学2009学年第二学期八年级期中考试数学试卷22、上海市七宝实验中学2009学年第二学期八年级期中考试数学试卷附答案(期中试卷)23、上海市桃浦中学2009学年第二学期八年级数学期中复习卷附答案(期中试卷)24、上海市玉华中学2009学年第二学期初二数学期中复习试卷(期中试卷)25、上海市真光中学2009学年第二学期八年级数学期中复习试卷附答案(期中试卷)期末卷:1、长宁区2009学年度第二学期八年级数学期末考试试卷(期末试卷)2、静安区2009学年第二学期“学业效能实证研究”学习质量调研八年级数学学科(期末试卷)3、卢湾区2008学年第二学期八年级期末考试数学试卷(期末试卷)4、上海市复兴初级中学2009学年度第二学期初二年级数学学科期末试题(期末试卷)5、上海市世界外国语中学2008学年第二学期八年级数学期末综合卷一(期末试卷)6、上海市延安初级中学2009学年第二学期期末考试初二数学试卷(期末试卷)7、上海外国语大学附属外国语学校2008年度第二学期初二数学期末考试试卷(期末试卷)8、世界外国语中学2008学年初中第二学期数学期末综合卷一九年级第一学期平时卷:无期中卷:1、宝山区2009学年度第一学期九年级数学期中试卷附答案2、东延安中学2009学年第一学期初三数学期中试卷3、顾路中学2009学年第一学期期中考试九年级数学学科试卷附答案4、建平中学2009学年度第一学期初三数学期中试卷5、金山区2009学年第一学期期中考试初三数学试卷附答案6、静安区2009学年第一学期九年级数学期中试卷附答案7、立达中学2009学年度第一学期期中考试初三数学试卷8、罗店中学2009学年第一学期中考数学模拟卷九年級9、南汇区2008学年度第一学期九年级数学期中试卷附答案10、南汇区2009学年度第一学期九年级数学期中试卷附答案11、浦东外国学校2009学年第一学期初三数学期中试卷12、普陀区2008学年第一学期初三数学期中考试卷附答案13、青浦区2009学年第一学期九年级期中质量抽查考试数学试卷附答案14、新场中学2009-2010学年度(上期)九年级期中考试数学试卷15、新华初级中学2009学年第一学期初三数学期中试卷16、徐汇中学2009学年初三第一学期数学期中测试卷17、颜安中学2009学年第一学期初三数学期中模拟试卷18、闸北区2008学年度第一学期九年级数学学科期中考试试卷附答案19、张江集团学校2009学年第一学期初三期中考试数学试卷期末卷:无第二学期平时卷:1、08第二学期初三综合练习卷2、立达中学5月中考预测卷3、民办立达中学08年中考预测卷4、上海市部分学校初三数学抽样测试试卷附答案5、上海市奉贤区实验中学2009学年第一学期初三数学函数复习卷16、上海市青浦区2009年初三中考数学模拟考试7、闸北区2007-2008学年中考数学模拟试卷(三)附答案初三8、闸北区九年级数学学科期中练习卷附答案期中卷:无期末卷:无备注:黑色部分为各个学校的试卷,都有学校的名称红色部分为杨浦区的全区统一试卷蓝色部分为除杨浦区外各个区的统一试卷梅红色部分为既不是区统一卷,也没有学校名称的试卷。
苏州利达学校2009—2010学年度第一学期期中考试九年级数学试卷

2009—2010学年度苏州立达学校第一学期期中考试试卷初三数学初三( )班学号_________ 姓名_________ 成绩________一、填空题(每空2分,共22分)1.方程x2-5x=0的根是______________.2.若a2-2a-3=0,则2a2-4a=_______________.3.若关于x的方程x2-(m+1)x+m=0有两个相等的实数根,则m的值为________.4.二次函数y=-x2+2x+3的图象开口向_________,顶点坐标是_________.5.若将抛物线y=3x2-1向左平移1个单位后,则得到的新抛物线解析式为__________.6.若抛物线y=ax2+4ax-3与x轴的一个交点为A(-1,0),则抛物线与x轴的另一个交点B的坐标为______________.7.若抛物线y=x2+bx+c的对称轴为直线x=1,且经过两点(-1,y1),(-2,y2),试比较y1和y2的大小:y1________y2.(填“>”,“<”或“=”)8.如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB=20m,顶点M距水面6m(即MO=6m),小孔顶点N距水面4.5 m(即NC=4.5m).当水位上涨刚好淹没小孔时,借助图中的平面直角坐标系,则此时大孔的水面宽度EF为_________m.9.抛物线y=ax2-3x+a2-1的一部分如图,则a的值是__________.10.若抛物线y=x2+(m-1)x+m-2与x轴的两个交点之间的距离为2,则m=________.二、选择题(每小题3分,共30分)11.若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的一个根为0,则m的值为( ) A.0 B.1或2 C.1 D.212.关于x的一元二次方程x2+bx-1=0的根的情况为( ) A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定13.某外贸公司受全球金融危机影响,今年五月份销售额为450万元,从六月份起经济有所复苏,销售额逐月上升,七月份销售额达到648万元.则该公司六、七两月份销售额平均增长率为( ) A.10%B.20%C.19%D.25%14.用配方法将二次函数y=3x2-4x-2写成形如y=a(x+m) 2+n的形式,则m,n的值分别是( )A.23m=,103n=B.23m=-,103n=-C.m=2,n=6 D.m=2,n=-215.抛物线y=ax2+bx+c如图所示,则下列关系式不正确...的是( ) A.a<0 B.abc>0 C.a+b+c>0 D.b2-4ac>016.已知函数y=x2-2x-2的图象如图所示,根据图中提供的信息,可求得使y≥1成立的x的取值范围是( )A .-1≤x ≤3B .-3≤x ≤1C .x ≥-3D .x ≤-1或x ≥3 17.对于二次函数y=ax 2+bx+c(a ≠0),我们把使函数值等于0的实数x 叫做这个函数的 零点..,则二次函数232y x mx m =-+-的零点..的个数是 ( ) A .1 B .2 C .0 D .不能确定 18.如图,在同一平面直角坐标系中,一次函数y=ax+b 和二次函数y=ax 2+bx 的图象 可能为 ( )19.抛物线y=x 2-4x -5与x 轴交于点A 、B ,点P 在抛物线上,若△PAB 的面积为27,则满足条件的点P 有 ( ) A .1个 B .2个 C .3个 D .4个 20.已知二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表:则下列判断中正确的是 ( ) A .抛物线与y 轴交于负半轴 B .抛物线开口向上C .当x=4时,y>0D .方程ax 2+bx+c=0的正根在3与4之间 三、解答题(本题共8小题,共48分) 21.解下列方程(每小题3分,共6分) (1)2x 2-x -1=0 (2)212111xx x -=--22.根据下列条件,求二次函数的解析式(每小题3分,共6分)(1)图象的顶点为(2,3),且过点(3,1):(2)图象经过点(1,-2)、(0,-1)、(一2,-11).23.若关于x的一元二次方程kx2+2(k-2)x+k-3=0有两个不相等的实数根,试求实数k的取值范围.(本题5分)24.若关于x 的一元二次方程x 2-(2m+1)x+m 2+m -2=0的两个实数根x 1,x 2满足:12112x x +=,求m 的值. (本题5分)25.如图,在平面直角坐标系中,O 为坐标原点,二次函数y=x 2+bx+c 的图象与x 轴相 交于点A 、B ,与y 轴的负半轴相交于点C ,若点C 的坐标为(0,-3),且BO=CO . (1)求这个二次函数的解析式;(2)求当y<0时,x 的取值范围.(本题6分)26.如图,长方形鸡场的一边靠墙(墙长18m),墙对面有一个2m宽的门:另三边用竹篱笆围成,篱笆总长33m.(1)若鸡场面积为150m2,求鸡场的长和宽各为多少m?(2)求围成的鸡场的最大面积.(本题6分)27.某公司经销某品牌运动鞋,年售量为10万双,每双鞋按250元销售,可获利25%,设每双鞋的成本价为a元.(1) a=___________;(2)为了扩大销售量,公司决定拿出一定量的资金做广告,根据市场调查,若每年投入广告费为x(万元)时,产品的年销售量将是原销售量的y倍,且y与x之间的关系如图所示,可近似看作是抛物线的一部分.①根据图象提供的信息,求y与x之间的函数关系式;②求年利润S(万元)与广告费x(万元)之间的函数关系式,并请回答广告费x(万元)在什么范围内,公司获得的年利润S(万元)随广告费的增大而增多?(注:年利润S=年销售总额-成本费-广告费) (本题7分)28.如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).(1)试求抛物线的解析式;(2)设点D是该抛物线的顶点,试求直线CD的解析式:(3)若直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上、下平移,使抛物线与线段.......EF..总有公共点......试探究:抛物线向上最多可平移多少个单位长度? 向下最多可平移多少个单位长度? (本题7分)。
第一学期九年级数学期中试题

第一学期九年级数学期中试题初中的数学其实开始有一点难度了,所以大家要多花心思去学习哦,今天小编就给大家参考一下九年级数学,仅供参考秋季学期九年级上数学期中试题一、单选题(共 10 题,共 40 分)数学试题卷1.已知⊙O 的半径为 5,若 PO=4,则点 P 与⊙O 的位置关系是( )A.点 P 在⊙O 内B.点 P 在⊙O 上C.点 P 在⊙O 外D.无法判断2.与函数 y = 2( x - 2)2 的图象形状相同的抛物线解析式是( )A. y = 1 + 1x2B. y =(2x +1)2C. y =( x - 2)2D. y = 2x23.如图,在Rt△ABC 中,∠B=30°,∠C=90°,绕点 A 按顺时针方向旋转到△AB1C1 的位置,使得点C,A,B1 在同一条直线上,那么旋转角等于( )A.140°B.120°C.60°D.50°4.已知二次函数 y =( x -1)2 -1(0 ≤ x ≤ 3)的图象如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A.有最小值 0,有最大值 3B.有最小值-1,有最大值 0C.有最小值-1,有最大值 3D.有最小值-1,无最大值第 3 题图第 4 题图第 5 题图5.图 1 和图 2 中所有的小正方形都全等,将图 1 的正方形放在图2 中①②③④的某一位置,使它与原来7 个小正方形组成的图形是中心对称图形,这个位置是( )A.①B.②C.③D.④6.下列选项中,能使关于 x 的一元二次方程ax2 - 4x + c=0 一定有实数根的是( ) A.a>0 B.a=0 C.c>0 D.c=07.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是 91.设每个枝干长出 x 个小分支,则 x 满足的关系式为( ) A.x+x2=91 B.1+x2=91C.1+x+x2=91D.1+x(x−1)=918.下列各图中,AB 与 BC 不一定垂直的是( )9.对于方程(ax+b)2=c,下列叙述正确的是( )A.不论 c 为何值,方程均有实数根B.方程的根是抛物线 y=(ax+b)2 与直线 y=c 的交点坐标C.当c≥0 时,方程可化为:ax+b=D.若抛物线 y=(ax+b)2 与直线 y=c 没有交点,则 c<010.如图,AC 是⊙O 的直径,BD 是⊙O 的弦,BE=DE,连接 BC,若 BD=8 cm,AE=2cm,则点 O 到 BC 的距离是( )B.2.5 cm D.3 cm二、填空题(共 6 题,共 30 分)11.已知一个二次函数的图象开口向下,且经过原点,请写出一个满足条件的二次函数解析式 .12.如图,A、B、C 为⊙O 上的三点,若∠AOB=138°,则∠C= .13 . 有一边长为 3 的等腰三角形,它的另两边长是方程 x2 - 4x + k = 0 的两根,则k = .14.如图,在△ABC 中,∠CAB=70°,在同一平面内将△ABC 绕A 点旋转到△AB′C′位置,且CC′∥AB,则∠BAB′的度数是 .15.如图,已知 AB、CD 为⊙O 的两条弦,OC⊥AB,连接 AD、OB,若∠ADC=29°,则∠ABO = .16.在平面直角坐标系中,直线 y=m 被抛物线 y = x2 + bx + c 截得的线段长为 6,则抛物线顶点到直线 y=m 的距离为 .三、解答题(共 8 题,共 80 分)17.(8 分)解下列方程:(1)3x2-4x-1=0 (2)(x-3)2+4x(x-3)=0.18.(8 分)如图,方格纸中的每个小方格都是边长为1 个单位长度的小正方形,每个小正方形的顶点叫格点.点A、B、C、D、E、F、O 都在格点上.(1)画出△ABC 向上平移 3 个单位长度的△A1B1C1;(2)画出△DEF 绕点 O 按逆时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1 和△D1E1F1 组成的图形是轴对称图形吗?19.(8 分)如图,在Rt△ABC 中,∠BAC=90°.(1)先作∠ACB 的平分线交 AB 边于点 P,再以点 P 为圆心,PA 的长为半径作⊙P(要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中 BC 与⊙P 的位置关系,并证明你的结论.20.(8 分)小明的家门前有一块空地,空地外有一面长 10 米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了 32 米长的花圃围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为 1 米的通道(属于花圃一部分)及在左右花圃各留一个1 米宽的门(其他材料).设花圃与围墙平行的一边长为 x 米,(1)花圃与围墙垂直的一边长为米(用 x 表示).(2)如何设计才能使花圃的面积最大?21.(10 分)已知二次函数 y=x2-2x-3.(1)求函数图象的顶点坐标,与 x 轴和 y 轴的交点坐标,并画出函数的大致图象;(2)根据图象直接回答:当 x 满足时,y<0;当-122.(12 分)如图,⊙O 的直径 AB=12 cm,C 为 AB 延长线上一点,CP 与⊙O 相切于点P,过点 B 作弦BD∥CP,连接 PD.(1)求证:点 P 为B⌒D的中点;(2)若∠C=∠D,求四边形 BCPD 的面积.23.(12 分)已知抛物线 C:y1=a(x-h)2-1,直线 l:y2=kx-kh-1(1)试说明:抛物线 C 的顶点 D 总在直线 y2=kx-kh-1 上;(2)当 a=-1,m≤x≤2 时,y1≥x-3 恒成立,求 m 的最小值;(3)当 024.(14 分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC 中,AC=6,BC=3,∠ACB=30°,试判断△ABC 是否是“等高底”三角形,请说明理由.(2)问题探究:如图2,△ABC 是“等高底”三角形,BC 是“等底”,作△ABC 关于 BC所在直线的对称图形得到△A'BC,连结AA'交直线BC 于点D.若BC=2BD,求 ACBC的值.(3)应用拓展:如图 3.已知l1∥l2, l1 与 l2 之间的距离为2.“等高底”△ABC 的“等底”BC 在直线 l1 上,点 A 在直线 l2 上,AC= BC.将△ABC 绕点C 按顺时针方向旋转45°得到△A'B'C,A'C 所在直线交 l2 于点 D.求 CD 的值.九年级上期中考试数学试题卷一、单选题(共 10 题,共 40 分)1.二次函数 y = 2( x - 3)2 + 4 的顶点坐标是( )A.(3,4)B.(-2,4)C.(2,4)D.(-3,4)2.投掷一枚质地均匀的硬币两次,对两次朝上一面的描述,下列说法正确的是( )A.都是正面的可能性较大B.都是反面的可能性较大C.一正一反的可能性较大D.上述三种的可能性一样大3.一个直角三角形的两条直角边长的和为14 cm,其中一直角边长为 x (cm),面积为y (cm2),则 y 与 x 的函数的关系式是( )A.y=7xB.y=x(14-x)C.y=x(7-x)D. y = 1 x (14 - x)24.以坐标原点O 为圆心,5 为半径作圆,则下列各点中,一定在⊙O 上的是( ) A.(3,3) B.(3,4) C.(4,4) D.(4,5)5.已知 a = 3 ,则 a + b 的值是( )6.如图,已知BD 是⊙O 的直径,弦BC∥OA,若∠B 的度数是50°,则∠D 的度数是( ) A.50° B.40° C.30° D.25°第 6 题图第 7 题图7.如图,在半径为 13 cm 的圆形铁片上切下一块高为 8 cm 的弓形铁片,则弓形弦 AB 的长为( )A.10 cmB.16 cmC.24 cmD.26 cm8.对于抛物线 y =-( x +1)2 + 3 ,下列结论:①抛物线的开口向下; ②对称轴为直线 x=1;③顶点坐标为(﹣1,3); ④x>1 时,y 随 x 的增大而减小. 其中正确结论的个数为( )A.1B.2C.3D.49.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a<0;②c<0;③a-b+c>0;④b+2a=0.其中正确的结论有( )A.4 个B.3 个C.2 个D.1 个第 9 题图第 10 题图10.如图,C 是以 AB 为直径的半圆 O 上一点,连结 AC,BC,分别以 AC,BC 为斜边向外作等腰直角三角形△ACD,△BCE, AC , BC 的中点分别是 M,N.连接DM,EN,若C 在半圆上由点A 向B 移动的过程中,DM∶EN 的值的变化情况是( )A. 变大B. 变小C. 先变大再变小D. 保持不变二、填空题(共 6 题,共 30 分)11.抛物线 y =-2x2 + 4x +1 的对称轴是直线 .12.将抛物线 y = x2 - 2 向左平移 1 个单位后所得抛物线的表达式为 .13.如图 ABCD 中,E,F 是对角线 BD 上的两点,且 BE=EF=FD,连结 CE 并延长交 AB 于点 G,若 EG=2,则 CG= .第 13 题图第 15 题图14.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为 .15.如图,点 A、B、C、D、O 都在方格纸的格点上,每个方格的长度为 1,若△ COD 是由△ AOB 绕点 O 按逆时针方向旋转90°而得,则线段 AB 扫过的面积(阴影部分面积) 为 .16.已知半径为 3 的⊙O 经过平行四边形 ABCD 的三个顶点 A,B,C,与 AD,CD 分别交于点 E,F,若弧 EF 的度数为40°,则 AE 与CF 的弧长之和为= .三、解答题(共 8 题,共 80 分)17.(8 分)(1)已知 x = y ,求代数式2 3x + y2x - y的值.(2)求比例式 x +1 = 3x - 2 中字母 x 的值.3 418.(8 分)如图⊙O 中弦 AC 与弦 BD 交于点 P,连结 AB,CD,已知 AB=CD,(1)求证 AC=BD(2)已知 AB = BC , BD 的度数为160°,求 AB 的度数.19.(8 分)A 口袋中装有三个相同的小球,它们的标号分别为 1,2 和 3,B 口袋中装有三个相同的小球,它们的标号分别为 4,5,6,从这 2 个口袋中各随机地取出 1 个小球.(1)求取出的 2 个小球的标号之和是奇数的概率是多少?(2)现在将 A 口袋中舍弃一个球剩下 2 个球,B 口袋不变,再从这2 个口袋中各随机地取出1 个小球.发现标号之和为奇数的概率变大,问:A 口袋中舍弃的是哪号球.20.(10 分)已知二次函数的表达式是 y = x2 - 4x + 3 .(1)用配方法把它化成 y =( x + m)2 + k 的形式;(2)在直角坐标系中画出抛物线 y = x2 - 4x + 3 的图象;(3)若 A(x1,y1)、B(x2,y2)是函数 y = x2 - 4x + 3 图象上的两点,且x1” “<” 或“=”);(4)利用函数 y = x2 - 4x + 3 的图象直接写出方程x2 - 4x + 3 =1的近似解(精确到 0.1).21.(10 分)在直角坐标系中有点 A(4,0),B(0,4),(1)画一个△ABC,使点C 在x 轴的负半轴上,且△ABC 的面积为12.(2)找出(1)中△ABC 的外接圆圆心 P,并画出△ABC 的外接圆;并写出点 P 的坐标,△ABC 的外接圆半径 R= .22.(10 分)已知△ABC 中,AB=BC,CH⊥AB 垂足为 H,以AB 为直径作⊙O,交 AC、BC、CH 分别于点 D,E,P,连结 DP,AP.(1)求证:∠APD=∠ACH;(2)若 AB=5,AC=6,求 CH 的长.23.(12 分)某水果商户发现近期金桔的批发价格不断上涨,就以每箱 100 元的价格购进80 箱的金桔,购进后,金桔价格每天都上涨5 元/箱,但每天总有 1 箱金桔因变质而丢弃.且商户还要承担这批金桔的储存费用每天 100 元.(1)若商户在购进这批金桔10 天后立即出售这批金桔可以赚多少钱?(2)设商户在购进这批金桔x 天后立即出售这批金桔,求商户的利润 y 与 x 的函数关系式?(3)问几天后立即出售利润最大,最大利润是多少元?24.(14 分)如图(1),抛物线 y =-x2 + bx + c 与 x 轴相交于点 A、B,与 y 轴相交于点 C,已知 A、C 两点的坐标为 A(-1,0),C(0,3).点 P 是抛物线上第一象限内一个动点,(1)求抛物线的解析式;并求出 B 的坐标;(2)如图(2),抛物线上是否存在点 P,使得△ OBP≌△ OCP,若存在,求点 P 的坐标;(3)如图(2),y 轴上有一点 D(0,1),连结 DP 交 BC 于点 H,若H 恰好平分 DP,求点 P的坐标;(4)如图(3),连结 AP 交 BC 于点 M,以 AM 为直径作圆交 AB、BC 于点 E、F,若 E,F关于直线 AP 轴对称,求点 E 的坐标.九年级数学上学期期中试卷阅读一、选择题(每小题3分,共24分)1.若在实数范围内有意义,则x的取值范围是A. x≥1B. x>1C. x≤1D. x≠12.方程的解是A. B. C. D.3.如图,AD∥BE∥CF,直线a、b与这三条平行线分别交于点A、B、C和点D、E、F.若AB=4,BC=6,DE=3,则EF的长为A.4B. 4.5C. 5D. 6(第3题) (第4题) (第5题)4.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.若CD=4,AC=6,则cosA的值是A. B. C. D.5.如图,学校种植园是长32米,宽20米的矩形.为便于管理,现要在中间开辟一横两纵三条等宽的小道,使种植面积为600平方米.若设小道的宽为x米,则下面所列方程正确的是A. (32-x)(20-x)=600B.(32-x)(20-2x)=600C. (32-2x)(20-x)=600D.(32-2x)(20-2x)=6006.已知点、在二次函数的图象上.若,则与的大小关系是A. B. C. D.7. 如图,在⊙O中,半径OA垂直弦BC于点D.若∠ACB=33°,则∠OBC的大小为A.24°B. 33°C. 34°D. 66°8.如图,△ABC和△ADE均为等边三角形,点D在BC上,DE与AC相交于点F.若AB=9,BD=3,则CF的长为A.1B.2C.3D.4二、填空题(每小题3分,共18分)9.计算:= .10.若关于的一元二次方程有实数根,则的取值范围是 .11.将抛物线向下平移2个单位后,得到的抛物线所对应的函数表达式为 .12.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点.若∠BAD =105°,则∠DCE的大小是度.(第12题) (第13题) (第14题)13. 如图,在平面直角坐标系中,线段AB两个端点的坐标分别为(6,6),(8,2).以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点C的坐标为 .14.如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=-2,点C 在抛物线上,且位于点A、B之间(C不与A、B重合).若四边形AOBC 的周长为a,则△ABC的周长为(用含a的代数式表示).三、解答题(本大题共10小题,共78分)15.(6分)计算:.16.(6分)解方程:.17.(6分)某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.求2013年到2015年这种产品产量的年增长率.18.(7分)图①、图②均是边长为1的正方形网格,△ABC的三个顶点都在格点上.按要求在图①、图②中各画一个三角形,使它的顶点均在格点上.(1)在图①中画一个△A1B1C1,满足△A1B1C1∽△ABC ,且相似比不为1.(2)在图②中将△AB C绕点C顺时针旋转90°得到△A2B2C,求旋转过程中B点所经过的路径长.19.(7分)如图,AB是半圆所在圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC于E,交⊙O于D,连结BC、BE.(1)求OE的长.(2)设∠BEC=α,求tanα的值.20.(7分) 如图,在平面直角坐标系中,过抛物线的顶点A作x轴的平行线,交抛物线于点B,点B在第一象限.(1)求点A的坐标.(2)点P为x轴上任意一点,连结AP、BP,求△ABP的面积.21.(8分)(8分)某超市利用一个带斜坡的平台装卸货物,其纵断面ACFE如图所示. AE为台面,AC垂直于地面,AB表示平台前方的斜坡.斜坡的坡角∠ABC为43°,坡长AB为2m.为保障安全,又便于装卸货物,决定减小斜坡AB的坡角,AD是改造后的斜坡(D在直线BC上),坡角∠ADC为31°.求斜坡AD底端D与平台AC的距离CD.(结果精确到0. 1m)【参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93;sin31°=0.52,cos31°=0.86,tan31°=0.60】22.(9分)(9分)如图,在Rt△ABC中,∠B=30°,∠ACB=90°,AB=4.延长CA到O,使AO=AC,以O 为圆心,OA长为半径作⊙O交BA延长线于点D,连结OD、CD.(1)求扇形OAD的面积.(2)判断CD所在直线与⊙O的位置关系,并说明理由.23. (10分)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0(1)用含t的代数式表示BP、BQ的长.(2)连结PQ,如图①所示.当△BPQ与△ABC相似时,求t的值.(3)过点P作PD⊥BC于D,连结AQ、CP,如图②所示.当AQ⊥CP时,直接写出线段PD的长.图①24.(12分)如图,在平面直角坐标系中,抛物线与x轴交于A(4,0)、B(-3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D为顶点的四边形面积为S,求S 与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC 上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.一、1.A 2. C 3. B 4. D 5. C 6. D 7. A 8. B二、9. 10. 11.(化成一般式也可) 12. 105 13.(3,3) 14. a-4三、15.原式=.(化简正确给2分,计算sin30°正确给1分,结果2分)16. .(1分)∵a=1,b=-3,c=-1,∴.(2分)(最后结果正确,不写头两步不扣分)∴. (5分)∴ (6分)【或,(2分) .(3分),.(5分)(6分)】17.设2013年到2015年这种产品产量的年增长率为x. (1分)根据题意,得. (3分)解得 x1=0.1=10%,x2=﹣2.1(不合题意,舍去). (5分)答:2013年到2015年这种产品产量的年增长率为10%.(6分)18.(1)(2)画图略. (4分)(每个图2分,不用格尺画图总共扣1分,不标字母不扣分)(2)由图得. (5分)(结果正确,不写这步不扣分)旋转过程中B点所经过的路径长:. (7分)(过程1分,结果1分)19. (1)∵OD⊥AC,∴. (1分)在Rt△OEA中,. (3分)(过程1分,结果1分)(2)∵AB是⊙O的直径,∴∠C=90°. (4分)在Rt△ABC中,AB=2OA=10,∴. (5分)∵OD⊥AC,∴. (6分)在Rt△BCE中,tan=. (7分)20. (1).(3分)(过程2分,结果1分)(用顶点坐标公式求解横坐标2分,纵坐标1分)∴点A的坐标为(4,2). (4分)(2)把代入中,解得,(不合题意,舍去). (6分)∴. (7分)∴. (8分)21. 在Rt△ABC中,sin∠ABC=,∴AC=ABsin43°=2×0.68=1.36 (m) . (4分)(过程2分,有其中两步即可,结果2分)在Rt△ADC中,tan∠ADC=,∴(m). (给分方法同上)∴斜坡AD底端D与平台AC的距离CD约为2.3m.(8分)(不答不扣分,最终不写单位扣1分)22. (1)在Rt△ABC中,∠ACB=90°,∠B=30°,∴,(1分)∠BAC=60°. (2分)∴AO=AC=2,∠OAD=∠BAC=60°.∵OA=OD,∴△OAD是等边三角形. (3分)∴∠AOD=60°. (4分)∴. (5分)(2)CD所在直线与⊙O相切.(只写结论得1分)理由:∵△OAD是等边三角形,∴ AO=AD,∠ODA=60°. (6分) ∵AO=AC,∴ AC=AD.∴∠ACD=∠ADC=. (7分)∴∠ODC=∠ODA+∠ADC=60°+30°=90°,即OD⊥CD . (8分) ∵OD为⊙O的半径,∴CD所在直线与⊙O相切. (9分)23. (1)BP=5t,BQ=8-4t. (2分)(2)在Rt△ABC中,. (3分)当△BPQ∽△BAC时,,即.(4分)解得. (5分)当△BPQ∽△BCA时,,即.(6分)解得. (8分)(3). (10分)24. (1)把A(4,0)、B(-3,0)代入中,得解得 (2分)∴这条抛物线所对应的函数表达式为. (3分)(2)当-3当0(每段自变量1分,若加等号共扣1分,解析式2分) (3),,. (12分)。
九年级数学第一学期中试卷

九年级第一学期期中考试数 学 试 卷一、填空题(每小题2分,共20分)1.如果最简二次根式4a -2 与 2 是同类根式,那么a = . 2.已知a =3+2,b =3-2,,那么ab = .3.已知20n 是整数,则满足条件的最小正整数n 为 .4.关于x 的一元二次方程2x ²+kx +1=0有两个相等的实根,则k = . 5.已知x 2+4x -3=0,那么3x 2+12x +2000的值为 . 6.点A (-2,1)关于原点对称点A ′ 的坐标是 .7.P (m , 2m -5)为直线y =x -3上有一点,则P 点关于原点的对称点P ′为 . 8.如图,⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的取值 范围是 .9.如图,AB 是⊙O 的直径,C 、D 、E 都是⊙O 上的点,则∠1+∠2=_ . 10.观察下列各式:①312311=+, ②413412=+,③514513=+ ④ … …请你将发现的规律用含自然数n (n ≥1)的等式表示出来:________________.二、选择题(每小题3分,共18分)11.如果x 的取值范围是( )(A )1x > (B )1x ≥ (C )1x ≤ (D )1x <12.下列各式属于一元二次方程是( )(A )3x 2-2x=0 (B )x 2+2x +3(C )a (a -2) =0 (D )(2x -2)2=(x -1) (4x -5) 13.下列图案既是轴对称图形,又是中心对称图形的是( )14.如图,点A 、B 、C 在⊙O 上,∠AOB =40°,则∠ACB 的度数是( )(A )10° (B )20° (C )40° (D )70°AB(第9题)(第8题)(A ) (B ) (C )(D )(第14题)CBA 15、下图“笑脸”中,由左图逆时针旋转90○形成的是( )16.如图,△ABC 是⊙O 的内接三角形,∠B =50°,点P 在⌒AC 上移动(点P 不与点A 、C 重合),则α的变化范围是 --------------------------------------( )三、解答题(每小题5分,共20分)17.计算:45+18-8+125 18.解方程: x 2+4x -5=019.如图,在1010 正方形网格中,每个小正方形的边长均为1个单位. (1)将△ABC 向右平移4个单位,得到△A ′B ′C ′,再将△A ′B ′C ′ 绕点C ′ 逆时针旋转90°,得到△A ′′B ′′C ′′,请你画出△A ′B ′C ′和△A ′′B ′′C ′′.(2)在网格中建立适当的坐标系,使点A 的坐标为(-2,3),请写出点A ′和A ″的坐标。
泰安市泰山区第一中学2023-2024学年九年级第一学期数学期中考试试题

2023-2024学年第一学期期中达标九年级数学试题2023.10注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中选择题48分,非选择题102分,满分150分,考试时间120分钟;2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效;3.数学考试不允许使用计算器,考试结束后,应将答题纸和答题卡一并交回。
第Ⅰ卷(选择题 共48分) 一、选择题(本大题共12个小题,每小题4分,共48分.) 1.反比例函数12my x-=中,当x >0时,y 随x 的增大而增大,则m 的取值范围是( ) A. m >12 B. m <2 C. m <12D. m >22.在Rt △ABC 中,∠C=90°,已知a 和A ,则下列关系式中正确的是( ) A. c =α·sinA B. c =α sinA C. c =α·cosB D. c =αcosA3.将抛物线y =﹣x 2﹣2x+3的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )A .(﹣2,2)B .(﹣1,1)C .(0,6)D .(1,﹣3)4.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函数y =的图象经过点B ,则k 的值是( )A .1B .2C .D .5.在Rt △ABC 中,∠C =90°,sinA =45,AC =6cm ,则BC 的长度为( ) A.6 cm B.7 cm C.8 cm D.9 cm6.某幢建筑物,从10米高的窗口A 用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),(如图)如果抛物线的最高点M 离墙1米,离地面340米,则水流下落点B 离墙距离OB 是( )A.2米B.3米C.4米D.5米6题图7.AC是电杆AB的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC的长为()A.米B.米C.6•cos52°米D.米8.关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1) B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小 D.y的最小值为﹣39.如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)()A.136.6米 B.86.7米 C.186.7米 D.86.6米10.如图,一次函数y1=x与二次函数y2=ax2+bx+c(a≠0)的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c(a≠0)的图象可能是( )11.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c >0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤12.某炮兵试射一枚导弹,在空中飞行后精确地击中地面目标导弹飞行的时(x秒)与高度的关系为y=ax2+bx+c(a≠0)已知导弹在第7秒与第16秒时的高度相等,则下列时间中导弹所在高度最高的是()A.第11秒B.第13秒C.第15秒D.第17秒二.填空题(本大题共5个小题,每小题4分,共20分.把答案填在题中的横线上.) 13.已知点A(4,y 1),B(2,y 2),C(-2,y 3)都在二次函数y =(x -2)2-1的图象上,则y 1, y 2 ,y 3的大小关系是________.14.如图,轮船从B 处以每小时60海里的速度沿南偏东20°方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上,轮船航行40分钟到达C 处,在C 处观测灯塔A 位于北偏东10°方向上,则C 处与灯塔A 的距离是________.15.如图,抛物线y 1=a (x+2)2-3与y 2=12(x-3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论: ①无论x 取何值,y 2的值总是正数;②a=1;③当x=0时,y 2-y 1=4;④2AB=3AC ;其中正确结论是 .16.若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,则m 的值为 .17.在四边形ABCD 中,609069=︒==︒==A B D BC ,CD ∠,∠∠,,则AB= .三、解答题(本大题共9个小题,共82分,解答应写出文字说明、推理过程或演算步骤。
新编初三数学上九年级期中试题及答案解析(B卷)

九年级数学第一学期期中考试试卷一、選擇題(本題共30分, 每小題3分, 下列各題均有四個選項, 其中只有一個是符合題意的)1.抛物线23(2)4y x =--+的开口方向和顶点坐标分别是A .向上, (2,4)B .向上, (-2,4)C .向下, (2,4)D .向下, (-2,4)2.已知, 如图, 在Rt △ABC 中, ∠C =90°, BC =3, AC=4, 则sinB 的值是A .43B .34C .35D .453.如图, 在△ABC 中, D, E 分别是接DE, 那么△ADE 与△ABC A .1:16B .1:9C .1:4D .1:24.如图, A, B, C 值为A .13B .3C .3D .105.已知方程)0(02≠=++a c bx ax 的)0(2≠++=a c bx ax y 与x 轴的两个交点的坐标分别是A .(0,5),(0,-3)B .(-5,0),(3,0)C .(0,-5),(0,3)D .(5,0),(-3,0)6.二次函数23+1y x =-的图象如图所示, 将其沿x 轴翻折后得到的抛物线的解析式为A .231y x =--B .23y x =C .231y x =+D .231y x =-7.某地下车库出口处安装了“两段式栏杆”, 如图1所示,点A 是栏杆转动的支点, 点E 是栏杆两段的联结点.当车辆经过时, 栏杆AEF 最多只能升起到如图2所示的位置, 其示意图如图3所示(栏杆宽度忽略不计), 其中AB ⊥BC,EF ∥BC, ∠AEF=143°, AB=AE=1.2米, 那么适合该地下车库的车辆限高标志牌为(参考数据:sin 37° ≈ 0.60, cos 37° ≈ 0.80, tan 37° ≈ 0.75)A .B .C .D .8.为了测量被池塘隔开的A, B 两点之间的距离, 根据实际情况, 作出如图图形, 其中AB ⊥BE, EF ⊥BE, AF 交BE 于D, C 在BD 上.有四位同学分别测量出以下四组数据:FC BAE EAFAEF图1 图2 图3xyo①BC, ∠ACB ;②CD, ∠ACB, ∠ADB ;③EF, DE, BD ;④DE, DC, BC . 能根据所测数据, 求出A, B 间距离的有 A .1组B .2组C .3组D .4组9.若抛物线244y x x t =-+-(t 为实数)在03x <<的范围内与x 轴有公共点, 则t 的取值范围为A .0<t <4B .0≤t <4C .0<t <1D .t ≥010.如图1, 在等边△ABC 中, 点E, D 分别是AC, BC 边的三等分点, 点P 为AB 边上的一个动点, 连接PE, PD, PC, DE .设BP=x, 图1中某条线段的长为y, 若表示y 与x 的函数关系的图象大致如图2所示, 则这条线段可能是图1中的ECA BPA .线段PDB .线段C .线段PED .线段DE二、填空題(本題共18分, 每小題3分)11.将二次函数249y x x =-+化成2()y a x h k =-+的形式. 12.在△ABC 中, ∠C =90°, 21tan =A , 则sinA =.13.若抛物线k x y +-=2)2(2过原点, 则该抛物线与x 轴的另一个交点坐标为.图1yxO图214.北京紫禁城是中国古代汉族宫廷建筑之精华. 经测算发现, 太和殿, 中和殿, 保和殿这三大殿的矩形宫院ABCD (北至保和殿, 南至太和门, 西至弘义阁,东至体仁阁)与三大殿下的工字形大台基所在的矩形区域EFGH 为相似形, 若比较宫院与台基之间的比例关系, 可以发现接近于9:5, 取“九五至尊”之意. 根据测量数据, 三大殿台基的宽为40丈, 请你估算三大殿宫院的宽为丈.15.如图, 在△ABC 中, AB=5, AC=4, E 是AB 上一点, AE=2, 在AC 上取一点F, 使以A, E, F 为顶点的三角形与△ABC 相似, 则AF 的长为.16.已知二次函数c bx ax y ++=2的图象与x 轴交于(1, 0)和(1x , 0), 其中1-2-1x <<,与y 轴交于正半轴上一点.下列结论:①0>b ;②241b ac <;③a b >;④a c a 2-<<-.其中正确结论的序号是. 三、解答題(本題共30分, 每小題5分) 17.计算: ︒⋅︒+︒-︒30cos 60tan 45sin 230sin18.已知:如图, 在ABC △中, D 是AC 上一点, E 是AB 上一点, 且∠AED =∠C.(1)求证:△AED ∽△ACB ;(2)若AB=6, AD=4, AC=5, 求AE 的长.19.在二次函数2(0)y ax bx c a =++≠中, 函数y 与自变量x 的部分对应值如下表:F D(1)求这个二次函数的解析式及m 的值; (2)在平面直角坐标系中, 用描点法画出这个二次函数的图象(不用列表);(3)当y <3时, 则x 的取值范围是___________.20.如图,热气球的探测器在点A, 的顶部B 的仰角为45°, 看这栋高楼底部C 的俯角为60°, 热气球与高楼的水平距离AD为30米, 3取1.73,结果精确到0.1米).21.如图, 在平面直角坐标系中, △ABC 的顶点坐标分别为A (2, 0),B (3, 2),C (5, -2).以原点O 为位似中心, 在y 轴的右侧将△ABC 放大为原来的两倍得到△'''C B A . (1)画出△'''C B A ;(2)分别写出B, C 两点的对应点'B ,'C 的坐标22.已知:关于x 的函数2(21)y ax a x a =+++的图象与x 轴有且只有一个公共点, 求实数a 的值.四、解答題(本題共20分, 每小題5分)23.如图, 在等边△ABC 中, D, E, F 分别为边AB, BC, CAxy11Oxy11CBAO上的点, 且满足∠DEF=60°. (1)求证:CF BD CE BE ⋅=⋅; (2)若DE ⊥BC 且DE=EF, 求BE EC的值.24.如图, 在Rt △ABC 中, ∠C=90°,53sin =B , 点D 在BC 边上, DC= AC = 6. (1)求AB 的值; (2)求tan ∠BAD 的值.25.学校要围一个矩形花圃,另三边用篱笆围成, 由于园艺需要, 花圃分隔为两个小矩形部分(如图所示), 总共36米的篱笆恰好用完(不考虑损耗).设矩形垂直于墙面的一边AB 的长为x 米(要求AB <AD ), 矩形花圃ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式, 并直接写出自变量x 的取值范围; (2)要想使矩形花圃ABCD 的面积最大, AB 边的长应为多少米? 26.定义:直线y=ax+b(a ≠0)称作抛物线y=ax2+bx(a ≠0)的关联直线. 根据定义回答以下问题:(1)已知抛物线y=ax2+bx(a ≠0)的关联直线为y=x+2, 则该抛物线的顶点坐标为_________;(2)求证:抛物线y=ax2+bx 与其关联直线一定有公共点;(3)当a=1时, 请写出抛物线y=ax2+bx 与其关联直线所共有的特征(写出一条即可).五、解答題(本題共22分, 第27題7分, 第28題7分, 第 29題8分) 27.已知:抛物线1C :622++=bx x y 与抛物线2C 关于y 轴对称, 抛物线1C 与x 轴分别交于点A (-3,0), B (m,0),顶点为M . (1)求b 和m 的值; (2)求抛物线2C 的解析式;(3)在x 轴, y 轴上分别有点P (t,0), Q (0,-2t ),其中t >0, 当线段PQ 与抛物线2C 有且只有一个公共点时,求t 的取值范围.28.在Rt △ABC 中, ∠ACB=90°, ∠A=30°, D 为AB 的中点, 点E 在线段AC 上, 点F 在直线BC 上, ∠EDF=90°.(1)如图1, 若点E 与点A 重合, 点F 在BC 的延长线上, 则此时DFDE=________; (2)若点E 在线段AC 上运动, 点F 在线段BC 上随之运动(如图2), 请猜想在此过程中DF DE 的值是否发生改变. 若不变, 请求出DFDE的值;若改变, 请说明理由.(3)在(2)的条件下, 在线段EC 上取一点G , 在线段CB 的延长线上取一点H, 其中EGk FH=, 请问k 为何值时, 恒有∠GDH=90°.请在图3中补全图形, 直接写出符合题意的k 值, 并以此为条件, 证明∠GDH=90°.y图1图2图329.如图1, 在平面直角坐标系中, 有一张矩形纸片OABC, 已知O (0, 0), A (4, 0), C (0, m ),其中m 为常数且m ≥2, 点P 是OA 边上的动点(与点O, A 不重合).现将△PAB 沿PB 翻折, 得到△PDB ;再在OC 边上选取适当的点E, 将△POE 沿PE 翻折, 得到△PFE, 并使直线PD, PF 重合. (1)设P (x, 0), E (0, y ),求y 关于x 的函数关系式, 并求y 的最大值(用含m 的代数式表示);(2)当m=3时, 若翻折后点D 落在BC 边上(如图2), 求过E,P, B 三点的抛物线的解析式;(3)在(2)的情况下, 在该抛物线上是否存在点Q, 使△PEQ 是以PE 为直角边的直角三角形?若存在, 求出点Q 的坐标;若不存在, 说明理由.图1 图2---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------15题只写对1个,给2分;两个都写对,但有其他错误答案,给2分.16题少写1个,给2分;选错误答案,给0分.19.(1)解:∵抛物线2(0)y ax bx c a =++≠过点(1,0),(3,0) ∴可设抛物线解析式为(1)(3)y a x x =-- ∵过点(0,3) ∴a=1∴2(1)(3)=-4+3y x x x x =--2分 当x=4时,m=33分∴抛物线的解析式为2=-4+3y x x ,m 的值为3 (2)在平面直角坐标系中画出函数图象(不用列表)4分(3) x 的取值范围是0<x<45分20.解:由题意,AD ⊥BC 于D ,即∠BDA=∠CDA=90° ∵∠BDA=90°,∠BAD=45°,AD=30∴BD=AD ·tan ∠BAD=30×tan45°=30(米)2分 ∵∠CDA=90°,∠CAD=60°,AD=30∴CD=AD ·tan ∠CAD=30×tan60°=303≈51.9(米)3分 ∴BC=BD+CD ≈81.9(米)4分 答:这栋楼的高度约为81.9米.5分 说明:BD 和CD 求对任一个即给2分.21.(1)画出△A ’B ’C ’3分 (2)B ’(6,4),C ’(10,-4)5分说明:画图中,每个顶点1分,如果忘记连线,在原有基础扣1分. B ’和C ’坐标各1分.22.解:y=0,即2(21)=0ax a x a +++①当a=0时,x=0,符合题意1分 ②当a ≠0时,由题意△=0 3分xyy=x 2-4x+311Oxy11C'A'B'CBAO。
人教版九年级上期中考试数学试卷附答案

第一学期期中考试九年级数学试卷考生注意:本试卷共三大题,23小题,总分100分,考试时间120分钟。
一、选择题(本题包括8小题,每小题3分,共24分,每小题只有一个正确答案)1.下列方程,是一元二次方程的是()①3x2+x=20,②2x2-3xy+4=0,③x2-1x=4,④x2=0,⑤x2-3x+3=0A.①②B.①②④⑤C.①③④D.①④⑤2、下图中是中心对称图形的是()A B. C. D.3、方程x2 = 3x的根是()A.x=3 B.x= -3 C.0或3 D.无解4、方程3x2-4x+1=0 ()A.有两个不相等的实数根 B.只有一个实数根C.有两个相等的实数根 D.没有实数根5、下列计算正确的是()A.20=210B.2·3= 6C.4-2= 2D.(-3)2=-36、下列二次根式中,与3是同类二次根式的是()A.18B.27C.23 D.327、一元二次方程x2-5x+6=0的两根分别是x1、x2,则x1+x2等于()A.5 B.6 C.-5 D.-68、已知如图①所示的四张牌,若将其中一张牌旋转180°后得到图②,则旋转的牌是()二、填空题(共7个小题,每小题3分,共21分) 9、二次根式 3-x 有意义的条件是10、当x 为 时,代数式3x 2的值与4x 的值相等。
11、21= , (10)2= , 2)1(-= 12、已知A (a-1,3),B(-2012,b+2)两点关于原点对称,则a= ,b= . 13、若︳x+2 ︳+ y -3=0,则x y的值为14、在平行四边形、矩形、菱形、正方形、等腰梯形的五种图形中,既是轴对称又是中心对称的图形是 。
15.已知方程x 2-7x+12=0的两根恰好是Rt △ABC 的两条边的长,则Rt △ABC•的第三边长为________.三、解答题(本题共8小题,共55分)16、计算: (5分) 4+(3.14-π)0-|-2|+108-236⨯17.(5分)先化简,再求值.a 2a 2+2a -a 2-2a +1a +2÷a 2-1a +1,其中a =2-2.18、(8分)解方程:(每小题4分) (1) 9(x-3)2- 49=0(2)若a 、b 为实数,且a 、b 是方程x 2+5x+6=0的两根,则p(a,b)关于原点对称点Q 的坐标是什么?19、(6分 )三角形两边的长分别是8和6,第三边的长是一元二次方程060162=+-x x 的一个实数根,求该三角形的面积。
第一学期九年级期中考试数学试题(二)

第一学期九年级期中考试数学试卷一、选择题(本题共12小题,共36分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.) 1.下列等式一定成立的是A .169169++=B .b a b a -=-22C .ππ⨯=⨯44D .b a b a +=+2)(2.下列方程中,是关于x 的一元二次方程的是A .)1(2)1(32+=+x xB .02112=-+x xC .02=++c bx axD .12=x3.在比例尺为l :5000的地图上,量得甲,乙两地的距离25cm ,则甲,乙两地的实际距离是A .1250kmB .125kmC .l2.5kmD .1.25km4.用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在A .原图形的外部B .原图形的内部C .原图形的边上D .任意位置5.如图,厨房角柜的台面是三角形,如果把各边中点的连线所围成的三角形铺成黑色大理石(图中阴影部分).其余部分铺成白色大理石,那么黑色大理石的面积与白色大理石面积的比是A .41B .14C .31 D .43 6.用配方法解方程0762=++x x ,下面配方正确的是A .2)3(2-=+x B .2)3(2=+x C .2)3(2=-xD .2)3(2-=-x7.关于x 的一元二次方程012=-+kx x 的根的情况是A .有两个不相等的同号实数根B .有两个不相等的异号实数根C .有两个相等的实数根D .没有实数根8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)△ABC 相似的是9.关于x 的一元二次方程032)1(22=--+++m m x x m 有一个根是0,则m 的值为A .3=m 或1-=mB .3-=m 或1=mC .1-=mD .3=m10.已知0432≠==c b a ,则cba +的值为 A .54B .45C .2D .21 11.如图,在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上的高.将△ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为A .9.5B .10.5C .11D .15.512.如图所示,在一边靠墙(墙足够长)空地上,修建一个面积为2672m 的矩形临时仓库,仓库一边靠墙,另三边用总长为76 m 的栅栏围成,若设栅栏AB 的长为xm ,则下列各方程中,符合题意的是A .672)76(21=-x x B .672)276(21=-x x C .672)276(=-x xD .672)76(=-x x二、填空题(本大题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.要使二次根式62-x 有意义,x 应满足的条件是_____________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第3
题
2009学年第一学期期中考试九年级数学试卷
一.仔细选一选(本题共10小题,每小题3分)
1.已知⊙O 的半径为4cm ,点A 到圆心O 的距离为3cm ,则点A 与⊙O 的位置关系是( ) A .点A 在⊙O 内 B .点A 在⊙O 上 C .点A 在⊙O 外 D .不能确定 2.已知点P 1(1x ,1y )和P 2(2x ,2y )都在反比例函数x
y 2
=的图象上,若021<<x x , 则 ( )
A .012<<y y
B .021<<y y
C .012>>y y
D .021>>y y
3.如图,已知⊙O 的半径为5mm ,弦AB =8mm ,则圆心O 到AB 的距离是( ) A .1mm B .2mm C .3mm D .4mm
4. 下列四个三角形,与左图中的三角形相似的是( )
5. 二次函数y=ax 2+bx+c 的图象如图所示,则下列结论:①abc > 0;②b 2-4ac > 0;③.4a-2b+c<0;④a+b+c=0, ⑤b+2a=0. 其中正确的个数是 ( ) A.1个 B.2个 C.3个 D.4个
6. 在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是 ( ) A .y =2(x -2)2 + 2 B .y =2(x + 2)2-2 C .y =2(x -2)2-2
D .y =2(x + 2)2 + 2
7.如图,现有一圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面 (接缝忽略不计),则该圆锥底面圆的半径为 ( )
A .4cm
B .3cm
C .2cm
D .1cm
8.如图,一块含有30º角的直角三角形ABC ,在水平桌面上绕点C
针方向旋转到△A /B /
C (B 、C
、A /
在同一直线上)的位置。
若BC 6cm ,那么顶点A 从开始到结束所经过的路程长为( ) A .8πcm
B .10πcm
C .4πcm
D .43π9.如图,⊙O 的半径OA 、OB,且OA ⊥OB,连接AB.现在⊙0上找一点C,使OA 2
+AB 2
=BC 2
,
(A ) 15°或 75° (B) 20°或 70° (C) 20° (D)30°
10、如图,直角梯形ABCD 中,∠A=90°,∠B=45°,底边AB=5,高AD=3, 点E D 移动,EM ⊥AB 于M ,EN ⊥AD 于N ,设BM=x ,矩形AMEN 的面积为y,那么y 与x ( ) (第4题) A . B . C . D .
(第8题)
第10题图
A 、
B 、
C 、
D 、
二、认真填一填(本题有6个小题,每小题4分,共24分)
11.请写出一个开口向上,且对称轴为直线2=x 的二次函数解析式 ▲ 。
12. 如图AB 为⊙O 的直径,C 、D 是⊙O 上两点,若∠ABC =55º 则∠D 的度数为 ▲ 。
13.如图,点P 为反比例函数k
y x
=
图像上任意一点,过点P 作P A ⊥y 轴于A ,作PB ⊥x 轴于B ,若四边形P AOB 面积=4,则k = ▲ 。
14、初三数学课本上,用“描点法”画二次函数2y ax bx c =++的图象时,
列了如下表格:
根据表格上的信息回答问题:该二次函数2y ax bx c =++在3x =时,y = ▲ .
15、已知点P 是边长为4的正方形ABCD 内一点,且PB=3 , BF ⊥BP ,垂足是点B, 若在射线BF 上找一点M ,使以点B, M, C 为顶点的三角形与△ABP 相似, 则BM 为___▲________.
16. 如图,在抛物线232x y -=上取B 1(21,23-),在y 轴负半轴上取一个点A 1,使⊿OB 1A 1为等边三角形;然
后在第四象限取抛物线上的点B 2,在y 轴负半轴上取点A 2,使⊿A 1B 2A 2为等边三角形;重复以上的过程,
可得⊿A 99B 100A 100,,则A 100的坐标为 ▲
.
三、全面答一答(本题有8小题,共66分)
17. (本题6分) 某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
(1)请你用直尺和圆规补全这个输水管道的圆形截面(保留作图痕迹);
(2)若这个输水管道有水部分的水面宽AB=16cm ,水面最深地方的高度为4cm ,•求这个圆形截面的半径. 18、(本小题6分)杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线2
3315
y x x =-
++的
一部分,如图.
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高 3.4BC =米,在一次表演中,人梯到起跳点A 的水平
距离是4米,问这次表演是否成功?请说明理由. A B
P
C
D
F 第15题图
D
第21题
19.(本题6分)已知一次函数1y x =--与反比例函数x
k
y =
的图象都过点A (m ,1)。
(1)求m 的值,并求反比例函数的解析式;
(2)求一次函数与反比例函数的另一个交点B 的坐标;
(3)当x 为何值时,一次函数的函数值大于反比例函数的函数值.
20、(本题8分)已知抛物线2y x ax b =-++ 经过点A (1,0),B (0,-4)。
(1)求此抛物线的解析式;
(2)当x 取何值时,y 随x 的增大而增大?并求函数的最值 (3)若抛物线与x 轴的另一个交点为C ,求△ABC 的面积。
21、(本小题8分)如图, △ABC 内接于⊙O , 弦AD 平分∠BAC ,与BC 交于点G , DE ⊥AC 于E , DF ⊥AB 于F . (1)找出图中相等的弦. (2)求证:△BDG ∽△ABD (3)求证:EC =BF .
22. (本小题10分)如图,已知点A 在函数x
y 1=(x ﹥0)的图象上,点B 在函数x y 3
-=(x ﹤0)的图象
上,点C 在函数x
y 6
=
(x ﹤0)的图象上,且AB ∥x 轴,BC ∥
y
轴,四边形ABCD 是以AB 、BC 为一组邻边的矩形.
(1)若点A 的坐标为(21
,2),求点D 的坐标;
(2)若点A 在函数x
y 1
=(x ﹥0)上移动,矩形ABCD 的
面积
是否变化?如果不变,求出其面积;
(3)若矩形ABCD 四个顶点A 、B 、C 、D 分别在11
(k x
k y =﹥0,x
﹥0)、12
(k x k y =
﹤0,x ﹤0)、13(k x
k y =﹥0,x ﹤0)、14
(k x
k y =
﹤0,x ﹥0)上,请直接写出4321k k k k 、、、满足的数量关系式.
23.(本题10分)分利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出
后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x (元),该经销店的月利润为y (元).
x
y 1
=
(x ﹥0) x
y 3
-
=(x ﹤x
y 6
=
(x ﹤0) o
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元?
(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
24.( 本题12分)如图,以矩形OCPD的顶点O为原点,它的两条边所在的直线分别为x轴和y轴建立直角坐标系. 以点P为圆心, PC为半径的⊙P与x轴的正半轴交于A、B两点, 若抛物线y=ax2+bx+4经过A, B, C三点, 且AB=6.
(1)求⊙P的半径R的长;
y
(2)求该抛物线的解析式并求出该抛物线与⊙P的第四个交点E
x
第24题图。