数控技术的发展史

合集下载

数控机床的发展历史及其技术的发展趋势

数控机床的发展历史及其技术的发展趋势

3、在关键技术的应用方面,伺服驱动技术、数控系统技术和机械结构技术 都在不断发展,其中伺服驱动技术和数控系统技术的数字化、高频化、集成化, 以及机械结构技术的高刚度、高精度、高可靠性都是当前发展的主要方向。
综上所述,数控机床的关键技术和发展趋势对制造业的发展至关重要。未来, 随着科学技术的不断进步和创新,我们有理由相信,数控机床的关键技术和发展 趋势将会有更大的突破和创新。
2、虚拟现实/增强现实技术在数 控机床上的应用
虚拟现实(VR)和增强现实(AR)技术的引入,为数控机床的操作和维护提 供了全新的视角。通过VR技术,可以将加工过程进行模拟仿真,帮助操作人员提 前发现潜在的错误和问题,提高实际加工过程中的安全性。而AR技术则可以将加 工信息实时叠加到实际场景中,使操作人员能够更加直观地了解设备状态和加工 进度,提高生产效率。
高速化指的是数控机床的加工速度不断提高,高精度化则是指数控机床的加 工精度不断提高。复合化是指数控机床具备多种加工功能,能够实现一机多能。 智能化则是指数控机床具备智能化的加工能力和自我诊断修复功能。
三、数控机床关键技术分析
1、伺服驱动技术:伺服驱动技术是数控机床的重要组成部分,其性能直接 影响到数控机床的加工精度和速度。目前,伺服驱动技术正朝着数字化、高频化、 集成化方向发展,其中数字化伺服驱动技术通过提高脉冲频率和采样率,能够大 幅度提高伺服系统的性能。
四、结论
数控机床作为现代制造业的核心设备,其性能和使用寿命直接影响到生产效 率和产品质量。本次演示通过对数控机床的关键技术和发展趋势进行分析,得出 以下结论:
1、数控机床的关键技术包括伺服驱动技术、数控系统技术、机械结构技术 等,这些技术的发展程度直接决定了数控机床的性能和使用寿命。

数控机床的发展历程和趋势

数控机床的发展历程和趋势
采用高精度传感器和算法,实现超精 密加工和纳米级定位。
现代数控机床的应用领域拓展
01
02
03
04
航空航天领域
用于加工飞机和航天器的复杂 零部件,如发动机叶片、机翼
等。
汽车制造领域
用于加工汽车零部件,如发动 机缸体、曲轴等。
模具制造领域
用于加工各种模具零部件,如 注塑模、压铸模等。
医疗器械领域
用于加工各种医疗器械零部件 ,如人工关节、牙科种植体等
高精度直线导轨和滚珠丝 杠
高精度直线导轨和滚珠丝杠的 应用提高了数控机床的定位精 度和重复定位精度,进一步提 升了加工质量。
智能化技术
中期发展阶段开始引入智能化 技术,如自适应控制、模糊控 制等,使数控机床能够根据不 同的加工条件自动调整参数, 提高加工过程的稳定性和效率 。
中期发展的主要应用领域
高速发展阶段
21世纪初,中国数控机床 产业进入高速发展阶段, 技术水平不断提高,产品 种类日益丰富。
中国数控机床的产业现状
产业规模
中国数控机床产业规模不断扩大, 已经成为全球最大的数控机床生 产国之一。
技术水平
中国数控机床的技术水平不断提高, 已经具备了国际竞争力。
产品种类
中国数控机床的产品种类日益丰富, 涵盖了各种加工中心、数控车床、 数控铣床等。
新兴领域应用 数控机床在新兴领域如新能源、 新材料、生物医药等领域的应用 不断拓展,为数控机床的发展提 供了新的机遇。
技术创新驱动 数控机床技术的不断创新和发展, 将推动其在高效、高精度、智能 化等方面取得更大突破。
如何应对数控机床发展的挑战和机遇
加强技术研发和创新
企业应加大技术研发和创新投入,提升 数控机床的技术水平和核心竞争力。

数控技术第1章绪论

数控技术第1章绪论
和可靠性。
电子制造业
数控技术用于电子产品 的精密制造和加工,如 半导体芯片、液晶显示
器等。
02 数控机床的组成与工作原 理
数控机床的组成
数控装置
数控装置是数控机床的核心部分,负责接收输入的加工信 息,经过译码、运算处理后,输出相应的控制指令,控制 机床各部件的运动。
主轴系统
主轴系统是数控机床的重要部分,用于驱动刀具进行切削 运动,通常包括主轴电机、主轴箱、主轴轴承等部件。
数控技术第1章绪论
目录
• 数控技术概述 • 数控机床的组成与工作原理 • 数控编程基础 • 数控技术的发展趋势与挑战
01 数控技术概述
数控技术的定义
数控技术(Numerical Control,简称NC):是一种基于数字计算机和自动控制理 论的制造技术,通过编程控制机床或其他制造设备的运动,实现零件的加工和制造。
随着计算机集成制造系统(CIMS)和智能制造的兴起,数控技术不断向高精度、高速度、高 智能化方向发展。
数控技术的应用领域
机床制造业
数控技术广泛应用于机 床的加工和制造,包括 数控车床、数控铣床、
数控磨床等。
汽车制造业
数控技术用于汽车零部 件的加工和装配,提高 了生产效率和产品质量。
航空航天制造业
数控技术用于航空航天 器的精密制造和加工, 确保了零部件的高精度
04 数控技术的发展趋势与挑 战
数控技术的发展趋势
01
智能化
随着人工智能和大数据技术的进步,数控技术正朝着智能化方向发展。
智能数控系统能够实现自适应加工、故障预测和自动优化等功能,提高
加工效率和精度。
02
复合化
为了满足制造业对多品种、小批量、定制化生产的需求,数控技术正朝

数控发展史

数控发展史

论数控发展史一,我国数控系统的发展史1.我国从1958年起,由一批科研院所,高等学校和少数机床起步进行数控系统的研制和开发.由于受到当时国产电子元器件水平低,部门经济等的制约,未能取得较大大发展.2.在改革开放后,我国数控技术才逐步取得实质性大发展,经过”六五”(81----85年)的引进国外技术,”七五”(86---90年)的消化吸收和”八五”(91---95年)国家组织的科技攻关,才使得我国的数控技术有了质的飞跃,当时通过国家攻关验收和鉴定的产品包括北京珠峰公司的华中1型和沈阳高档数控国家工程研究中心的蓝天1型,以及其他通过”国家机床质量监督测试中心”测试合格的国产数控系统,如南京四开公司的产品.3.我国数控机床制造业在80年代曾有过高速发展的阶段,许多机床厂从传统产品实现向数控化产品的转型.但总的来说,技术水平不高,质量不佳,所以在90年代初期面临国家经济由计划性经济向市场经济转移调整,经历了几年最困难的萧条时期,那时生产能力降到5%,库存超过4个月.投资重点支持关键数控系统,设备,技术攻关,对数控设备生产起到了很大的促进作用,尤其是在1999年以后,国家向国防工业及关键民业部门投入大量技改资金,使数控设备制造市场一派繁荣.装备工业的技术水平个现代化程度决定着整个国民经济的水平个现代化程度,数控技术及装备是发长新兴高新技术产业和尖端工业(如信息技术及其产业,生物技术及其产业,航空,航天等国防工业产业)的使用技术和最基本的装备.马克思曾经说过”各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产”.制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术最核心的技术.当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对多变市场的适应能力和竞争能力.此外,世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在”高精尖”数控关键技术和装备方面对我国实行封锁和限制政策.总之,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展,提高综合国力和国家地为的重要途径数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术,对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备,其技术范围覆盖很多领域;(1).机械制造技术;(2).信息处理技术;(3).自动控制技术;(4).私服驱动技术;(5).传感器技术.(6).软件技术等.我国自从1958年开始研究数控技术以来,到现在已经建立了以中,低档数控机床为主的产业体系。

数控技术发展历程

数控技术发展历程

数控技术发展历程本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March数控加工技术的发展历程数字控制(Numerical Control),简称数控(NC),它是采用数字化信息实现加工自动化的控制技术。

数控设备就是采用了数控技术的机械设备,或者说是装备了数控系统的机械设备。

数控机床是数控设备的典型代表。

数控机床是为了解决复杂、精密、小批多变零件加工的自动化要求而产生的。

数控加工是根据被加工零件的图样和工艺要求,用规定的代码和程序格式编制成加工程序,然后输入到机床的数控装置中,数控装置再将程序(代码)进行译码、运算后,向机床各个坐标的伺服机构和辅助控制装置发出信号,以控制刀具与工件的相对运动、控制所需要的辅助运动,从而加工出合格零件的方法。

数控加工技术经历了如下的发展历程。

1948年,美国帕森斯(Parsons)公司在研制加工直升机螺旋桨叶片轮廓用检查样板的机床时,首先提出计算机控制机床的设想,1949年该公司与麻省理工学院(MIT)开始合作,历时三年于1952年研制成功了世界上第一台三坐标直线插补连续控制的立式数控铣床样机,取名“Numerical Control”。

1953年麻省理工学院开发出只需确定零件轮廓、指定切削路线,即可生成NC程序的自动编程语言。

1959年美国Keaney&Trecker公司开发成功了带刀库,能自动进行刀具交换,一次装夹中即能进行铣、钻、镗、攻丝等多种加工功能的数控机床,这就是数控机床的新种类——加工中心。

DNC(直接数控)技术始于20世纪60年代末期。

它是使用一台通用计算机,直接控制和管理一群数控机床及数控加工中心,进行多品种、多工序的自动加工。

DNC群控技术是FMS柔性制造技术的基础,现代数控机床上的DNC接口就是机床数控装置与通用计算机之间进行数据传送及通讯控制用的,也是数控机床之间实现通讯用的接口。

我国数控系统的发展史

我国数控系统的发展史

我国数控系统的发展史1.我国从1958年起,由一批科研院所,高档黉舍和少数机床厂起步进行数控系统的研制和开辟。

由于遭到那时国产电子元器件程度低,部分经济等的制约,未能获得较大的发展。

2.正在鼎新开放后,我国数控技能才渐渐获得本色性的成长。

颠末"六五"(81--85年)的引进外洋手艺,"七五"(86--90年)的消化吸取战"八五"(91~一-95年)国家构造的科技攻闭,才使得我国的数控手艺有了量的奔腾,其时经由过程国家攻关验支和判定的产物包罗北京珠峰公司的中华I型,华中数控公司的华中I型和沈阳高级数控国度工程研讨中间的蓝天I型,和其余经由过程"国度机床品质监视测试中央"测试及格的国产数控体系如北京四开公司的产物。

3.我国数控机床制造业在80年月曾有太高速发展的阶段,很多机床厂从传统产品实现向数控化产品的转型。

但总的来说,技术程度不高,质量欠安,所以在90年月早期面对国家经济由打算性经济向市场经济转移调整,履历了几年最坚苦的冷落期间,当时生产本领降到50%,库存跨越4个月。

从1 99 5年"九五"今后国家从扩展内需启念头床市场,增强限制入口数控设备的审批,投资重点撑持环节数控系统、设备、技术攻关,对数控设备生产起到了很大的增进感化,特别是在1 99 9年当前,国家向国防产业及关头平易近用产业部分投入大批技改资金,使数控设备制造市场一派繁华。

三,数控车的工艺取工装削浏览:133数控车床加工的工艺与一般车床的加工工艺近似,但由于数控车床是一次装夹,持续自动加工完成全部车削工序,因此应注意以下几个方面。

1.公道挑选切削用量对付下服从的金属切削加工来讲,被加工质料、切削东西、切削条件是三大体素。

这些决议着加工时间、刀具寿命和加工质量。

经济有用的加工体式格局一定是公道的选择了切削前提。

切削前提的三因素:切削速度、进给量和切深间接引发刀具的毁伤。

cnc2b

cnc2b

数控技术的发展趋势( 数控技术的发展趋势(续) 第四代:1970年 NC系统采用小型计算机 第四代 取代专用计算机,其部分功能由软件实现, 它具有价格低,可靠性高和功能多等特点。 第五代:1974年 NC系统以微处理器为核 第五代 心,不仅价格进一步降低,体积进一步缩 小,使实现真正意义上的机电一体化成为 可能。这一代又可分为六个发展阶段:
加工参数的智能化技术应用 -目前已开发出带自学习功能的神经网 络电火花加工专家系统。 -日本大隈公司的7000系列数控系统带 有人工智能式自动编程功能。 -国内清华和华工在加工参数的智能优 化与选择及CAPP方面的研究也取得了一 些成果。但有待进行实用化开发。
智能故障诊断与自修复技术 -智能故障诊断技术:根据已有的故障信息,应 用现代智能方法(AI、ES、ANN等),实现故障 快速准确定位的技术。 -智能故障自修复技术:指能根据诊断确定故障 原因和部位,以自动排除故障或指导故障的排除 技术。智能自修复技术集故障自诊断、故障自排 除、自恢复、自调节于一体,并贯穿于加工过程 的整个生命周期。 -智能故障诊断技术在有些日本、美国公司生产 的数控系统中已有应用,基本上都是应用专家系 统实现的
控制智能化
随着人工智能技术的不断发展,并 为满足制造业生产柔性化、制造自动化发 展需求,数控技术智能化程度不断提高, 具体体现在以下几个方面:
控制智能化技术
加工过程自适应控制技术
通过监测加工过程中的切削力、主轴和 进给电机的功率、电流、电压等信息,利用传 统的或现代的算法进行识别,以辩识出刀具的 受力、磨损以及破损状态,机床加工的稳定性 状态;并根据这些状态实时修调加工参数(主 轴转速,进给速度)和加工指令,使设备处于 最佳运行状态,以提高加工精度、降低工件表 面粗糙度以及设备运行的安全性。

数控技术的发展史

数控技术的发展史

数控技术的发展史1946年诞生了世界上第一台电子计算机,6年后,即在1952年,计算机技术应用到了机床上,在美国诞生了第一台数控机床。

从此,传统机床产生了质的变化.1948年,美国帕森斯公司接受美国空军委托,研制飞机螺旋桨叶片轮廓样板的加工设备。

由于样板形状复杂多样,精度要求高,一般加工设备难以适应,于是提出计算机控制机床的设想。

1949年,该公司在美国麻省理工学院伺服机构研究室的协助下,开始数控机床研究,并于1952年试制成功第一台由大型立式仿形铣床改装而成的三坐标数控铣床,不久即开始正式生产,于1957年正式投入使用。

这是制造技术发展过程中的一个重大突破,标志着制造领域中数控加工时代的开始。

数控加工是现代制造技术的基础,这一发明对于制造行业而言,具有划时代的意义和深远的影响。

世界上主要工业发达国家都十分重视数控加工技术的研究和发展。

经过几十年的发展,目前的数控机床已实现了计算机控制并在工业界得到广泛应用,在模具制造行业的应用尤为普及。

针对车削、铣削、磨削、钻削和刨削等金属切削加工工艺及电加工、激光加工等特种加工工艺的需求,开发了各种门类的数控加工机床。

数控机床种类繁多,一般将数控机床分为16大类:数控车床(含有铣削功能的车削中心),数控铣床(含铣削中心) ,数控铿床,以铣程削为主的加工中心,数控磨床(含磨削中心) ,数控钻床(含钻削中心) ,数控拉床,数控刨床,数控切断机床,数控齿轮加工机床,数控激光加工机床,数控电火花线切割机床,数控电火花成型机床(含电加工中心),数控板村成型加工机床,数控管料成型加工机床,其他数控机床。

如今的数控技术发展趋势有以下几个方面:1 高速、高精度、高效、高可靠性。

要提高加工效率,首先必须提高切削速度和进给速度,同时,还要缩短加工时间;要确保加工质量,必须提高机床部件运动轨迹的精度,而可靠性则是上述目标的基本保证。

为此,必须要有高性能的数控装置作保证。

2 柔性化、集成化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数控技术的发展史
1946年诞生了世界上第一台电子计算机,6年后,即在1952年,计算机技术应用到了机床上,在美国诞生了第一台数控机床。

从此,传统机床产生了质的变化.
1948年,美国帕森斯公司接受美国空军委托,研制飞机螺旋桨叶片轮廓样板的加工设备。

由于样板形状复杂多样,精度要求高,一般加工设备难以适应,于是提出计算机控制机床的设想。

1949年,该公司在美国麻省理工学院伺服机构研究室的协助下,开始数控机床研究,并于1952年试制成功第一台由大型立式仿形铣床改装而成的三坐标数控铣床,不久即开始正式生产,于1957年正式投入使用。

这是制造技术发展过程中的一个重大突破,标志着制造领域中数控加工时代的开始。

数控加工是现代制造技术的基础,这一发明对于制造行业而言,具有划时代的意义和深远的影响。

世界上主要工业发达国家都十分重视数控加工技术的研究和发展。

经过几十年的发展,目前的数控机床已实现了计算机控制并在工业界得到广泛应用,在模具制造行业的应用尤为普及。

针对车削、铣削、磨削、钻削和刨削等金属切削加工工艺及电加工、激光加工等特种加工工艺的需求,开发了各种门类的数控加工机床。

数控机床种类繁多,一般将数控机床分为16大类:数控车床(含有铣削功能的车削中心),数控铣床(含铣削中心) ,数控铿床,以铣程削为主的加工中心,数控磨床(含磨削中心) ,数控钻床(含钻削中心) ,数控拉床,数控刨床,数控切断机床,数控齿轮加工机床,数控激光加工机床,数控电火花线切割机床,数控电火花成型机床(含电加工中心),数控板村成型加工机床,数控管料成型加工机床,其他数控机床。

如今的数控技术发展趋势有以下几个方面:
1 高速、高精度、高效、高可靠性。

要提高加工效率,首先必须提高切削速度和进给速度,同时,还要缩短加工时间;要确保加工质量,必须提高机床部件运动轨迹的精度,而可靠性则是上述目标的基本保证。

为此,必须要有高性能的数控装置作保证。

2 柔性化、集成化。

为适应制造自动化的发展,向FMC、FMS和CIMS提供基础设备,要求数控系统不仅能完成通常的加工功能,而且还能够具备自动测量,自动上下料、自动换刀、自动更换主轴头(有时带坐标变换)、自动误差补偿,自动诊断、进线和联网功能,特别是依据用户的不同要求,可方便地灵活配置及集成。

3 智能化,网络化。

智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便方面的智能化,如前馈控制,电机参数的自适应运算,自动识别负载自动选定模型,自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容,方便系统的诊断及维修等。

4 市场适应性上的发展趋势:普及型、个性化。

为了适应数控机床多品种、小批量的特点,数控系统又要尽可能扩大批量,为此,数控系统生产厂家不仅应能生产通用的普及型数控系统,而且更应能生产带有个性化的数控系统,特别是设计、生产能够由用户自己增加专有功能的普及型数控系统:这是市场份额最大的数控系统,也是最有竞争力的数控系统,这也是适应性的体现。

5 体系结构上的发展趋势:开放性。

为适应数控进线、联网、普及型个性化、多品种、小批量、柔性化及数控迅速发展的要求,最要的发展趋势是体系结构的开放性,设计生产开放式的数控系统。

而从数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面: 1。

高速、高精加工技术及装备的新趋势。

效率、质量是先进制造技术的主体。

高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。

在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题
之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工。

近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。

这些都对加工装备提出了高速、高精和高柔性的要求。

2。

五轴联动加工和复合加工机床快速发展。

采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高。

一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,5轴联动加工可比3轴联动加工发挥更高的效益。

但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出数倍,加之编程技术难度较大,制约了5轴联动机床的发展。

当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头结构大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小。

因此促进了复合主轴头类型5轴联动机床和复合加工机床的发展。

3。

智能化、开放式、网络化成为当代数控系统发展的主要趋势。

21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。

为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题。

数控系统开放化已经成为数控系统的未来之路。

所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。

目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心。

网络化数控装备是近两年国际著名机床博览会的一个新亮点。

数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。

4。

重视新技术标准、规范的建立数控技术。

(1)关于数控系统设计开发规范:开放式数控系统有更好的通用性、柔性、适应性、扩展性,美国、欧共体和日本等国纷纷实施战略发展计划,并进行开放式体系结构数控系统规范(OMAC、OSACA、OSEC)的研究和制定,世界3个最大的经济体在短期内进行了几乎相同的科学计划和规范的制定,预示了数控技术的一个新的变革时期的来临。

我国在2000年也开始进行中国的ONC数控系统的规范框架的研究和制定。

(2)关于数控标准:数控标准是制造业信息化发展的一种趋势。

数控技术诞生后的50年间的信息交换都是基于ISO6983标准,即采用G,M代码描述如何加工,其本质特征是面向加工过程,显然,他已越来越不能满足现代数控技术高速发展的需要。

为此,国际上正在研究和制定一种新的CNC系统标准ISO14649,其目的是提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程,乃至各个工业领域产品信息的标准化随着微电子技术、计算机技术和软件技术的迅速发展,数控机床的控制系统日益趋向于小型化和多功能化,具备完善的自诊断功能;可靠性也大大提高;数控系统本身将普遍实现自动编程。

未来数控机床的类型将更加多样化,多工序集中加工的数控机床品种越来越多;激光加工等技术将应用在切削加工机床上,从而扩大多工序集中的工艺范围;数控机床的自动化程度更加提高,并具有多种监控功能,从而形成一个柔性制造单元,更加便于纳入高度自动化的柔性制造系统中。

简述数控机床的基本组成部分及其基本功能:
数控机床通常由控制系统、伺服系统、检测系统、机床传动系统及其他辅助系统组成。

控制系统用于数控机床的运算、管理和控制,通过输入介质得到数据,对这些数据进行解释和运算并对机床产生作用;伺服系统根据控制系统的指令驱动机床,把来自数控装置的脉冲信号转换成机床移动部件的运动指令,使刀具和零件执行数控代码规定的运动;检测系统则是用来检测机床执行件(工作台、转台、滑板等)的位移和速度变化量,并将检测结果反馈到输入端,与输入指令进行比较,根据其差别调整机床运动;机床传动系统是由进给伺服驱动元件至机床执行件之间的机械进给传动装置;辅助系统种类繁多,如:固定循环(能进行各种多次重复加工)、自动换刀(可交换指定刀具)、传动间隙补偿偿机械传动系统产生的间隙误差)等等。

参考书籍
《机械设备-数控技术》《数控技术的应用》《机床数控技术》《基础数控技术》《数控加工与编程》。

相关文档
最新文档