中考数学第21题专题
2023年中考数学复习难点突破专题21 二次函数与实际问题:喷水问题(含答案)

专题21 二次函数与实际问题:喷水问题一、单选题1.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千,拴绳子的地方距地面都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为( )A .0.5米B .2米C .米D .0.85米2.某公园有一个圆形喷水池,喷出的水流呈抛物线状,一条水流的高度()h m 与水流时间()t s 之间的解析式为2305h t t =-,那么水流从抛出至落到地面所需要的时间是( )A .8sB .6sC .4sD .2s3.如图,始终盛满水的圆柱体水桶水面离地面的高度为20cm ,如果在离水面竖直距离为h (单位:cm )的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s (单位:cm )与h的关系式为s =10cm ,则小孔离水面的距离是( )A .14cmB .15cmC .16cmD .18cm4.某广场有一个小型喷泉,水流从垂直于地面的水管QA喷出,0A长为1.5m.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到0的距离为3m.建立平面直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间近似满足函数关系y=ax2+x+c(a≠0),则水流喷出的最大高度为()A.1米B.32米C.2米D.138米5.如图,某幢建筑物从2.25米高的窗口A用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M离墙1米,离地面3米,则水流下落点B离墙的距离OB是( )A.2.5米B.3米C.3.5米D.4米6.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米7.烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣2t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.10s8.某公园有一个圆形喷水池,喷出的水流的高度h(单位:m)与水流运动时间t(单位:s)之间的关系式为2305h t t=-,那么水流从喷出至回落到地面所需要的时间是()A.6s B.4s C.3s D.2s9.如图,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管的长为()A.2.1m B.2.2m C.2.3m D.2.25m二、解答题10.某幢建筑物从10米高的窗户A用水管向外喷水,喷出的水流呈抛物线状(如图),若抛物线最高点M离墙1米,离地面403米.问:(1)求抛物线的解析式;(2)求水流落地点B离墙的距离11.某游乐园要建造一个直径为20m的圆形喷水池,计划在喷水池周边安装一圈喷水头,使喷出的水柱距池中心4m处达到最高,最大高度为6m.如图,以水平方向为x轴,喷水池中心为原点建立直角坐标系. (1) 若要在喷水池的中心设计一个装饰物,使各方向喷出的水柱在此汇合,则这个装饰物的高度为多少,请计算说明理由.(2)为了增加喷水池的观赏性,游乐园新增加了一批向上直线型喷射的喷水头,这些喷水头以水池为圆心,分别以1.5米,3米,4.5米,6米,7.5米为半径呈圆形放置,为了保证喷水时互不干扰,防止水花四溅,且所有直线喷水头射程高度均为一致,则直线型喷水头最高喷射高度为多少米?(假设所有喷水头高度忽略不计).【答案】(1)103;(2)1432412.如图,一个圆形水池的中央垂直于水面安装了一个柱形喷水装置OA,顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.建立如图所示的直角坐标系,水流喷出的高度y(m)与水平距离x (m )之间的关系式可以用2y x bx c =-++表示,且抛物线经过点B 15,22⎛⎫ ⎪⎝⎭,C 72,4⎛⎫ ⎪⎝⎭; (1)求抛物线的函数关系式,并确定喷水装置OA 的高度;(2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?13.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上的水珠高度y (米)关于水珠与喷头的水平距离x (米)的函数解析式是:236(04)2y x x x =-+≤≤,请求出当水珠的高度达到最大时,水珠与喷头的水平距离是多少?最大高度是多少?14.如图,在喷水池的中心A 处竖直安装一个水管AB .水管的顶端安有一个喷水管、使喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C .高度为3m .水柱落地点D 离池中心A 处3m .建立适当的平面直角坐标系,解答下列问题.(1)求水柱所在抛物线的函数解析式;(2)求水管AB 的长.15.如图是某公园一喷水池(示意图),在水池中央有一垂直于地面的喷水柱,喷水时,水流在各方向沿形状相同的抛物线落下.若水流喷出的高度y (m)与水平距离x (m)之间的函数关系式为y =-(x -1)2+2.25.(1)求喷出的水流离地面的最大高度;(2)求喷嘴离地面的高度;(3)若把喷水池改成圆形,则水池半径至少为多少时,才能使喷出的水流不落在水池外?16.绣山公园入口处的喷水池造型如下图,水池正中心垂直于水面处安装一个出水管OC,OC高1米,水从水管OC顶端C处向四周喷洒,水流向各个方向沿形状相同的抛物线落下,为庆祝国庆,公园将喷泉设计成水流在离OC为1米处达到距水面最大高度2米的造型,(1)求喷洒的半径,(2)若水流喷出的水形状与(1)相同,喷洒的半径为3米,求此时水流达到的最大高度,17.(1) 抛物线y=ax2+c经过点A (2,3),点B (-1,-3)两点,求该抛物线的解析式.(2) 如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3 m,水柱落地处离池中心3 m,水管应多长?18.如图,斜坡AB 长10米,按图中的直角坐标系可用5y =+表示,点A ,B 分别在x 轴和y 轴上.在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛线可用213y x bx c =-++表示.(1)求抛物线的表达式及顶点坐标;(2)在斜坡上距离A 点2米的C 处有一颗3.5米高的树,水柱能否越过这棵树?19.某公园广场上新安装了一排音乐喷泉装置,其中位于中间的喷水装置OA (如图)喷水能力最强,水流从A 处喷出,在各个方向上沿形状相同的抛物线路径落下,水流喷出的高度()ym 与水平距离()x m 之间符合二次函数关系式2734y x x =-++()0x >.(1)求水流喷出的最大高度是多少米?此时最高处离喷水装置OA 的水平距离为多少米?(2)现若在音乐喷泉四周摆放花盆,不计其他因素,花盆需至少离喷水装置OA 多少米外,才不会被喷出的水流击中?20.用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H (单位:m ),如果在离水面竖直距离为h (单校:cm )的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H—h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高h cm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.21.为庆祝新中国成立70周年,国庆期间,北京举办“普天同庆•共筑中国梦”的游园活动,为此,某公园在中央广场处建了一个人工喷泉,如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷出水流的运动路线是抛物线.如果水流的最高点P到喷水枪AB所在直线的距离为1m,且到地面的距离为3.6m,求水流的落地点C到水枪底部B的距离.22.把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式2=-h t t205 ()1经过多少秒后足球回到地面?()2经过多少秒时足球距离地面的高度为10米23. 如图1,已知水龙头喷水的初始速度v 0可以分解为横向初始速度v x 和纵向初始速度v y ,θ是水龙头的仰角,且v 02=v x 2+v y 2.图2是一个建在斜坡上的花圃场地的截面示意图,水龙头的喷射点A 在山坡的坡顶上(喷射点离地面高度忽略不计),坡顶的铅直高度OA 为15米,山坡的坡比为13.离开水龙头后的水(看成点)获得初始速度v 0米/秒后的运动路径可以看作是抛物线,点M 是运动过程中的某一位置.忽略空气阻力,实验表明:M 与A 的高度之差d (米)与喷出时间t (秒)的关系为d=v y t-5t 2;M 与A 的水平距离为v x t 米.已知该水流的初始速度v 0为15米/秒,水龙头的仰角θ为53°.(1)求水流的横向初始速度v x 和纵向初始速度v y ;(2)用含t 的代数式表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x 的取值范围); (3)水流在山坡上的落点C 离喷射点A 的水平距离是多少米?若要使水流恰好喷射到坡脚B 处的小树,在相同仰角下,则需要把喷射点A 沿坡面AB 方向移动多少米?(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)24.如图,斜坡AB 长10米,按图中的直角坐标系可用5y =+表示,点A 、B 分别在x 轴和y 轴上,在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛物线可用213y x bx c =-++表示. (1)求抛物线的函数关系式;(2)求水柱离坡岗AB 的最大高度.三、填空题25.某幢建筑物,从5米高的窗口A用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图所示),如果抛物线的最高点M离墙1米,离地面203米,则水流下落点B离墙距离OB是_____m.26.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为_____m.27.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为3m处达到最高,高度为5m,水柱落地处离池中心距离为9m,则水管的长度OA是_____m.28.体育公园的圆形喷水池的中央竖直安装了一个柱形喷水装置OA,A处为喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下(如图1).如果曲线APB表示的是落点B离点O最远的一条水流(如图2),水流喷出的高度y(米)与水平距离x(米)之间的关系式是29y x4x(x0)4=-++>,那么圆形水池的半径至少为______米时,才能使喷出的水流不至于落在池外.29.学校组织学生去南京进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面土有一瓶洗手液(如图,),于是好奇的小王同学进行了实地测量研究,当小王用一定的力按住顶部A下压如图,位置时,洗手液从喷口B流出,路线近似呈抛物线状,且a=118-.洗手液瓶子的截面图下部分是矩形CGHD.小王同学测得:洗手液瓶子的底面直径GH=12cm,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线,小王在距离台面15.5cm处接洗手液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是________cm.30.如图,是某公园一圆形喷水池,在池中心竖直安装一根水管OA =1.25m ,A 处是喷头,水流在各个方向沿形状相同的抛物线落下,水落地后形成一个圆,圆心为O ,直径为线段CB .建立如图所示的平面直角坐标系,若水流路线达到最高处时,到x 轴的距离为2.25m ,到y 轴的距离为1m ,则水落地后形成的圆的直径CB =_____m .31.某广场有一个半径8米的圆形喷水池,喷水池的周边有一圈喷水头(喷水头高度忽略不计),各方向喷出的水柱恰好在喷水池中心的装饰物OA 的顶端A 处汇合,水柱离中心O 点3米处达最高5米,如图所示建立平面直角坐标系.王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8的他站立时必须在离水池中心O 点______米以内.32.如图,在喷水池的中心A 处竖直安装一根水管AB ,水管的顶端安有一个喷水头,使喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C ,高度为3m ,水柱落地点D 离池中心A 处3m ,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线的表达式为()()2313034y x x =--+≤≤,则选取点D 为坐标原点时的抛物线表达式为______,其中自变量的取值范围是______,水管AB 的长为______m .专题21 二次函数与实际问题:喷水问题一、单选题1.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千,拴绳子的地方距地面都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为()A.0.5米B.米C.米D.0.85米2【答案】A【分析】根据题意建立直角坐标系,点(0,2.5)、(2,2.5)、(0.5,1)都在抛物线上,设抛物线解析式,列方程组,求解析式,根据解析式很容易就可求出抛物线的顶点坐标,纵坐标的绝对值即为绳子的最低点距地面的距离.【详解】以A为原点,AC所在直线为x轴,AB所在直线为y轴,建立如图所示的直角坐标系.设抛物线的函数关系式为:2y ax bx c =++.将(0,2.5)、(2,2.5)、(0.5,1)代入2y ax bx c =++得: 2.542 2.50.250.51c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得:242.5a b c =⎧⎪=-⎨⎪=⎩,,抛物线的表达式为:224 2.5y x x =-+;,2224 2.52(1)0.5y x x x =-+=-+,,抛物线的顶点坐标为(1,0.5),,绳子的最低点距地面的距离为0.5米.故选:A .【点睛】本题主要考查了二次函数的应用,本题关键在于正确选择原点建立直角坐标系,正确确定有关点的坐标,求出抛物线解析式.2.某公园有一个圆形喷水池,喷出的水流呈抛物线状,一条水流的高度()h m 与水流时间()t s 之间的解析式为2305h t t =-,那么水流从抛出至落到地面所需要的时间是( )A.8s B.6s C.4s D.2s【答案】B【分析】求出解析中h=0时t的值即可得.【详解】在h=30t−5t2中,令h=0可得30t−5t2=0,解得:t=0或t=6,所以水流从抛出至落到地面所需要的时间是6s,故选:B.【点睛】本题主要考查二次函数的应用,解题的关键是明确解析式中水流落到地面所对应的函数值为0.3.如图,始终盛满水的圆柱体水桶水面离地面的高度为20cm,如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系式为s=10cm,则小孔离水面的距离是()A.14cm B.15cm C.16cm D.18cm【答案】B【分析】设垫高的高度为m,写出此时s2关于h的函数关系式,根据二次函数的性质可得答案.【详解】解:设垫高的高度为m,则s=变形得:s2=4h(20+m-h)=-4(h−202m+)2+(20+m)2,,当h=202m+cm时,s max=20+m=20+10,,m=10cm,此时h=202m+=15cm,,垫高的高度为10cm,小孔离水面的竖直距离为15cm,故选B.【点睛】本题考查了二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.4.某广场有一个小型喷泉,水流从垂直于地面的水管QA喷出,0A长为1.5m.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到0的距离为3m.建立平面直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间近似满足函数关系y=ax2+x+c(a≠0),则水流喷出的最大高度为()A.1米B.32米C.2米D.138米【答案】C 【分析】由题意可得,抛物线经过()0,1.5和3,0,把上述两个点坐标代入二次函数表达式,可求出a 和c 的值,则抛物线解析式化为顶点式,即可求出结果;【详解】由题意可得,抛物线经过()0,1.5和3,0,把上述两个点坐标代入二次函数表达式得: 1.5930c a c ⎧=⎨++=⎩, 解得:1232a c ⎧=-⎪⎪⎨⎪=⎪⎩,,函数表达式()2213112222y x x x =-++=--+, ,0a <,故函数有最大值,,当1x =时,y 取最大值,此时2y =.故答案选C .【点睛】本题主要考查了二次函数的应用,准确计算是解题的关键.5.如图,某幢建筑物从2.25米高的窗口A 用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M 离墙1米,离地面3米,则水流下落点B 离墙的距离OB 是( )A.2.5米B.3米C.3.5米D.4米【答案】B【分析】由题意可以知道M(1,3),A(0,2.25),用待定系数法就可以求出抛物线的解析式,当y=0时就可以求出x的值,这样就可以求出OB的值.【详解】解:设抛物线的解析式为y=a(x-1)2+3,把A(0,2.25)代入,得2.25=a+3,a=-0.75.,抛物线的解析式为:y=-0.75(x-1)2+3.当y=0时,0=-0.75(x-1)2+3,解得:x1=-1(舍去),x2=3.OB=3米.故选:B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题,解答本题是求出抛物线的解析式.6.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()A .4米B .3米C .2米D .1米【答案】A【解析】 ),y=-x 2+4x=2x-24-+(),,当x=2时,y 有最大值4,,最大高度为4m7.烟花厂某种礼炮的升空高度h (m )与飞行时间t (s )的关系式是h =﹣2t 2+20t +1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3sB .4sC .5sD .10s 【答案】C【分析】将h 关于t 的函数关系式变形为顶点式,即可得出升到最高点的时间,从而得出结论.【详解】解:,h =﹣2t 2+20t +1=﹣2(t ﹣5)2+51,,当t =5时,礼炮升到最高点.故选:C .【点睛】 本题考查了二次函数的应用,解题的关键是将二次函数的关系式变形为顶点式.本题属于基础题,难度不大,解决该题型题目时,将函数的关系式进行变换找出顶点坐标即可.8.某公园有一个圆形喷水池,喷出的水流的高度h(单位:m)与水流运动时间t(单位:s)之间的关系式为2=-,那么水流从喷出至回落到地面所需要的时间是()h t t305A.6s B.4s C.3s D.2s【答案】A【解析】由于水流从抛出至回落到地面时高度h为0,把h=0代入h=30t-5t2即可求出t,也就求出了水流从抛出至回落到地面所需要的时间.解:水流从抛出至回落到地面时高度h为0,把h=0代入h=30t−5t2得:5t2−30t=0,解得:t1=0(舍去),t2=6.故水流从抛出至回落到地面所需要的时间6s.故选A.9.如图,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管的长为()A.2.1m B.2.2m C.2.3m D.2.25m【答案】D【分析】设抛物线的解析式为y= a(x-1)2+3(0≤x≤3),将(3,0)代入求得a值,则x=0时得的y值即为水管的长.【详解】解:由于在距池中心的水平距离为1m时达到最高,高度为3m,则设抛物线的解析式为:y=a(x-1)2+3(0≤x≤3),代入(3,0)得,0=a×(3-1)2+3,求得:a=34.将a值代入得到抛物线的解析式为:y=-34(x-1)2+3(0≤x≤3),令x=0,则y=94=2.25.则水管长为2.25m,故选:D.【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.二、解答题10.某幢建筑物从10米高的窗户A用水管向外喷水,喷出的水流呈抛物线状(如图),若抛物线最高点M离墙1米,离地面403米.问:(1)求抛物线的解析式;(2)求水流落地点B 离墙的距离【答案】(1)210201033y x x =-++;(2)3米. 【分析】 (1)先建立平面直角坐标系(图见解析),从而可得点A 、M 的坐标,再根据点M 的坐标可得抛物线解析式的顶点式,然后将点A 的坐标代入即可得;(2)令0y =可得一个关于x 的一元二次方程,解方程即可得.【详解】(1)由题意,建立如图所示的平面直角坐标系, 则40(0,10),(1,)3A M , 设抛物线解析式的顶点式为240(1)3y a x =-+, 将点(0,10)A 代入得:40103a +=,解得103a =-, 则抛物线解析式的顶点式为21040(1)33y x =--+,即抛物线的解析式为210201033y x x =-++;(2)令0y =得:2102010033x x -++=, 即21040(1)033x --+=, 解得3x =或10x =-<(不符题意,舍去),则3OB =,故水流落地点B 离墙的距离3米.【点睛】本题考查了二次函数的应用,熟练掌握待定系数法是解题关键.11.某游乐园要建造一个直径为20m 的圆形喷水池,计划在喷水池周边安装一圈喷水头,使喷出的水柱距池中心4m 处达到最高,最大高度为6m.如图,以水平方向为x 轴,喷水池中心为原点建立直角坐标系.(1) 若要在喷水池的中心设计一个装饰物,使各方向喷出的水柱在此汇合,则这个装饰物的高度为多少,请计算说明理由.(2)为了增加喷水池的观赏性,游乐园新增加了一批向上直线型喷射的喷水头,这些喷水头以水池为圆心,分别以1.5米,3米,4.5米,6米,7.5米为半径呈圆形放置,为了保证喷水时互不干扰,防止水花四溅,且所有直线喷水头射程高度均为一致,则直线型喷水头最高喷射高度为多少米?(假设所有喷水头高度忽略不计).【答案】(1)103;(2)14324【分析】(1)直接利用顶点式求出二次函数解析式进而得出答案;(2)根据对称轴为x=4,可得当x=4.5时可达到最高喷射高度,代入即可求解.【详解】(1)由题意可得:当x>0时,抛物线解析式为:y=a(x−4)2+6,把(10,0)代入得0=a(10−4)2+6解得:a=−16,故抛物线解析式为:y=−16(x−4)2+6;令x=0,解得y=10 3故这个装饰物的高度为103m;(2),当x>0时,抛物线的对称轴为x=4由题意可得当x=4.5时可达到最高喷射高度,当x=4.5时,y=143 24答:直线型喷水头最高喷射高度为14324米. 【点睛】此题主要考查了二次函数的应用,正确得出抛物线解析式是解题关键.12.如图,一个圆形水池的中央垂直于水面安装了一个柱形喷水装置OA ,顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.建立如图所示的直角坐标系,水流喷出的高度y (m )与水平距离x (m )之间的关系式可以用2y x bx c =-++表示,且抛物线经过点B 15,22⎛⎫ ⎪⎝⎭,C 72,4⎛⎫ ⎪⎝⎭; (1)求抛物线的函数关系式,并确定喷水装置OA 的高度;(2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?【答案】(1)2724y x x =-++,74米;(2)114米;(3)至少要12⎛+ ⎝⎭米. 【分析】(1)根据点B 、C 的坐标,利用待定系数法即可得抛物线的解析式,再求出0x =时y 的值即可得OA 的高度;(2)将抛物线的解析式化成顶点式,求出y 的最大值即可得;(3)求出抛物线与x 轴的交点坐标即可得.【详解】(1)由题意,将点157,,2,224B C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭代入得:1154227424b c b c ⎧-++=⎪⎪⎨⎪-++=⎪⎩, 解得274b c =⎧⎪⎨=⎪⎩, 则抛物线的函数关系式为2724y x x =-++, 当0x =时,74y =, 故喷水装置OA 的高度74米; (2)将2724y x x =-++化成顶点式为211(1)4y x =--+, 则当1x =时,y 取得最大值,最大值为114, 故喷出的水流距水面的最大高度是114米; (3)当0y =时,211(1)04x --+=,解得12x =+或102x =-<(不符题意,舍去),故水池的半径至少要12⎛⎫+ ⎪ ⎪⎝⎭米,才能使喷出的水流不至于落在池外.【点睛】本题考查了二次函数的实际应用,熟练掌握待定系数法和二次函数的性质是解题关键.13.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上的水珠高度y (米)关于水珠与喷头的水平距离x (米)的函数解析式是:236(04)2y x x x =-+≤≤,请求出当水珠的高度达到最大时,水珠与喷头的水平距离是多少?最大高度是多少?【答案】2米;6米.【分析】根据题目所给的函数解析式,用配方法求出当x 等于何值时函数有最大值以及最大值是多少.【详解】 解:由题意得,()()2223336=4=2+6222y x x x x x =-+----, 又因为04x ≤≤,所以当=2x 时,max =6y ,答:当水珠的高度达到最大时,水珠与喷头的水平距离是2米,最大高度是6米.【点睛】本题考查二次函数的实际应用,解题的关键是掌握求二次函数最值的方法.14.如图,在喷水池的中心A 处竖直安装一个水管AB .水管的顶端安有一个喷水管、使喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C .高度为3m .水柱落地点D 离池中心A 处3m .建立适当的平面直角坐标系,解答下列问题.(1)求水柱所在抛物线的函数解析式;(2)求水管AB 的长.【答案】(1)y =﹣34(x ﹣1)2+3(0≤x ≤3);(2)2.25m【分析】(1)以池中心为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系,设抛物线的解析式为y=a(x−1)2+3,将(3,0)代入求得a值;(2)由题意可得,x=0时得到的y值即为水管的长.【详解】解:(1)以池中心为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.由于在距池中心的水平距离为1m时达到最高,高度为3m,则设抛物线的解析式为:y=a(x﹣1)2+3,代入(3,0)求得:a=﹣34(x﹣1)2+3.将a值代入得到抛物线的解析式为:y=﹣34(x﹣1)2+3(0≤x≤3);(2)令x=0,则y=94=2.25.故水管AB的长为2.25m.【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.。
专题21 十字架模型--2024年中考数学核心几何模型重点突破(解析版)

专题21十字架模型【模型】如图21-1,已知正方形ABCD,点E 在边AD 上,点F 在边CD 上。
AF 与BE 相交于点O。
如果BE AF ⊥,则︒=∠+∠︒=∠+∠90,90AEB ABE AEB DAF ∴ABE DAF ∠=∠,在BAE ∆和ADF ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠DAF ABE AD AB D BAE ∴BAE ∆≌ADF∆⇒AFBE =如果AF BE =,则可根据HL 证明BAE ∆≌ADF ∆,⇒ABE DAF ∠=∠⇒BE AF ⊥。
【模型变式1】如图21-2,已知正方形ABCD,点E 在边AD 上,点F 在边CD 上,点G 在边BC 上。
AF 与GE 相交于点O。
如果GE AF ⊥⇒GEAF =【模型变式2】如图21-3,已知正方形ABCD,点E 在边AD 上,点F 在边CD 上,点G 在边BC 上,点H 在边AB 上。
HF 与GE 相交于点O。
如果GE HF ⊥⇒GEHF =【例1】如图,将一边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使5DE =,若折痕为PQ ,则PQ 的长为()A .13B .14C .15D .16【答案】A 【分析】过点P 作PM ⊥BC 于点M ,由折叠得到PQ ⊥AE ,从而得到∠AED =∠APQ ,可得△PQM ≌△ADE ,从而得到PQ =AE ,再由勾股定理,即可求解.【解析】解:过点P 作PM ⊥BC 于点M ,由折叠得到PQ ⊥AE ,∴∠DAE +∠APQ =90°,在正方形ABCD 中,AD ∥BC ,∠D =90°,CD ⊥BC ,∴∠DAE +∠AED =90°,∴∠AED =∠APQ ,∴∠APQ =∠PQM ,∴∠PQM =∠APQ =∠AED ,∵PM ⊥BC ,∴PM =AD ,∵∠D =∠PMQ =90°,∴△PQM ≌△ADE ,∴PQ =AE ,在Rt ADE △中,5DE =,AD =12,由勾股定理得:13AE ==,∴PQ =13.故选:A .【例2】如图,在正方形ABCD 中,点E 是BC 上一点,BF ⊥AE 交DC 于点F ,若AB =5,BE =2,则AF =____.【分析】根据正方形的性质得到AB =BC ,∠ABE =∠BCF =90°,推出∠BAE =∠EBH ,根据全等三角形的性质得到CF =BE =2,求得DF =5﹣2=3,根据勾股定理即可得到结论.【解析】∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =90°,∴∠BAE +∠AEB =90°,∵BH ⊥AE ,∴∠BHE =90°,∴∠AEB +∠EBH =90°,∴∠BAE =∠EBH ,在△ABE 和△BCF 中,BAE CBF AB BC ABE BCF ∠∠⎧⎪⎨⎪∠∠⎩==,=∴△ABE ≌△BCF (ASA ),∴CF =BE =2,∴DF =5﹣2=3,∵四边形ABCD 是正方形,∴AB =AD =5,∠ADF =90°,由勾股定理得:AF【例3】正方形ABCD 中,点E 、F 在BC 、CD 上,且BE =CF ,AE 与BF 交于点G .(1)如图1,求证AE ⊥BF ;(2)如图2,在GF 上截取GM =GB ,∠MAD 的平分线交CD 于点H ,交BF 于点N ,连接CN ,求证:AN +CNBN;【答案】(1)见解析;(2)见解析;【分析】(1)根据正方形的性质得AB =BC ,90ABC BCD ∠=∠=︒,用SAS 证明ABE BCF △△≌,得BAE CBF ∠=∠,根据三角形内角和定理和等量代换即可得;(2)过点B 作BH BN ⊥,交AN 于点H ,根据正方形的性质和平行线的性质,用SAS 证明AGB AGM ≌,得BAG MAG ∠=∠,根据角平分线性质得45BHA GAN ∠=∠=︒,则HBN 是等腰直角三角形,用SAS 证明ABH CBN ≌,得AH =CN ,在Rt HBN 中,根据勾股定理即可得;【解析】解:(1)∵四边形ABCD 是正方形,∴AB =BC ,90ABC BCD ∠=∠=︒,在ABE △和BCF △中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩∴ABE BCF △△≌(SAS ),∴BAE CBF ∠=∠,∵1801809090AEB BAE ABC ∠+∠=︒-∠=︒-︒=︒,∴90AEB CBF ∠+∠=︒,∴180()1809090EGB AEB CBF ∠=︒-∠+∠=︒-︒=︒,∴AE BF ⊥;(2)如图所示,过点B 作BH BN ⊥,交AN 于点H,∵四边形ABCD 是正方形,∴AB =AC ,90ABC HBN ∠=∠=︒,∵90HBN HBA ABN ∠=∠+∠=︒,90ABC CBN ABN ∠=∠+∠=︒,∴HBA CBN ∠=∠,由(1)得,AE BF ⊥,∴90AGB AGM ∠=∠=︒,∴90HBG AGM ∠=∠=︒,∴//HB AE ,∴BHA EAN ∠=∠,在AGB 和AGM 中,AG AG AGB AGM GB GM =⎧⎪∠=∠⎨⎪=⎩∴AGB AGM ≌(SAS ),∴BAG MAG ∠=∠,∵AN 平分DAM ∠,∴DAN MAN ∠=∠,∴90BAG MAG MAN DAN ∠+∠+∠+∠=︒,2290MAG MAN ∠+∠=︒,45MAG MAN ∠+∠=︒,45GAN ∠=︒,∴45BHA GAN ∠=∠=︒,∴180180904545BNH HBN BHA ∠=︒-∠-∠=︒-︒-︒=︒,∴HBN 是等腰直角三角形,∴BH =BN ,在ABH 和CBN 中,BH BN HBA CBN AB CB =⎧⎪∠=∠⎨⎪=⎩∴ABH CBN ≌(SAS ),∴AH =CN ,在Rt HBN中,根据勾股定理HN ==,∴AN CN AN AH HN BN +=+=;一、单选题1.如图,正方形ABCD 的边长为3,E 为BC 边上一点,BE =1.将正方形沿GF 折叠,使点A 恰好与点E 重合,连接AF ,EF ,GE ,则四边形AGEF 的面积为()A .B .C .6D .5【答案】D 【分析】作FH ⊥AB 于H ,交AE 于P ,设AG =GE =x ,在Rt △BGE 中求出x ,在Rt △ABE 中求出AE ,再证明△ABE ≌△FHG ,得到FG =AE ,然后根据S 四边形AGEF =S △AGF +S △EGF 求解即可【解析】解:作FH ⊥AB 于H ,交AE 于P ,则四边形ADFH 是矩形,由折叠的性质可知,AG =GE ,AE ⊥GF ,AO =EO .设AG =GE =x ,则BG =3-x ,在Rt △BGE 中,∵BE 2+BG 2=GE 2,∴12+(3-x )2=x 2,∴x =53.在Rt △ABE 中,∵AB 2+BE 2=AE 2,∴32+12=AE 2,∴AE.∵∠HAP +∠APH =90°,∠OFP +∠OPF =90°,∠APH =∠OPF ,∴∠HAP =∠OFP ,∵四边形ADFH 是矩形,∴AB =AD =HF .在△ABE 和△FHG 中,HAP OFP ABE GHF AB HF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△FHG ,∴FG =AE,∴S 四边形AGEF =S △AGF +S △EGF =1122GF OA GF OE ⋅+⋅=()12GF OA OE ⋅+=12GF AE ⋅=12=5.故选D.2.如图,将一边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使DE=5,折痕为PQ,则PQ的长为()A.12B.13C.14D.15【答案】B【解析】过点P作PM⊥BC于点M,由折叠得到PQ⊥AE,∴∠DAE+∠APQ=90°,又∠DAE+∠AED=90°,∴∠AED=∠APQ,∵AD∥BC,∴∠APQ=∠PQM,则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD∴△PQM≌△ADE∴13=.3.如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长为()A.32B.3C.94D.154【答案】C【分析】设EF=FD=x ,在RT △AEF 中利用勾股定理即可解决问题.【解析】解:∵将边长为6cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,∴EF =DE ,AB =AD =6cm ,∠A =90°∵点E 是AB 的中点,∴AE =BE =3cm ,在Rt △AEF 中,EF 2=AF 2+AE 2,∴(6﹣AF )2=AF 2+9∴AF =94故选C .4.如图,E ,F 分别是正方形ABCD 的边CD ,AD 上的点,且CE =DF ,AE ,BF 相交于点O ,下列结论:①AE =BF ;②AE ⊥BF ;③AO =OE ;④∠CEA =∠DFB ;⑤AOB DEOF S S ∆=四边形中正确的有()A .4个B .3个C .2个D .1个【答案】A 【分析】根据正方形的性质得AB =AD =DC ,∠BAD =∠D =90°,则由CE =DF 易得AF =DE ,根据“SAS”可判断△ABF ≌△DAE ,所以AE =BF ;根据全等的性质得∠ABF =∠EAD ,∠AFB =∠DEA ,利用∠EAD +∠EAB =90°得到∠ABF +∠EAB =90°,则AE ⊥BF ;连接BE ,BE >BC ,BA ≠BE ,而BO ⊥AE ,根据垂直平分线的性质得到OA ≠OE ;最后根据△ABF ≌△DAE 得ABF DAE S S ∆∆=,则ABF AOF DAE AOF S S S S ∆∆∆∆-=-,即AOB DEOF S S ∆=四边形.【解析】解:∵四边形ABCD 为正方形,∴AB =AD =DC ,∠BAD =∠D =90°,而CE =DF ,∴AF =DE ,在△ABF 和△DAE 中,AB AD BAD ADE AF DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DAE (SAS ),∴AE =BF ,故①正确;∴∠ABF =∠EAD ,∠AFB =∠DEA ,∴∠CEA =∠DFB ,故④正确;而∠EAD +∠EAB =90°,∴∠ABF +∠EAB =90°,∴∠AOB =90°,∴AE ⊥BF ,故②正确;连接BE ,如图所示:∵BE >BC ,∴BA ≠BE ,而BO ⊥AE ,∴OA ≠OE ,故③错误;∵△ABF ≌△DAE ,∴ABF DAE S S ∆∆=,∴ABF AOF DAE AOF S S S S ∆∆∆∆-=-,∴AOB DEOF S S ∆=,故⑤正确.综上所述,正确的结论有4个.故选:A .5.如图,正方形ABCD 的边长为6,点E ,F 分别在DC ,BC 上,BF =CE =4,连接AE 、DF ,AE 与DF 相交于点G ,连接AF ,取AF 的中点H ,连接HG ,则HG 的长为()A B .52C .5D .【答案】A 【分析】先证明△ADE ≌△DCF ,进而得∠AGF =90°,用勾股定理求得AF ,便可得GH .【解析】解:∵四边形ABCD 为正方形,∴∠ADE =∠C =90°,AD =DC =BC ,∵BF =CE ,∴CF =DE ,在△ADE 和△DCF 中,AD DC ADE C DE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△DCF (SAS ),∴∠DAE =∠CDF ,∵∠DAE +∠DEA =90°,∴∠CDF +∠DEA =90°,∴∠AGF =∠DGE =90°,∵点H 为AF 的中点,∴GH =12AF ,∵AB =6,BF =4,∴AF=,∴GH故选:A .6.如图,在正方形ABCD 中,4AB =,E ,F 分别为边,AB BC 的中点,连接,AF DE ,点G ,H 分别为,DE AF 的中点,连接GH ,则GH 的长为()A2B .1CD .2【答案】C【分析】连接AG ,延长AG 交CD 于M ,连接FM ,由正方形ABCD 推出AB =CD =BC =AD =4,AB ∥CD ,∠C =90°,证明△AEG ≌△MDG ,得到AG =MG ,AE =DM =12AB =12CD ,根据三角形中位线定理得到GH =12FM ,由勾股定理求出FM 即可得到GH .【解析】解:连接AG ,延长AG 交CD 于M ,连接FM ,∵四边形ABCD 是正方形,∴AB =CD =BC =AD =4,AB ∥CD ,∠C =90°,∴∠AEG =∠GDM ,∠EAG =∠DMG ,∵G 为DE 的中点,∴GE =GD ,∴△AEG ≌△MDG (AAS ),∴AG =MG ,AE =DM =12AB =12CD ,∴CM =12CD =2,∵点H 为AF 的中点,∴GH =12FM ,∵F 为BC 的中点,∴CF =12BC =2,∴FM ==,∴GH =12FM ,故选:C .二、填空题7.如图,将一边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使5DE =,折痕为PQ ,则PQ 的长__________.【答案】13【分析】先过点P 作PM ⊥BC 于点M ,利用三角形全等的判定得到△PQM ≌△AED ,从而求出PQ=AE .【解析】过点P 作PM ⊥BC 于点M ,由折叠得到PQ ⊥AE ,∴∠DAE+∠APQ=90°,又∠DAE+∠AED=90°,∴∠AED=∠APQ ,∵AD ∥BC ,∴∠APQ=∠PQM ,则∠PQM=∠APQ=∠AED ,∠D=∠PMQ ,PM=AD∴△PQM ≌△AED∴22512 .故答案是:13.8.如图,将边长为8的正方形纸片ABCD 折叠,使点D 落在BC 边的点E 处,点A 落在点F 处,折痕为MN ,若MN =5CN 的长是____.【答案】3【分析】过点M 作MH ⊥CD 于点H .连接DE ,结合题意可知MN 垂直平分DE ,先通过证明△MHN ≅△DCE 得出DE =MN =CE 的长,最后在Rt △ENC 中利用勾股定理求出DN ,最后进一步求出CN 即可.【解析】如图所示,过点M 作MH ⊥CD 于点H .连接DE .根据题意可知MN 垂直平分DE ,易证得:∠EDC =∠NMH ,MH =AD ,∵四边形ABCD 是正方形,∴MH =AD =CD ,∵∠MHN =∠C =90°,∴△MHN ≅△DCE (ASA ),∴DE =MN =在Rt △DEC 中,4CE ==,设DN =EN =x ,则CN =8x -,在Rt △ENC 中,222NE NC EC =+,∴()22284x x =-+,解得:5x =,∴CN =83x -=,故答案为:3.9.如图,正方形ABCD 的边长是3,点E ,F 分别是AB ,BC 边上的点,且满足2BE AE =,2CF BF =,连接DE ,AF 交于点G ,BD 交AF 于点H ,则四边形GEBH 的面积为______.【答案】3940【分析】根据正方形的性质得到3AD BC AB ===,90DAE ABF ∠=∠=︒,求得1AE BF ==,根据全等三角形的性质得到ADE BAF ∠=∠,推出AG DE ⊥,连接AC 交BD 于O ,根据相似三角形的性质得到3DH AD BH BF ==,求得3ADH ABH S S = ,得到98ABH S = ,根据相似三角形的性质得到210AE EG DE ==,根据三角形的面积即可得到结论.【解析】解: 正方形ABCD 的边长是3,3AD BC AB ∴===,90DAE ABF ∠=∠=︒,2BE AE = ,2CF BF =,1AE BF ∴==,ADE ∴V ≌()BAF SAS,ADE BAF ∴∠=∠,90DAG EAG ∠+∠=︒ ,90ADG DAG ∴∠+∠=︒,90AGD ∴∠=︒,AG DE ∴⊥,连接AC 交BD 于O ,AC BC ∴⊥,AD BF Q ∥,AHD ∴ ∽FHB △,3DH AD BH BF ∴==,3ADH ABHS S ∴= ,193322ABD S =⨯⨯= ,98ABH S ∴=,DE ==AE AD AG DE ⋅∴==90DAE ∠=︒ ,AG DE ⊥,ADE ∴V ∽GAE ,AE DE GE AE∴=,2AE EG DE ∴==13220AGE S ∴== ,∴四边形GEBH 的面积933982040ABH AGE S S =-=-= ,故答案为:3940.10.如图,四边形ABCD 为正方形,点E 、点G 分别为BC 、AB 边上的点,CE =BG =BE ,连接DE 、CG 交于点F ,若GF =3,四边形ABCD 的面积为___.【答案】20【分析】连接GE ,根据正方形的性质,易证△GBC ≌△ECD (SAS ),根据全等三角形的性质,可得GC ⊥DE ,设CE =BG =BE =x ,根据AGD BGE DEC GED ABCD S S S S S ∆∆∆∆=+++正方形列方程,可求出x 的值,进一步即可求出正方形ABCD 的面积.【解析】解:连接GE ,如图所示:在正方形ABCD 中,BC =CD ,∠A =∠B =∠BCD =90°,又∵BG =CE ,∴△GBC ≌△ECD (SAS ),∴∠GCB =∠EDC ,∵∠GCB +∠FCD =90°,∴∠EDC +∠FCD =90°,∴∠DFC =90°,∴GC ⊥DE ,设CE =BG =BE =x ,则BC =2x ,∴正方形ABCD 的边长为2x ,∴AG =2x -x =x ,在△DCE 中,根据勾股定理,得DE ,∵AGD BGE DEC GED ABCD S S S S S ∆∆∆∆=+++正方形,又∵GF =3,∴21111(2)(2)(2)32222x x x x x x x =⋅⋅+⋅+⋅+⋅,解得x∴正方形ABCD 的边长为∴正方形ABCD 的面积为,故答案为:20.11.如图,正方形ABCD 的边长为2,动点E ,F 分别从D ,C 两点同时出发,以相同的速度在边DC ,CB 上向各自终点C ,B 移动,连接AE 和DF 交于点P ,则线段CP 的最小值是________.1【分析】证明△ADE ≌△DCF 得到∠DAE =∠CDF ,推出∠DPE =90°,则∠APD =90°,故点P 在以AD 为直径的圆上运动,取AD 中点G ,连接CG ,交圆G (直径为AB )于点P ,则此时CP 最小,据此求解即可.【解析】解:∵动点E ,F 分别从D ,C 两点同时出发,以相同的速度在边DC ,CB 上向各自终点C ,B 移动,∴DE =CF ,∵四边形ABCD 是正方形,∴∠ADE =∠DCF =90°,AD =DC ,∴△ADE ≌△DCF (SAS ),∴∠DAE =∠CDF ,∵∠DAE +∠DEA =90°,∴∠PED +∠PDE =90°,∴∠DPE =90°,∴∠APD =90°,∴点P 在以AD 为直径的圆上运动,取AD 中点G ,连接CG ,交圆G (直径为AB )于点P ,则此时CP 最小,∵四边形ABCD 是边长为2的正方形,∴112902DG AD CD ADC ====︒,,∠,∴CG ==∴1CP CG GP =-=,∴CP 1,1.12.如图,点E 在正方形ABCD 的CD 边上,连结BE ,将正方形折叠,使点B 与E 重合,折痕MN 交BC 边于点M ,交AD 边于点N ,若tan ∠EMC =34,ME +CE =8,则折痕MN 的长为___________.【答案】【分析】过N 作NH ⊥BC 于H ,得到四边形ABHN 是矩形,根据矩形的性质得到NH =AB ,∠NHM=90°,证明△BCE≌△NHM,根据全等三角形的性质得到HM=CE,设CE=3x,则CM=4x,根据勾股定理得到EM=5x,求出x,可得NH=9,再利用勾股定理计算即可.【解析】解:过N作NH⊥BC于H,则四边形ABHN是矩形,∴NH=AB,∠NHM=90°,∵四边形ABCD是正方形,∴∠C=90°,AB=BC,∴NH=BC,∵将正方形折叠,使点B与E重合,∴MN⊥BE,BM=ME,∴∠HNM+∠NMH=∠EBC+∠BMN=90°,∴∠EBC=∠HNM,在△BCE与△NHM中,NHM CNH BCHNM CBE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BCE≌△NHM(ASA),∴HM=CE,在Rt△EMC中,∵tan∠EMC=34 CECM=,∴设CE=3x,则CM=4x,由勾股定理得:EM=5x,∵ME+CE=8,∴5x+3x=8,∴x=1,∴EM=5,HM=CE=3,CM=4,∴BC=BM+CM=EM+CM=9,∴NH=9,∴MN=故答案为:三、解答题13.已知:如图,正方形ABCD 中,E 、F 分别是边CD 、AD 上的点,AE ⊥BF.(1)求证:AE =BF ;(2)联结BE 、EF ,如果∠DEF =∠ABE ,求证:2·DF AF AD =.【答案】(1)见解析;(2)见解析【分析】(1)设BF 与AE 交于O 点,根据同角的余角相等得∠ABF =∠DAE ,再利用ASA 证明△ABF ≌△DAE ,得AE =BF ;(2)根据两个角相等证明△DEF ∽△CEB ,得DE DF CE BC=,由(1)得△ABF ≌△DAE ,则AF =DE ,等量代换即可.【解析】(1)证明:设BF 与AE 交于O点,∵四边形ABCD 是正方形,∴AB =AD ,∠BAF =∠D =90°,∵AE ⊥BF .∴∠AOB =90°,∴∠ABO +∠BAO =90°,∠BAO +∠DAE =90°,∴∠ABF =∠DAE ,在△ABF 和△DAE 中,ABF DAE AB AD BAF D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△DAE (ASA ),∴AE =BF ;(2)解:∵AB CD ,∴∠ABE =∠BEC ,∵∠DEF =∠ABE ,∴∠DEF =∠BEC ,∵∠D =∠C ,∴△DEF ∽△CEB ,∴DE DF CE BC=,由(1)得,△ABF ≌△DAE ,∴AF =DE ,∴CE =DF ,∵AD =BC ,∴2·DF AF AD =.14.如图,在正方形ABCD 中,点E ,F 分别在AD ,CD 上,连接AF ,BE 相交于点G ,且AF =BE .(1)求证:DE =CF ;(2)若AB =4,DE =1,求GF 的长.【答案】(1)证明见解析;(2) 2.6GF =【分析】(1)由正方形的性质得出∠BAE =∠ADF =90︒,AB =AD =CD ,AF =BE ,由HL 证明△BAE ≌△ADF ,即可得出结论;(2)由正方形的性质与已知线段求出AE ,再由勾股定理求得BE ,根据角之间的关系得到∠AGB =90︒,利用三角形的面积可得答案.【解析】(1)解:∵四边形ABCD 是正方形,∴∠BAE =∠ADF =90︒,AB =AD =CD ,在Rt △BAE 和Rt △ADF 中,{BA AD BE AF ==,∴△BAE ≌△ADF (HL ),∴AE =DF ,∴DE =CF ;(2)∵AB =4,四边形ABCD 是正方形,∴AD =4,∵DE =1,∴AE =3,∴5BE ===,∵△BAE ≌△ADF ,∴BE =AF =5,∠DAF =∠ABE ,又∵∠DAF +∠BAG =90︒,∴∠BAG +∠ABG =90︒,∴90,AGB ∠=︒∴AG ⊥BE ,则11,22AB AE AG BE = ∴34 2.45AG ⨯==,∴GF =AF -AG =5-2.4=2.6.15.如图1,在正方形ABCD 中,E 为BC 上一点,连接AE ,过点B 作BG AE ⊥于点H ,交CD 于点G .(1)求证:AE BG =;(2)如图2,连接AG 、GE ,点M 、N 、P 、Q 分别是AB 、AG 、GE 、EB 的中点,试判断四边形MNPQ 的形状,并说明理由;(3)如图3,点F 、R 分别在正方形ABCD 的边AB 、CD 上,把正方形沿直线FR 翻折,使得BC 的对应边''B C 恰好经过点A ,过点A 作AO FR ⊥于点O ,若'1AB =,正方形的边长为3,求线段OF 的长.【答案】(1)见解析;(2)四边形MNPQ 为正方形,理由见解析;(3【分析】(1)由四边形ABCD 为正方形,可得90ABC BCD ∠=∠=︒,推得90ABG CBG ∠+∠=︒,由BG AE ⊥,可得90BAE ABG ∠+∠=︒,可证()ABE BCG ASA ≅△△即可;(2)M 、N 为AB 、AG 中点,可得MN 为ABG 的中位线,可证//MN BG ,12MN BG =,由点M 、N 、P 、Q 分别是AB 、AG 、GE 、EB 的中点,可得PQ 是BEG 的中位线,MQ 为ABE △的中位线,NP 为AEG △的中位线,可证//PQ BG ,12PQ BG =,//MQ AE ,12MQ AE =,//NP AE ,12NP AE =,可证四边形MNPQ 为平行四边形.再证四边形MNPQ 为菱形,最后证MN MQ ⊥即可;(3)延长AO 交BC 于点S ,由对称性可得'BF B F =,'1AB BS ==,AO SO =,由勾股定理可求AS =12AO AS ==AF x =,在'Rt AB F △中,2221(3)x x +-=,解得53x =,在Rt AOF中,可求OF =【解析】(1)证明:∵四边形ABCD 为正方形,∴90ABC BCD ∠=∠=︒,∴90ABG CBG ∠+∠=︒,∵BG AE ⊥,∴∠AHB =90°,∴90BAE ABG ∠+∠=︒,∴BAE CBG ∠=∠,在ABE △与BCG 中,BAE CBG AB BC ABC BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABE BCG ASA ≅△△,∴AE BG =.(2)解:四边形MNPQ 为正方形,理由如下:∵M 、N 为AB 、AG 中点,∴MN 为ABG 的中位线,∴//MN BG ,12MN BG =,∵点M 、N 、P 、Q 分别是AB 、AG 、GE 、EB 的中点,∴PQ 是BEG 的中位线,MQ 为ABE △的中位线,NP 为AEG △的中位线,,∴//PQ BG ,12PQ BG =,//MQ AE ,12MQ AE =,//NP AE ,12NP AE =,∴MN PQ =,MQ NP =,∴四边形MNPQ 为平行四边形.∵AE BG =,∴MN MQ =,∴四边形MNPQ 为菱形,∵BG AE ⊥,//MQ AE ,∴MQ BG ⊥,∵//MN BG ,∴MN MQ ⊥,∴四边形MNPQ 为正方形.(3)解:延长AO 交BC 于点S ,由对称性可知'BF B F =,'1AB BS ==,AO SO =,在Rt ABS 中,AS,∴12AO AS ==设AF x =,则'3BF B F x ==-,在'Rt AB F △中,2221(3)x x +-=,53x =,∴53AF =,在Rt AOF 中,6OF ===.16.如图,正方形ABCD 边长为4,点G 在边AD 上(不与点A 、D 重合),BG 的垂直平分线分别交AB 、CD 于E 、F 两点,连接EG .(1)当AG =1时,求EG 的长;(2)当AG 的值等于时,BE =8-2DF ;(3)过G 点作GM ⊥EG 交CD 于M①求证:GB 平分∠AGM ;②设AG =x ,CM =y ,试说明16441xy x y---的值为定值.【答案】(1)178;(2)843-3)①见解析;②164410xy x y ---=,理由见解析【分析】(1)根据EF 是线段BG 的垂直平分线,BE =EG ,设EG =EB =x ,则AE =AB -BE =4-x ,再由勾股定理求解即可;(2)过点F 作FH ⊥AB 于H ,连接FB ,FG ,由BE =8-2DF ,CF =CD -DF =4-DF ,得到BE =2CF ,先证明四边形BCFH 是矩形,得到CF =HB ,则BH =EH =FC ,设AG =x ,BE =y ,则AE =4-y ,GD =4-x ,CF =12y ,142DF y =-由222AE AG EG +=,222GD DF GF +=,222BC FC BF +=,可以得到()2224y x y -+=①,()22221144422x y y ⎛⎫⎛⎫-+-=+ ⎪ ⎪⎝⎭⎝⎭②,联立①②求解即可得到答案;(3)①先证明∠EBG =∠EGB ,然后根据ABG +∠AGB =90°,∠EGB +∠BGM =90°,即可得到∠AGB =∠BGM ;②连接BM ,过点B 作BH ⊥GM ,由角平分线的性质得到BH =AB =4,由=44=16ABG MBG BCM CDM ABCD S S S S S +++=⨯△△△△正方形,可以得到()()122244=162x GM y x y +++--,由勾股定理可以得到222DM GD GM +=即()()2224444xy x y ⎛⎫-+-=- ⎪⎝⎭,最后解方程即可得到答案.【解析】解:(1)∵EF 是线段BG 的垂直平分线,∴BE =EG ,∵四边形ABCD 是正方形,且边长为4,∴AB =4,∠A =90°,设EG =EB =x ,则AE =AB -BE =4-x ,∵222AE AG EG +=,∴()22241x x -+=,解得178=x ,∴178EG =;(2)如图所示,过点F 作FH ⊥AB 于H ,连接FB ,FG∵EF 是线段BG 的垂直平分线,∴BF =FG ,∵BE =8-2DF ,CF =CD -DF =4-DF ,∴BE =2CF ,∵四边形ABCD 是正方形,FH ⊥AB ,∴∠HBC =∠C =∠BHF =90°,∴四边形BCFH 是矩形,∴CF =HB ,∴BH =EH =FC ,设AG =x ,BE =y ,则AE =4-y ,GD =4-x ,CF =12y ,142DF y =-∵222AE AG EG +=,222GD DF GF +=,222BC FC BF +=,∴()2224y x y -+=①,()22221144422x y y ⎛⎫⎛⎫-+-=+ ⎪ ⎪⎝⎭⎝⎭②,联立①②解得8x =-8x =+,∴当8AG =-BE =8-2DF ,故答案为:8-(3)①∵EF 是线段BG 的垂直平分线,∴EG =BE ,∴∠EBG =∠EGB ,∵四边形ABCD 是正方形,EG ⊥GM ,∴∠A =∠EGM =90°,∴∠ABG +∠AGB =90°,∠EGB +∠BGM =90°,∴∠AGB =∠BGM ,∴BG 平分∠AGM ;②如图,连接BM ,过点B 作BH ⊥GM ,由(3)①得BG 平分∠AGM ,∴BH =AB =4,∵AG =x ,CM =y ,∴DG =4-x ,DM =4-y ,∵=44=16ABG MBG BCM CDM ABCD S S S S S +++=⨯△△△△正方形,∴1111=162222AG AB GM BH CM BC DM GD +++g g g g ,∴()()122244=162x GM y x y +++--,∴44xy GM =-,∵222DM GD GM +=,∴()()2224444xy x y ⎛⎫-+-=- ⎪⎝⎭∴222216816816216x y x x y y xy -++-+=-+∴()()22281616x y x y x y +-++=,∴()222416x y x y +-=,∴44xy x y +-=±,当44xy x y +-=时,则4416x y xy +-=,∴16444x y x-==-(不符合题意),∴4416x y xy+-=-∴164410xy x y---=.17.已知:在平面直角坐标系中,O 为坐标原点,四边形OABC 为正方形.(1)若正方形OABC边长为12,①如图1,E、F分别在边OA、OC上,CE⊥BF于H,且OE=9,则点F的坐标为(______,_______).②如图2,若D为x轴上一点,且OD=8,Q为y轴正半轴上一点,且∠DBQ=45°,求点Q的坐标.(2)若正方形OABC边长为4,如图3,E、F分别在边OA、OC上,当F为OC的中点,CE⊥BF 于H,在直线CE上E点的两侧有点D、G,能使线段AD=OG,AD//OG,且CH=DH,求BG.【答案】(1)①3,0;②Q点坐标为(0,15)或(0,6)(2)BG8105【分析】(1)①通过证明△OEC≌△CFB(AAS),求出OF,即可求点的坐标;②分两种情况讨论:当D(8,0)时,过B点作BM⊥BD交y轴于点M,可证明△ABM≌△CBD (AAS),连接BQ,可证明△MBQ≌△DBQ(SAS),设AQ=x,则OQ=12﹣x,DQ=4+x,在Rt△ODQ中由勾股定理求出x=6,即可求Q(0,6);当D(﹣8,0)时,过BN⊥BQ 交x轴于点N,同理可得△ABQ≌△CBN(AAS),连接DQ,可得△QBD≌△NBD(SAS),设AQ=CN=y,则DN=20﹣y,QO=12+y,在Rt△DOQ中,由勾股定理求出y=3,即可求Q(0,15);(2)在Rt△BCF中,求出BF=5CH=455,再由CH=DH,可得DC=855,连接OD,OH,证明△OCD≌△CBH(ASA),分别得到CD=BH855,OD=CH 45 5OH=4105,再证明△AOD≌△OCH(SAS),可求OH=AD=OG=4105,∠OAD=∠HOC,推导出∠GOH=90°,在Rt△GHO中,由勾股定理求出GH=855,在Rt△BHG中,由勾股定理求出BG=810 5.【解析】(1)①∵CE⊥BF,∴∠BHC=90°,∴∠ECO+∠HFC=90°,∵∠OEC+∠OCE=90°,∴∠HFC=∠OEC,∵BC=OC,∴△OEC≌△CFB(AAS),∴OE=CF=9,∴OF=3,∴F(3,0),故答案为:3,0;②∵D为x轴上一点,且OD=8,∴D(8,0)或(﹣8,0),当D(8,0)时,如图2,过B点作BM⊥BD交y轴于点M,∴∠DBM=90°,∴∠MBA+∠ABD=90°,∵∠ABD+∠CBD=90°,∴∠MBA=∠CBD,∵AB=BC,∴△ABM≌△CBD(AAS),∴BM=BD,CD=AM,连接BQ,∵∠DBQ=45°,∴∠MBQ=45°,又∵BM=BD,∴△MBQ≌△DBQ(SAS),∴DQ=MA,∵OD=8,OC=12,∴CD=MA=4,设AQ=x,则OQ=12﹣x,DQ=4+x,在Rt△ODQ中,(4+x)2=64+(12﹣x)2,解得x=6,∴Q(0,6);如图3,当D(﹣8,0)时,过BN⊥BQ交x轴于点N,同理可得△ABQ≌△CBN(AAS),∴AQ=CN,BQ=BN,连接DQ,同理可得△QBD≌△NBD(SAS),∴DN=DQ,设AQ=CN=y,则DN=20﹣y,QO=12+y,在Rt△DOQ中,(20﹣y)2=(12+y)2+64,解得y=3,∴Q(0,15);综上所述:Q点坐标为(0,15)或(0,6);(2)∵F为OC的中点,CO=4,∴CF=OF=2,在Rt△BCF中,BC=4,CF=2,∴BF=∵BF⊥CH,∴CH∵CH=DH,∴DC=5,如图4,连接OD,OH,∵H 是CD 的中点,F 是OC 的中点,∴FH ∥OD ,∴OD ⊥CD ,∴∠ODC =∠GHC =90°,∵BC =CO ,∠FBC =∠DCO ,∴△OCD ≌△CBH (ASA ),∴CD =BH =855,OD =CH 455∴OH =105,∵∠AOD +∠DOC =∠DOC +∠DCO =90°,∴∠AOD =∠DCO ,∵AO =CO ,OH =OD ,∴△AOD ≌△OCH (SAS ),∴OH =AD =OG =4105,∠OAD =∠HOC ,∵AD ∥GO ,∴∠OAD =∠GOA ,∴∠GOH =90°,在Rt △GHO 中,GH 22GO OH +855,在Rt △BHG 中,BG 22GH BH +8105.18.如图,正方形ABCD 中,点E 为BC 边上一点,点F 为CD 边上一点,且BE CF =,连接AE 、BF 交于点G .(1)求证:90AGF ∠= ;(2)连接GC ,若GC 平分EGF ∠,求证:2AB CF =;(3)在(2)的条件下,连接GD ,过点E 作EH ∥GD 交CD 边于点H ,交BF 于点M ,若2FH =,求线段FM 的长.【答案】(1)过程见解析;(2)过程见解析;(3)655【分析】(1),根据“SAS ”证明△ABE ≌△BCF ,可得∠BAG=∠CBF ,再根据∠CBF+∠ABG=90°,即可得出答案;(2),过点C 作CH ⊥EG ,CI ⊥FG ,可得CH=CI ,进而得出四边形GHCI 是矩形,再根据“AAS ”证明△CEH ≌△CFI ,得出CE=CF ,然后根据BE=CF ,可知BC=2CE ,即可得出结论;(3),设正方形的边长为2a ,分别表示出BE ,CF ,DF ,根据勾股定理求出BF ,再根据BEG BFC V :V 求出BG ,进而得出FG ,然后根据FMH FGD V :V ,得FM FG FH FD=,再代数答案可求.【解析】(1)∵四边形ABCD 是正方形,∴AB=BC ,∠ABE=∠BCF =90°.∵BE=CF ,∴△ABE ≌△BCF ,∴∠BAG=∠CBF .∵∠CBF+∠ABG=90°,∴∠BAG+∠ABG=90°,∴∠AGB=90°,即∠AGF=90°;(2)过点C 作CH ⊥EG ,于点H ,CI ⊥FG ,于点I ,∵GC 平分∠EGF ,∴CH=CI .∵∠EGF=∠CHG =∠CIG=90°,∴四边形GHCI 是矩形.∵∠HCE+∠ECI=∠ECI+∠FCI =90°,∴∠ECH=∠FCI .∵∠CHE=∠CIF=90°,∴△CEH ≌△CFI ,∴CE=CF .∵BE=CF ,∴CE=BE ,则BC=2CE ,∴AB=2CF ;(3)设正方形的边长BC=2a ,则BE=a ,CF=a ,DF=a ,根据勾股定理得BF ==.∵∠EBG=∠FBC ,∠BGE=∠BCF=90°,∴BEG BFC V :V ,∴BE BG BF BC =,2BG a =,解得5BG a =,∴5FG a =.∵EH DG ∥,∴FMH FGD V :V ,∴FM FG FH FD=,即52a FM a=,解得5FM =.19.(1)如图1,在正方形ABCD 中,AE ,DF 相交于点O 且AE ⊥DF .则AE 和DF 的数量关系为.(2)如图2,在正方形ABCD 中,E ,F ,G 分别是边AD ,BC ,CD 上的点,BG ⊥EF ,垂足为H .求证:EF =BG .(3)如图3,在正方形ABCD 中,E ,F ,M 分别是边AD ,BC ,AB 上的点,AE =2,BF =4,BM =1,将正方形沿EF 折叠,点M 的对应点与CD 边上的点N 重合,求CN的长度.【答案】(1)AE =DF ;(2)见解析;(3)CN 的长度为3【分析】(1)证明∠BAE =∠ADF ,则△ABE ≌△DAF (AAS ),即可求解;(2)由正方形的性质得出∠CBG =∠MEF ,证明△BCG ≌△EMF (ASA ),即可求解;(3)证明△EHF ≌△MGN (ASA ),则NG =HF ,而AE =2,BF =4,故NG =HF =4-2=2,进而求解.【解析】解:(1)∵∠DAO +∠BAE =90°,∠DAO +∠ADF =90°,∴∠BAE =∠ADF ,在△ABE 和△DAF 中,BAE ADF ABE DAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DAF (AAS ),∴AE =DF ,故答案为:AE =DF ;(2)如图1,过点E 作EM ⊥BC 于点M ,则四边形ABME 为矩形,则AB =EM ,在正方形ABCD 中,AB =BC ,∴EM =BC ,∵EM ⊥BC ,∴∠MEF +∠EFM =90°,∵BG ⊥EF ,∴∠CBG +∠EFM =90°,∴∠CBG =∠MEF ,在△BCG 和△EMF 中,90CBG MEF BC EM C EMF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△BCG ≌△EMF (ASA ),∴EF =BG ;(3)如图2,连接MN ,∵M 、N 关于EF 对称,∴MN ⊥EF ,过点E 作EH ⊥BC 于点H,过点M 作MG ⊥CD 于点G ,则EH ⊥MG ,由(2)同理可得:△EHF ≌△MGN (ASA ),∴NG =HF ,∵AE =2,BF =4,∴NG =HF =4-2=2,又∵GC =MB =1,∴NC =NG +CG =2+1=3.20.华师版八年级下册数学教材第121页习题19.3第2小题及参考答案.如图,在正方形ABCD 中,CE DF ⊥.求证:CE DF =.证明:设CE 与DF 交于点O ,∵四边形ABCD 是正方形,∴90B DCF ∠=∠=︒,BC CD =.∴90BCE DCE ∠+∠=︒,∵CE DF ⊥,∴90COD ∠=︒.∴90CDF DCE ∠+∠=︒.∴CDF BCE ∠=∠,∴CBE DFC △△≌.∴CE DF =.某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究.【问题探究】如图1,在正方形ABCD 中,点E 、F 、G 、H 分别在线段AB 、BC 、CD 、DA 上,且EG FH ⊥.试猜想EG FH的值,并证明你的猜想.【知识迁移】如图2,在矩形ABCD 中,AB a =,BC b =,点E 、F 、G 、H 分别在线段AB 、BC 、CD 、DA 上,且EG FH ⊥.则EG FH=______.【拓展应用】如图3,在四边形ABCD 中,90DAB ∠=︒,45ABC ∠=︒,AB =,点E 、F 分别在线段AB 、AD 上,且CE BF ⊥.直接写出CE BF 的值.【答案】(1)1EG FH =,理由见详解;(2)b a;(3)13【分析】(1)过点A 作AM ∥HF 交BC 于点M ,作AN ∥EG 交CD 的延长线于点N ,利用正方形ABCD ,AB =AD ,∠ABM =∠BAD =∠ADN =90°求证△ABM ≌△ADN 即可;(2)过点A 作AM ∥HF 交BC 于点M ,作AN ∥EG 交CD 的延长线于点N ,利用在长方形ABCD 中,BC =AD ,∠ABM =∠BAD =∠ADN =90°求证△ABM ∽△ADN .再根据其对应边成比例,将已知数值代入即可;(3)如图3中,过点C 作CM ⊥AB 于点M .设CE 交BF 于点O .证明△CME ∽△BAF ,推出BCE BF CM A =,可得结论.【解析】解:结论:1EG FH =理由:如图(1)中,过点A 作AM ∥HF 交BC 于点M ,作AN ∥EG 交CD 的延长线于点N ,∴AM =HF ,AN =EG ,在正方形ABCD 中,AB =AD ,∠ABM =∠BAD =∠ADN =90°,∵EG ⊥FH ,∴∠NAM =90°,∴∠BAM =∠DAN ,在△ABM 和△ADN 中,∠BAM =∠DAN ,AB =AD ,∠ABM =∠ADN ,∴△ABM ≌△ADN (ASA ),∴AM =AN ,即EG =FH ,∴1EG FH=;(2)如图(2)中,过点A 作AM ∥HF 交BC 于点M ,作AN ∥EG 交CD 的延长线于点N ,∴AM=HF,AN=EG,在长方形ABCD中,BC=AD,∠ABM=∠BAD=∠ADN=90°,∵EG⊥FH,∴∠NAM=90°,∴∠BAM=∠DAN.∴△ABM∽△ADN.∴AM AB AN AD=,∵AB=a,BC=AD=b∴EG b FH a=.故答案为:b a;(3)如图,过点C作CM⊥AB于点M.设CE交BF于点O,CM交BF于点G.∵CM⊥AB,∴∠CME=90°,∴∠MBG+∠MGB=90°,∵CE⊥BF,∴∠BOC=90°,∴∠CGO+∠GCO=90°,∵∠MGB=∠CGO∴∠MBG=∠GCO,∵∠A=∠CME=90°,∴△CME ∽△BAF ,∴BCE BF CM A =,∵AB =,45ABC ∠=︒,∴sin 452CM BC BC =︒= ,即BC ;∴32AB CM ==⨯=,∴13CE CM BF AB ==.。
上海中考数学压轴题专题21 函数综合(相切)(解析版)

上海中考数学压轴题专题21 函数综合(相切)教学重难点1.掌握用待定系数法求解函数的解析式;2.培养学生能根据题目中的条件画出大致需要的图形;3.培养学生分析问题、解决问题的综合能力。
【备注】本部分为知识点回顾总结,时间大概为5分钟左右,注意让学生多画图回顾。
函数基础知识点梳理:x函数综合题目考点分析:1.求解函数解析式,以二次函数为主;2.求解相关点的坐标,二次函数中一般考察求对称轴、顶点坐标;3以函数为背景,考察相似、等腰、相切、平行四边形、面积等相关知识点;该类题型综合性很强,需要及时画图观察。
1.(2019静安区二模)已知:如图,梯形ABCD中,AD∥BC,AD=2,AB=BC=CD=6.动点P在射线BA上,以BP为半径的⊙P交边BC于点E(点E与点C不重合),联结PE、PC.设BP= x,PC= y.(1)求证:PE∥DC;(2)求y关于x的函数解析式,并写出定义域;(3)联结PD,当∠PDC=∠B时,以D为圆心半径为R的⊙D与⊙P相交,求R的取值范围.【整体分析】(1)根据梯形的性质得到∠B=∠DCB,根据等腰三角形的性质得到∠B=∠PEB,根据平行线的判定定理即可得到结论;(2)分别过P、A、D作BC的垂线,垂足分别为点H、F、G.推出四边形ADGF是矩形,PH∥AF,求得BF=FG=GC=2,根据勾股定理得到AF===,根据平行线分线段成比例定理得到PH=,13BH x=,求得163CH x=-,根据勾股定理即可得到结论;(3)作EM∥PD交DC于M.推出四边形PDME是平行四边形.得到PE=DM=x,即MC=6-x,根据相似三角形的性质得到PD=EC=1218655-=,根据相切两圆的性质即可得到结论.【满分解答】证明:(1)∵梯形ABCD,AB=CD,∴∠B=∠DCB.∵PB=PE,∴∠B=∠PEB,∴∠DCB=∠PEB,∴PE∥CD.(2)分别过P、A、D作BC的垂线,垂足分别为点H、F、G.∵梯形ABCD中,AD∥BC,AF⊥BC,DG⊥BC,PH⊥BC,∴四边形ADGF是矩形,PH∥AF.∵AD=2,BC=DC=6,∴BF=FG=GC=2.在Rt△ABF中,AF===﹒∵PH∥AF,∴PH BP BHAF AB BF==62x BH==.∴PH=,13 BH x=.∴163 CH x=-.在Rt△PHC中,PC=∴y=(09)y x=<<.(3)作EM∥PD交DC于M.∵PE∥DC,∴四边形PDME是平行四边形.∴PE=DM=x ,即 MC=6-x . PD=ME ,∠PDC=∠EMC , 又∵∠PDC=∠B ,∠B=∠DCB , ∴∠DCB =∠EMC =∠PBE =∠PEB . ∴△PBE ∽△ECM .∴PB BE EC MC =,即232663xx x x =--.整理方程,解得:185x =. 即BE 125=.∴PD=EC=1218655-=. 当两圆外切时,PD=P r R +,即0R =(舍去); 当两圆内切时,PD=P r R -,即10R =(舍去),2365R =; 即两圆相交时,3605R <<. 【点睛】此题考查圆的综合题,梯形的性质,平行四边形的性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.2.(2018徐汇区二模)如图,在中,,,点是边上一动点(不与点重合),以长为半径的与边的另一个交点为,过点作于点.当与边相切时,求的半径;联结交于点,设的长为,的长为,求关于的函数解析式,并直接写出的取值范围; 在的条件下,当以长为直径的与相交于边上的点时,求相交所得的公共弦的长.【整体分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=,则sinC=,sinC= ==,即可求解;(2)PD∥BE,则=,即:,即可求解;(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=4,即可求解.【满分解答】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=,则sinC=,sinC===,解得:R=;(2)在△ABC中,AC=BC=10,cosC=,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=4,则:tan∠CAB=2BP==,DA=x,则BD=4-x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ=,sinβ=,EB=BDcosβ=(4-x)×=4-x,∴PD∥BE,∴=,即:,整理得:y=;(3)以EP为直径作圆Q如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q时弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形, ∴AG=EP=BD , ∴AB=DB+AD=AG+AD=4,设圆的半径为r ,在△ADG 中, AD=2rcosβ=,DG=,AG=2r ,+2r=4,解得:2r=,则:DG==10-2,相交所得的公共弦的长为10-2.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关lyxOC A B2.其它条件:直线l 过点()2,0A -,⊙B 和直线l 相切。
2023年中考数学专题21 视图与投影(原卷版)

专题21 视图与投影一、投影1.投影:在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光下形成的物体的投影叫做中心投影,点光叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光近的物体的影子短,离点光远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.二、视图1.视图:由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.三、几何体的展开与折叠1.常见几何体的展开图几何体立体图形表面展开图侧面展开图圆柱圆锥三棱柱2.正方体的展开图正方体有11种展开图,分为四类:第一类,中间四连方,两侧各有一个,共6种,如下图:第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;第四类,两排各有三个,也只有1种,如图11.考向一三视图1.下列立体图形中,主视图是三角形的是()A.B.C.D.2.如图所示的几何体从上面看到的形状图是()A.B.C.D.3.某立体图形如图,其从正面看所得到的图形是()A.B.C.D.4.如图的几何体由若干个棱长为1的正方体堆放而成,则这个几何体的俯视图面积.考向二几何体的还原5.下列几何体中,俯视图与主视图完全相同的几何体是()A.圆锥B.球C.三棱柱D.四棱锥6.如图是某几何体的三视图,这个几何体是()A.三棱柱B.三棱锥C.长方体D.正方体7.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A.3cm3B.14cm3C.5cm3D.7cm38.如图是由一些相同的小正方体构成的立体图形的三种视图,则构成这个立体图形的小正方体的个数是个.考向三组合正方体的最值问题9.如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5B.6C.7D.810.如图,是一个由若干个小正方体组成的几何体的主视图和左视图,则该几何体最多可由多少个小正方体组合而成?()A.12个B.13个C.14个D.15个11.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则m+n=()A.14B.16C.17D.1812.如图,用小立方块搭一几何体,从正面看相从上面看得到的图形如图所示,这样的几何体至少要个立方块.考向四几何体的计算问题13.长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是()A.10cm2B.12cm2C.15cm2D.20cm214.如图所示的三棱柱,其俯视图的内角和为()A.180°B.360°C.540°D.720°15.如图,是一个几何体的三视图,则该几何体的表面积是()A.7πcm2B.(+2)πcm2C.6πcm2D.(+5)πcm2 16.某几何体从三个方向看到的图形分别如图,则该几何体的体积为.考向五立体图形的展开与折叠17.下面图形中是正方体的表面展开图的是()A.B.C.D.18.如图是一个几何体的展开图,则这个几何体是()A.B.C.D.19.从如图所示的7个小正方形中剪去一个小正方形,使剩余的6个小正方形折叠后能围成一个正方体,则应剪去标记为()的小正方形A.祝或考B.你或考C.好或绩D.祝或你或成20.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中不能剪去的是(填编号).考向六投影21.下列投影不是中心投影的是()A.B.C.D.22.在同一时刻,将两根长度不等的竹竿置于阳光之下,但它们的影长相等,那么这两根竹竿的相对位置是()A.两根竹竿都垂直于地面B.以两根竹竿平行斜插在地上C.两根竹竿不平行D.无法确定23.如图,晚上小明在路灯下沿路从A处径直走到B处,这一过程中他在地上的影子()A.一直都在变短B.先变短后变长C.一直都在变长D.先变长后变短24.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4m.则路灯的高度OP为m.一.选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.如图所示,圆柱的主视图是()A.B.C.D.3.下面四个几何体中,左视图为圆的是()A.B.C.D.4.如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.5.如图是一个几何体的三视图,则该几何体的体积为()A.1B.2C.D.46.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是()A.6B.5C.4D.3二.填空题7.一个几何体的三视图如图所示,则该几何体的表面积为.8.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是(结果保留π).9.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)10.如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母,注意:字母只能在多面体外表面出现)11.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.12.如图是某物体的三视图,则此物体的体积为(结果保留π).三.解答题13.已知某几何体的三视图如图所示,其中俯视图为正六边形,求该几何体的表面积.14.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位)(2)画出该几何体的主视图和左视图.15.一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是,B的对面是,C的对面是;(直接用字母表示)(2)若A=﹣2,B=|m﹣3|,C=m﹣3n﹣,E=(+n)2,且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.16.用若干个棱长为1cm的小正方体搭成如图所示的几何体.(1)这个几何体的体积为cm3.(2)请在方格纸中用实线画出该几何体的主视图,左视图,俯视图.(3)这个几何体的表面积为cm2.。
2021年全国中考数学真题分项汇编-专题21图形的旋转(共50题)(解析版)

2021年中考数学真题分项汇编【全国通用】(第01期)专题21图形的旋转(共50题)一、单选题1.(2021·湖南永州市·中考真题)如图,在平面内将五角星绕其中心旋转180︒后所得到的图案是( )A .B .C .D .【答案】C【分析】根据旋转的性质找出阴影部分三角形的位置即可得答案.【详解】∵将五角星绕其中心旋转180︒,∵图中阴影部分的三角形应竖直向下,故选:C .【点睛】本题考查旋转的性质,图形旋转前后,对应边相等,对应角相等,前后两个图形全等;熟练掌握旋转的性质是解题关键.2.(2021·四川广安市·中考真题)如图,将ABC 绕点A 逆时针旋转55︒得到ADE ,若70E ∠=︒且AD BC ⊥于点F ,则BAC ∠的度数为( )A .65︒B .70︒C .75︒D .80︒【答案】C【分析】 由旋转的性质可得∵BAD =55°,∵E =∵ACB =70°,由直角三角形的性质可得∵DAC =20°,即可求解.【详解】解:∵将∵ABC 绕点A 逆时针旋转55°得∵ADE ,∵∵BAD =55°,∵E =∵ACB =70°,∵AD ∵BC ,∵∵DAC =20°,∵∵BAC =∵BAD +∵DAC =75°.故选C .【点睛】本题考查了旋转的性质,掌握旋转的性质是本题的关键.3.(2021·江苏苏州市·中考真题)如图,在方格纸中,将Rt AOB △绕点B 按顺时针方向旋转90°后得到Rt A O B ''△,则下列四个图形中正确的是( )A .B .C .D .【答案】B【分析】根据绕点B 按顺时针方向旋转90°逐项分析即可.【详解】A 、Rt A OB ''△是由Rt AOB △关于过B 点与OB 垂直的直线对称得到,故A 选项不符合题意; B 、Rt A O B ''△是由Rt AOB △绕点B 按顺时针方向旋转90°后得到,故B 选项符合题意;C 、Rt A O B ''△与Rt AOB △对应点发生了变化,故C 选项不符合题意;D 、Rt AOB △是由Rt AOB △绕点B 按逆时针方向旋转90°后得到,故D 选项不符合题意.故选:B .【点睛】本题考查旋转变换.解题的关键是弄清旋转的方向和旋转的度数.4.(2021·天津中考真题)如图,在ABC 中,120BAC ∠=︒,将ABC 绕点C 逆时针旋转得到DEC ,点A ,B 的对应点分别为D ,E ,连接AD .当点A ,D ,E 在同一条直线上时,下列结论一定正确的是( )A .ABC ADC ∠=∠B .CB CD =C .DE DC BC +=D .AB CD ∥【答案】D【分析】 由旋转可知120EDC BAC ∠=∠=︒,即可求出60ADC ∠=︒,由于60ABC ∠<︒,则可判断ABC ADC ∠≠∠,即A 选项错误;由旋转可知CB CE =,由于CE CD >,即推出CB CD >,即B 选项错误;由三角形三边关系可知DE DC CE +>,即可推出DE DC CB +>,即C 选项错误;由旋转可知DC AC =,再由60ADC ∠=︒,即可证明ADC 为等边三角形,即推出60ACD ∠=︒.即可求出180ACD BAC ∠+∠=︒,即证明//AB CD ,即D 选项正确;【详解】由旋转可知120EDC BAC ∠=∠=︒,∵点A ,D ,E 在同一条直线上,∵18060ADC EDC ∠=︒-∠=︒,∵60ABC ∠<︒,∵ABC ADC ∠≠∠,故A 选项错误,不符合题意;由旋转可知CB CE =,∵120EDC ∠=︒为钝角,∵CE CD >,∵CB CD >,故B 选项错误,不符合题意;∵DE DC CE +>,∵DE DC CB +>,故C 选项错误,不符合题意;由旋转可知DC AC =,∵60ADC ∠=︒,∵ADC 为等边三角形,∵60ACD ∠=︒.∵180ACD BAC ∠+∠=︒,∵//AB CD ,故D 选项正确,符合题意;故选D .【点睛】本题考查旋转的性质,三角形三边关系,等边三角形的判定和性质以及平行线的判定.利用数形结合的思想是解答本题的关键.5.(2021·湖南邵阳市·中考真题)如图,在AOB 中,1AO =,32BO AB ==.将AOB 绕点O 逆时针方向旋转90︒,得到A OB ''△,连接AA '.则线段AA '的长为( )A .1B C .32 D 【答案】B【分析】根据旋转性质可知=OA OA ',90AOA '∠=︒,再由勾股定理即可求出线段AA '的长.【详解】解:∵旋转性质可知==1OA OA ',90AOA '∠=︒,∵AA ',故选:B .【点睛】此题主要考查旋转的性质和勾股定理求出直角三角形边长,解题关键是根据旋转性质得出OAA '是等腰直角三角形.6.(2021·四川达州市·中考真题)在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11AOB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为( )A .()202020202,2- B .()202120212,2C .()202020202,2D .()201120212,2-【答案】C【分析】由题意,点A 每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题.【详解】解:由题意,点A 每6次绕原点循环一周,20216371......5÷=,2021A ∴点在第四象限,202120212OA =,202160xOA ∠=︒ ,∴点2020A 的横坐标为20212020122=2⨯,纵坐标为20212020=22, ()2020202020212,2A ∴-, 故选:C .【点睛】本题考查坐标与图形变化-旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.7.(2021·浙江衢州市·中考真题)如图.将菱形ABCD 绕点A 逆时针旋转α∠得到菱形'''AB C D ,B β∠=∠.当AC 平分''B AC ∠时,α∠与β∠满足的数量关系是( )A .2αβ∠=∠B .23αβ∠=∠C .4180αβ∠+∠=︒D .32180αβ∠+∠=︒【答案】C【分析】 根据菱形的性质可得AB =AC ,根据等腰三角形的性质可得∵BAC =∵BCA =1(180)2B ︒-∠,根据旋转的性质可得∵CAC ′=∵BAB ′=α∠,根据AC 平分''B AC ∠可得∵B ′AC =∵CAC =α∠,即可得出4180αβ∠+∠=︒,可得答案.【详解】∵四边形ABCD 是菱形,B β∠=∠,∵AB =AC ,∵∵BAC =∵BCA =1(180)2B ︒-∠=1(180)2β︒-∠, ∵将菱形ABCD 绕点A 逆时针旋转α∠得到菱形'''AB C D ,∵∵CAC ′=∵BAB ′=α∠,∵AC 平分''B AC ∠,∵∵B ′AC =∵CAC =α∠,∵∵BAC =∵B ′AC +∵BAB′=2α∠=1(180)2β︒-∠, ∵4180αβ∠+∠=︒,故选;C .【点睛】本题考查旋转的性质及菱形的性质,熟练掌握相关性质并正确找出旋转角是解题关键.8.(2021·山东聊城市·中考真题)如图,在直角坐标系中,点A ,B 的坐标为A (0,2),B (﹣1,0),将△ABO 绕点O 按顺时针旋转得到△A 1B 1O ,若AB △OB 1,则点A 1的坐标为( )A .(B .C .(24,33)D .(48,55) 【答案】A【分析】先求出AB ,OA 1,再作辅助线构造相似三角形,如图所示,得到对应边成比例,求出OC 和A 1C ,即可求解.【详解】解:如图所示,∵点A ,B 的坐标分别为A (0,2),B (﹣1,0),∵OB =1,OA =2,∵AB =,∵∵AOB =90°,∵∵A 1OB 1=90°,∵O A 1∵OB 1,又∵AB ∵OB 1,∵O A 1∵AB ,∵∵1=∵2,过A 1点作A 1C ∵x 轴,∵∵A 1CO =∵AOB ,∵1AOB CO A △∽△, ∵11=O C OC AB O OA B A A =,∵O A 1=OA =2, 112OC AC =,∵OC 1AC∵1A ⎝⎭,故选:A .【点睛】本题综合考查了勾股定理、旋转的性质、相似三角形的判定和性质等内容,解决本题的关键是理解并掌握相关概念,能通过作辅助线构造相似三角形等,本题蕴含了数形结合的思想方法等.9.(2021·河南中考真题)如图,OABC 的顶点(0,0)O ,(1,2)A ,点C 在x 轴的正半轴上,延长BA 交y 轴于点D .将ODA 绕点O 顺时针旋转得到OD A ''△,当点D 的对应点D 落在OA 上时,D A ''的延长线恰好经过点C ,则点C 的坐标为( )A .B .C .1,0)+D .1,0)【答案】B【分析】连接A C ',由题意可证明ADO OD C '△∽△,利用相似三角形线段成比例即可求得OC 的长,即得点C 的坐标.【详解】如图,连接A C ',因为AD y ⊥轴, ODA 绕点O 顺时针旋转得到OD A ''△,所以90CD O '∠=︒,OD OD '=DOA D OC D CO D OC '''∠+∠=∠+∠DOA D CO '∴∠=∠ADO OD C '∴△∽△AD OD AO OC'∴= (1,2)A1,2AD OD ∴==AO ∴2OD OD '== 25OC故答案为B .【点睛】本题考查了旋转的性质,勾股定理,相似三角形的判定与性质,找到ADO OD C '△∽△是解题的关键. 10.(2021·黑龙江大庆市·中考真题)如图,F 是线段CD 上除端点外的一点,将ADF 绕正方形ABCD 的顶点A 顺时针旋转90︒,得到ABE △.连接EF 交AB 于点H .下列结论正确的是( )A .120EAF ∠=︒B .:AE EF =C .2AF EH EF =⋅D .::EB AD EH HF =【答案】D【分析】根据旋转的性质可以得到∵EAF 是等腰直角三角形,然后根据相似三角形的判定和性质,以及平行线分线段成比例定理即可作出判断.【详解】解:根据旋转的性质知:∵EAF =90°,故A 选项错误;根据旋转的性质知:∵EAF =90°,EA =AF ,则∵EAF 是等腰直角三角形,∵EF ,即AE :EF =1B 选项错误;若C 选项正确,则22•AF AE EH EF ==,即EA EF EH EA=, ∵∵AEF =∵HEA =45°,∵∵EAF ~∵EHA ,∵∵EAH =∵EF A ,而∵EF A =45°,∵EAH ≠45°,∵∵EAH ≠∵EF A ,∵假设不成立,故C 选项错误;∵四边形ABCD 是正方形,∵CD ∵AB ,即BH ∵CF ,AD =BC , ∵EB :BC =EH :HF ,即EB :AD =EH :HF ,故D 选项正确;故选:D【点睛】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,平行线分线段成比例定理,正确运用反证法是解题的关键.11.(2021·湖北黄石市·中考真题)如图,ABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是()1,0-,现将ABC 绕A 点按逆时针方向旋转90︒,则旋转后点C 的坐标是( )A .()2,3-B .()2,3-C .()2,2-D .()3,2- 【答案】B【分析】在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【详解】如图,绘制出CA 绕点A 逆时针旋转90°的图形,由图可得:点C 对应点C '的坐标为(-2,3) .故选B .【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.12.(2021·山东泰安市·中考真题)如图,在矩形ABCD 中,5AB =,BC =P 在线段BC 上运动(含B 、C 两点),连接AP ,以点A 为中心,将线段AP 逆时针旋转60°到AQ ,连接DQ ,则线段DQ 的最小值为( )A .52B .C .3D .3【答案】A【分析】 根据题中条件确定出点P 的轨迹是线段,则线段DQ 的最小值就转化为定点D 到点P 的轨迹线段的距离问题.【详解】 解:AP 与AQ 固定夹角是60︒,:1AP AQ =,点P 的轨迹是线段,Q ∴的轨迹也是一条线段.两点确定一条直线,取点P 分别与,B C 重合时,所对应两个点Q ,来确定点Q 的轨迹,得到如下标注信息后的图形:求DQ 的最小值,转化为点D 到点Q 的轨迹线段的距离问题,5,AB BC ==∴在Rt ABC 中,tan 60BAC BAC ∠==∴∠=︒, //AB DC ,60DCA ∴∠=︒,将AC 逆时针绕点A 转动60︒后得到1AQ ,1ACQ ∴为等边三角形,15DC DQ ==,2Q 为AC 的中点,根据三线合一知,1230CQQ ∠=︒,过点D 作12Q Q 的垂线交于点Q ,在1Rt QQD 中,30对应的边等于斜边的一半,11522DQ DQ ∴==, ∴DQ 的最小值为52, 故选:A .【点睛】本题考查了动点问题中,两点间距离的最小值问题,解题的关键是:需要确定动点的轨迹,才能方便找到解决问题的突破口.13.(2021·山东东营市·中考真题)如图,ABC 是边长为1的等边三角形,D 、E 为线段AC 上两动点,且30DBE ∠=︒,过点D 、E 分别作AB 、BC 的平行线相交于点F ,分别交BC 、AB 于点H 、G .现有以下结论:△ABC S =;△当点D 与点C 重合时,12FH =;△AE CD +=;△当AE CD =时,四边形BHFG 为菱形,其中正确结论为( )A .△△△B .△△△C .△△△△D .△△△【答案】B【分析】过A 作AI ∵BC 垂足为I ,然后计算∵ABC 的面积即可判定∵;先画出图形,然后根据等边三角形的性质和相似三角形的性质即可判定∵;如图将∵BCD 绕B 点逆时针旋转60°得到∵ABN ,求证NE =DE ;再延长EA 到P 使AP =CD =AN ,证得∵P =60°,NP =AP =CD ,然后讨论即可判定∵;如图1,当AE =CD 时,根据题意求得CH =CD 、AG =CH ,再证明四边形BHFG 为平行四边形,最后再说明是否为菱形.【详解】解:如图1, 过A 作AI ∵BC 垂足为I∵ABC 是边长为1的等边三角形∵∵BAC =∵ABC =∵C =60°,CI =1212BC =∵AI =2∵S ∵ABC =11122AI BC =⨯=,故∵正确;如图2,当D 与C 重合时∵∵DBE =30°,ABC 是等边三角形∵∵DBE =∵ABE =30°∵DE =AE =1122AD = ∵GE //BD∵1BG DE AG AE==∵BG=11 22 AB∵GF//BD,BG//DF∵HF=BG=12,故∵正确;如图3,将∵BCD绕B点逆时针旋转60°得到∵ABN∵∵1=∵2,∵5=∵6=60°,AN=CD,BD=BN∵∵3=30°∵∵2+∵4=∵1+∵4=30°∵∵NBE=∵3=30°又∵BD=BN,BE=BE∵∵NBE∵∵DBE(SAS)∵NE=DE延长EA到P使AP=CD=AN∵∵NAP=180°-60°-60°=60°∵∵ANP为等边三角形∵∵P=60°,NP=AP=CD如果AE+CD成立,则PE,需∵NEP=90°,但∵NEP不一定为90°,故∵不成立;如图1,当AE=CD时,∵GE//BC∵∵AGE=∵ABC=60°,∵GEA=∵C=60°∵∵AGE=∵AEG=60°,∵AG=AE同理:CH=CD∵AG=CH∵BG//FH,GF//BH∵四边形BHFG是平行四边形∵BG=BH∵四边形BHFG为菱形,故∵正确.故选B.【点睛】本题主要考查了等边三角形的性质、旋转变换、全等三角形的判定和性质以及菱形的判定等知识点,灵活运用相关知识成为解答本题的关键.二、填空题AB C D的14.(2021·贵州铜仁市·中考真题)如图,将边长为1的正方形ABCD绕点A顺时针旋转30到111位置,则阴影部分的面积是______________;【答案】2 【分析】 CD 交11B C 于点E ,连接AE ;根据全等三角形性质,通过证明1AB E ADE △≌△,得1EAB EAD ∠=∠;结合旋转的性质,得130EAB EAD ∠=∠=︒;根据三角函数的性质计算,得1EB ,结合正方形和三角形面积关系计算,即可得到答案.【详解】解:如图,CD 交11B C 于点E ,连接AE根据题意,得:190AB E ADE ∠=∠=︒,11AB AD ==∵AE AE =∵1AB E ADE △≌△∵1EAB EAD ∠=∠∵正方形ABCD 绕点A 顺时针旋转30到111AB C D∵130BAB ∠=︒,90BAD ∠=︒∵119060B AD BAB ∠=︒-∠=︒∵130EAB EAD ∠=∠=︒∵111tan 3EB EAB AB =∠=∵1EB =∵1111122AB E ADE S S AB EB ==⨯==△△ ∵阴影部分的面积()()122AB E ADE AB BC S S =⨯-+△△2=故答案为:23-. 【点睛】 本题考查了正方形、全等三角形、旋转、三角函数的知识;解题的关键是熟练掌握正方形、全等三角形、旋转、三角函数的性质,从而完成求解.15.(2021·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点C 的坐标为()1,0-,点A 的坐标为()3,3-,将点A 绕点C 顺时针旋转90︒得到点B ,则点B 的坐标为_____________.【答案】()2,2【分析】根据题意画出图形,易证明ADC CEB △≌△,求出OE 、BE 的长即可求出B 的坐标.【详解】解:如图所示,点A 绕点C 顺时针旋转90︒得到点B ,过点A 作x 轴垂线,垂足为D ,过点B 作x 轴垂线,垂足为E ,∵点C 的坐标为()1,0-,点A 的坐标为()3,3-,∵CD=2,AD =3,根据旋转的性质,AC =BC ,∵90ACB ∠=︒,∵90ACD BCE ∠+∠=︒,∵90ACD DAC ∠+∠=︒,∵BCE DAC ∠=∠,∵ADC CEB △≌△,∵AD =CE =3,CD =BE =2,∵OE =2,BE =2,故答案为:()2,2.【点睛】本题主要考查旋转变换和三角形全等的判定与性质,证明ADC CEB △≌△是解题关键.16.(2021·湖南中考真题)如图,Rt ABC 中,390,tan 2BAC ABC ∠=︒∠=,将ABC 绕A 点顺时针方向旋转角9(0)0αα︒<<︒得到AB C ''△,连接BB ',CC ',则CAC '△与BAB '△的面积之比等于_______.【答案】9:4【分析】 先根据正切三角函数的定义可得32AC AB =,再根据旋转的性质可得,,AB AB AC AC BAB CAC α''''==∠=∠=,从而可得1AC AB AC AB =='',然后根据相似三角形的判定可得CAC BAB ''~,最后根据相似三角形的性质即可得.【详解】 解:在Rt ABC 中,390,tan 2BAC ABC ∠=︒∠=, 32AC AB ∴=, 由旋转的性质得:,,AB AB AC AC BAB CAC α''''==∠=∠=, 1AC AB AC AB ∴=='', 在CAC '△和BAB '△中,AC AB AC AB CAC BAB ''''⎧=⎪⎨⎪∠=∠⎩,CAC BAB ''~∴,294CAC BAB AC S AB S ''⎛⎫== ⎪⎝⎭∴, 即CAC '△与BAB '△的面积之比等于9:4,故答案为:9:4.【点睛】本题考查了正切三角函数、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.17.(2021·江苏苏州市·中考真题)如图,射线OM 、ON 互相垂直,8OA =,点B 位于射线OM 的上方,且在线段OA 的垂直平分线l 上,连接AB ,5AB =.将线段AB 绕点O 按逆时针方向旋转得到对应线段A B '',若点B '恰好落在射线ON 上,则点A '到射线ON 的距离d ≈______.【答案】245【分析】添加辅助线,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P .根据旋转的性质,得到''A B O ABO ≅,在'Rt A PO ∆和中,'B OA BOA ∠=∠,根据三角函数和已知线段的长度求出点A '到射线ON 的距离=A'P d .【详解】如图所示,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P .∵线段AB 绕点O 按逆时针方向旋转得到对应线段A B ''∵'8OA OA ==,''B OB A OA ∠=∠∵''''B OB BOA A OA BOA ∠-∠=∠-∠即''B OA BOA ∠=∠∵点B 在线段OA 的垂直平分线l 上∵118422OC OA ==⨯=,5OB AB ==3BC =∵''B OA BOA ∠=∠ ∵'sin ''sin 'A P BC B OA BOA A O OB ∠==∠= ∵'385A P = ∵24'5d A P ==【点睛】本题主要考查旋转的性质和三角函数.对应点到旋转中心的距离相等,对应点与旋转中心所连的线段的夹角等于旋转角,旋转前、后的图形全等.18.(2021·广西玉林市·中考真题)如图、在正六边形ABCDEF 中,连接线AD ,AE ,AC ,DF ,DB ,AC 与BD 交于点M ,AE 与DF 交于点为N ,MN 与AD 交于点O ,分别延长AB ,DC 于点G ,设3AB =.有以下结论:△MN AD ⊥;△MN =△DAG △的重心、内心及外心均是点M ;△四边形FACD 绕点O 逆时针旋转30与四边形ABDE 重合.则所有正确结论的序号是______.【答案】∵∵∵【分析】由题意易得AB BC CD DE EF FA =====,120ABC BCD CDE DEF EFA FAB ∠=∠=∠=∠=∠=∠=︒,则有30EFD EDF ∠=∠=︒,进而可得90DFA FDC ∠=∠=︒,则有四边形FACD 是矩形,然后可得FAN BAM ≌,ADG 为等边三角形,最后可得答案.【详解】解:∵六边形ABCDEF 是正六边形,∵AB BC CD DE EF FA =====,120ABC BCD CDE DEF EFA FAB ∠=∠=∠=∠=∠=∠=︒,∵在∵DEF 中,180302DEF EFD EDF ︒-∠∠=∠==︒, ∵90DFA FDC ∠=∠=︒,同理可得90FAC DCA ∠=∠=︒,∵四边形FACD 是矩形,同理可证四边形ABDE 是矩形,∵//,//DN AM AN MD ,∵四边形AMDN 是平行四边形,∵,90,30AF AB NFA MBA FAN MAB =∠=∠=︒∠=∠=︒,∵FAN BAM ≌(ASA ),∵AN AM =,∵四边形AMDN 是菱形,∵MN AD ⊥,∵∵NAM =60°,∵∵NAM 是等边三角形,∵AM =MN ,∵AB =3,∵cos AB AM MAB==∠ ∵MN =∵∵MAB =30°,∵ACG =90°,∵∵G =60°,∵∵ADG 是等边三角形,∵AC 与BD 交于点M ,∵由等边三角形的性质及重心、内心、外心可得:DAG △的重心、内心及外心均是点M ,连接OF ,如图所示:易得∵FOA=60°,∵四边形FACD绕点O逆时针旋转60︒与四边形ABDE重合,∵综上所述:正确结论的序号是∵∵∵;故答案为∵∵∵.【点睛】本题主要考查正多边形的性质、矩形及菱形的判定与性质、等边三角形的性质与判定、三角形的重心、内心、外心及三角函数,熟练掌握正多边形的性质、矩形及菱形的判定与性质、等边三角形的性质与判定、三角形的重心、内心、外心及三角函数是解题的关键.19.(2021·上海中考真题)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,P OP=,当正方形绕着点O旋转时,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点,2则点P到正方形的最短距离d的取值范围为__________.【答案】21d≤【分析】先确定正方形的中心O与各边的所有点的连线中的最大值与最小值,然后结合旋转的条件即可求解.【详解】解:如图1,设AD的中点为E,连接OA,OE,则AE=OE=1,∵AEO=90°,OA=∵点O与正方形ABCD边上的所有点的连线中,OE最小,等于1,OA∵2OP=,∵点P与正方形ABCD边上的所有点的连线中,如图2所示,当点E落在OP上时,最大值PE=PO-EO=2-1=1;如图3所示,当点A落在OP上时,最小值2PA PO AO=-=∵当正方形ABCD绕中心O旋转时,点P到正方形的距离d的取值范围是21d≤≤.故答案为:21d≤≤【点睛】本题考查了新定义、正方形的性质、勾股定理等知识点,准确理解新定义的含义和熟知正方形的性质是解题的关键.20.(2021·江苏南京市·中考真题)如图,将ABCD绕点A逆时针旋转到AB C D'''的位置,使点B'落在BC上,B C''与CD交于点E,若3,4,1AB BC BB'===,则CE的长为________.【答案】98【分析】过点C作CM//C D''交B C''于点M,证明ABB ADD''∆∆∽求得53C D'=,根据AAS证明ABB B CM''∆≅∆可求出CM =1,再由CM //C D ''证明∵CME DC E '∆∽,由相似三角形的性质查得结论.【详解】解:过点C 作CM //C D ''交B C ''于点M ,∵平行四边形ABCD 绕点A 逆时针旋转得到平行四边形AB C D '''∵AB AB '=,,AD AD '=B AB C D D '''∠=∠=∠=∠,BAD B AD ''∠=∠∵BAB DAD ''∠=∠,B D '∠=∠∵ABB ADD ''∆∆∽ ∵3,4BB AB AB DD AD BC ''=== ∵1BB '= ∵43DD '= ∵C D C D DD ''''=-CD DD '=-AB DD '=-433=- 53= AB C AB C CB M ABC BAB '''''∠=∠+∠=∠+∠∵∵CB M BAB ''=∠∵413B C BC BB ''=-=-=∵B C AB '=∵AB AB '=∵∵AB B AB C ABB ''''=∠=∠∵//AB C D ''',//C D CM ''∵//AB CM '∵∵AB C B MC '''=∠∵∵AB B B MC ''=∠在ABB '∆和B MC '∆中,BAB CB M AB B B MC AB B C ∠=∠⎧⎪∠='''∠''⎨⎪=⎩∵ABB B CM ''∆≅∆∵1BB CM '==∵//CM C D '∵∵CME DC E '∆∽ ∵13553CM CE DC DE '=== ∵38CE CD = ∵333938888CE CD AB ===⨯= 故答案为:98. 【点睛】此题主要考查了旋转的性质,平行四边形的性质,全等三角形的判定与性质以及相似三角形的判定与性质,正确作出辅助线构造全等三角形和相似三角形是解答本题的关键.21.(2021·新疆中考真题)如图,已知正方形ABCD 边长为1,E 为AB 边上一点,以点D 为中心,将DAE△按逆时针方向旋转得DCF ,连接EF ,分別交BD ,CD 于点M ,N .若25AE DN =,则sin EDM ∠=__________.【分析】过点E 作EP ∵BD 于P ,将∵EDM 构造在直角三角形DEP 中,设法求出EP 和DE 的长,然后用三角函数的定义即可解决.【详解】解:∵四边形ABCD 是正方形,∵AB ∵DC ,∵A =∵BCD =∵ADC =90°,AB =BC = CD =DA =1,BD =.∵∵DAE 绕点D 逆时针旋转得到∵DCF ,∵CF =AE ,DF =DE ,∵EDF =∵ADC =90°.设AE =CF =2x ,DN =5x ,则BE =1-2x ,CN =1-5x ,BF=1+2x .∵AB ∵DC ,∵~FNC FEB .∵NC FC EB FB=. ∵1521212x x x x -=-+. 整理得,26510x x +-=. 解得,116x =,21x =-(不合题意,舍去). ∵1221233AE x EB x ===-=,.∵DE === 过点E 作EP ∵BD 于点P ,如图所示,设DP=y,则BP y=.∵22222 EB BP EP DE DP-==-,∵)2222233y y⎛⎛⎫-=-⎪⎝⎭⎝⎭.解得,3y=∵3EP===.∵在Rt∵DEP中,sinEPEDPED∠===sin EDM∠=故答案为:5【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质、勾股定理、锐角三角函数、方程的数学思想等知识点,熟知各类图形的性质与判定是解题的基础,构造直角三角形,利用锐角三角函数的定义是解题的关键.22.(2021·湖北随州市·中考真题)如图,在Rt ABC中,90C∠=︒,30ABC∠=︒,BC,将ABC 绕点A逆时针旋转角α(0180α︒<<︒)得到AB C''△,并使点C'落在AB边上,则点B所经过的路径长为______.(结果保留π)【答案】23π.利用勾股定理求出AB =2,根据旋转的性质得到旋转角为∵'BAB =60°,再由弧长计算公式,计算出结果.【详解】解:∵90C ∠=︒,30ABC ∠=︒,BC =,∵AB =2AC ,设AC =x ,则AB =2x ,由勾股定理得:222(2)x x +=,解得:x =1,则:AC =1,AB =2,∵将ABC 绕点A 逆时针旋转角α(0180α︒<<︒)得到'AB C ',且点C '落在AB 边上, ∵旋转角为60°,∵∵'BAB =60°,∵点B 所经过的路径长为:602218018033n r AB ππππ=⨯=⨯= , 故答案为:23π. 【点睛】 本题主要考查了勾股定理、旋转的性质和弧长的计算公式,解题关键在于找到旋转角,根据弧长公式进行计算.23.(2021·湖南怀化市·中考真题)如图,在平面直角坐标系中,已知(2,1)A -,(1,4)B -,(1,1)C -,将ABC先向右平移3个单位长度得到111A B C △,再绕1C 顺时针方向旋转90︒得到221A B C △,则2A 的坐标是____________.【答案】(2,2).直接利用平移的性质和旋转的性质得出对应点位置,然后作图,进而得出答案.【详解】解:如图示:111A B C △,221A B C △为所求,根据图像可知,2A 的坐标是(2,2),故答案是:(2,2).【点睛】本题主要考查了平移作图和旋转作图,熟悉相关性质是解题关键.24.(2021·浙江温州市·中考真题)如图,O 与OAB 的边AB 相切,切点为B .将OAB 绕点B 按顺时针方向旋转得到O A B '''△,使点O '落在O 上,边A B '交线段AO 于点C .若25A '∠=︒,则OCB ∠=______度.【答案】85【分析】连结OO′,先证∵BOO′为等边三角形,求出∵AOB =∵OBO′=60°,由O 与OAB 的边AB 相切,可求∵CBO ==30°,利用三角形内角和公式即可求解.【详解】解:连结OO′,∵将OAB 绕点B 按顺时针方向旋转得到O A B '''△,∵BO′=BO =OO′,∵∵BOO′为等边三角形,∵∵OBO′=60°,∵O 与OAB 的边AB 相切,∵∵OBA =∵O′BA′=90°,∵∵CBO =90°-∵OBO′=90°-60°=30°,∵∵A′=25°∵∵A′O′B =90°-∵A′=90°-25°=65°∵∵AOB =∵A′O′B =65°,∵∵OCB =180°-∵COB -∵OBC =180°-65°-30°=85°.故答案为85.【点睛】本题考查图形旋转性质,切线性质,等边三角形判定与性质,直角三角形性质,掌握图形旋转性质,切线性质,等边三角形判定与性质,直角三角形性质是解题关键.25.(2021·四川广安市·中考真题)如图,在平面直角坐标系中,AB y ⊥轴,垂足为B ,将ABO 绕点A 逆时针旋转到11ABO 的位置,使点B 的对应点1B 落在直线34y x =-上,再将11ABO 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =-上,以此进行下去……若点B 的坐标为()0,3,则点21B 的纵坐标...为______.【答案】3875【分析】计算出∵AOB 的各边,根据旋转的性质,求出OB 1,B 1B 3,...,得出规律,求出OB 21,再根据一次函数图像上的点求出点B 21的纵坐标即可.【详解】解:∵AB ∵y 轴,点B (0,3),∵OB =3,则点A 的纵坐标为3,代入34y x =-, 得:334x =-,得:x =-4,即A (-4,3),∵OB =3,AB =4,OA ,由旋转可知:OB =O 1B 1=O 2B 1=O 2B 2=...=3,OA =O 1A =O 2A 1=...=5,AB =AB 1=A 1B 1=A 2B 2= (4)∵OB 1=OA +AB 1=4+5=9,B 1B 3=3+4+5=12,∵OB 21=OB 1+B 1B 21=9+(21-1)÷2×12=129,设B 21(a ,34a -),则OB 21129, 解得:5165a =-或5165(舍), 则335163874455a ⎛⎫-=-⨯-= ⎪⎝⎭,即点B 21的纵坐标为3875, 故答案为:3875. 【点睛】本题考查了一次函数图象上点的坐标特征,旋转以及直角三角形的性质,求出∵OAB的各边,计算出OB21的长度是解题的关键.26.(2021·青海中考真题)如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合,若每个叶片的面积为4cm2,△AOB=120°,则图中阴影部分的面积为__________.【答案】4 cm2【分析】根据旋转的性质和图形的特点解答.【详解】每个叶片的面积为4cm2,因而图形的面积是12cm2.∵图案绕点O旋转120°后可以和自身重合,∵AOB为120°,∵图形中阴影部分的面积是图形的面积的13,因而图中阴影部分的面积之和为4cm2.故答案为4cm2.【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.注:旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.27.(2021·山东枣庄市·中考真题)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为_______.【答案】P(1,-1).【详解】试题分析:连接AA′、CC′,作线段AA′的垂直平分线MN ,作线段CC′的垂直平分线EF ,直线MN 和直线EF 的交点为P ,点P 就是旋转中心.∵直线MN 为:x=1,设直线CC′为y=kx+b , 由题意:, ∵, ∵直线CC′为y=x+,∵直线EF∵CC′,经过CC′中点(,), ∵直线EF 为y=﹣3x+2,由得, ∵P (1,﹣1).考点:坐标与图形变化-旋转三、解答题28.(2021·四川成都市·中考真题)在Rt ABC 中,90,5,3ACB AB BC ∠=︒==,将ABC 绕点B 顺时针旋转得到A BC ''△,其中点A ,C 的对应点分别为点A ',C '.(1)如图1,当点A '落在AC 的延长线上时,求AA '的长;(2)如图2,当点C '落在AB 的延长线上时,连接CC ',交A B '于点M ,求BM 的长;(3)如图3,连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .在旋转过程中,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.【答案】(1)8AA '=;(2)1511BM =;(3)存在,最小值为1 【分析】(1)根据题意利用勾股定理可求出AC 长为4.再根据旋转的性质可知AB A B '=,最后由等腰三角形的性质即可求出AA '的长.(2)作CD AC '⊥交AC '于点D ,作//CE A B '交AC '于点E .由旋转可得A BC ABC ''∠=∠,3BC BC '==.再由平行线的性质可知CEB A BC ''∠=∠,即可推出CEB ABC ∠=∠,从而间接求出3CE BC BC '===,DE DB =.由三角形面积公式可求出125CD =.再利用勾股定理即可求出185BE =,进而求出335C E '=.最后利用平行线分线段成比例即可求出BM 的长. (3)作//AP A C ''且交CD '延长线于点P ,连接A C '.由题意易证明BCC BC C ''∠=∠,90ACP BCC '∠=︒-∠,90A C D BC C '''∠=︒-∠,即得出ACP A C D ''∠=∠.再由平行线性质可知APC A C D ''∠=∠,即得出ACP APC ∠=∠,即可证明AP AC A C ''==,由此即易证()APD A C D AAS ''≅,得出AD A D '=,即点D 为AA '中点.从而证明DE 为ACA '的中位线,即12DE A C '=.即要使DE 最小,A C '最小即可.根据三角形三边关系可得当点A C B '、、三点共线时A C '最小,且最小值即为=A C A B BC ''-,由此即可求出DE 的最小值.【详解】(1)在Rt ABC 中,4AC ==.根据旋转性质可知AB A B '=,即ABA '△为等腰三角形.∵90ACB ∠=︒,即BC AA '⊥,∵4A C AC '==,∵8AA '=.(2)如图,作CD AC '⊥交AC '于点D ,作//CE A B '交AC '于点E .由旋转可得A BC ABC ''∠=∠,3BC BC '==.∵//CE A B ',∵CEB A BC ''∠=∠,∵CEB ABC ∠=∠,∵3CE BC BC '===,DE DB =. ∵1122ABC S AB CD AC BC ==,即543CD ⨯=⨯, ∵125CD=. 在Rt BCD 中,95DB ==, ∵185BE =. ∵335C E BE BC ''=+=. ∵//CE A B ', ∵BM BC CE C E '=',即33335BM =, ∵1511BM =. (3)如图,作//AP A C ''且交C D '延长线于点P ,连接A C '.∵BC BC '=,∵BCC BC C ''∠=∠,∵180ACP ACB BCC '∠=︒-∠-∠,即90ACP BCC '∠=︒-∠,又∵90A C D BC C '''∠=︒-∠,∵ACP A C D ''∠=∠.∵//AP A C '',∵APC A C D ''∠=∠,∵ACP APC ∠=∠,∵AP AC =,∵AP A C ''=.∵在APD △和AC D ''中ADP A DC APD A C D AP A C '''∠=∠⎧⎪∠=∠'''⎨⎪=⎩,∵()APD A C D AAS ''≅,∵AD A D '=,即点D 为AA '中点.∵点E 为AC 中点,∵DE 为ACA '的中位线, ∵12DE A C '=, 即要使DE 最小,A C '最小即可.根据图可知A C A B BC ''≤-,即当点A C B '、、三点共线时A C '最小,且最小值为==53=2A C A B BC ''--.∵此时1=12DE A C '=,即DE 最小值为1.【点睛】本题为旋转综合题.考查旋转的性质,勾股定理,等腰三角形的判定和性质,平行线的性质,平行线分线段成比例,全等三角形的判定和性质,中位线的判定和性质以及三角形三边关系,综合性强,为困难题.正确的作出辅助线为难点也是解题关键.29.(2021·广西贵港市·中考真题)已知在ABC 中,O 为BC 边的中点,连接AO ,将AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到EOF ,连接AE ,CF .(1)如图1,当△BAC =90°且AB =AC 时,则AE 与CF 满足的数量关系是 ;(2)如图2,当△BAC =90°且AB ≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D ,使OD =OA ,连接DE ,当AO =CF =5,BC =6时,求DE 的长.【答案】(1)AE CF =;(2)成立,证明见解析;(3【分析】 (1)结论AE CF =.证明()AOE COF SAS ∆≅∆,可得结论.(2)结论成立.证明方法类似(1).(3)首先证明90AED ∠=︒,再利用相似三角形的性质求出AE ,利用勾股定理求出DE 即可.【详解】解:(1)结论:AE CF =.理由:如图1中,AB AC =,90BAC ∠=︒,OC OB =,OA OC OB ∴==,AO BC ⊥,90AOC EOF ∠=∠=︒,AOE COF ∴∠=∠,OA OC =,OE OF =,()AOE COF SAS ∴∆≅∆,AE CF ∴=.(2)结论成立.理由:如图2中,=,∠=︒,OC OB90BAC∴==,OA OC OB∠=∠,AOC EOF∴∠=∠,AOE COF=,OE OFOA OC=,∴∆≅∆,()AOE COF SAS∴=.AE CF(3)如图3中,=,由旋转的性质可知OE OAOA OD=,OE OA OD∴===,5∴∠=︒,AED90∠=∠,=,OC OFOA OE=,AOE COF ∴OA OE=,OC OFAOE COF ∴∆∆∽,∴AE OACF OC=, 5CF OA ==,∴553AE =, 253AE ∴=,DE ∴==. 【点睛】本题属于几何变换综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.30.(2021·黑龙江鹤岗市·中考真题)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABO 的三个顶点坐标分别为()()()1,3,4,3,00,0A B --.(1)画出ABO 关于x 轴对称的11A BO ,并写出点1A 的坐标;(2)画出ABO 绕点O 顺时针旋转90︒后得到的22A B O ,并写出点2A 的坐标; (3)在(2)的条件下,求点A 旋转到点2A 所经过的路径长(结果保留π).【答案】(1)见解析,1(1,3)A --;(2)见解析,2(3,1)A ;(3 【分析】(1)分别作出点A 、B 关于x 轴的对称点,然后依次连接即可,最后通过图象可得点1A 的坐标;。
中考数学一轮复习几何部分专题21:切线的判定与性质(教师用,附答案)

中考数学一轮复习几何部分专题21:切线的判定与性质必考知识点:1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。
2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。
必考例题:【例1】如图,AC 为⊙O 的直径,B 是⊙O 外一点,AB 交⊙O 于E 点,过E 点作⊙O 的切线,交BC 于D 点,DE =DC ,作EF ⊥AC 于F 点,交AD 于M 点。
(1)求证:BC 是⊙O 的切线; (2)EM =FM 。
分析:(1)由于AC 为直径,可考虑连结EC ,构造直角三角形来解题,要证BC 是⊙O 的切线,证到∠1+∠3=900即可;(2)可证到EF ∥BC ,考虑用比例线段证线段相等。
证明:(1)连结EC ,∵DE =CD ,∴∠1=∠2 ∵DE 切⊙O 于E ,∴∠2=∠BAC ∵AC 为直径,∴∠BAC +∠3=900∴∠1+∠3=900,故BC 是⊙O 的切线。
(2)∵∠1+∠3=900,∴BC ⊥AC 又∵EF ⊥AC ,∴EF ∥BC ∴CDMFAD AM BD EM == ∵BD =CD ,∴EM =FM【例2】如图,△ABC 中,AB =AC ,O 是BC 的中点,以O 为圆心的圆与AB 相切于点D 。
求证:AC 是⊙O 的切线。
分析:由于⊙O 与AC 有无公共点未知,因此我们从圆心O 向AC 作垂线段OE ,证OE 就是⊙O 的半径即可。
证明:连结OD 、OA ,作OE ⊥AC 于E∵AB =AC ,OB =OC ,∴AO 是∠BAC 的平分线 ∵AB 是⊙O 的切线,∴OD ⊥AB 又∵OE ⊥AC ,∴OE =OD∴AC 是⊙O 的切线。
【例3】如图,已知AB 是⊙O 的直径,BC 为⊙O 的切线,切点为B ,OC 平行于弦AD ,OA =r 。
(1)求证:CD 是⊙O 的切线; (2)求OC AD ⋅的值;(3)若AD +OC =r 29,求CD 的长。
2021学年初中数学三年全国经典中考题21统计与概率(含答案解析)

专题21统计与概率学校:___________姓名:__________班级:___________考号:___________一、单选题1.已知一组数据5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.42.如果将一组数据中的每个数都减去5,那么所得的一组新数据()A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变3.李老师为了解学生家务劳动时间情况,更好地弘扬“热爱劳动”的民族传统美德,随机调查了本校10名学生在上周参加家务劳动的时间,收集到如下数据(单位:小时):4,3,4,6,5,5,6,5,4,5.则这组数据的中位数和众数分别是()A.4,5 B.5,4 C.5,5 D.5,64.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是()A.平均数是144 B.众数是141 C.中位数是144.5 D.方差是5.4 5.为提升学生的自理和自立能力,李老师调查了全班学生在一周内的做饭次数情况,调查结果如下表:那么一周内该班学生的平均做饭次数为()A.4 B.5 C.6 D.76.为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是()A.92分,96分B.94分,96分C.96分,96分D.96分,100分7.下图是甲、乙两同学五次数学测试成绩的折线图,比较甲、乙的成绩,下列说法正确的是()A.甲平均分高,成绩稳定B.甲平均分高,成绩不稳定C.乙平均分高,成绩稳定D.乙平均分高,成绩不稳定8.下表中记录了甲、乙、丙、丁四名运动员跳远选拔赛成绩(单位:cm)的平均数和方差.要从中选择一名成绩较高且发挥稳定的运动员参加决赛,最合适的运动员是()A.甲B.乙C.丙D.丁9.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3 B.3,7 C.2,7 D.7,310.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如下,由图中信息可知,下列结论错误的是()A.本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8D.选“感恩”的人数最多11.如图,随机闭合开关1S,2S,3S中的两个,则能让两盏灯泡同时发光的概率为()A.23B.12C.13D.1612.从马鸣、杨豪、陆畅,江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A.112B.18C.16D.1213.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是()A.49B.29C.23D.1314.小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,……按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.1100B.120C.1101D.2101二、填空题15.某校女子排球队队员的年龄分布如下表:则该校女子排球队队员的平均年龄是岁.16.某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试.测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么__________将被录用(填甲或乙)17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.18.从1-,2,3-,4这四个数中任取两个不同的数分别作为a,b的值,得到反比例函数abyx=,则这些反比例函数中,其图象在二、四象限的概率是______.19.某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是________.20.如图,在44⨯的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是________.三、解答题21.小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形、同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.22.某校举行了“防溺水”知识竞赛,八年级两个班选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).(1)统计表中,a=________, b =________;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额 在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.23.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t (单位:小时).把调查结果分为四档,A 档:8t <;B 档:89t ≤<;C 档:910t ≤<;D 档:10t ≥.根据调查情况,给出了部分数据信息:①A 档和D 档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5; ②图1和图2是两幅不完整的统计图. 根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整; (2)已知全校共1200名学生,请你估计全校B 档的人数;(3)学校要从D 档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.24.某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A :6070x ≤<;B :7080x ≤<;C :8090x ≤<;D :90100x ≤≤,并绘制出如下不完整的统计图.(1)求被抽取的学生成绩在C :18090x ≤<组的有多少人; (2)所抽取学生成绩的中位数落在哪个组内;(3)若该学校有1500名学生,估计这次竞赛成绩在A :6070x ≤<组的学生有多少人. 25.2020年是脱贫攻坚年,为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场,经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:根据以上信息,解答下列问题:(1)表中a=______,补全频数分布直方图;(2)这批鸡中质量不小于1.7kg的大约有多少只?(3)这些贫因户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?26.为了提高学生的综合素养,某校开设了五门手工活动课.按照类别分为:A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为________;统计图中的a=________,b=________;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.27.奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.28.某校数学实践小组就近期人们比较关注的五个话题:“A.5G通讯;B.民法典;C.北斗导航;D.数字经济;E.小康社会”,对某小区居民进行了随机抽样调查,每人只能从中选择一个本人最关注的话题,根据调查结果绘制了如图两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)数学实践小组在这次活动中,调查的居民共有人;(2)将上面的最关注话题条形统计图补充完整;(3)最关注话题扇形统计图中的a=,话题D所在扇形的圆心角是度;(4)假设这个小区居民共有10000人,请估计该小区居民中最关注的话题是“民法典”的人数大约有多少?29.小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子,以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜:若所得数值等于3,4,5,则小梅胜(1)请利用表格分别求出小伟、小梅获胜的概率(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用上表修改游戏规则,以确保游戏的公平性30.东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.请根据图表中提供的信息,解答下列问题: (1)本次抽样共调查了多少名学生? (2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为12A A 、),1本“较好”(记为B ),1本“一般”(记为C ),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回, 从余下的3本中再抽取一本 ,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.31.某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如下的频数直方图和扇形统计图.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m=__________;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n名学生测试成绩的中位数是__________分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.32.为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是_________名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.33.某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有________人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为________;(2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.34.2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表x<1.62.02.0 2.4x<x<2.4 2.8学生立定跳远测试成绩的频数分布直方图请根据图表中所提供的信息,完成下列问题:(1)表中a=________,b=________;(2)样本成绩的中位数落在________范围内;(3)请把频数分布直方图补充完整;x<范围内的有(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4 2.8多少人?35.今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用厘米,女性应采用厘米;(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.(参考数据表)参考答案1.D2.C3.C4.B5.C6.B7.D8.C9.A10.C11.C12.C13.A14.D15.14.16.乙17.2 518.2 319.1 320.1 621.这个游戏对双方公平,理由见解析22.(1)96,96;(2)3 523.(1)40人,补全图形见解析;(2)480人;(3)5 624.(1)24人;(2)C组;(3)150人.25.(1)12,补全频数分布图见解析;(2)480只;(3)该村贫困户能脱贫.26.(1)120,12,36;(2)详见解析;(3)62527.(1)200名;(2)见解析;(3)树状图见解析,4528.(1)200 ;(2)图见解析;(3)25,36; (4)3000人 29.(1)P (小伟胜)=23,P (小梅胜)=13;(2)游戏不公平;修改为:两次掷出的点数之差的绝对值为1,2,则小伟胜;否则小梅胜. 30.(1)200;(2)见解析;(3)约1008名;(4)16. 31.(1)见解析;(2)20%;(3)84.5分;(4)672人 32.(1)80;(2)见解析;(3)72º;(4)图表见解析,5933.(1)50,36%;(2)见解析;(3)能获奖.理由见解析;(4)2334.(1)8a =,20b =;(2)2.0 2.4x <;(3)详见解析;(4)240人 35.(1)176,164;(2)157.4°。
专题21 图形的相似(共29题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题21图形的相似(29题)一、单选题1.(2023·重庆·统考中考真题)如图,已知ABC EDC ∽,:2:3AC EC =,若AB 的长度为6,则DE 的长度为()A .4B .9C .12D .13.5【答案】B 【分析】根据相似三角形的性质即可求出.【详解】解:∵ABC EDC ∽,∴::AC EC AB DE =,∵:2:3AC EC =,6AB =,∴2:36:DE =,∴9DE =,故选:B.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.2.(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点ABC DEF 、成位似关系,则位似中心的坐标为()A .()1,0-B .()0,0C .()0,1D .()1,0【答案】A【分析】根据题意确定直线AD 的解析式为:1y x =+,由位似图形的性质得出AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,即可求解.【详解】解:由图得:()()1,2,3,4A D ,设直线AD 的解析式为:y kx b =+,将点代入得:243k b k b=+⎧⎨=+⎩,解得:11k b =⎧⎨=⎩,∴直线AD 的解析式为:1y x =+,AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,∴当0y =时,1x =-,∴位似中心的坐标为()1,0-,故选:A .【点睛】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键.3.(2023·浙江嘉兴·统考中考真题)如图,在直角坐标系中,ABC 的三个顶点分别为()()()1,2,2,1,3,2A B C ,现以原点O 为位似中心,在第一象限内作与ABC 的位似比为2的位似图形A B C ''' ,则顶点C '的坐标是()A .()2,4B .()4,2C .()6,4D .()5,4【答案】C 【分析】直接根据位似图形的性质即可得.【详解】解:∵ABC 的位似比为2的位似图形是A B C ''' ,且()3,2C ,()23,22C '∴⨯⨯,即()6,4C ',故选:C .【点睛】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.4.(2023·四川南充·统考中考真题)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为()A .6.4mB .8mC .9.6mD .12.5m【答案】B 【分析】根据镜面反射性质,可求出ACB ECD ∠=∠,再利用垂直求ABC EDC ∽,最后根据三角形相似的性质,即可求出答案.【详解】解:如图所示,由图可知,AB BD ⊥,CD DE ⊥,CF BD⊥90ABC CDE \Ð=Ð=°.根据镜面的反射性质,∴ACF ECF ∠=∠,∴9090ACF ECF ︒-∠=︒-∠,ACB ECD ∴∠=∠,ABC EDC ∴ ∽,AB BC DE CD∴=. 小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,1.6m AB ∴=,2m BC =,10m CD =.1.6210DE ∴=.8m DE ∴=.故选:B.A .23B .352【答案】B 【分析】根据平行线分线段成比例得出1322CM AD ==,进而可得MB =进而在Rt BGM △中,勾股定理即可求解.【详解】解:∵四边形ABCD 是正方形,∴2AD BC AB AF FG ===+=∵EF AB ⊥,∴AD EF BC∥∥∴2DE AF EM FB ==,ADE CME ∽△△∴2AD DE CM EM==,则1322CM AD ==,∴332MB CM =-=,∵BC AD ∥,∴GMB GDA ∽,∴312BG MB在Rt BGM △中,2222335322MG MB BG ⎛⎫=+=+= ⎪⎝⎭,故选:B .【点睛】本题考查了正方形的性质,平行线分线段成比例,相似三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.6.(2023·湖北黄冈·统考中考真题)如图,矩形ABCD 中,34AB BC ==,,以点B 为圆心,适当长为半径画弧,分别交BC ,BD 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 长为半径画弧交于点P ,作射线BP ,过点C 作BP 的垂线分别交,BD AD 于点M ,N ,则CN 的长为()A .10B .11C .23D .4【答案】A 【分析】由作图可知BP 平分CBD ∠,设BP 与CN 交于点O ,与CD 交于点R ,作RQ BD ⊥于点Q ,根据角平分线的性质可知RQ RC =,进而证明Rt BCR Rt BQR ≌,推出4BC BQ ==,设RQ RC x ==,则3DR CD CR x =-=-,解Rt DQR 求出43QR CR ==.利用三角形面积法求出OC ,再证OCR DCN ∽,根据相似三角形对应边成比例即可求出CN .【详解】解:如图,设BP 与CN 交于点O ,与CD 交于点R ,作RQ BD ⊥于点Q ,矩形ABCD 中,34AB BC ==,,∴3CD AB ==,∴225BD BC CD =+=.由作图过程可知,BP 平分CBD ∠,定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出BP 平分CBD ∠,通过勾股定理解直角三角形求出CR .7.(2023·四川内江·统考中考真题)如图,在ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC DG EF ∥∥,点H 为AF 与DG 的交点.若12AC =,则DH 的长为()A .1B .32C .2D .3【答案】C 【分析】由三等分点的定义与平行线的性质得出BE DE AD ==,BF GF CG ==,AH HF =,DH 是AEF △的中位线,易证BEF BAC ∽△△,得EF BE AC AB =,解得4EF =,则122DH EF ==.【详解】解:D 、E 为边AB 的三等分点,EF DG AC ∥∥,BE DE AD ∴==,BF GF CG ==,AH HF =,3AB BE ∴=,DH 是AEF △的中位线,12DH EF ∴=,EF AC ∥,,,BEF BAC BFE BCA ∴∠=∠∠=∠BEF BAC ∴∽△△,∴EF BE AC AB=,即123EF BE BE =,解得:4EF =,114222DH EF ∴==⨯=,故选:C .【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.A.36,55⎛⎫⎪⎝⎭B.【答案】D【分析】由题意可得点C在以点分别过C、M作CF OA⊥,取得最大值时,OM取得最大值,结合图形可知当最大值,然后分别证BDO【详解】解:∵点C为平面内一动点,∴点C在以点B为圆心,3 2在x轴的负半轴上取点D ⎛- ⎝∵35OA OB==,∴AD OD OA =+=952,∴23OA AD =,∵:1:2CM MA =,∴23OA CM AD AC ==,∵OAM DAC ∠∠=,∴OAM DAC ∽,∴23OM OA CD AD ==,∴当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,∵35OA OB ==,OD =352,∴BD =()222235153522OB OD ⎛⎫+=+= ⎪ ⎪⎝⎭,∴9CD BC BD =+=,∵23OM CD =,∴6OM =,∵y 轴x ⊥轴,CF OA ⊥,∴90DOB DFC ∠∠==︒,∵BDO CDF ∠∠=,∴BDO CDF ∽,∴OB BD CF CD =即153529CF =,解得1855CF =,同理可得,AEM AFC ∽,∴23ME AM CF AC ==即231855ME =,解得1255ME =,A .①②B .【答案】D 【分析】根据正方形的性质和三角形全等即可证明用角平分线的性质和公共边即可证明明ADE DGE ∽△△推出DE 出AM 和CM 长度,最后通过面积法即可求证最小值,从而证明②不对.【详解】解:ABCD 为正方形,BC CD AD ∴==,ADE ∠BF CE = ,DE FC ∴=,()SAS ADE DCF ∴ ≌.DAE FDC ∠=∠∴,90ADE ∠=︒ ,90ADG FDC ∴∠+∠=︒,90ADG DAE ∴∠+∠=︒,90AGD AGM ∴∠=∠=︒.AE 平分CAD ∠,DAG MAG ∴∠=∠.AG AG = ,()ASA ADG AMG ∴ ≌.DG GM ∴=,90AGD AGM ∠=∠=︒ ,AE ∴垂直平分DM ,故①正确.由①可知,90ADE DGE ∠=∠=︒,DAE GDE ∠=∠,ADE DGE ∴ ∽,DE AE GE DE∴=,2DE GE AE ∴=⋅,由①可知DE CF =,2CF GE AE ∴=⋅.故③正确.ABCD 为正方形,且边长为4,4AB BC AD ∴===,∴在Rt ABC △中,242AC AB ==.由①可知,()ASA ADG AMG ≌,4AM AD ∴==,424CM AC AM ∴=-=-.由图可知,DMC 和ADM △等高,设高为h ,=ADM ADC DMC S S S ∴- ,h=由④可知ADM△的高2∴=.22DN'故②不正确.综上所述,正确的是①③.故选:D.【点睛】本题考查的是正方形的综合题,涉及到三角形相似,最短路径,三角形全等,三角形面积法,解题的关键在于是否能正确找出最短路径以及运用相关知识点10.(2023·内蒙古赤峰·统考中考真题)延长线上的点Q重合.DE=,则下列结论,①DQ EQA.①②③B.②④【答案】A【分析】由折叠性质和平行线的性质可得QDF CDF QEF ∠=∠=∠,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出4MQ AM ==,再求出BQ 即可判断②正确;由CDP BQP △∽△得53CP CD BP BQ ==,求出BP 即可判断③正确;根据EF QE DE BE≠即可判断④错误.【详解】由折叠性质可知:,5CDF QDF CD DQ ∠=∠==,∵CD AB ∥,∴CDF QEF ∠=∠.∴QDF QEF ∠=∠.∴5DQ EQ ==.故①正确;∵5DQ CD AD ===,DM AB ⊥,∴4MQ AM ==.∵541MB AB AM =-=-=,∴413BQ MQ MB =-=-=.故②正确;∵CD AB ∥,∴CDP BQP △∽△.∴53CP CD BP BQ ==.∵5CP BP BC +==,∴31588BP BC ==.故③正确;∵CD AB ∥,∴CDF BEF ∽△△.∴55358DF CD CD EF BE BQ QE ====++.∴813EF DE =.∵58QE BE =,∴EF QE DE BE≠.A.①②③④⑤B【答案】B【分析】利用正方形的性质和翻折的性质,逐一判断,即可解答.【详解】解: 四边形ABCDDAE ABF∴∠=∠=︒,90⊥,AF DE∴∠+∠=︒,BAF AED90,∠+∠=︒BAF AFB90∴∠=∠,AED BFA()ABF AED∴△≌△AAS∴=,故①正确,AF DE将ABF△沿AF翻折,得到BM AF∴⊥,⊥,∵AF D EBM DE ∴∥,故②正确,当CM FM ⊥时,90CMF ∠=︒,90AMF ABF ∠=∠=︒ ,180AMF CMF ∴∠+∠=︒,即,,A M C 在同一直线上,45MCF ∴∠=︒,9045MFC MCF ∴∠=︒-∠=︒,通过翻折的性质可得45HBF HMF ∠=∠=︒,BF MF =,∴HMF MFC ∠=∠,HBC MFC ∠=∠,,BC MH HB MF ∴∥∥,∴四边形BHMF 是平行四边形,BF MF = ,∴平行四边形BHMF 是菱形,故③正确,当点E 运动到AB 的中点,如图,设正方形ABCD 的边长为2a ,则AE BF a ==,在Rt AED △中,225DE AD AE a AF =+==,,45AHD FHB ADH FBH ∠=∠∠=∠=︒ ,AHD FHB ∴△∽△,122FH BF a AH AD a ∴===,22533AH AF a ∴==,90AGE ABF ∠=∠=︒ ,AGF ABF ∴△∽△,555AE EG AG a AF BF AB a ∴====,二、填空题11【答案】()3,1【分析】直接利用位似图形的性质得出相似比进而得出对应线段的长.【详解】解∶设()1,A m n ∵ABC 与111A B C △位似,原点O 是位似中心,且113AB A B =.若()9,3A ,∴位似比为31,∴933311m n ==,,解得3m =,1n =,∴()13,1A 故答案为:()3,1.【点睛】此题主要考查了位似变换,正确得出相似比是解题关键.13.(2023·吉林长春·统考中考真题)如图,ABC 和A B C ''' 是以点O 为位似中心的位似图形,点A 在线段OA '上.若12OA AA '=::,则ABC 和A B C ''' 的周长之比为__________.【答案】1:3【分析】根据位似图形的性质即可求出答案.【详解】解:12OA AA '= ::,:1:3OA OA '∴=,设ABC 周长为1l ,设A B C ''' 周长为2l ,ABC 和A B C ''' 是以点O 为位似中心的位似图形,1213l OA l OA ∴=='.12:1:3l l ∴=.ABC ∴ 和A B C ''' 的周长之比为1:3.故答案为:1:3.【答案】52【分析】四边形ABCD 是平行四边形,则由23AE EB =进一步即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴,AB CD AB CD = ,∴,AEF CDF EAF DCF ∠=∠∠=∠∴EAF DCF ∽,【答案】6【分析】根据题意可得ABD AQP ∽,然后相似三角形的性质,即可求解.【详解】解:∵ABC ∠和AQP ∠均为直角∴BD PQ ∥,∴ABD AQP ∽,∴BD AB PQ AQ=∵40cm 20cm 12m AB BD AQ ===,,,∴2m 120640AQ BD PQ AB ⨯⨯===,故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.16.(2023·四川成都·统考中考真题)如图,在ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ';③以点M '为圆心,以MN 长为半径作弧,在BAC ∠内部交前面的弧于点N ':④过点N '作射线DN '交BC 于点E .若BDE 与四边形ACED 的面积比为4:21,则BE CE的值为___________.【答案】23【分析】根据作图可得BDE A ∠=∠,然后得出DE AC ∥,可证明BDE BAC ∽△△,进而根据相似三角形的性质即可求解.【详解】解:根据作图可得BDE A ∠=∠,【答案】5【分析】过点D 作DF AB ⊥等腰直角三角形,可得DF =AFD ACB ,可得DF BC =12CD =,即可求解.【详解】解:过点D 作DF ∵90ACB ∠=︒,3AC =,BC∴ABB ' 是等腰直角三角形,∴45ABB '∠=︒,又∵DF AB ⊥,∴45FDB ∠=︒,∴DFB △是等腰直角三角形,∴DF BF =,∵1122ADB S BC AD DF AB =⨯⨯=⨯⨯ ,即=10AD DF ,∵90C AFD ∠=∠=︒,CAB FAD ∠=∠,∴AFD ACB ,∴DF AF BC AC=,即3AF DF =,又∵=10AF DF -,∴10=4DF ,∴105=10=42AD ⨯,51=3=22CD -,∴52==512AD CD ,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.18.(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.【答案】2或21+【分析】分两种情况:当90MND ∠=︒时和当90NMD ∠=︒时,分别进行讨论求解即可.【详解】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD=又∵M 为对角线BD 的中点,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,论是解决问题的关键.19.(2023·辽宁大连·统考中考真题)如图,在正方形ABCD 中,3AB =,延长BC 至E ,使2CE =,连接AE ,CF 平分DCE ∠交AE 于F ,连接DF ,则DF 的长为_______________.【答案】3104【分析】如图,过F 作FM BE ⊥于M ,FN CD ⊥于N ,由CF 平分DCE ∠,可知45FCM FCN ∠=∠=︒,可得四边形CMFN 是正方形,FM AB ∥,设FM CM NF CN a ====,则2ME a =-,证明EFM EAB ∽,则FM ME AB BE =,即2332a a -=+,解得34a =,94DN CD CN =-=,由勾股定理得22DF DN NF =+,计算求解即可.【详解】解:如图,过F 作FM BE ⊥于M ,FN CD ⊥于N ,则四边形CMFN 是矩形,FM AB ∥,∵CF 平分DCE ∠,∴45FCM FCN ∠=∠=︒,∴=CM FM ,∴四边形CMFN 是正方形,设FM CM NF CN a ====,则2ME a =-,∵FM AB ∥,∴EFM EAB ∽,∴FM ME AB BE =,即2332a a -=+,解得34a =,∴94DN CD CN =-=,【答案】15【分析】根据正方形的性质及相似三角形的性质可进行求解.【详解】解:如图,由题意可知10,AD DC CG CE ===∴10CH AD ==,∵90,D DCH AJD HJC ∠=∠=︒∠=∠∴()AAS ADJ HCJ ≌,∴5CJ DJ ==,∴1EJ =,∵GI CJ ∥,∴HGI HCJ ∽,∴25GI GH CJ CH ==,∴2GI =,∴4FI =,∴()1152EJIF S EJ FI EF =+⋅=梯形;故答案为:15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.21.(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,52EA ED ==.(1)ADE V 的面积为________;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为________.【答案】3;13【分析】(1)过点E 作EH AD ⊥,根据正方形和等腰三角形的性质,得到AH 的长,再利用勾股定理,求出EH 的长,即可得到ADE V 的面积;(2)延长EH 交AG 于点K ,利用正方形和平行线的性质,证明()ASA ABF KEF ≌,得到EK 的长,进而得到KH 的长,再证明AHK ADG △∽△,得到KH AH GD AD=,进而求出GD 的长,最后利用勾股定理,即可求出AG 的长.【详解】解:(1)过点E 作EH AD ⊥,正方形ABCD 的边长为3,3AD ∴=,ADE 是等腰三角形,52EA ED ==,EH AD ⊥,1322AH DH AD ∴===,【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.22.(2023·四川泸州·统考中考真题)如图,E ,F 是正方形ABCD 的边AB 的三等分点,P 是对角线AC 上的动点,当PE PF +取得最小值时,AP PC的值是___________.【答案】27【分析】作点F 关于AC 的对称点F ',连接EF '交AC 于点P ',此时PE PF +取得最小值,过点F '作AD 的垂线段,交AC 于点K ,根据题意可知点F '落在AD 上,设正方形的边长为a ,求得AK 的边长,证明AEP KF P '''△∽△,可得2KP AP '=',即可解答.【详解】解:作点F 关于AC 的对称点F ',连接EF '交AC 于点P ',过点F '作AD 的垂线段,交AC 于点K ,由题意得:此时F '落在AD 上,且根据对称的性质,当P 点与P '重合时PE PF +取得最小值,设正方形ABCD 的边长为a ,则23AF AF a '==, 四边形ABCD 是正方形,45F AK '∴∠=︒,45P AE '∠=︒,2AC a=F K AF ''⊥ ,【答案】97 3【分析】过点A作AH⊥根据勾股定理求出AH6CE BC==,证明CD226 DE CE CD=+=【详解】解:过点A作则90AHC AHB ∠=∠=︒,∵5,6AB AC BC ===,∴132===BH HC BC ,∴224AH AC CH =-=,∵ADB CBD CED ∠=∠+∠,2ADB CBD ∠=∠,∴CBD CED ∠=∠,∴DB DE =,∵90BCD ∠=︒,∴DC BE ⊥,∴6CE BC ==,∴9EH CE CH =+=,∵DC BE ⊥,AH BC ⊥,∴CD AH ∥,∴~ECD EHA ,∴CD CE AH HE =,即649CD =,解得:83CD =,∴22228297633DE CE CD ⎛⎫=+=+= ⎪⎝⎭,∵CD AH ∥,∴DE CE AD CH=,即297633AD =,三、解答题(1)证明:C ABD BA ∽△△;(2)若610AB BC ==,,求BD 【答案】(1)见解析(2)185BD =【分析】(1)根据三角形高的定义得出角B B ∠=∠,即可得证;(2)根据(1)的结论,利用相似三角形的性质即可求解.【详解】(1)证明:∵BAC ∠∴90ADB ∠=︒,B C ∠+∠=∴90B BAD ∠+∠=︒,∴BAD C∠=∠∴23618105AB BD CB ===.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.25.(2023·湖南·统考中考真题)如图,,CA AD ED AD ⊥⊥,点B 是线段AD 上的一点,且CB BE ⊥.已知8,6,4AB AC DE ===.(1)证明:ABC DEB ∽△△.(2)求线段BD 的长.【答案】(1)见解析(2)3BD =【分析】(1)根据题意得出90,90A D C ABC ∠=∠=︒∠+∠=︒,90ABC EBD ∠+∠=︒,则C EBD ∠=∠,即可得证;(2)根据(1)的结论,利用相似三角形的性质列出比例式,代入数据即可求解.【详解】(1)证明:∵,AC AD ED AD ⊥⊥,∴90,90A D C ABC ∠=∠=︒∠+∠=︒,∵CE BE ⊥,∴90ABC EBD ∠+∠=︒,∴C EBD ∠=∠,∴ABC DEB ∽△△;(2)∵ABC DEB ∽△△,∴AB AC DE BD=,∵8,6,4AB AC DE ===,∴864BD=,解得:3BD =.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.26.(2023·四川眉山·统考中考真题)如图,ABCD Y 中,点E 是AD 的中点,连接CE 并延长交BA 的延长(1)求证:AF AB=;(2)点G是线段AF上一点,满足∠【答案】(1)见解析(2)6 5【分析】(1)根据平行四边形的性质可得即可解答;(2)通过平行四边形的性质证明AGH DCH△∽△,利用对应线段比相等,列方程即可解答.【详解】(1)证明: 四边形ABCDAB CD∴∥,AB CD=,EAF D∴∠=∠,AGH DCH ∴△∽△,GH AG CH DC∴=,设HG x =,则6CH CG GH x =-=-,可得方程268x x =-,解得65x =,即GH 的长为65.【点睛】本题考查了平行四边形的性质,等腰三角形的判定和性质,相似三角形的判定和性质,熟练运用上述性质证明三角形相似是解题的关键.27.(2023·四川凉山·统考中考真题)如图,在ABCD Y 中,对角线AC 与BD 相交于点O ,CAB ACB ∠=∠,过点B 作BE AB ⊥交AC 于点E .(1)求证:AC BD ⊥;(2)若10AB =,16AC =,求OE 的长.【答案】(1)见详解(2)92【分析】(1)可证AB CB =,从而可证四边形ABCD 是菱形,即可得证;(2)可求6OB =,再证EBO BAO ∽ ,可得EO BO BO AO=,即可求解.【详解】(1)证明:CAB ACB ∠=∠ ,AB CB ∴=,四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,AC BD ∴⊥.(2)解: 四边形ABCD 是平行四边形,128OA AC ∴==,AC BD ^ ,BE AB ⊥,(1)求证:四边形AMCN 是平行四边形;(2)若AMCN 的面积为4,求ABCD Y 【答案】(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形四边形,进而得到:,AM CN AN ∥∥(2)连接,,HG AC EF ,推出ANH ANC S S ()1122ANH FMC ANC AMC S S S S S +=+=【详解】(1)证明:∵ABCD Y ,∴,,,AB CD AD BC AB CD AD BC ==∥∥,∵点E 、F 、G 、H 分别是ABCD Y 各边的中点,∴11,22AE AB CD CG AE CG ===∥,∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴,AM CN AN CM ∥∥,∴四边形AMCN 是平行四边形;(2)解:连接,,HG AC EF ,∵,H G 为,AD CD 的中点,∴1,2HG AC HG AC =∥,∴HNG CNA ∽,∴12HN HG CN AC ==,∴12ANH ANC S HN S CN == ,同理可得:12FMC AMC S S = ∴()11222ANH FMC ANC AMC AMCN S S S S S +=+== ,∴246AFCH ANH FMC AMCN S S S S =++=+= ,∵12AH AD =,∴212ABCD AFCH S S == .【点睛】本题考查平行四边形的判定和性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握平行四边形的性质,以及三角形的中位线定理,证明三角形相似,是解题的关键.29.(2023·上海·统考中考真题)如图,在梯形ABCD 中AD BC ∥,点F ,E 分别在线段BC ,AC 上,且(1)求证:DE AF=(2)若ABC CDE ∠=∠,求证:2AF BF CE=⋅【答案】见解析【分析】(1)先根据平行线的性质可得DAE ∠然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得AFC ∠=∠得ABF CDE ,然后根据相似三角形的性质即可得证.【详解】(1)证明:AD BC ,DAE ACF ∴∠=∠,在DAE 和ACF △中,DAE ACF AD CA ADE CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA DAE ACF ∴≅ ,DE AF ∴=.(2)证明:DAE ACF ≅ ,AFC DEA ∴∠=∠,180180AFC DEA ∴︒-∠=︒-∠,即AFB CED ∠=∠AFB CED ∠=∠⎧【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21题专题作业
1. 已知:如图,△ABC 内接于⊙O ,点DOC 的延长线上,
sin B =
2
1
, ∠CAD =30°. (1)求证:AD 是 ⊙O 的切线; (2)若OD ⊥AB ,BC =5,求AD 的长.
2. 已知:如图,A 是
O 上一点,半径OC 的延长线与过点A 的直线交于B 点,OC BC =,
1
2
AC OB =.
(1)求证:AB 是
O 的切线;
(2)若45ACD ∠=°,2OC =,求弦CD 的长.
3. 已知:如图,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠. (1)判断直线BD 与
O 的位置关系,并证明你的结论;
(2)若:8:5AD AO =,2BC =,求BD 的长.
4. 已知: 如图,在△ABC 中, AB =AC , AE 是角平分线,
O
A
B
C
D
A
BM 平分∠ABC 交AE 于点M ,经过B 、M 两点的⊙O
交BC 于点G ,交AB 于点F , FB 恰为⊙O 的直径. (1)求证:AE 与⊙O 相切; (2)当BC =4,cos C 1
3
=时,求⊙O 的半径.
5. 已知:如图,在△ABC 中,D 是AB 边上一点,⊙O
过D B C 、、三点,290DOC ACD ∠=∠=︒. (1)求证:直线AC 是⊙O 的切线;
(2)如果75ACB ∠=︒,⊙O 的半径为2,求BD 的长.
6. 如图,在△ABC ,AB AC =,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且1
2
CBF CAB ∠=∠。
(1)求证:直线BF 是⊙O 的切线; (2)若5AB =
,sin CBF ∠=
,求BC 和BF 的长.
7. 已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于
点D ,过点C 作O ⊙的切线,交OD 的延长线于点E ,连结
BE .
(1)求证:BE 与O ⊙相切;
A
B
(2)连结AD 并延长交BE 于点F ,若9OB =,2
sin 3
ABC ∠=
,求BF 的长.
8如图,△ABC 内接于⊙O ,且AB =AC ,点D 在⊙O 上,AD ⊥AB 于点A , AD 与BC 交于点E ,F 在DA 的延长线上,且
AF =AE .
(1)求证:BF 是⊙O 的切线; (2)若AD =4,5
4
cos =∠ABF ,求BC 的长.
9如图,D 是⊙O 的直径CA 延长线上一点, 点 B 在⊙O 上, 且AB =AD =AO . (1)求证:BD 是⊙O 的切线;
(2)若E 是劣弧BC 上一点,AE 与BC 相交于点F , △BEF 的面积为8,且cos ∠BFA =3
2, 求△ACF 的面积.
10.已知:如图,AB 为⊙O 的弦,过点O 作AB 的平行线,交 ⊙O 于点C ,直线OC 上一点D 满足∠D =∠ACB . (1)判断直线BD 与⊙O 的位置关系,并证明你的结论; (2)若⊙O 的半径等于4,4
tan 3
ACB ∠=
,求CD 的长.
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。