2017-2018学年最新内蒙古赤峰市中考数学模拟试题及答案解析

合集下载

2018年内蒙古自治区赤峰市中考数学试卷含答案

2018年内蒙古自治区赤峰市中考数学试卷含答案

1 / 14内蒙古赤峰市2018年中考数学试卷一.选择题:<每小题给出的四个选项中,只有一个正确选项,请将正确选项的标号填入题后的括号内.每小题3分,共24分)1.<3分)<2018?赤峰)<)0是<)A. B. 1 C D.﹣1考点:零指数幂.分析:根据零指数幂:a0=1<a≠0)可直接得到答案.解答:解:<)0=1,故选:B.点评:此题主要考查了零指数幂,关键是掌握零指数幂:a0=1<a≠0).2.<3分)<2018?赤峰)下列等式成立的是<)A.|a|?=1 B.=a C÷= D. a﹣2a=﹣a 考点:分式的乘除法;合并同类项;二次根式的性质与化简.专题:计算题.分析: A、原式分情况讨论,约分得到结果,即可做出判断;B、原式利用二次根式的化简公式计算得到结果,即可做出判断;C、原式利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到结果,即可做出判断;D、原式合并同类项得到结果,即可做出判断.解答:解:A、当a>0时,|a|=a,原式=1;当a<1时,|a|=﹣1,原式=﹣1,本选项错误;B、原式=|a|,本选项错误;C、原式=1,本选项错误;D、a﹣2a=﹣a,本选项正确,故选D 点评:此题考查了分式的乘除法,合并同类项,以及二次根式的性质与化简,熟练掌握运算法则是解本题的关键.3.<3分)<2018?赤峰)如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABCD与S四边形ECDF的大小关系是<)b5E2RGbCAP=四边ECD四边ABC四边ECD四边ABC=四边ECD+1四边ABC=四边ECD+2四边ABC考点:多边形;平行线之间的距离;三角形的面积分根据矩形的面积公式=长×宽,平行四边形的面积公式=边长×高可得两阴影部分的面2 / 14析:积,进而得到答案.解答:解:S四边形ABCD=CD?AC=1×4=4,S四边形ECDF=CD?AC=1×4=4,故选:A点评:此题主要考查了矩形和平行四边形的面积计算,关键是掌握面积的计算公式.4.<3分)<2018?赤峰)如图所示,几何体的俯视图是<)A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看可得3个小正方形,分成3列,每一列一个正方形.故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.<3分)<2018?赤峰)学校教学楼从每层楼到它上一层楼都要经过20级台阶,小明从一楼到五楼要经过的台阶数是<)p1EanqFDPw A. 100 B. 80 C. 50 D. 120 考点:有理数的乘法.分析:从一楼到五楼共经过四层楼,所以用20乘以4,再根据有理数的乘法运算法则进行计算即可得解,解答:解:从一楼到五楼要经过的台阶数为:20×<5﹣1)=80.故选B.点评:本题考查了有理数的乘法,要注意经过的楼层数为所在楼层减1.6.<3分)<2018?赤峰)目前,我国大约有1.3亿高血压病患者,占15岁以上总人口数的10%﹣15%,预防高血压不容忽视.“千帕kpa”和“毫M汞柱mmHg”都是表示血压的单位,前者是法定的国际计量单位,而后者则是过去一直广泛使用的惯用单位.请提供的信息,判断下列各组换算正确的是<)DXDiTa9E3d2kpa=160mmHg汞柱的关系式3 / 14则,解得,所以y=7.5x,A、x=13时,y=13×7.5=97.5,即13kpa=97.5mmHg,故本选项错误;B、x=21时,y=21×7.5=157.5,所以,21kpa=157.5mmHg,故本选项错误;C、x=8时,y=8×7.5=60,即8kpa=60mmHg,故本选项正确;D、x=22时,y=22×7.5=165,即22kpa=165mmHg,故本选项错误.故选C.点评:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解读式,是基础题,比较简单.7.<3分)<2018?赤峰)从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是<)RTCrpUDGiTA. 1 B. 2 C. 3 D. 4考点:条形统计图;扇形统计图;中位数.分析:首先利用扇形图以及条形图求出总人数,进而求得每个小组的人数,然后根据中位数的定义求出这些学生分数的中位数.解答:解:总人数为6÷10%=60<人),则2分的有60×20%=12<人),4分的有60﹣6﹣12﹣15﹣9=18<人),第30与31个数据都是3分,这些学生分数的中位数是<3+3)÷2=3.故选C.点本题考查了统计图及中位数的定义:将一组数据按照从小到大<或从大到小)的顺在上AD=OA=1,则图中阴影部分的面积为<4 / 14A. B. C. D.考点:扇形面积的计算;等边三角形的判定与性质;平行四边形的性质.分析:根据平行四边形的性质以及等边三角形的判定得出3个等边三角形全等,进而得出阴影部分面积等于△BCE面积,求出即可.解答:解:连接DO,EO,BE,过点D作DF⊥AB于点F,∵AD=OA=1,∴AD=AO=DO,∴△AOD是等边三角形,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDO=∠DOA=60°,∴△ODE是等边三角形,同理可得出△OBE是等边三角形且3个等边三角形全等,∴阴影部分面积等于△BCE面积,∵DF=ADsin60°=,DE=EC=1,∴图中阴影部分的面积为:××1=..故选:A.点评:此题考查了组合图形的面积,关键是得出阴影部分面积等于△BCE面积.二、填空题<请把答案填在题中横线上,每小题3分,共计24分)9.<3分)<2018?赤峰)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496×108千M,以亿千M为单位表示这个数是1.496亿千M.jLBHrnAILg 点:分析:根据1亿=108,即可将1.496×108千M写为1.496亿千M.解答:解:1.496×108千M=1.496亿千M.故答案为1.496.点评:此题考查用科学记数法表示的数的改写方法.熟记1亿=108是解题的关键.10.<3分)<2018?赤峰)请你写出一个大于0而小于1的无理数﹣1考估算无理数的大小.5 / 14点:专题:开放型.分析:根据已知和无理数的定义写出一个无理数即可.解答:解:一个大于0而小于1的无理数有﹣1,﹣1等,故答案为:﹣1.点评:本题考查了对估算无理数的大小的应用,注意:无理数是指无限不循环小数,此题是一道开放型的题目,答案不唯一.11.<3分)<2018?赤峰)一艘轮船顺水航行的速度是20海里/小时,逆水航行的速度是16海里/小时,则水流的速度是2海里/小时.xHAQX74J0X 考点:二元一次方程组的应用.分析:根据在水流问题中,水流速度=<顺水速度﹣逆水速度)÷2,即可得出答案.解答:解:∵顺水航行的速度是20海里/小时,逆水航行的速度是16海里/小时,∴水流的速度是=2<海里/小时);故答案为:2.点评:此题考查了水流问题在实际生活中的应用,解决问题的关键是读懂题意,找到所求的量的等量关系,水流速度=<顺水速度﹣逆水速度)÷2.12.<3分)<2018?赤峰)样本数据3,2,5,a,4的平均数是3,则a=1考点:算术平均数.分析:根据平均数的计算公式和数据3,2,5,a,4的平均数是3,列出算式,求出a的值即可.解答:解:∵数据3,2,5,a,4的平均数是3,∴<3+2+5+a+4)÷5=3,解得:a=1;故答案为:1.点评:此题考查了算术平均数,掌握算术平均数的计算公式是本题的关键,是一道基础题.13.<3分)<2018?赤峰)已知圆锥底面半径为5cm,高为12cm,则它的侧面展开图的面积是65πcm2.LDAYtRyKfE 考点:圆锥的计算.分析:利用勾股定理易得圆锥的母线长,圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.解答:解:∵圆锥的高为12cm,底面半径为5cm,∴圆锥的母线长为:=13cm,∴圆锥的侧面展开图的面积为:π×5×13=65πcm2.故答案为:65π点评:本题考查圆锥侧面积公式的运用,掌握公式是关键;注意圆锥的高,母线长,底面半径组成直角三角形这个知识点.14.<3分)<2018?赤峰)如图,矩形ABCD中,E是BC的中点,矩形ABCD的周长是20cm,AE=5cm,则AB的长为4cm..Zzz6ZB2Ltk6 / 14考点:勾股定理;矩形的性质.分析:设AB=x,则可得BC=10﹣x,BE=BC=,在Rt△ABE中,利用勾股定理可得出x的值,即求出了AB的长.解答:解:设AB=x,则可得BC=10﹣x,∵E是BC的中点,∴BE=BC=,在Rt△ABE中,AB2+BE2=AE2,即x2+<)2=52,解得:x=4.即AB的长为4cm..故答案为:4.点评:本题考查了矩形的性质及勾股定理的知识,解答本题的关键是表示出AB、BE的长度,利用勾股定理建立方程.15.<3分)<2018?赤峰)如图,在平面直角坐标系中,⊙O的半径为1,∠BOA=45°,则过A点的双曲线解读式是y=..dvzfvkwMI1考点:待定系数法求反比例函数解读式.分析:根据题意可设A<m,m),再根据⊙O的半径为1利用勾股定理可得m2+m2=12,解出m的值,再设出反比例函数解读式为y=<k≠0),再代入A点坐标可得k的值,进而得到解读式.解解:∵∠BOA=45°,7 / 14∵图象经过A点,∴k=×=,∴反比例函数解读式为y=..故答案为:y=..点评:此题主要考查了待定系数法求反比例函数解读式,以及勾股定理,求出A点坐标是解决此题的关键.16.<3分)<2018?赤峰)在等腰三角形中,马彪同学做了如下研究:已知一个角是60°,则另两个角是唯一确定的<60°,60°),已知一个角是90°,则另两个角也是唯一确定的<45°,45°),已知一个角是120°,则另两个角也是唯一确定的<30°,30°).由此马彪同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数也是唯一确定的.马彪同学的结论是错误的.<填“正确”或“错误”)rqyn14ZNXI 考点:等腰三角形的性质.分析:分别把已知角看做等腰三角形的顶角和底角,分两种情况考虑,利用三角形内角和是180度计算即可.解答:解:如已知一个角=70°当70°为顶角时,另外两个角是底角,它们的度数是相等的,为<180°﹣70°)÷2=55°,当70°为底角时,另外一个底角也是70°,顶角是180°﹣140°=40°故答案为:错误.点评:主要考查了等腰三角形的性质.要注意分两种情况考虑,不要漏掉一种情况.三、解答题<解答时要写出必要的文字说明、证明过程或演算步骤,共9个题,满分102分)17.<12分)<2018?赤峰)<1)计算:sin60°﹣|1﹣|+﹣1<2)化简:<a+3)2﹣<a﹣3)2.考点:完全平方公式;实数的运算;负整数指数幂;特殊角的三角函数值.分析: <1)根据特殊角的三角函数值,绝对值,负整数指数幂分别求出每一部分的值,再代入求出即可;<2)先根据完全平方公式展开,再合并同类项即可.解答:解:<1)原式=﹣<﹣1)+2 =﹣+1+2)B<),C<4,0),D<2,﹣3),E<0,﹣4).写出D,C,B关于y轴对称点F,G,H的坐8 / 14标,并画出F,G,H点.顺次而平滑地连接A,B,C,D,E,F,G,H,A各点.观察你画出的图形说明它具有怎样的性质,它象我们熟知的什么图形?EmxvxOtOco考点:作图-轴对称变换.专题:作图题.分析:关于y轴对称的点的坐标的特点是:纵坐标相等,横坐标互为相反数,得出F,G,H的坐标,顺次连接各点即可.解答:解:由题意得,F<﹣2,﹣3),G<﹣4,0),H<﹣2,4),这个图形关于y轴对称,是我们熟知的轴对称图形.点评:本题考查了轴对称作图的知识,解答本题的关键是掌握关于y轴对称的点的坐标的特点,及轴对称图形的特点.19.<10分)<2018?赤峰)如图,数学实习小组在高300M的山腰<即PH=300M)P处进行测量,测得对面山坡上A处的俯角为30°,对面山脚B处的俯角60°.已知tan ∠ABC=,点P,H,B,C,A在同一个平面上,点H,B,C在同一条直线上,且PH⊥HC.SixE2yXPq5 <1)求∠ABP的度数;<2)求A,B两点间的距离.9 / 14考点:解直角三角形的应用-仰角俯角问题.分析: <1)根据俯角以及坡度的定义即可求解;<2)在直角△PHB中,根据三角函数即可求得PB的长,然后在直角△PBA中利用三角函数即可求解.解答:解:<1)∵tan∠ABC=,∴∠ABC=30°;∵从P点望山脚B处的俯角60°,∴∠PBH=60°,∴∠ABP=180°﹣30°﹣60°=90°<2)由题意得:∠PBH=60°,∵∠ABC=30°,∴∠ABP=90°,又∠APB=30°,∴△PAB为等腰直角三角形,在直角△PHB中,PB=PH?tan∠PBH=300m.在直角△PBA中,AB=PB?tan∠BPC=300.∴A、B两点之间的距离为300M.点评:本题主要考查了俯角的问题以及坡度的定义,正确利用三角函数是解题的关键.20.<10分)<2018?赤峰)甲、乙两位同学玩摸球游戏,准备了甲、乙两个口袋,其中甲口袋中放有标号为1,2,3,4,5的5个球,乙口袋中放有标号为1,2,3,4的4个球.游戏规则:甲从甲口袋摸一球,乙从乙口袋摸一球,摸出的两球所标数字之差<甲数字﹣乙数字)大于0时甲胜,小于0时乙胜,等于0时平局.你认为这个游戏规则对双方公平吗?请说明理由.若不公平,请你对本游戏设计一个对双方都公平的游则.6ewMyirQFL10 / 14所有等可能的情况有20种,其中摸出的两球所标数字之差<甲数字﹣乙数字)大于0的情况有10中,等于0的情况有4种,小于0的情况有6种,则P甲获胜==,P乙获胜==,∵>,∴游戏不公平;若使游戏公平,修改规则为:中摸出的两球所标数字之和为偶数,甲获胜;之和为奇数,乙获胜.点评:此题考查了游戏的公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.21.<10分)<2018?赤峰)如图,直线L经过点A<0,﹣1),且与双曲线c:y=交于点B<2,1).kavU42VRUs<1)求双曲线c及直线L的解读式;<2)已知P<a﹣1,a)在双曲线c上,求P点的坐标.考点:反比例函数与一次函数的交点问题.专题:计算题.分析: <1)将B坐标代入反比例解读式求出m的值,确定出双曲线c解读式;设一处函数解读式为y=kx+b,将A与B坐标代入求出k与b的值,即可确定出直线L的解读式;<2)将P坐标代入反比例解读式求出a的值,即可确定出P坐标.11 / 14点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定函数解读式,以及一元二次方程的解法,熟练掌握待定系数法是解本题的关键.22.<12分)<2018?赤峰)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内<含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务工程、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.y6v3ALoS89 考点:一次函数的应用.分析:根据九折列出远航旅行社消费钱数与人数的函数关系式,再分不超过20人和超过20人两种情况列出吉祥旅行社消费的钱数与人数之间的关系两种情况列出函数关系式,然后求出两个旅行社消费相同的情况的人数,然后讨论求解即可.解答:解:设消费的钱数为y元,学生人数为x人,则远航旅行社:y=0.9×2000x=1800x,①若x≤20,则吉祥旅行社:y=2000x,此时2000x>1800x,选择远航旅行社更优惠;②若x>20,则吉祥旅行社:y=2000×20+2000×0.8<x﹣20),=40000+1600x﹣32000,=1600x+8000,当1600x+8000=18000x时,即x=40时,选择两个旅行社消费相同,当x<40时,选择远航旅行社更优惠,x>40时,选择吉祥旅行社更优惠,综上所述,当学生人数少于40时,选择远航旅行社更优惠,当学生人数等于40时,选择两家旅行社都一样,当学生人数大于40时,选择吉祥旅行社更优惠.点评:本题考查了一次函数的应用,读懂题目信息,列出两家旅行社的消费钱数与人数的关系式并求出消费相同的学生人数是解题的关键,难点在于要分情况讨论.23.<12分)<2018?赤峰)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.M2ub6vSTnP <1)求证:NQ⊥PQ;<2)若⊙O的半径R=3,NP=,求NQ的长.点:分析: <1)连接OP,则OP⊥PQ,然后证明OP∥NQ即可;<2)连接MP,在直角△MNP中,利用三角函数求得∠MNP的度数,即可求得∠PNQ的值,然后在直角△PNQ中利用三角函数即可求解.解答: <1)证明:连接OP.∵直线PQ与⊙O相切于P点,12 / 14∴OP⊥PQ,∵OP=ON,∴∠OPN=∠ONP,又∵NP平分∠MNQ,∴∠OPN=∠PNQ,∴OP∥NQ ∴NQ⊥PQ;<2)解:连接MP.∵MN是直径,∴∠MPN=90°,∴cos∠MNP===,∴∠MNP=30°,∴∠PNQ=30°,∴直角△PNQ中,NQ=NP?cos30°=3×=.点评:本题考查了切线的性质以及三角函数,正确利用三角函数求得∠MNP的度数是关键.24.<12分)<2018?赤峰)如图,已知△OAB的顶点A<﹣6,0),B<0,2),O是坐标原点,将△OAB绕点O按顺时针旋转90°,得到△ODC.0YujCfmUCw <1)写出C,D 两点的坐标;<2)求过A,D,C三点的抛物线的解读式,并求此抛物线顶点E的坐标;<3)证明AB⊥BE.考点:二次函数综合题;旋转的性质.分析: <1)根据旋转的性质,可得OC=OB,OD=OA,进而可得C、D两点的坐标;<2)由于抛物线过点A<﹣6,0),C<2,0),所以设抛物线的解读式为y=a<x+6)<x ﹣2)<a≠0),再将D<0,6)代入,求出a的值,得出抛物线的解读式,然后利用配方法求出顶点E的坐标;13 / 14<3)已知A、B、E三点的坐标,运用两点间的距离公式计算得出AB2=40,BE2=40,AE2=80,则AB2+BE2=AE2,根据勾股定理的逆定理即可证明AB⊥BE.解答:解:<1)∵将△OAB绕点O按顺时针旋转90°,得到△ODC,∴△ODC≌△OAB,∴OC=OB=2,OD=OA=6,∴C<2,0),D<0,6);<2)∵抛物线过点A<﹣6,0),C<2,0),∴可设抛物线的解读式为y=a<x+6)<x﹣2)<a≠0),∵D<0,6)在抛物线上,∴6=﹣12a,解得a=﹣,∴抛物线的解读式为y=﹣<x+6)<x﹣2),即y=﹣x2﹣2x+6,∵y=﹣x2﹣2x+6=﹣<x+2)2+8,∴顶点E的坐标为<﹣2,8);<3)连接AE.∵A<﹣6,0),B<0,2),E<﹣2,8),∴AB2=62+22=40,BE2=<﹣2﹣0)2+<8﹣2)2=40,AE2=<﹣2+6)2+<8﹣0)2=80,∴AB2+BE2=AE2,∴AB⊥BE.点评:本题考查了旋转的性质,二次函数的解读式及顶点坐标的求法,勾股定理的逆定理,综合性较强,难度不大.运用待定系数法求二次函数的解读式是中考的常考点,需熟练掌握,解题时根据条件设出适当的解读式,能使计算简便.从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒<0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.<1)求证:AE=DF;<2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;<3)当t为何值时,△DEF为直角三角形?请说明理由.14 / 14考点:相似形综合题.分析: <1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;<2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;<3)△DEF为直角三角形,则一定有∠DEF=90°,DE∥BC,AD=2AE,据此即可列方程求解.解答:解:<1)∵直角△ABC中,∠C=90°﹣∠A=30°∴AB=AC=×60=30cm..∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;<2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,AEFD是菱形;<3)△DEF为直角三角形,则一定有∠DEF=90°,DE∥BC,则AD=2AE,即60﹣4t=2×2t,解得:t=..点评:本题考查了直角三角形的性质,菱形的判定与性质,正确利用t表示DF、AD 的长是关键.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

2017年内蒙古赤峰市中考数学试卷

2017年内蒙古赤峰市中考数学试卷

2017年内蒙古赤峰市中考数学试卷一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共计36分)1.(3分)|(﹣3)﹣5|等于()A.﹣8 B.﹣2 C.2 D.82.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C. D.3.(3分)风景秀美的赤峰有“草原明珠”的美称,赤峰市全域总面积为90021平方公里.90021用科学记数法表示为()A.9.0021×105 B.9.0021×104 C.90.021×103 D.900.21×1024.(3分)下列运算正确的是()A.3x+2y=5(x+y)B.x+x3=x4C.x2•x3=x6D.(x2)3=x65.(3分)直线a∥b,Rt△ABC的直角顶点C在直线a上,若∠1=35°,则∠2等于()A.65°B.50°C.55°D.60°6.(3分)能使式子+成立的x的取值范围是()A.x≥1 B.x≥2 C.1≤x≤2 D.x≤27.(3分)小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.B.C.D.8.(3分)下面几何体的主视图为()A.B.C.D.9.(3分)点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定10.(3分)如图,将边长为4的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O处,若折痕EF=2,则∠A=()A.120°B.100°C.60°D.30°11.(3分)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5 B.y=2x+5 C.y=2x+8 D.y=2x﹣812.(3分)正整数x、y满足(2x﹣5)(2y﹣5)=25,则x+y等于()A.18或10 B.18 C.10 D.26二、填空题(请把答案填写在答题卡相应的横线上,每小题3分,共12分)13.(3分)分解因式:xy2+8xy+16x=.14.(3分)如果关于x的方程x2﹣4x+2m=0有两个不相等的实数根,则m的取值范围是.15.(3分)数据5,6,5,4,10的众数、中位数、平均数的和是.16.(3分)在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标为(2,0),则点P2017的坐标为.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤,共10题,满分102分)17.(6分)(﹣)÷,其中a=2017°+(﹣)﹣1+tan30°.18.(6分)已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.19.(10分)为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型:A喜欢吃苹果的学生;B喜欢吃桔子的学生;C.喜欢吃梨的学生;D.喜欢吃香蕉的学生;E喜欢吃西瓜的学生,并将调查结果绘制成图1和图2 的统计图(不完整).请根据图中提供的数据解答下列问题:(1)求此次抽查的学生人数;(2)将图2补充完整,并求图1中的x;(3)现有5名学生,其中A类型3名,B类型2名,从中任选2名学生参加体能测试,求这两名学生为同一类型的概率(用列表法或树状图法)20.(10分)王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)21.(10分)如图,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△ABC.(1)若点C在反比例函数y=的图象上,求该反比例函数的解析式;(2)点P(2,m)在第一象限,过点P作x轴的垂线,垂足为D,当△PAD 与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请加以说明.22.(10分)为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.23.(12分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:AM是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).24.(12分)如图1,在△ABC中,设∠A、∠B、∠C的对边分别为a,b,c,过点A作AD⊥BC,垂足为D,会有sin∠C=,则S△ABC=BC×AD=×BC×ACsin∠C=absin∠C,=absin∠C即S△ABC同理S=bcsin∠A△ABCS△ABC=acsin∠B通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:如图2,在△ABC中,若∠A、∠B、∠C的对边分别为a,b,c,则a2=b2+c2﹣2bccos∠Ab2=a2+c2﹣2accos∠Bc2=a2+b2﹣2abcos∠C用上面的三角形面积公式和余弦定理解决问题:(1)如图3,在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8.求S△DEF和DE2.=EF×DFsin∠F=;解:S△DEFDE2=EF2+DF2﹣2EF×DFcos∠F=.(2)如图4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分别是以AB、BC、AC为边长的等边三角形,设△ABC、△ABC'、△BCA'、△ACB'的面积分别为S1、S2、S3、S4,求证:S1+S2=S3+S4.25.(12分)△OPA和△OQB分别是以OP、OQ为直角边的等腰直角三角形,点C、D、E分别是OA、OB、AB的中点.(1)当∠AOB=90°时如图1,连接PE、QE,直接写出EP与EQ的大小关系;(2)将△OQB绕点O逆时针方向旋转,当∠AOB是锐角时如图2,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.(3)仍将△OQB绕点O旋转,当∠AOB为钝角时,延长PC、QD交于点G,使△ABG为等边三角形如图3,求∠AOB的度数.26.(14分)如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.2017年内蒙古赤峰市中考数学试卷参考答案与试题解析一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共计36分)1.(3分)(2017•赤峰)|(﹣3)﹣5|等于()A.﹣8 B.﹣2 C.2 D.8【分析】根据分式的减法和绝对值可以解答本题.【解答】解:|(﹣3)﹣5|=|﹣3﹣5|=|﹣8|=8,故选D.【点评】本题考查有理数的减法和绝对值,解答本题的关键是明确有理数减法的计算方法.2.(3分)(2017•赤峰)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C. D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•赤峰)风景秀美的赤峰有“草原明珠”的美称,赤峰市全域总面积为90021平方公里.90021用科学记数法表示为()A.9.0021×105 B.9.0021×104 C.90.021×103 D.900.21×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:90021用科学记数法表示为9.0021×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•赤峰)下列运算正确的是()A.3x+2y=5(x+y)B.x+x3=x4C.x2•x3=x6D.(x2)3=x6【分析】根据合并同类项、同底数幂的乘法、幂的乘方的计算法则计算,对各选项分析判断后利用排除法求解.【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、x2•x3=x5,故C错误;D、(x2)3=x6,故D正确.故选:D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.5.(3分)(2017•赤峰)直线a∥b,Rt△ABC的直角顶点C在直线a上,若∠1=35°,则∠2等于()A.65°B.50°C.55°D.60°【分析】先根据直角为90°,即可得到∠3的度数,再根据平行线的性质,即可得出∠2的度数.【解答】解:∵Rt△ABC的直角顶点C在直线a上,∠1=35°,∴∠3=90°﹣35°=55°,又∵a∥b,∴∠2=∠3=55°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行同位角相等.6.(3分)(2017•赤峰)能使式子+成立的x的取值范围是()A.x≥1 B.x≥2 C.1≤x≤2 D.x≤2【分析】根据二次根式的意义:被开方数大于等于0,就可以求解.【解答】解:根据题意得:,解得:1≤x≤2.故选:C.【点评】本题考查了函数自变量的取值范围,涉及的知识点为:二次根式的被开方数是非负数.7.(3分)(2017•赤峰)小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.B.C.D.,进而得【分析】直接利用正方形的性质结合转化思想得出阴影部分面积=S△CEB出答案.【解答】解:如图所示:连接BE,可得,AE=BE,∠AEB=90°,=S△BEC=S正方形ABCD,且阴影部分面积=S△CEB故小明投掷飞镖一次,则飞镖落在阴影部分的概率为:.故选:B.【点评】此题主要考查了几何概率,正确利用正方形性质得出阴影部分面积=S△是解题关键.CEB8.(3分)(2017•赤峰)下面几何体的主视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.【点评】本题考查了简单主题的三视图,从正面看得到的图形是主视图.9.(3分)(2017•赤峰)点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定【分析】根据反比例函数图象的增减性进行填空.【解答】解:∵反比例函数y=中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y1)、B(3,y2)都位于第一象限,且1<3,∴y1>y2,故选A.【点评】本题考查了反比例函数图象上点的坐标特征,熟记反比例函数图象与系数的关系以及函数图象的性质是解题的关键.10.(3分)(2017•赤峰)如图,将边长为4的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O处,若折痕EF=2,则∠A=()A.120°B.100°C.60°D.30°【分析】连接AC,根据菱形的性质得出AC⊥BD,根据折叠得出EF⊥AC,EF平分AO,得出EF∥BD,得出EF为△ABD的中位线,根据三角形中位线定理求出BD的长,进而可得到BO的长,由勾股定理可求出AO的长,则∠ABO可求出,继而∠BAO的度数也可求出,再由菱形的性质可得∠A=2∠BAO.【解答】解:连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴E、F分别为AB、AD的中点,∴EF为△ABD的中位线,∴EF=BD,∴BD=2EF=4,∴BO=2,∴AO==2,∴AO=AB,∴∠ABO=30°,∴∠BAO=60°,∴∠BAD=120°.故选A.【点评】本题考查了折叠的性质、菱形的性质、三角形中位线定理以及勾股定理的运用;熟练掌握菱形的性质和翻折变换的性质,并能进行推理论证与计算是解决问题的关键.11.(3分)(2017•赤峰)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5 B.y=2x+5 C.y=2x+8 D.y=2x﹣8【分析】根据函数图象上加下减,可得答案.【解答】解:由题意,得y=2x﹣3+8,即y=2x+5,故选:B.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律是解题关键.12.(3分)(2017•赤峰)正整数x、y满足(2x﹣5)(2y﹣5)=25,则x+y等于()A.18或10 B.18 C.10 D.26【分析】易得(2x﹣5)、(2y﹣5)均为整数,分类讨论即可求得x、y的值即可解题.【解答】解:∵x、y是正整数,且最小的正整数为1,∴2x﹣5是整数且最小整数为﹣3,2y﹣5是整数且最小的整数为﹣3∵25=1×25,或25=5×5,∴存在两种情况:①2x﹣5=1,2y﹣5=25,解得:x=3,y=15,;②2x﹣5=2y﹣5=5,解得:x=y=5;∴x+y=18或10,故选A.【点评】本题考查了整数的乘法,本题中根据25=1×25或25=5×5分类讨论是解题的关键.二、填空题(请把答案填写在答题卡相应的横线上,每小题3分,共12分)13.(3分)(2017•赤峰)分解因式:xy2+8xy+16x=x(y+4)2.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:xy2+8xy+16x=x(y2+8y+16)=x(y+4)2.故答案为:x(y+4)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.(3分)(2017•赤峰)如果关于x的方程x2﹣4x+2m=0有两个不相等的实数根,则m的取值范围是m<2.【分析】根据方程的系数结合根的判别式,即可得出△=16﹣8m>0,解之即可得出m的取值范围.【解答】解:∵关于x的方程x2﹣4x+2m=0有两个不相等的实数根,∴△=(﹣4)2﹣4×2m=16﹣8m>0,解得:m<2.故答案为:m<2.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.15.(3分)(2017•赤峰)数据5,6,5,4,10的众数、中位数、平均数的和是16.【分析】根据众数、中位数和平均数的概念分别求出这组数据的众数、中位数和平均数,再相加即可.【解答】解:数据5出现了2次,次数最多,所以众数是5;数据按从小到大排列为4,5,5,6,10,中位数为5;平均数=(5+6+5+4+10)÷5=6;5+5+6=16.故答案为16.【点评】本题考查了平均数,中位数,众数的意义.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.16.(3分)(2017•赤峰)在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标为(2,0),则点P2017的坐标为(2,0).【分析】求得点P2、P3、P4、P5的值,即可发现其中规律,即可解题.【解答】解:P1坐标为(2,0),则P2坐标为(1,4),P3坐标为(﹣3,3),P4坐标为(﹣2,﹣1),P5坐标为(2,0),∴P n的坐标为(2,0),(1,4),(﹣3,3),(﹣2,﹣1)循环,∵2017=2016+1=4×504+1,∴P2017坐标与P1点重合,故答案为(2,0).【点评】本题考查了学生发现点的规律的能力,本题中找到P n坐标得规律是解题的关键.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤,共10题,满分102分)17.(6分)(2017•赤峰)(﹣)÷,其中a=2017°+(﹣)﹣1+tan30°.【分析】先化简分式,然后再化简a的值,从而可求出原式的值.【解答】解:原式=×﹣×=﹣=由于a=2017°+(﹣)﹣1+tan30°,∴a=1﹣5+3=﹣1∴原式=﹣=﹣2【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.18.(6分)(2017•赤峰)已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.【分析】(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠4.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠4,据此可得出结论.【解答】解:(1)如图所示,AF即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠4.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠4,∴CE=CF.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.19.(10分)(2017•赤峰)为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型:A喜欢吃苹果的学生;B喜欢吃桔子的学生;C.喜欢吃梨的学生;D.喜欢吃香蕉的学生;E喜欢吃西瓜的学生,并将调查结果绘制成图1和图2 的统计图(不完整).请根据图中提供的数据解答下列问题:(1)求此次抽查的学生人数;(2)将图2补充完整,并求图1中的x;(3)现有5名学生,其中A类型3名,B类型2名,从中任选2名学生参加体能测试,求这两名学生为同一类型的概率(用列表法或树状图法)【分析】(1)根据百分比=计算即可;(2)求出B、C的人数画出条形图即可;(3)利用树状图,即可解决问题;【解答】解:(1)此次抽查的学生人数为16÷40%=40人.(2)C占40×10%=4人,B占20%,有40×20%=8人,条形图如图所示,(3)由树状图可知:两名学生为同一类型的概率为=.【点评】本题考查列表法、树状图法、扇形统计图、条形统计图等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(10分)(2017•赤峰)王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)【分析】根据题意作出合适的辅助线,可以求得AD和CD的长,进而可以求得DB的长,然后根据勾股定理即可得到AB的长,然后与17比较大小,即可解答本题.【解答】解:王浩同学能将手机放入卡槽AB内.理由:作AD⊥BC于点D,∵∠C=50°,AC=20cm,∴AD=AC•sin50°=20×0.8=16cm,CD=AC•cos50°=20×0.6=12cm,∵BC=18cm,∴DB=BC﹣CD=18﹣12=6cm,∴AB==,∵17=<,∴王浩同学能将手机放入卡槽AB内.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用直角三角形的相关知识解答.21.(10分)(2017•赤峰)如图,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△ABC.(1)若点C在反比例函数y=的图象上,求该反比例函数的解析式;(2)点P(2,m)在第一象限,过点P作x轴的垂线,垂足为D,当△PAD 与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请加以说明.【分析】(1)由直线解析式可求得A、B坐标,在Rt△AOB中,利用三角函数定义可求得∠BAO=30°,且可求得AB的长,从而可求得CA⊥OA,则可求得C点坐标,利用待定系数法可求得反比例函数解析式;(2)分△PAD∽△ABO和△PAD∽△BAO两种情况,分别利用相似三角形的性质可求得m的值,可求得P点坐标,代入反比例函数解析式进行验证即可.【解答】解:(1)在y=﹣x+1中,令y=0可解得x=,令x=0可得y=1,∴A(,0),B(0,1),∴tan∠BAO===,∴∠BAO=30°,∵△ABC是等边三角形,∴∠BAC=60°,∴∠CAO=90°,在Rt△BOA中,由勾股定理可得AB=2,∴AC=2,∴C(,2),∵点C在反比例函数y=的图象上,∴k=2×=2,∴反比例函数解析式为y=;(2)∵P(2,m)在第一象限,∴AD=OD﹣OA=2﹣=,PD=m,当△ADP∽△AOB时,则有=,即=,解得m=1,此时P点坐标为(2,1);当△PDA∽△AOB时,则有=,即=,解得m=3,此时P点坐标为(2,3);把P(2,3)代入y=可得3≠,∴P(2,3)不在反比例函数图象上,把P(2,1)代入反比例函数解析式得1=,∴P(2,1)在反比例函数图象上;综上可知P点坐标为(2,1).【点评】本题为反比例函数的综合应用,涉及待定系数法、等边三角形的性质、三角函数、勾股定理、相似三角形的性质及分类讨论思想等知识.在(1)中求得C点坐标是解题的关键,在(2)中利用相似三角形的性质得到m的方程是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度适中.22.(10分)(2017•赤峰)为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.【分析】(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;(2)设购买梨树苗种树苗a棵,苹果树苗则购买(1100﹣a)棵,根据购买两种树苗的总费用不超过6000元建立不等式求出其解即可.【解答】解:(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,依题意得:=,解得x=5.经检验x=5是原方程的解,且符合题意.答:梨树苗的单价是5元;(2)设购买梨树苗种树苗a棵,苹果树苗则购买(1100﹣a)棵,依题意得:(5+2)(1100﹣a)+5a≤6000,解得a≥850.答:梨树苗至少购买850棵.【点评】本题考查了列分式方程解实际问题的运用,一元一次不等式解实际问题的运用,解答时由方程求出两种树苗的单价是关键.23.(12分)(2017•赤峰)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:AM是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).【分析】(1)由已知条件得到△BOC是等边三角形,根据等边三角形的性质得到∠1=∠2=60°,由角平分线的性质得到∠1=∠3,根据平行线的性质得到∠OAM=90°,于是得到结论;(2)根据等边三角形的性质得到∠OAC=60°,根据三角形的内角和得到∠CAD=30°,根据勾股定理得到AD=2,于是得到结论.【解答】解:(1)∵∠B=60°,∴△BOC是等边三角形,∴∠1=∠2=60°,∵OC平分∠AOB,∴∠1=∠3,∴∠2=∠3,∴OA∥BD,∴∠BDM=90°,∴∠OAM=90°,∴AM是⊙O的切线;(2)∵∠3=60°,OA=OC,∴△AOC是等边三角形,∴∠OAC=60°,∵∠OAM=90°,∴∠CAD=30°,∵CD=2,∴AC=2CD=4,∴AD=2,∴S阴影=S梯形OADC﹣S扇形OAC=(4+2)×2﹣=6﹣.【点评】本题考查了切线的判定和性质,等边三角形的性质和判定,平行线的性质,正确的作出辅助线是解题的关键.24.(12分)(2017•赤峰)如图1,在△ABC中,设∠A、∠B、∠C的对边分别为a,b,c,过点A作AD⊥BC,垂足为D,会有sin∠C=,则S△ABC=BC×AD=×BC×ACsin∠C=absin∠C,即S=absin∠C△ABC=bcsin∠A同理S△ABCS△ABC=acsin∠B通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:如图2,在△ABC中,若∠A、∠B、∠C的对边分别为a,b,c,则a2=b2+c2﹣2bccos∠Ab2=a2+c2﹣2accos∠Bc2=a2+b2﹣2abcos∠C用上面的三角形面积公式和余弦定理解决问题:(1)如图3,在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8.求S△DEF 和DE2.解:S=EF×DFsin∠F=6;△DEFDE2=EF2+DF2﹣2EF×DFcos∠F=49.(2)如图4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分别是以AB、BC、AC为边长的等边三角形,设△ABC、△ABC'、△BCA'、△ACB'的面积分别为S1、S2、S3、S4,求证:S1+S2=S3+S4.【分析】(1)直接利用正弦定理和余弦定理即可得出结论;(2)方法1、利用正弦定理得出三角形的面积公式,再利用等边三角形的性质即可得出结论;方法2、先用正弦定理得出S1,S2,S3,S4,最后用余弦定理即可得出结论.【解答】解:(1)在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8,∴EF=3,DF=8,=EF×DFsin∠F=×3×8×sin60°=6,∴S△DEFDE2=EF2+DF2﹣2EF×DFcos∠F=32+82﹣2×3×8×cos60°=49,故答案为:6,49;(2)证明:方法1,∵∠ACB=60°,∴AB2=AC2+BC2﹣2AC•BCcos60°=AC2+BC2﹣AC•BC,两边同时乘以sin60°得,AB2sin60°=AC2sin60°+BC2sin60°﹣AC•BCsin60°,∵△ABC',△BCA',△ACB'是等边三角形,∴S1=AC•BCsin60°,S2=AB2sin60°,S3=BC2sin60°,S4=AC2sin60°,∴S2=S4+S3﹣S1,∴S1+S2=S3+S4,方法2、令∠A,∠B,∠C的对边分别为a,b,c,∴S1=absin∠C=absin60°=ab∵△ABC',△BCA',△ACB'是等边三角形,∴S2=c•c•sin60°=c2,S3=a•a•sin60°=a2,S4=b•b•sin60°=b2,∴S1+S2=(ab+c2),S3+S4=(a2+b2),∵c2=a2+b2﹣2ab•cos∠C=a2+b2﹣2ab•cos60°,∴a2+b2=c2+ab,∴S1+S2=S3+S4.【点评】此题是三角形综合题,主要考查了新定义的理解和应用,解本题的关键是理解新定义,会用新定义解决问题.25.(12分)(2017•赤峰)△OPA和△OQB分别是以OP、OQ为直角边的等腰直角三角形,点C、D、E分别是OA、OB、AB的中点.(1)当∠AOB=90°时如图1,连接PE、QE,直接写出EP与EQ的大小关系;(2)将△OQB绕点O逆时针方向旋转,当∠AOB是锐角时如图2,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.(3)仍将△OQB绕点O旋转,当∠AOB为钝角时,延长PC、QD交于点G,使△ABG为等边三角形如图3,求∠AOB的度数.【分析】(1)先判断出点P,O,Q在同一条直线上,再判断出△APE≌△BFE,最后用直角三角形的斜边的中线等于斜边的一半即可得出结论;(2)先判断出CE=DQ,PC=DE,进而判断出△EPC≌△QED即可得出结论;(3)先判断出CQ,GP分别是OB,OA的垂直平分线,进而得出∠GBO=∠GOB,∠GOA=∠GAO,即可得出结论.【解答】解:(1)如图1,延长PE,QB交于点F,∵△APO和△BQO是等腰直角三角形,∴∠APO=∠BQO=90°,∠AOP=∠BOQ=45°,∵∠AOB=90°,∴∠AOP+∠AOB+∠BOQ=180°,∴点P,O,Q在同一条直线上,∵∠APO=∠BQO=90°,∴AP∥BQ,∴∠PAE=∠FBE,∵点E是AB中点,∴AE=BE,∵∠AEP=∠BEF,∴△APE≌△BFE,∴PE=EF,∴点E是Rt△PQF的斜边PF的中点,∴EP=EQ;(2)成立,证明:∵点C,E分别是OA,AB的中点,∴CE∥OB,CE=OB,∴∠DOC=∠ECA,∵点D是Rt△OQB斜边中点,∴DQ=OB,∴CE=DQ,同理:PC=DE,∠DOC=∠BDE,∴∠ECA=∠BDE,∵∠PCE=∠EDQ,∴△EPC≌△QED,∴EP=EQ;(3)如图2连接GO,∵点D,C分别是OB,OA的中点,△APO与△QBO都是等腰直角三角形,∴CQ,GP分别是OB,OA的垂直平分线,∴GB=GO=GA,∴∠GBO=∠GOB,∠GOA=∠GAO,设∠GOB=x,∠GOA=y,∴x+x+y+y+60°=360°∴x+y=150°,∴∠AOB=150°.【点评】此题是几何变换综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,直角三角形的性质,线段的垂直平分线的性质,解(1)的关键是构造全等三角形,解(2)的关键是判断出CE=DQ,解(3)的关键是判断出CQ,GP分别是OB,OA的垂直平分线,是一道中等难度的题目.26.(14分)(2017•赤峰)如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.【分析】(1)可设抛物线解析式为顶点式,由B点坐标可求得抛物线的解析式,则可求得D点坐标,利用待定系数法可求得直线BD解析式;(2)设出P点坐标,从而可表示出PM的长度,利用二次函数的性质可求得其最大值;(3)过Q作QG∥y轴,交BD于点G,过Q和QH⊥BD于H,可设出Q点坐标,表示出QG的长度,由条件可证得△DHG为等腰直角三角形,则可得到关于Q 点坐标的方程,可求得Q点坐标.【解答】解:(1)∵抛物线的顶点C的坐标为(1,4),∴可设抛物线解析式为y=a(x﹣1)2+4,∵点B(3,0)在该抛物线的图象上,∴0=a(3﹣1)2+4,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3,∵点D在y轴上,令x=0可得y=3,∴D点坐标为(0,3),∴可设直线BD解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BD解析式为y=﹣x+3;(2)设P点横坐标为m(m>0),则P(m,﹣m+3),M(m,﹣m2+2m+3),∴PM=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,∴当m=时,PM有最大值;(3)如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,设Q(x,﹣x2+2x+3),则G(x,﹣x+3),∴QG=|﹣x2+2x+3﹣(﹣x+3)|=|﹣x2+3x|,∵△BOD是等腰直角三角形,∴∠DBO=45°,∴∠HGQ=∠BGE=45°,当△BDQ中BD边上的高为2时,即QH=HG=2,∴QG=×2=4,∴|﹣x2+3x|=4,当﹣x2+3x=4时,△=9﹣16<0,方程无实数根,当﹣x2+3x=﹣4时,解得x=﹣1或x=4,∴Q(﹣1,0)或(4,﹣5),综上可知存在满足条件的点Q,其坐标为(﹣1,0)或(4,﹣5).【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识.在(1)中主要是待定系数法的考查,注意抛物线顶点式的应用,在(2)中用P点坐标表示出PM的长是解题的关键,在(3)中构造等腰直角三角形求得QG的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

2018年内蒙古赤峰市中考数学试卷(带解析)

2018年内蒙古赤峰市中考数学试卷(带解析)

在数轴上表示如图

故选:A.
8.(3 分)已知 AB∥CD,直线 EF 分别交 AB、CD 于点 G、H,∠EGB=25°,将一 个 60°角的直角三角尺如图放置(60°角的顶点与 H 重合),则∠PHG 等于( )
A.30° B.35° C.40° D.45° 【解答】解:∵AB∥CD, ∴∠EHD=∠EGB=25°, 又∵∠PHD=60°, ∴∠PHG=60°﹣25°=35°, 故选:B.
故选:A.
2.(3 分)下列符号中,既是轴对称图形,又是中心对称图形的是( )
A.
B.
C.
D.
【解答】解:轴对称图形是指平面内,一个图形沿一条直线折叠,直线两旁的部
分能够完全重合的图形.
中心对称图形是指在平面内,把一个图形绕着某个点旋转 180°,如果旋转后的图
形能与原来的图形重合
故选:D.
3.(3 分)下列运算正确的是( ) A.x2+x2=2x4 B.x2•x3=x6 C.(x2)3=x6 D.(2x2)3=6x6 【解答】解:A、x2+x2=2x2,故本选项不符合题意; B、x2•x3=x5,故本选项不符合题意; C、(x2)3=x6,故本选项符合题意; D、(2x2)3=8x6,故本选项不符合题意; 故选:C.
11.(3 分)如图,AB 是⊙O 的直线,C 是⊙O 上一点(A、B 除外),∠AOD=130°, 则∠C 的度数是( )
第 4页(共 18页)
A.50° B.60° C.25° D.30° 【解答】解:∵∠AOD=130°,
∴∠C=90°﹣ 故选:C.
԰ ᕦ,
12.(3 分)如图,直线 y=﹣ x+3 与 x 轴、y 轴分别交于 A、B 两点,点 P 是以 C (﹣1,0)为圆心,1 为半径的圆上一点,连接 PA,PB,则△PAB 面积的最小值 是( )

内蒙古赤峰市2018届中考数学模拟试题(附答案)

内蒙古赤峰市2018届中考数学模拟试题(附答案)

内蒙古赤峰市2018届中考数学模拟试题温馨提示: 1.本试卷150分,共7页,考试时间120分钟。

2.答题前考生务必将姓名、考生号、座位号填写在试卷和答题卡相应位置上,并仔细阅读答题卡上的“注意事项”3.答题时,请将所有答案填涂在答题卡对应位置上,写在本试卷上视为无效。

4.考试结束后,将本试卷和答题卡一并收回。

一、选择题(本大题12个小题,每小题3分,共36分.在每小题给出的四个选项中只 有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.我市冬季里某一天的最低气温是10C -︒,最高气温是5C ︒,这一天的温差为( )A .5C -︒B .15C ︒C .10C ︒D .5C ︒2.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( ) A .204×103B .20.4×104C .2.04×105D .2.04×1063.不等式组32521x x -<⎧⎨-<⎩的解集为( )A .1x >-B .3x <C .1x <-或3x >D .13x -<< 4.下列运算正确的是( )A .3(4)312x x --=-+B .224(3)412x x x -⋅=- C .23325x x x += D .623x x x ÷=5.下列四个立体图形中,主视图、左视图、俯视图都相同的是( B . )A .B .C .D .6. 学校国旗护卫队成员的身高分布如下表:则学校国旗护卫队成员的身高的众数和中位数分别是( )A .160和160B .160和160.5C .160和161D .161和1617.关于x 的一元二次方程2(1)320a x x -+-=有实数根,则a 的取值范围是( ) A .18a >- B .18a ≥- C .18a >-且1a ≠ D .18a ≥-且1a ≠8. 在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个红球的概率为( ) A .14 B .13 C. 512 D .129.已知抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a ﹣b+c <0; ④抛物线的顶点坐标为(2,b ); ⑤当x <2时,y 随x 增大而增大. 其中结论正确的是( )A .①②③B .③④⑤C .①②④D .①④⑤10.如图,把△ABC 沿着BC 的方向平移到△DEF 的位置,它们重叠部分的面积是△ABC 面积的一半,若BC =,则△ABC 移动的距离是( )A .2 B .3C11.如图,已知直线1:24l y x =-+与直线2:(0)l y kx b k =+≠在第一象限交于点M .若直线2l 与x 轴的交点为(2,0)A -,则k 的取值范围是( )A .02k <<B .20k -<<C . 04k <<D .22k -<<12. 如图,点()(),3,,1A a B b 都在双曲线3y x=上,点,C D ,分别是x轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A ..C. D .二、填空题(本大题共有4小题,每小题3分.共12分) 13.因式分解:3228a ab -=_______________.14.计算:2|2|+(1)--+_______________.15.在正方形网格中,△ABC 的位置如图所示,则cosB 的值为______________.16.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为_______________.6里17.如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,使点D 恰好落在BC 边上的G 点处,若矩形面积为4且60,2AFG GE BG ∠==,则折痕EF 的长为_______________.18.观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有 个点.三、解答题(本大题共10小题,满分102分.解答须写出文字说明、证明过程和演算步骤) 19.(10分) 先化简,再求值:2211121x x x x x---÷++,其中1x =.20. (10分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系,并给出证明.21.(12分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.22.(12分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元。

2017内蒙古赤峰市中考数学试卷解析

2017内蒙古赤峰市中考数学试卷解析

2017年内蒙古省赤峰市中考数学试卷满分:分版本:版一、选择题(每小题3分,共12小题,合计36分)1.(2017内蒙古赤峰,1,3分)|(-3)-5|等于()A.-8 B.-2 C.2 D.8A.B.C.D.答案:D,解析:本题考查绝对值的意义和有理数的减法,掌握有理数的减法法则和求一个数的绝对值的方法是解题的关键.∵|(-3)-5|=|-8|=8,∴选D.2.(2017内蒙古赤峰,2,3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.答案:C,解析:本题考查轴对称图形与中心对称图形的识别,掌握轴对称图形与中心对称图形的识别方法是解题的关键.图A有3条对称轴,图C有2条对称轴,图D有1条对称轴,它们都是轴对称图形;图B、图C绕某一点旋转180度后能与原图形重合,它们都是中心对称图形;所以所给出的图形中既是轴对称图形又是中心对称图形的是C.3.(2017内蒙古赤峰,3,3分)风景秀美的赤峰有“草原明珠”的美称,赤峰市全域总面积为90021平方公里.90021用科学记数法表示为()A.9.0021×105B.9.0021×104C.90.021×103D.900.21×102答案:B,解析:本题考查了科学记数法,掌握科学记数法的表示方法是解题的关键.90021=9.0021×104.4.(2017内蒙古赤峰,4,3分)下列运算正确的是()A.3x+2y=5(x+y) B.x+x3=x4C.x2·x3=x6D.(x2) 3=x6答案:D,解析:本题考查了整式的运算,正确掌握同类项概念、合并同类项的方法,同底数幂的乘法法则,幂的乘方法则是解题的关键.3x与2y不是同类项,不能合并,所以A错;x 与x 3不是同类项,不能合并,所以B 错;由同底数幂相乘,底数不变,指数相加,得x 2·x 3=x 5,所以C 错;由幂的乘方,底数不变,指数相乘,得(x 2) 3=x 6,所以D 正确.5.(2017内蒙古赤峰,5,3分)直线a ∥b ,Rt △ABC 的直角顶点C 在直线a 上,若∠1=35°,则∠2等于( )A BAA .65°B .50°C . 55°D .60°答案:C ,解析:本题考查了互为余角的概念和平行线的性质,掌握平行线的性质,会求一个角的余角是解题的关键.∵直角顶点C 在直线a 上,若∠1=35°,∴∠2=55°,∵直线a ∥b ,∴∠2=∠3=55°.故选C.6.(2017内蒙古赤峰,6,3x 的取值范围是( )A .x ≥1B .x ≥2C .1≤x ≤2D .x≤2答案:C 2010xx -≥⎧⎨-≥⎩,是解题的关键. 2010x x -≥⎧⎨-≥⎩,,解得1≤x ≤2,故选C.7.(2017内蒙古赤峰,7,3分)小明向如图所示的正方形ABCD 区域内投掷飞镖,点E 是以AB 为直径的半圆与对角线AC 的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A .12 B .14 C .13 D .18答案:,解析:本题考查了概率的计算,弄清阴影部分的面积与总面积的比值是解题的关键.8.(2017内蒙古赤峰,8,3分)下面几何体的主视图为( )D.C.B.A.答案:C ,解析:本题考查了几何体的主视图,理解主视图是从正面看得到的平面图形是解题的关键.9.(2017内蒙古赤峰,9,3分)点A (1,y 1)、B (3,y 2)是反比例函数y =9x 图象上的两点,则y 1、y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定答案:A ,解析:本题考查了反比例函数的性质,正确掌握反比例函数的增减性是解题的关键. 反比例函数y =9x 中,∵k =9>0,∴y 随x 的增大而减小.∵1<3,∴y 1>y 2.10.(2017内蒙古赤峰,10,3分)如图,将边长为4的菱形ABCD 纸片折叠,使点A 恰好落在对角线的交点O 处,若折痕EF =A =( )B DA .120°B .100°C .60°D .30°答案:A ,解析:本题考查了特殊角的三角函数值,轴对称的性质和菱形的性质,掌握特殊角的三角函数值,轴对称的性质和菱形的性质是解题的关键.连接OA ,则OA ⊥OD .∵点A 与点O 关于折痕EF 对称,∴EF ==OD ,∵菱形ABCD 的边长为4,∴sin ∠OAD,∴∠OAD =60°.∴∠BAD =120°.11.(2017内蒙古赤峰,11,3分)将一次函数y =2x -3的图象沿y 轴向上平移8个单位长度,所。

2017年内蒙古赤峰市中考数学试卷

2017年内蒙古赤峰市中考数学试卷

2017年内蒙古赤峰市中考数学试卷一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共计36分)1.(3分)|(﹣3)﹣5|等于()A.﹣8 B.﹣2 C.2 D.82.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C. D.3.(3分)风景秀美的赤峰有“草原明珠”的美称,赤峰市全域总面积为90021平方公里.90021用科学记数法表示为()A.9.0021×105 B.9.0021×104 C.90.021×103 D.900.21×1024.(3分)下列运算正确的是()A.3x+2y=5(x+y)B.x+x3=x4C.x2•x3=x6D.(x2)3=x65.(3分)直线a∥b,Rt△ABC的直角顶点C在直线a上,若∠1=35°,则∠2等于()A.65°B.50°C.55°D.60°6.(3分)能使式子+成立的x的取值范围是()A.x≥1 B.x≥2 C.1≤x≤2 D.x≤27.(3分)小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.B.C.D.8.(3分)下面几何体的主视图为()A.B.C.D.9.(3分)点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定10.(3分)如图,将边长为4的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O处,若折痕EF=2,则∠A=()A.120°B.100°C.60°D.30°11.(3分)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5 B.y=2x+5 C.y=2x+8 D.y=2x﹣812.(3分)正整数x、y满足(2x﹣5)(2y﹣5)=25,则x+y等于()A.18或10 B.18 C.10 D.26二、填空题(请把答案填写在答题卡相应的横线上,每小题3分,共12分)13.(3分)分解因式:xy2+8xy+16x=.14.(3分)如果关于x的方程x2﹣4x+2m=0有两个不相等的实数根,则m的取值范围是.15.(3分)数据5,6,5,4,10的众数、中位数、平均数的和是.16.(3分)在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标为(2,0),则点P2017的坐标为.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤,共10题,满分102分)17.(6分)(﹣)÷,其中a=2017°+(﹣)﹣1+tan30°.18.(6分)已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.19.(10分)为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型:A喜欢吃苹果的学生;B喜欢吃桔子的学生;C.喜欢吃梨的学生;D.喜欢吃香蕉的学生;E喜欢吃西瓜的学生,并将调查结果绘制成图1和图2 的统计图(不完整).请根据图中提供的数据解答下列问题:(1)求此次抽查的学生人数;(2)将图2补充完整,并求图1中的x;(3)现有5名学生,其中A类型3名,B类型2名,从中任选2名学生参加体能测试,求这两名学生为同一类型的概率(用列表法或树状图法)20.(10分)王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)21.(10分)如图,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△ABC.(1)若点C在反比例函数y=的图象上,求该反比例函数的解析式;(2)点P(2,m)在第一象限,过点P作x轴的垂线,垂足为D,当△PAD 与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请加以说明.22.(10分)为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.23.(12分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:AM是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).24.(12分)如图1,在△ABC中,设∠A、∠B、∠C的对边分别为a,b,c,过点A作AD⊥BC,垂足为D,会有sin∠C=,则S△ABC=BC×AD=×BC×ACsin∠C=absin∠C,=absin∠C即S△ABC同理S=bcsin∠A△ABCS△ABC=acsin∠B通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:如图2,在△ABC中,若∠A、∠B、∠C的对边分别为a,b,c,则a2=b2+c2﹣2bccos∠Ab2=a2+c2﹣2accos∠Bc2=a2+b2﹣2abcos∠C用上面的三角形面积公式和余弦定理解决问题:(1)如图3,在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8.求S△DEF和DE2.=EF×DFsin∠F=;解:S△DEFDE2=EF2+DF2﹣2EF×DFcos∠F=.(2)如图4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分别是以AB、BC、AC为边长的等边三角形,设△ABC、△ABC'、△BCA'、△ACB'的面积分别为S1、S2、S3、S4,求证:S1+S2=S3+S4.25.(12分)△OPA和△OQB分别是以OP、OQ为直角边的等腰直角三角形,点C、D、E分别是OA、OB、AB的中点.(1)当∠AOB=90°时如图1,连接PE、QE,直接写出EP与EQ的大小关系;(2)将△OQB绕点O逆时针方向旋转,当∠AOB是锐角时如图2,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.(3)仍将△OQB绕点O旋转,当∠AOB为钝角时,延长PC、QD交于点G,使△ABG为等边三角形如图3,求∠AOB的度数.26.(14分)如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.2017年内蒙古赤峰市中考数学试卷参考答案与试题解析一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共计36分)1.(3分)(2017•赤峰)|(﹣3)﹣5|等于()A.﹣8 B.﹣2 C.2 D.8【分析】根据分式的减法和绝对值可以解答本题.【解答】解:|(﹣3)﹣5|=|﹣3﹣5|=|﹣8|=8,故选D.【点评】本题考查有理数的减法和绝对值,解答本题的关键是明确有理数减法的计算方法.2.(3分)(2017•赤峰)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C. D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•赤峰)风景秀美的赤峰有“草原明珠”的美称,赤峰市全域总面积为90021平方公里.90021用科学记数法表示为()A.9.0021×105 B.9.0021×104 C.90.021×103 D.900.21×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:90021用科学记数法表示为9.0021×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•赤峰)下列运算正确的是()A.3x+2y=5(x+y)B.x+x3=x4C.x2•x3=x6D.(x2)3=x6【分析】根据合并同类项、同底数幂的乘法、幂的乘方的计算法则计算,对各选项分析判断后利用排除法求解.【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、x2•x3=x5,故C错误;D、(x2)3=x6,故D正确.故选:D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.5.(3分)(2017•赤峰)直线a∥b,Rt△ABC的直角顶点C在直线a上,若∠1=35°,则∠2等于()A.65°B.50°C.55°D.60°【分析】先根据直角为90°,即可得到∠3的度数,再根据平行线的性质,即可得出∠2的度数.【解答】解:∵Rt△ABC的直角顶点C在直线a上,∠1=35°,∴∠3=90°﹣35°=55°,又∵a∥b,∴∠2=∠3=55°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行同位角相等.6.(3分)(2017•赤峰)能使式子+成立的x的取值范围是()A.x≥1 B.x≥2 C.1≤x≤2 D.x≤2【分析】根据二次根式的意义:被开方数大于等于0,就可以求解.【解答】解:根据题意得:,解得:1≤x≤2.故选:C.【点评】本题考查了函数自变量的取值范围,涉及的知识点为:二次根式的被开方数是非负数.7.(3分)(2017•赤峰)小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.B.C.D.,进而得【分析】直接利用正方形的性质结合转化思想得出阴影部分面积=S△CEB出答案.【解答】解:如图所示:连接BE,可得,AE=BE,∠AEB=90°,=S△BEC=S正方形ABCD,且阴影部分面积=S△CEB故小明投掷飞镖一次,则飞镖落在阴影部分的概率为:.故选:B.【点评】此题主要考查了几何概率,正确利用正方形性质得出阴影部分面积=S△是解题关键.CEB8.(3分)(2017•赤峰)下面几何体的主视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.【点评】本题考查了简单主题的三视图,从正面看得到的图形是主视图.9.(3分)(2017•赤峰)点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定【分析】根据反比例函数图象的增减性进行填空.【解答】解:∵反比例函数y=中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y1)、B(3,y2)都位于第一象限,且1<3,∴y1>y2,故选A.【点评】本题考查了反比例函数图象上点的坐标特征,熟记反比例函数图象与系数的关系以及函数图象的性质是解题的关键.10.(3分)(2017•赤峰)如图,将边长为4的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O处,若折痕EF=2,则∠A=()A.120°B.100°C.60°D.30°【分析】连接AC,根据菱形的性质得出AC⊥BD,根据折叠得出EF⊥AC,EF平分AO,得出EF∥BD,得出EF为△ABD的中位线,根据三角形中位线定理求出BD的长,进而可得到BO的长,由勾股定理可求出AO的长,则∠ABO可求出,继而∠BAO的度数也可求出,再由菱形的性质可得∠A=2∠BAO.【解答】解:连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴E、F分别为AB、AD的中点,∴EF为△ABD的中位线,∴EF=BD,∴BD=2EF=4,∴BO=2,∴AO==2,∴AO=AB,∴∠ABO=30°,∴∠BAO=60°,∴∠BAD=120°.故选A.【点评】本题考查了折叠的性质、菱形的性质、三角形中位线定理以及勾股定理的运用;熟练掌握菱形的性质和翻折变换的性质,并能进行推理论证与计算是解决问题的关键.11.(3分)(2017•赤峰)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5 B.y=2x+5 C.y=2x+8 D.y=2x﹣8【分析】根据函数图象上加下减,可得答案.【解答】解:由题意,得y=2x﹣3+8,即y=2x+5,故选:B.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律是解题关键.12.(3分)(2017•赤峰)正整数x、y满足(2x﹣5)(2y﹣5)=25,则x+y等于()A.18或10 B.18 C.10 D.26【分析】易得(2x﹣5)、(2y﹣5)均为整数,分类讨论即可求得x、y的值即可解题.【解答】解:∵x、y是正整数,且最小的正整数为1,∴2x﹣5是整数且最小整数为﹣3,2y﹣5是整数且最小的整数为﹣3∵25=1×25,或25=5×5,∴存在两种情况:①2x﹣5=1,2y﹣5=25,解得:x=3,y=15,;②2x﹣5=2y﹣5=5,解得:x=y=5;∴x+y=18或10,故选A.【点评】本题考查了整数的乘法,本题中根据25=1×25或25=5×5分类讨论是解题的关键.二、填空题(请把答案填写在答题卡相应的横线上,每小题3分,共12分)13.(3分)(2017•赤峰)分解因式:xy2+8xy+16x=x(y+4)2.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:xy2+8xy+16x=x(y2+8y+16)=x(y+4)2.故答案为:x(y+4)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.(3分)(2017•赤峰)如果关于x的方程x2﹣4x+2m=0有两个不相等的实数根,则m的取值范围是m<2.【分析】根据方程的系数结合根的判别式,即可得出△=16﹣8m>0,解之即可得出m的取值范围.【解答】解:∵关于x的方程x2﹣4x+2m=0有两个不相等的实数根,∴△=(﹣4)2﹣4×2m=16﹣8m>0,解得:m<2.故答案为:m<2.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.15.(3分)(2017•赤峰)数据5,6,5,4,10的众数、中位数、平均数的和是16.【分析】根据众数、中位数和平均数的概念分别求出这组数据的众数、中位数和平均数,再相加即可.【解答】解:数据5出现了2次,次数最多,所以众数是5;数据按从小到大排列为4,5,5,6,10,中位数为5;平均数=(5+6+5+4+10)÷5=6;5+5+6=16.故答案为16.【点评】本题考查了平均数,中位数,众数的意义.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.16.(3分)(2017•赤峰)在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标为(2,0),则点P2017的坐标为(2,0).【分析】求得点P2、P3、P4、P5的值,即可发现其中规律,即可解题.【解答】解:P1坐标为(2,0),则P2坐标为(1,4),P3坐标为(﹣3,3),P4坐标为(﹣2,﹣1),P5坐标为(2,0),∴P n的坐标为(2,0),(1,4),(﹣3,3),(﹣2,﹣1)循环,∵2017=2016+1=4×504+1,∴P2017坐标与P1点重合,故答案为(2,0).【点评】本题考查了学生发现点的规律的能力,本题中找到P n坐标得规律是解题的关键.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤,共10题,满分102分)17.(6分)(2017•赤峰)(﹣)÷,其中a=2017°+(﹣)﹣1+tan30°.【分析】先化简分式,然后再化简a的值,从而可求出原式的值.【解答】解:原式=×﹣×=﹣=由于a=2017°+(﹣)﹣1+tan30°,∴a=1﹣5+3=﹣1∴原式=﹣=﹣2【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.18.(6分)(2017•赤峰)已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.【分析】(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠4.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠4,据此可得出结论.【解答】解:(1)如图所示,AF即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠4.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠4,∴CE=CF.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.19.(10分)(2017•赤峰)为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型:A喜欢吃苹果的学生;B喜欢吃桔子的学生;C.喜欢吃梨的学生;D.喜欢吃香蕉的学生;E喜欢吃西瓜的学生,并将调查结果绘制成图1和图2 的统计图(不完整).请根据图中提供的数据解答下列问题:(1)求此次抽查的学生人数;(2)将图2补充完整,并求图1中的x;(3)现有5名学生,其中A类型3名,B类型2名,从中任选2名学生参加体能测试,求这两名学生为同一类型的概率(用列表法或树状图法)【分析】(1)根据百分比=计算即可;(2)求出B、C的人数画出条形图即可;(3)利用树状图,即可解决问题;【解答】解:(1)此次抽查的学生人数为16÷40%=40人.(2)C占40×10%=4人,B占20%,有40×20%=8人,条形图如图所示,(3)由树状图可知:两名学生为同一类型的概率为=.【点评】本题考查列表法、树状图法、扇形统计图、条形统计图等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(10分)(2017•赤峰)王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)【分析】根据题意作出合适的辅助线,可以求得AD和CD的长,进而可以求得DB的长,然后根据勾股定理即可得到AB的长,然后与17比较大小,即可解答本题.【解答】解:王浩同学能将手机放入卡槽AB内.理由:作AD⊥BC于点D,∵∠C=50°,AC=20cm,∴AD=AC•sin50°=20×0.8=16cm,CD=AC•cos50°=20×0.6=12cm,∵BC=18cm,∴DB=BC﹣CD=18﹣12=6cm,∴AB==,∵17=<,∴王浩同学能将手机放入卡槽AB内.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用直角三角形的相关知识解答.21.(10分)(2017•赤峰)如图,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△ABC.(1)若点C在反比例函数y=的图象上,求该反比例函数的解析式;(2)点P(2,m)在第一象限,过点P作x轴的垂线,垂足为D,当△PAD 与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请加以说明.【分析】(1)由直线解析式可求得A、B坐标,在Rt△AOB中,利用三角函数定义可求得∠BAO=30°,且可求得AB的长,从而可求得CA⊥OA,则可求得C点坐标,利用待定系数法可求得反比例函数解析式;(2)分△PAD∽△ABO和△PAD∽△BAO两种情况,分别利用相似三角形的性质可求得m的值,可求得P点坐标,代入反比例函数解析式进行验证即可.【解答】解:(1)在y=﹣x+1中,令y=0可解得x=,令x=0可得y=1,∴A(,0),B(0,1),∴tan∠BAO===,∴∠BAO=30°,∵△ABC是等边三角形,∴∠BAC=60°,∴∠CAO=90°,在Rt△BOA中,由勾股定理可得AB=2,∴AC=2,∴C(,2),∵点C在反比例函数y=的图象上,∴k=2×=2,∴反比例函数解析式为y=;(2)∵P(2,m)在第一象限,∴AD=OD﹣OA=2﹣=,PD=m,当△ADP∽△AOB时,则有=,即=,解得m=1,此时P点坐标为(2,1);当△PDA∽△AOB时,则有=,即=,解得m=3,此时P点坐标为(2,3);把P(2,3)代入y=可得3≠,∴P(2,3)不在反比例函数图象上,把P(2,1)代入反比例函数解析式得1=,∴P(2,1)在反比例函数图象上;综上可知P点坐标为(2,1).【点评】本题为反比例函数的综合应用,涉及待定系数法、等边三角形的性质、三角函数、勾股定理、相似三角形的性质及分类讨论思想等知识.在(1)中求得C点坐标是解题的关键,在(2)中利用相似三角形的性质得到m的方程是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度适中.22.(10分)(2017•赤峰)为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.【分析】(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;(2)设购买梨树苗种树苗a棵,苹果树苗则购买(1100﹣a)棵,根据购买两种树苗的总费用不超过6000元建立不等式求出其解即可.【解答】解:(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,依题意得:=,解得x=5.经检验x=5是原方程的解,且符合题意.答:梨树苗的单价是5元;(2)设购买梨树苗种树苗a棵,苹果树苗则购买(1100﹣a)棵,依题意得:(5+2)(1100﹣a)+5a≤6000,解得a≥850.答:梨树苗至少购买850棵.【点评】本题考查了列分式方程解实际问题的运用,一元一次不等式解实际问题的运用,解答时由方程求出两种树苗的单价是关键.23.(12分)(2017•赤峰)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:AM是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).【分析】(1)由已知条件得到△BOC是等边三角形,根据等边三角形的性质得到∠1=∠2=60°,由角平分线的性质得到∠1=∠3,根据平行线的性质得到∠OAM=90°,于是得到结论;(2)根据等边三角形的性质得到∠OAC=60°,根据三角形的内角和得到∠CAD=30°,根据勾股定理得到AD=2,于是得到结论.【解答】解:(1)∵∠B=60°,∴△BOC是等边三角形,∴∠1=∠2=60°,∵OC平分∠AOB,∴∠1=∠3,∴∠2=∠3,∴OA∥BD,∴∠BDM=90°,∴∠OAM=90°,∴AM是⊙O的切线;(2)∵∠3=60°,OA=OC,∴△AOC是等边三角形,∴∠OAC=60°,∵∠OAM=90°,∴∠CAD=30°,∵CD=2,∴AC=2CD=4,∴AD=2,∴S阴影=S梯形OADC﹣S扇形OAC=(4+2)×2﹣=6﹣.【点评】本题考查了切线的判定和性质,等边三角形的性质和判定,平行线的性质,正确的作出辅助线是解题的关键.24.(12分)(2017•赤峰)如图1,在△ABC中,设∠A、∠B、∠C的对边分别为a,b,c,过点A作AD⊥BC,垂足为D,会有sin∠C=,则S△ABC=BC×AD=×BC×ACsin∠C=absin∠C,即S=absin∠C△ABC=bcsin∠A同理S△ABCS△ABC=acsin∠B通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:如图2,在△ABC中,若∠A、∠B、∠C的对边分别为a,b,c,则a2=b2+c2﹣2bccos∠Ab2=a2+c2﹣2accos∠Bc2=a2+b2﹣2abcos∠C用上面的三角形面积公式和余弦定理解决问题:(1)如图3,在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8.求S△DEF 和DE2.解:S=EF×DFsin∠F=6;△DEFDE2=EF2+DF2﹣2EF×DFcos∠F=49.(2)如图4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分别是以AB、BC、AC为边长的等边三角形,设△ABC、△ABC'、△BCA'、△ACB'的面积分别为S1、S2、S3、S4,求证:S1+S2=S3+S4.【分析】(1)直接利用正弦定理和余弦定理即可得出结论;(2)方法1、利用正弦定理得出三角形的面积公式,再利用等边三角形的性质即可得出结论;方法2、先用正弦定理得出S1,S2,S3,S4,最后用余弦定理即可得出结论.【解答】解:(1)在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8,∴EF=3,DF=8,=EF×DFsin∠F=×3×8×sin60°=6,∴S△DEFDE2=EF2+DF2﹣2EF×DFcos∠F=32+82﹣2×3×8×cos60°=49,故答案为:6,49;(2)证明:方法1,∵∠ACB=60°,∴AB2=AC2+BC2﹣2AC•BCcos60°=AC2+BC2﹣AC•BC,两边同时乘以sin60°得,AB2sin60°=AC2sin60°+BC2sin60°﹣AC•BCsin60°,∵△ABC',△BCA',△ACB'是等边三角形,∴S1=AC•BCsin60°,S2=AB2sin60°,S3=BC2sin60°,S4=AC2sin60°,∴S2=S4+S3﹣S1,∴S1+S2=S3+S4,方法2、令∠A,∠B,∠C的对边分别为a,b,c,∴S1=absin∠C=absin60°=ab∵△ABC',△BCA',△ACB'是等边三角形,∴S2=c•c•sin60°=c2,S3=a•a•sin60°=a2,S4=b•b•sin60°=b2,∴S1+S2=(ab+c2),S3+S4=(a2+b2),∵c2=a2+b2﹣2ab•cos∠C=a2+b2﹣2ab•cos60°,∴a2+b2=c2+ab,∴S1+S2=S3+S4.【点评】此题是三角形综合题,主要考查了新定义的理解和应用,解本题的关键是理解新定义,会用新定义解决问题.25.(12分)(2017•赤峰)△OPA和△OQB分别是以OP、OQ为直角边的等腰直角三角形,点C、D、E分别是OA、OB、AB的中点.(1)当∠AOB=90°时如图1,连接PE、QE,直接写出EP与EQ的大小关系;(2)将△OQB绕点O逆时针方向旋转,当∠AOB是锐角时如图2,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.(3)仍将△OQB绕点O旋转,当∠AOB为钝角时,延长PC、QD交于点G,使△ABG为等边三角形如图3,求∠AOB的度数.【分析】(1)先判断出点P,O,Q在同一条直线上,再判断出△APE≌△BFE,最后用直角三角形的斜边的中线等于斜边的一半即可得出结论;(2)先判断出CE=DQ,PC=DE,进而判断出△EPC≌△QED即可得出结论;(3)先判断出CQ,GP分别是OB,OA的垂直平分线,进而得出∠GBO=∠GOB,∠GOA=∠GAO,即可得出结论.【解答】解:(1)如图1,延长PE,QB交于点F,∵△APO和△BQO是等腰直角三角形,∴∠APO=∠BQO=90°,∠AOP=∠BOQ=45°,∵∠AOB=90°,∴∠AOP+∠AOB+∠BOQ=180°,∴点P,O,Q在同一条直线上,∵∠APO=∠BQO=90°,∴AP∥BQ,∴∠PAE=∠FBE,∵点E是AB中点,∴AE=BE,∵∠AEP=∠BEF,∴△APE≌△BFE,∴PE=EF,∴点E是Rt△PQF的斜边PF的中点,∴EP=EQ;(2)成立,证明:∵点C,E分别是OA,AB的中点,∴CE∥OB,CE=OB,∴∠DOC=∠ECA,∵点D是Rt△OQB斜边中点,∴DQ=OB,∴CE=DQ,同理:PC=DE,∠DOC=∠BDE,∴∠ECA=∠BDE,∵∠PCE=∠EDQ,∴△EPC≌△QED,∴EP=EQ;(3)如图2连接GO,∵点D,C分别是OB,OA的中点,△APO与△QBO都是等腰直角三角形,∴CQ,GP分别是OB,OA的垂直平分线,∴GB=GO=GA,∴∠GBO=∠GOB,∠GOA=∠GAO,设∠GOB=x,∠GOA=y,∴x+x+y+y+60°=360°∴x+y=150°,∴∠AOB=150°.【点评】此题是几何变换综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,直角三角形的性质,线段的垂直平分线的性质,解(1)的关键是构造全等三角形,解(2)的关键是判断出CE=DQ,解(3)的关键是判断出CQ,GP分别是OB,OA的垂直平分线,是一道中等难度的题目.26.(14分)(2017•赤峰)如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.【分析】(1)可设抛物线解析式为顶点式,由B点坐标可求得抛物线的解析式,则可求得D点坐标,利用待定系数法可求得直线BD解析式;(2)设出P点坐标,从而可表示出PM的长度,利用二次函数的性质可求得其最大值;(3)过Q作QG∥y轴,交BD于点G,过Q和QH⊥BD于H,可设出Q点坐标,表示出QG的长度,由条件可证得△DHG为等腰直角三角形,则可得到关于Q 点坐标的方程,可求得Q点坐标.【解答】解:(1)∵抛物线的顶点C的坐标为(1,4),∴可设抛物线解析式为y=a(x﹣1)2+4,∵点B(3,0)在该抛物线的图象上,∴0=a(3﹣1)2+4,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3,∵点D在y轴上,令x=0可得y=3,∴D点坐标为(0,3),∴可设直线BD解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BD解析式为y=﹣x+3;(2)设P点横坐标为m(m>0),则P(m,﹣m+3),M(m,﹣m2+2m+3),∴PM=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,∴当m=时,PM有最大值;(3)如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,设Q(x,﹣x2+2x+3),则G(x,﹣x+3),∴QG=|﹣x2+2x+3﹣(﹣x+3)|=|﹣x2+3x|,∵△BOD是等腰直角三角形,∴∠DBO=45°,∴∠HGQ=∠BGE=45°,当△BDQ中BD边上的高为2时,即QH=HG=2,∴QG=×2=4,∴|﹣x2+3x|=4,当﹣x2+3x=4时,△=9﹣16<0,方程无实数根,当﹣x2+3x=﹣4时,解得x=﹣1或x=4,∴Q(﹣1,0)或(4,﹣5),综上可知存在满足条件的点Q,其坐标为(﹣1,0)或(4,﹣5).【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识.在(1)中主要是待定系数法的考查,注意抛物线顶点式的应用,在(2)中用P点坐标表示出PM的长是解题的关键,在(3)中构造等腰直角三角形求得QG的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

内蒙古赤峰市初中中考数学真题试卷试题含解析.docx

内蒙古赤峰市初中中考数学真题试卷试题含解析.docx

内蒙古赤峰市 2017 年中考数学真题试题一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题 3 分,共计36 分)1.| (3)5| 等于()A. -8B. -2C.2D.8【答案】 D.【解析】试题分析:根据分式的减法和绝对值可以解答本题.| (﹣ 3)﹣ 5|=| ﹣ 3﹣ 5|=| ﹣ 8|=8 ,故选 D.考点:有理数的减法;绝对值.2.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】 C.【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,不是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选 C.考点:中心对称图形;轴对称图形.3.风景秀美的赤峰有“草原明珠”的美称,赤峰市全域总面积为90021 平方公里. 90021 用科学记数法表示为()A.9.0021105B.9.002110 4C.90.021103D.900.21102【答案】 B.【解析】考点:科学记数法—表示较大的数.4.下列运算正确的是()A.3x 2 y 5( x y)B. x x3x4C.x2gx3x6D. (x2 )3x6【答案】 D.【解析】试题分析:根据合并同类项、同底数幂的乘法、幂的乘方的计算法则计算,对各选项分析判断后利用排除法求解.A、不是同类项不能合并,故 A 错误;B、不是同类项不能合并,故 B 错误;C、 x2?x 3=x5,故 C 错误;D、( x2)3=x 6,故 D 正确.故选 D.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.5.直线a / /b,Rt ABC 的直角顶点 C 在直线a上,若 1 35o,则 2 等于()A.65o B.50o C.55o D.60o【答案】 C.【解析】试题分析:先根据直角为90°,即可得到∠ 3 的度数,再根据平行线的性质,即可得出∠ 2 的度数.∵Rt △ABC的直角顶点 C 在直线 a 上,∠ 1=35°,∴∠ 3=90°﹣ 35°=55°,又∵ a∥b,∴∠ 2=∠3=55°,故选 C.考点:平行线的性质 .6.能使式子 2 x x 1成立的 x 的取值范围是()A.x 1B. x 2C. 1 x 2D.x 2【答案】 C.考点:函数自变量的取值范围.7.小明向如图所示的正方形ABCD 区域内投掷飞镖,点 E 是以 AB 为直径的半圆与对角线AC 的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.1B.1C.1D.1 2438【答案】 B.【解析】试题分析:直接利用正方形的性质结合转化思想得出阴影部分面积=S△CEB,进而得出答案.如图所示:连接BE,可得, AE=BE,∠ AEB=90°,且阴影部分面积 =S =1S =S,△ CEB△BEC1正方形 ABCD24故小明投掷飞镖一次,则飞镖落在阴影部分的概率为: 1 .4故选 B.考点:几何概率.8.下面几何体的主视图为()A.B.C.D.【答案】 C.【解析】试题分析:根据从正面看得到的图形是主视图,可得答案.从正面看,故选 C.考点:简单组合体的三视图.9.点A(1, y)、B(3, y) 是反比例函数y 9y 、 y的大小关系是()图象上的两点,则2x12 A.y1y2B.y1y2C. y1 y2D.不能确定【答案】 A.【解析】试题分析:根据反比例函数图象的增减性进行填空.∵反比例函数9y中的9>0,x∴经过第一、三象限,且在每一象限内y 随 x 的增大而减小,又∵ A(1, y1)、 B(3, y2)都位于第一象限,且1< 3,∴y1> y2,故选 A.考点:反比例函数图象上点的坐标特征.10.如图,将边长为 4 的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O处,若折痕EF 2 3 ,则A()A.120o B.100o C.60 o D.30o【答案】 A.【解析】试题分析:连接AC,根据菱形的性质得出AC⊥ BD,根据折叠得出EF⊥ AC,EF 平分 AO,得出 EF∥ BD,得出 EF 为△ ABD的中位线,根据三角形中位线定理求出BD的长,进而可得到BO的长,由勾股定理可求出AO的长,则∠ ABO可求出,继而∠BAO的度数也可求出,再由菱形的性质可得∠A=2∠ BAO.连接 AC,∵四边形ABCD是菱形,∴ AC⊥ BD,∵A 沿 EF 折叠与 O重合,∴ EF⊥ AC, EF 平分 AO,∵AC⊥BD,∴ EF∥ BD,∴ E、 F 分别为 AB、 AD的中点,∴EF 为△ ABD的中位线,∴ EF=BD,∴ BD=2EF=4 3 ,∴ BO=2 3 ,∴ AO= AB2BO2 =2,∴ AO=1 AB,2∴∠ ABO=30°,∴∠ BAO=60°,∴∠ BAD=120°.故选 A.考点:翻折变换(折叠问题);菱形的性质;勾股定理.11.将一次函数y 2x 3的图象沿y 轴向上平移8 个单位长度,所得直线的解析式为()A.y2x 5B.y2x 5C.y 2x 8D.y2x8【答案】 B.【解析】试题分析:根据函数图象上加下减,可得答案.由题意,得y=2x﹣ 3+8,即 y=2x+5 ,故选 B.考点:一次函数图象与几何变换.12.正整数x、y满足(2 x5)(2 y5) 25 ,则 x y 等于()A. 18 或 10B.18C. 10D. 26【答案】 A.考点:二元一次方程 .二、填空题(请把答案填写在答题卡相应的横线上,每小题 3 分,共 12 分)13.分解因式:xy28xy 16x.2【答案】 x( y+4) .试题分析:此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有 3 项,可采用完全平方公式继续分解.xy 2+8xy+16x=x ( y2+8y+16) =x(y+4)2.故答案为: x( y+4)2.考点:提公因式法与公式法的综合运用.14.如果关于x 的方程x24x 2m 0 有两个不相等的实数根,则m 的取值范围是.【答案】 m< 2.【解析】试题分析:根据方程的系数结合根的判别式,即可得出△=16﹣ 8m> 0,解之即可得出m的取值范围.∵关于 x 的方程 x2﹣4x+2m=0有两个不相等的实数根,∴△ =(﹣ 4)2﹣ 4×2m=16﹣ 8m> 0,解得: m<2.故答案为: m< 2.考点:根的判别式.15.数据 5, 6,5, 4, 10 的众数、中位数、平均数的和是.【答案】 16.考点:众数;算术平均数;中位数.16.在平面直角坐标系中,点P( x, y) 经过某种变换后得到点 P (y 1, x2),我们把点 P ( y 1, x2) 叫做点 P( x, y) 的终结点.已知点P 的终结点为 P ,点 P 的终结点为P ,点 P 的终结点为 P ,这样依次得到112234P1、P2、P3、 P4、L P n、L ,若点 P1的坐标为(2,0),则点 P2017的坐标为.【答案】( 2, 0).【解析】试题分析:求得点P2、 P3、 P4、P5的值,即可发现其中规律,即可解题.∵P1( 2,0),则 P2( 1, 4),P3(﹣ 3, 3), P4(﹣ 2,﹣ 1), P5( 2,0),∴ P n的坐标为( 2,0),( 1,4),(﹣ 3, 3),(﹣ 2,﹣ 1)循环,∵2017=2016+1=4× 504+1,∴ P2017坐标与 P1点重合,故答案为( 2, 0).考点:规律型:点的坐标.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤,共 10 题,满分102 分)17.先化简,再求值:( a263)a其中 a 2017 2(1) 327 tan 30o a4a2 a 25【答案】 -2.考点:分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.18.已知平行四边形ABCD .(1)尺规作图:作BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在( 1)的条件下,求证:CE CF.【答案】( 1)见解析;( 2)见解析 .【解析】试题分析:( 1)作∠ BAD的平分线交直线BC于点 E,交 DC延长线于点 F 即可;(2)先根据平行四边形的性质得出 AB∥ DC,AD∥ BC,故∠ 1=∠ 2,∠ 3=∠ 4.再由 AF 平分∠ BAD得出∠ 1=∠3,故可得出∠ 2=∠4,据此可得出结论.试题解析:( 1)如图所示, AF 即为所求;( 2)∵四边形ABCD是平行四边形,∴AB∥DC, AD∥BC,∴∠ 1=∠ 2,∠ 3=∠ 4.∵AF 平分∠ BAD,∴∠ 1=∠3,∴∠ 2=∠ 4,∴ CE=CF.考点:作图—基本作图;平行四边形的性质.19.为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型: A 喜欢吃苹果的学生; B 喜欢吃桔子的学生; C.喜欢吃梨的学生;D.喜欢吃香蕉的学生; E 喜欢吃西瓜的学生,并将调查结果绘制成图 1 和图 2 的统计图(不完整).请根据图中提供的数据解答下列问题:( 1)求此次抽查的学生人数;( 2)将图 2 补充完整,并求图 1 中的x;(3)现有 5 名学生,其中 A 类型 2 名, B 类型 2 名,从中任选 2 名学生参加很体能测试,求这两名学生为同一类型的概率(用列表法或树状图法)【答案】( 1) 40;( 2)图形见解析,20%;( 3)2 .5【解析】所占人数试题分析:( 1)根据百分比 = 总人数计算即可;(2)求出 B、 C的人数画出条形图即可;(3)利用树状图,即可解决问题;试题解析:( 1)此次抽查的学生人数为16÷ 40%=40人.(2)C 占40×10%=4人,B 占20%,有40×20%=8人,条形图如图所示,( 3)由树状图可知:两名学生为同一类型的概率为8 2 20.5考点:列表法与树状图法;扇形统计图;条形统计图.20.王浩同学用木板制作一个带有卡槽的三角形手机架,如下面左图所示.已知AC20cm , BC18cm ,ACB50o ,王浩的手机长度为17cm ,宽为8cm ,王浩同学能否将手机放入卡槽AB 内?请说明你的理由.(提示:sin50 o0.8,cos50o0.6,tan50 o1.2 )【答案】王浩同学能将手机放入卡槽AB 内,理由见解析 .【解析】试题分析:根据题意作出合适的辅助线,可以求得AD 和 CD 的长,进而可以求得 DB 的长,然后根据勾股定理即可得到 AB 的长,然后与 17 比较大小,即可解答本题.试题解析:王浩同学能将手机放入卡槽AB 内.理由:作 AD ⊥ BC 于点 D ,∵∠ C=50°, AC=20cm ,∴ AD=AC?sin50°=20× 0.8=16cm ,CD=AC?cos50°=20× 0.6=12cm ,∵ BC=18cm,∴ DB=BC﹣ CD=18﹣ 12=6cm,∴ AB= AD2BD 216262292,∵ 17= 289292 ,∴王浩同学能将手机放入卡槽AB内.考点:解直角三角形的应用;勾股定理.21.如图,一次函数y3x1的图象与x 轴、y 轴分别交于点A、E,以线段AB为边在第一象限作等3边ABC .( 1)若点C在反比例函数y k的图象上,求该反比例函数的解析式;x( 2)点P(2 3, m)在第一象限,过点P 作x轴的垂线,垂足为 D ,当PAD 与DAB 相切时, P 点是否在( 1)中反比例函数图象上,如果在,求出P 点坐标;如果不在,请加以说明.233 , 1) .【答案】( 1) y;(2)存在,( 2x【解析】试题分析:( 1)由直线解析式可求得 A、 B 坐标,在 Rt △ AOB中,利用三角函数定义可求得∠ BAO=30°,且可求得 AB的长,从而可求得 CA⊥ OA,则可求得 C 点坐标,利用待定系数法可求得反比例函数解析式;( 2)分△ PAD∽△ ABO和△ PAD∽△ BAO两种情况,分别利用相似三角形的性质可求得 m的值,可求得标,代入反比例函数解析式进行验证即可.P 点坐( 2)∵ P( 2 3 , m)在第一象限,∴AD=OD﹣ OA=2 3 ﹣3 = 3 , PD=m,当△ ADP∽△ AOB时,则有PDAD m3,解得 m=1,此时 P 点坐标为( 2 3 , 1);3OB OA,即1当△ PDA∽△ AOB时,则有PDADm33 , 3);,即,解得 m=3,此时 P 点坐标为( 2OA OB31把 P( 223233 , 3)不在反比例函数图象上,3 , 3)代入 yx可得3,∴ P( 223把 P( 2 3 , 1)代入反比例函数解析式得233 ,1)在反比例函数图象上;1,∴ P( 223综上可知P 点坐标为( 2 3 ,1).考点:反比例函数综合题;相似三角形的判定与性质;分类讨论.22.为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵 2 元,购买苹果树苗的费用和购买梨树苗的费用分别是3500 元和 2500 元.( 1)若两种树苗购买的棵数一样多,求梨树苗的单价;( 2)若两种树苗共购买1100 棵,且购买两种树苗的总费用不超过6000 元,根据( 1)中两种树苗的单价,求梨树苗至少购买多少棵.【答案】( 1) 5 元;( 2) 850 棵 .【解析】试题分析:( 1)设梨树苗的单价为x 元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;( 2)设购买梨树苗种树苗 a 棵,苹果树苗则购买棵,根据购买两种树苗的总费用不超过6000 元建立不等式求出其解即可.考点:分式方程的应用;C9:一元一次不等式的应用.23.如图,点 A 是直线AM与 e O的交点,点 B 在 e O 上,BD AM垂足为D , BD与 e O交于点 C ,OC平分AOB,B60o.( 1)求证:AM是 e O 的切线;( 2)若DC 2 ,求图中阴影部分的面积(结果保留和根号).8【答案】( 1)见解析;( 2) 6 3.3【解析】试题分析:(1)由已知条件得到△ BOC是等边三角形,根据等边三角形的性质得到∠ 1=∠2=60°,由角平分线的性质得到∠ 1=∠ 3,根据平行线的性质得到∠ OAM=90°,于是得到结论;( 2)根据等边三角形的性质得到∠OAC=60°,根据三角形的内角和得到∠CAD=30°,根据勾股定理得到AD=2 3 ,于是得到结论.试题解析:( 1)∵∠ B=60°,∴△ BOC是等边三角形,∴∠1=∠2=60°,∵OC平分∠ AOB,∴∠ 1=∠3,∴∠ 2=∠ 3,∴ OA∥ BD,∴∠ BDM=90°,∴∠ OAM=90°,∴AM是⊙ O的切线;(2)∵∠3=60°,OA=OC,∴△AOC是等边三角形,∴∠ OAC=60°,∵∠ OAM=90°,∴∠ CAD=30°,∵CD=2,∴ AC=2CD=4,∴ AD=2 3,∴ S=S﹣ S1( 4+2)× 2 3 ﹣60168阴影= 6 3.梯形 OADC扇形 OAC36032考点:等边三角形的性质;切线的判定与性质;扇形面积的计算.24.如图,在ABC 中,设A、B、 C 的对边分别为a,b, c ,过点 A 作 AD BC ,垂足为 D ,会有ADsin C,则ACSABC 1BC AD1BC AC sin C1ab sin C ,即 S ABC1ab sin C 2222 1bc sin A, S1B同理 S ABC ABC ac sin22通过推理还可以得到另一个表达三角形边角关系的定理—余弦定理:在ABC 中,若A、B、 C 的对边分别为a, b, c,则a2b2c22bc cos Ab2a2c22ac cos Bc2a2b22ab cos C用上面的三角形面积公式和余弦定理解决问题:....................( 1)如图,在DEF 中, F60o,D、 E 的对边分别是 3 和 8.求S DEF和DE2.解:S DEF =1EF DF sin F_______________ ;2DE 2EF 2DF22EF DF cos F______________.( 2)在ABC 中,已知AC BC,C60o,ABC 、BCA 、ACB分别是以AB、 BC、 AC为边长的等边三角形,设ABC、ABC 、BCA 、ACB的面积分别为S1、S2、S3、 S4,求证:S1 +S2 =S3+S4.【答案】( 1) 63 ,49;( 2)见解析 .【解析】( 2)证明:方法1,∵∠ ACB=60°,22222∴ AB=AC+BC﹣2AC?BCcos60°=AC +BC﹣AC?BC,两边同时乘以1sin60 °得,1212° +121AC?BCsin60°,22AB sin60 °=2ACsin602BCsin60 °﹣2∵△ ABC',△ BCA',△ ACB'是等边三角形,∴ S1= 1AC?BCsin60°, S2=12°, S3=12°, S4=12°,AB sin60BCsin60ACsin60 2222∴S2=S4+S3﹣S1,∴ S1+S2=S3+S4,方法 2、令∠ A,∠ B,∠ C 的对边分别为a,b, c,∴ S1=1absin ∠ C=1absin60 °=3ab 224∵△ ABC',△ BCA',△ ACB'是等边三角形,∴ S2=1c?c?sin60 °=3c2, S3=1a?a?sin60 °=3a2, S4=1b?b?sin60 °= 3 b2,242424∴ S1+S2=3 (ab+c2),S3+S4=3(a2+b2),44∵c2=a2+b2﹣2ab?cos∠ C=a2+b2﹣2ab?cos60°,∴ a2+b2=c2+ab,∴ S1+S2=S3+S4.考点:等边三角形的性质,解直角三角形.25.OPA 和OQB 分别是以 OP、 OQ 为直角边的等腰直角三角形,点C、D、E分别是OA、OB、AB的中点.( 1)当AOB 90o时如图1,连接 PE、 QE ,直接写出 EP 与 EQ 的大小关系;( 2)将OQB 绕点 O 逆时针方向旋转,当AOB 是锐角时如图2,( 1)中的结论是否成立 ?若成立,请给出证明;若不成立,请加以说明.( 3)仍将OQB绕点O旋转,当AOB 为钝角时,延长 PC、 QD 交于点 G ,使 ABG 为等边三角形如图3,求AOB 的度数.【答案】( 1) EP=EQ;( 2)成立,证明见解析;( 3)150° .【解析】试题分析: 1)先判断出点 P, O,Q在同一条直线上,再判断出△APE≌△ BFE,最后用直角三角形的斜边的中线等于斜边的一半即可得出结论;( 2)先判断出 CE=DQ, PC=DE,进而判断出△ EPC≌△ QED即可得出结论;( 3)先判断出 CQ, GP分别是 OB, OA的垂直平分线,进而得出∠GBO=∠GOB,∠ GOA=∠ GAO,即可得出结论.试题解析:( 1)如图 1,延长 PE, QB交于点 F,∵△ APO和△ BQO是等腰直角三角形,∴∠ APO=∠BQO=90°,∠AOP=∠BOQ=45°,∵∠ AOB=90°,∴∠ AOP+∠ AOB+∠BOQ=180°,∴点 P,O,Q在同一条直线上,∵∠ APO=∠BQO=90°,∴ AP∥ BQ,∴∠ PAE=∠FBE,∵点 E是 AB中点,∴ AE=BE,∵∠ AEP=∠ BEF,∴△ APE≌△ BFE,∴ PE=EF,∴点 E 是 Rt △ PQF的斜边 PF 的中点,∴ EP=EQ;(3)如图 2,连接 GO,∵点 D, C 分别是 OB, OA的中点,△ APO与△ QBO都是等腰直角三角形,∴ CQ,GP分别是 OB, OA的垂直平分线,∴ GB=GO=GA,∴∠ GBO=∠ GOB,∠ GOA=∠GAO,设∠ GOB=x,∠ GOA=y,∴x+x+y+y+ 60°=360°,∴ x+y=150°,∴∠ AOB=150°.考点:几何变换综合题,直角三角形的性质,线段垂直平分线的判定与性质,全等三角形的判定与性质. 26.如图,二次函数y ax2bx c(a0) 的图象交 x 轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点 C 的坐标为 (1,4) .( 1)求二次函数的解析式和直线BD 的解析式;( 2)点P是直线BD上的一个动点,过点P 作x轴的垂线,交抛物线于点M ,当点 P 在第一象限时,求线段 PM 长度的最大值;( 3)在抛物线上是否存在异于B、 D 的点 Q ,使BDQ 中 BD 边上的高为 2 2 ,若存在求出点Q 的坐标;若不存在请说明理由.2;( 2)9;( 3)存在,(﹣ 1, 0)或( 4,﹣ 5) .【答案】( 1) y=﹣ x +2x+3, y=﹣ x+34【解析】试题分析:( 1)可设抛物线解析式为顶点式,由 B 点坐标可求得抛物线的解析式,则可求得 D 点坐标,利用待定系数法可求得直线 BD解析式;(2)设出 P 点坐标,从而可表示出 PM的长度,利用二次函数的性质可求得其最大值;(3)过 Q作 QG∥ y 轴,交 BD于点 G,过 Q和 QH⊥ BD于 H,可设出 Q点坐标,表示出 QG的长度,由条件可证得△ DHG为等腰直角三角形,则可得到关于Q点坐标的方程,可求得Q点坐标.( 3)如图,过Q作 QG∥ y 轴交 BD于点 G,交 x 轴于点 E,作 QH⊥ BD于 H,设Q( x,﹣ x2+2x+3),则 G( x,﹣ x+3),∴ QG=|﹣ x2+2x+3﹣(﹣ x+3) |=| ﹣ x2+3x| ,∵△ BOD是等腰直角三角形,∴∠DBO=45°,∴∠HGQ=∠BGE=45°,当△ BDQ 中BD边上的高为2 2 时,即QH=HG=2 2,∴QG= 2× 2 2 =4,∴ | ﹣x2+3x|=4 ,当﹣ x2+3x=4 时,△ =9﹣ 16< 0,方程无实数根,当﹣ x2+3x=﹣ 4 时,解得x=﹣ 1 或 x=4,∴ Q(﹣ 1, 0)或( 4,﹣ 5),综上可知存在满足条件的点Q,其坐标为(﹣1, 0)或( 4,﹣ 5).考点:待定系数法,二次函数的性质,解一元二次方程,一元二次方程根与系数的关系.。

内蒙古赤峰市中考数学试卷及解析

内蒙古赤峰市中考数学试卷及解析

2018 年内蒙古赤峰市中考数学试卷一、选择题(每题给出的选项中只有一个吻合题意,请将吻合题意的选项序号,在答题卡的对应地址上按要求涂黑。

每题 3 分,共36 分。

)1.2018 的相反数是()A.﹣ 2018 B.C.2018D.﹣2.以下符号中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.以下运算正确的选项是()A.x2+x2=2x4B.x2?x3=x6 C.(x2)3 =x6D.(2x2)3=6x64.红山川库又名“红山湖”,位于老哈河中游,设计库容量 25.6 亿立方米,现在水库本质库容量 16.2 亿立方米,是暑期度假旅游的好去处. 16.2 亿用科学记数法表示为()A.×108B.×108C.×109D.× 10105.如图是一个空心圆柱体,其俯视图是()A.B.C.D.6.有一天,兔子和乌龟赛跑.比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行.不一会儿,乌龟就被远远的甩在了后边.兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地连续爬行.当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反响这则寓言故事的大体图象是()A.B.C.D.7.代数式 +中 x 的取值范围在数轴上表示为()A.B.C.D.60°8.已知 AB∥CD,直线 EF 分别交 AB、CD 于点 G、H,∠ EGB=25°,将一个角的直角三角尺如图放置( 60°角的极点与 H 重合),则∠ PHG等于()A.30°B.35°C.40°D.45°9.已知抛物线y=a( x﹣1)2﹣3(a≠0),以下列图,以下命题:① a>0;②对称轴为直线x=1;③抛物线经过( 2,y1),( 4,y2)两点,则y1>y2;④极点坐标是( 1,﹣ 3),其中真命题的概率是()A. B. C. D.110.2017﹣2018 赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为 380 场,若设参赛队伍有 x 支,则可列方程为()A.x(x﹣1)=380 B. x( x﹣ 1)=380 C.x(x+1)=380 D. x( x+1)=380 11.如图, AB 是⊙ O 的直线, C 是⊙ O 上一点( A、B 除外),∠ AOD=130°,则∠ C 的度数是()A.50°B.60°C.25°D.30°12.如图,直线 y=﹣x+3 与 x 轴、y 轴分别交于 A、B 两点,点 P 是以 C(﹣ 1,0)为圆心, 1 为半径的圆上一点,连接PA,PB,则△ PAB面积的最小值是()A.5B.10 C.15D.20二、填空题(请把答案填写在答题卡相应的横线上,每题 3 分,共 18 分)13.分解因式: 2a2﹣ 8b2=.14.一组数据:﹣ 1, 3,2, x, 5,它有唯一的众数是3,则这组数据的中位数是.15.半径为 10cm 的半圆围成一个圆锥,则这个圆锥的高是cm.16.如图,已知一次函数y=﹣ x+b 与反比率函数 y=( k≠ 0)的图象订交于点P,则关于 x 的方程﹣ x+b=的解是.17.如图, P 是?ABCD的边 AD 上一点, E、 F 分别是 PB、 PC的中点,若 ?ABCD 的面积为 16cm2,则△ PEF的面积(阴影部分)是cm2.18.观察以下一组由★排列的“星阵”,按图中规律,第n 个“星阵”中的★的个数是.三、简答题(解答时要写出必要的文字说明、证明过程或演算步骤,共8 题,满分 96 分).(分)先化简,再求值:﹣,其中﹣1x=﹣()﹣|1 ﹣| .19 10x+120.( 10分)如图, D 是△ ABC中 BC边上一点,∠ C=∠DAC.(1)尺规作图:作∠ ADB的均分线,交 AB 于点 E(保留作图印迹,不写作法);(2)在( 1)的条件下,求证: DE∥AC.21.( 12 分)国家为了实现2020 年全面脱贫目标,推行“精准扶贫”战略,采用异地迁居,产业帮助等措施.使贫困户的生活条件获取改进,生活质量明显提高.某旗县为了全面认识贫困县对扶贫工作的满意度情况,进行随机抽样检查,分为四个种类: A.特别满意; B.满意; C.基本满意; D.不满意.依照检查数据绘制成图 1 和图 2 的统计图(不完满).依照以上信息,解答以下问题:( 1)将图 1 补充完满;( 2)经过分析,贫困户对扶贫工作的满意度( A、B、C 类视为满意)是;(3)市扶贫办从该旗县甲乡镇 3 户、乙乡镇 2 户共 5 户贫困户中,随机抽取两户进行满意度回访,求这两户贫困户恰好都是同一乡镇的概率.22.( 12 分)小明同学三次到某商场购买A、B 两种商品,其中仅有一次是有折扣的,购买数量及花销金额以下表:种类购买 A 商品数量购买 B 商品数量花销金额(元)次数(件)(件)第一次45320第二次26300第三次57258解答以下问题:( 1)第次购买有折扣;(2)求 A、B 两种商品的原价;(3)若购买 A、B 两种商品的折扣数相同,求折扣数;(4)小明同学再次购买 A、 B 两种商品共 10 件,在( 3)中折扣数的前提下,花销金额不高出 200 元,求最少购买 A 商品多少件.23.( 12 分)如图,在 Rt△ABC中,∠ C=90°,AD 均分∠ BAC,交 BC于点 D,点O 在 AB 上,⊙ O 经过 A、D 两点,交 AC 于点 E,交 AB 于点 F.( 1)求证: BC是⊙ O 的切线;( 2)若⊙ O 的半径是 2cm, E 是的中点,求阴影部分的面积(结果保留π和根号)24.( 12 分)阅读以下资料:如图 1,在△ ABC中,∠ A、∠ B、∠ C 所对的边分别为a、b、c,能够获取:S△ABC=absinC=acsinB=bcsinA证明:过点 A 作 AD⊥ BC,垂足为 D.在 Rt△ABD 中, sinB=∴AD=c?sinB∴S△ABC=a?AD=acsinB同理: S△ABC=absinCS△ABC=bcsinA∴S△ABC=absinC=acsinB=bcsinA( 1)经过上述资料证明:==( 2)运用( 1)中的结论解决问题:如图 2,在△ ABC中,∠ B=15°,∠ C=60°,AB=20,求 AC的长度.(3)如图3,为了开发公路旁的城市荒地,测量人员选择A、B、C 三个测量点,在B 点测得 A 在北偏东 75°方向上,沿笔直公路向正东方向行驶 18km 到达 C 点,测得 A 在北偏西 45°方向上,依照以上信息,求 A、B、C 三点围成的三角形的面积.(此题参照数值:sin15 ≈°,sin120 °≈,≈,结果取整数)25.( 14 分)将一副三角尺按图 1 摆放,等腰直角三角尺的直角边DF恰好垂直G,BC=2cm.均分AB,与AC订交于点(1)求 GC的长;(2)如图 2,将△ DEF绕点 D 顺时针旋转,使直角边 DF 经过点 C,另素来角边DE与 AC订交于点 H,分别过 H、C 作 AB 的垂线,垂足分别为 M 、N,经过观察,猜想 MD 与 ND 的数量关系,并考据你的猜想.(3)在( 2)的条件下,将△ DEF沿 DB 方向平移获取△ D′E′,F当′ D′E恰′好经过(1)中的点 G 时,请直接写出 DD′的长度.26.( 14 分)已知抛物线y=﹣x2﹣ x 的图象以下列图:( 1)将该抛物线向上平移 2 个单位,分别交x 轴于 A、B 两点,交 y 轴于点 C,则平移后的分析式为.(2)判断△ ABC的形状,并说明原由.(3)在抛物线对称轴上可否存在一点 P,使得以 A、 C、 P 为极点的三角形是等腰三角形?若存在,求出点 P 的坐标;若不存在,说明原由.2018 年内蒙古赤峰市中考数学试卷参照答案与试题分析一、选择题(每题给出的选项中只有一个吻合题意,请将吻合题意的选项序号,在答题卡的对应地址上按要求涂黑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年内蒙古赤峰市中考数学模拟试卷一、选择题(本题共10个小题,每小题3分.满分30分,在每小题给出的四个选项中,只有一项符合题目要求)1.计算2﹣3的结果为()A.﹣1 B.﹣2 C.1 D.22.下列图形是中心对称图形的是()A.B.C.D.3.2014年嘉兴市地区生产总值为335 280 000 000元,该数据用科学记数法表示为()A.33528×107B.0.33528×1012C.3.3528×1010D.3.3528×10114.若k<<k+1(k是整数),则k=()A.6 B.7 C.8 D.95.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.46.把多项式2x2﹣8分解因式,结果正确的是()A.2(x2﹣8)B.2(x﹣2)2C.2(x+2)(x﹣2)D.2x(x﹣)7.化简的结果是()A.x+1 B. C.x﹣1 D.8.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B. C.D.9.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A.B.C.D.10.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B.C.D.二、填空题(每题3分,共24分,请将答案直接填写在题后的横线上)11.数据1,2,3,5,5的众数是.12.已知扇形的圆心角为120°,弧长为2π,则它的半径为.13.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是(填序号).14.命题“对角线相等的四边形是矩形”是命题(填“真”或“假”).15.如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E,则⊙O的半径为.16.已知正方形ABC 1D 1的边长为1,延长C 1D 1到A 1,以A 1C 1为边向右作正方形A 1C 1C 2D 2,延长C 2D 2到A 2,以A 2C 2为边向右作正方形A 2C 2C 3D 3(如图所示),以此类推….若A 1C 1=2,且点A ,D 2,D 3,…,D 10都在同一直线上,则正方形A 9C 9C 10D 10的边长是 .三、解答题(本大题10个小题,共102分)下列各题解答时必须给出必要的演算过程或推理步骤.17.计算:﹣|﹣2|+﹣4sin60°.18.小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.19.如图,在△ABC 中,已知AB=AC ,AD 平分∠BAC ,点M ,N 分别在AB ,AC 边上,AM=2MB ,AN=2NC .求证:DM=DN .20.如图,已知点A (a ,3)是一次函数y 1=x+b 图象与反比例函数y 2=图象的一个交点.(1)求一次函数的解析式;(2)在y 轴的右侧,当y 1>y 2时,直接写出x 的取值范围.21.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,.22.某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请补全条形统计图;(2)求出图1中表示文学类书籍的扇形圆心角度数;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?23.如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E,DF切半圆于点F.已知∠AEF=135°.(1)求证:DF∥AB;(2)若OC=CE,BF=,求DE的长.24.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y 只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?25.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由.②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC 沿∠ABC的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?(3)拓展应用:如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,AC=AB,试探究BC,CD,BD的数量关系.26.如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B,C两点(点C在x 轴正半轴上),△ABC为等腰直角三角形,且面积为4,现将抛物线沿BA方向平移,平移后的抛物线过点C时,与x轴的另一点为E,其顶点为F,对称轴与x轴的交点为H.(1)求a、c的值.(2)连接OF,试判断△OEF是否为等腰三角形,并说明理由.(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使以点P、Q、E为顶点的三角形与△POE全等?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本题共10个小题,每小题3分.满分30分,在每小题给出的四个选项中,只有一项符合题目要求)1.计算2﹣3的结果为()A.﹣1 B.﹣2 C.1 D.2【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数进行计算即可.【解答】解:2﹣3=2+(﹣3)=﹣1,故选:A.2.下列图形是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称的定义知,绕一个点旋转180°后能与原图重合,则只有选项A 是中心对称图形.故选:A.3.2014年嘉兴市地区生产总值为335 280 000 000元,该数据用科学记数法表示为()A.33528×107B.0.33528×1012C.3.3528×1010D.3.3528×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将335 280 000 000用科学记数法表示为:3.3528×1011.故选:D.4.若k<<k+1(k是整数),则k=()A.6 B.7 C.8 D.9【考点】估算无理数的大小.【分析】根据=9,=10,可知9<<10,依此即可得到k的值.【解答】解:∵k<<k+1(k是整数),9<<10,∴k=9.故选:D.5.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.4【考点】角平分线的性质.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S=BC•EF=×5×2=5,△BCE故选C.6.把多项式2x2﹣8分解因式,结果正确的是()A.2(x2﹣8)B.2(x﹣2)2C.2(x+2)(x﹣2)D.2x(x﹣)【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2,进而利用平方差公式分解因式得出即可.【解答】解:2x2﹣8=2(x2﹣4)=2(x﹣2)(x+2).故选:C.7.化简的结果是()A.x+1 B. C.x﹣1 D.【考点】分式的加减法.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1.故选A8.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A .B .C .D .【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A .9.如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为( )A .B .C .D .【考点】正多边形和圆;勾股定理;概率公式.【分析】利用正六边形的性质以及勾股定理得出AE 的长,进而利用概率公式求出即可.【解答】解:连接AF ,EF ,AE ,过点F 作FN ⊥AE 于点N ,∵点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,∴AF=EF=1,∠AFE=120°,∴∠FAE=30°,∴AN=,∴AE=,同理可得:AC=,故从任意一点,连接两点所得的所有线段一共有15种,任取一条线段,取到长度为的线段有6种情况,则在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为:.故选:B .10.在同一平面直角坐标系中,函数y=ax 2+bx 与y=bx+a 的图象可能是( )A. B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.二、填空题(每题3分,共24分,请将答案直接填写在题后的横线上)11.数据1,2,3,5,5的众数是 5 .【考点】众数.【分析】众数是一组数据中出现次数最多的数,找到出现次数最多的数即可.【解答】解:这组数据中,5出现的次数最多,为2次,故众数为5.故答案为:5.12.已知扇形的圆心角为120°,弧长为2π,则它的半径为 3 .【考点】弧长的计算.【分析】根据弧长公式代入求解即可.【解答】解:∵l=,∴R==3.故答案为:3.13.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是①③(填序号).【考点】根的判别式;一元一次方程的解.【分析】分别讨论m=0和m≠0时方程mx2+x﹣m+1=0根的情况,进而填空.【解答】解:当m=0时,x=﹣1,方程只有一个解,①正确;当m≠0时,方程mx2+x﹣m+1=0是一元二次方程,△=1﹣4m(1﹣m)=1﹣4m+4m2=(2m﹣1)2≥0,方程有两个实数解,②错误;把mx2+x﹣m+1=0分解为(x+1)(mx﹣m+1)=0,当x=﹣1时,m﹣1﹣m+1=0,即x=﹣1是方程mx2+x﹣m+1=0的根,③正确;故答案为①③.14.命题“对角线相等的四边形是矩形”是假命题(填“真”或“假”).【考点】命题与定理.【分析】举出反例即可得到该命题是假命题.【解答】解:∵等腰梯形的对角线也相等,∴“对角线相等的四边形是矩形”是假命题,故答案为:假;15.如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E,则⊙O的半径为 6.25 .【考点】切线的性质;勾股定理;矩形的性质;垂径定理.【分析】首先连接OE,并反向延长交AD于点F,连接OA,由在矩形ABCD中,过A,D两点的⊙O与BC边相切于点E,易得四边形CDFE是矩形,由垂径定理可求得AF的长,然后设⊙O的半径为x,则OE=EF﹣OE=8﹣x,利用勾股定理即可得:(8﹣x)2+36=x2,继而求得答案.【解答】解:连接OE,并反向延长交AD于点F,连接OA,∵BC是切线,∴OE⊥BC,∴∠OEC=90°,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDFE是矩形,∴EF=CD=AB=8,OF⊥AD,∴AF=AD=×12=6,设⊙O的半径为x,则OF=EF﹣OE=8﹣x,在Rt△OAF中,OF2+AF2=OA2,则(8﹣x)2+36=x2,解得:x=6.25,∴⊙O的半径为:6.25.故答案为:6.25.16.已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A 1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是.【考点】相似三角形的判定与性质;正方形的性质.【分析】延长D 4A 和C 1B 交于O ,根据正方形的性质和三角形相似的性质即可求得各个正方形的边长,从而得出规律,即可求得正方形A 9C 9C 10D 10的边长.【解答】解:延长D 4A 和C 1B 交于O ,∵AB ∥A 2C 1,∴△AOB ∽△D 2OC 2,∴=,∵AB=BC 1=1,DC 2=C 1C 2=2,∴==∴OC 2=2OB ,∴OB=BC 2=3,∴OC 2=6,设正方形A 2C 2C 3D 3的边长为x 1,同理证得:△D 2OC 2∽△D 3OC 3,∴=,解得,x 1=3,∴正方形A 2C 2C 3D 3的边长为3,设正方形A 3C 3C 4D 4的边长为x 2,同理证得:△D 3OC 3∽△D 4OC 4,∴=,解得x 2=,∴正方形A 3C 3C 4D 4的边长为;设正方形A 4C 4C 5D 5的边长为x 3,同理证得:△D 4OC 4∽△D 5OC 5,∴=,解得x=,∴正方形A 4C 4C 5D 5的边长为;以此类推….正方形A n ﹣1C n ﹣1C n D n 的边长为;∴正方形A 9C 9C 10D 10的边长为.故答案为.三、解答题(本大题10个小题,共102分)下列各题解答时必须给出必要的演算过程或推理步骤.17.计算:﹣|﹣2|+﹣4sin60°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】先化简二次根式,绝对值,计算0指数幂以及代入特殊角的三角函数值,再进一步计算加减即可.【解答】解:原式=2﹣2+1﹣4×=﹣1.18.小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.【考点】解分式方程.【分析】小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验,写出正确的解题过程即可.【解答】解:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验;正确解法为:方程两边乘以x,得:1﹣(x﹣2)=x,去括号得:1﹣x+2=x,移项得:﹣x﹣x=﹣1﹣2,合并同类项得:﹣2x=﹣3,解得:x=,经检验x=是分式方程的解,则方程的解为x=.19.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.【考点】全等三角形的判定与性质.【分析】首先根据等腰三角形的性质得到AD是顶角的平分线,再利用全等三角形进行证明即可.【解答】证明:∵AM=2MB,AN=2NC,AB=AC,∴AM=AN,∵AB=AC,AD平分∠BAC,∴∠MAD=∠NAD,在△AMD与△AND中,,∴△AMD ≌△AND (SAS ),∴DM=DN .20.如图,已知点A (a ,3)是一次函数y 1=x+b 图象与反比例函数y 2=图象的一个交点.(1)求一次函数的解析式;(2)在y 轴的右侧,当y 1>y 2时,直接写出x 的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A 的坐标代入反比例函数的解析式,求得a 值后代入一次函数求得b 的值后即可确定一次函数的解析式;(2)y 1>y 2时y 1的图象位于y 2的图象的上方,据此求解.【解答】解:(1)将A (a ,3)代入y 2=得a=2,∴A (2,3),将A (2,3)代入y 1=x+b 得b=1,∴y 1=x+1;(2)∵A (2,3),∴根据图象得在y 轴的右侧,当y 1>y 2时,x >2.21.如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是45°,向前走6m 到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是60°和30°.(1)求∠BPQ 的度数;(2)求该电线杆PQ 的高度(结果精确到1m ). 备用数据:,.【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;92)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE﹣BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.【解答】解:延长PQ交直线AB于点E,(1)∠BPQ=90°﹣60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,BE=PE=x米,∵AB=AE﹣BE=6米,则x﹣x=6,解得:x=9+3.则BE=(3+3)米.在直角△BEQ中,QE=BE=(3+3)=(3+)米.∴PQ=PE﹣QE=9+3﹣(3+)=6+2≈9(米).答:电线杆PQ的高度约9米.22.某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请补全条形统计图;(2)求出图1中表示文学类书籍的扇形圆心角度数;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据已知条件列式计算即可,如图2所示,先计算出其它类的频数,再画条形统计图即可;(2)根据已知条件列式计算即可;(3)根据已知条件列式计算即可.【解答】解;(1)8÷20%=40(本),其它类;40×15%=6(本),补全条形统计图,如图2所示:(2)文学类书籍的扇形圆心角度数为:360×=126°;(3)普类书籍有:×1200=360(本).23.如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E,DF切半圆于点F.已知∠AEF=135°.(1)求证:DF∥AB;(2)若OC=CE,BF=,求DE的长.【考点】切线的性质.【分析】(1)证明:连接OF,根据圆内接四边形的性质得到∠AEF+∠B=180°,由于∠AEF=135°,得出∠B=45°,于是得到∠AOF=2∠B=90°,由DF切⊙O于F,得到∠DFO=90°,由于DC⊥AB,得到∠DCO=90°,于是结论可得;(2)过E作EM⊥BF于M,由四边形DCOF是矩形,得到OF=DC=OA,由于OC=CE,推出AC=DE,设DE=x,则AC=x,在Rt△FOB中,∠FOB=90°,OF=OB,BF=2,由勾股定理得:OF=OB=2,则AB=4,BC=4﹣x,由于AC=DE,OCDF=CE,由勾股定理得:AE=EF,通过Rt△ECA≌Rt△EMF,得出AC=MF=DE=x,在Rt△ECB和Rt△EMB中,由勾股定理得:BC=BM,问题可得.【解答】(1)证明:连接OF,∵A、E、F、B四点共圆,∴∠AEF+∠B=180°,∵∠AEF=135°,∴∠B=45°,∴∠AOF=2∠B=90°,∵DF切⊙O于F,∴∠DFO=90°,∵DC⊥AB,∴∠DCO=90°,即∠DCO=∠FOC=∠DFO=90°,∴四边形DCOF是矩形,∴DF∥AB;(2)解:过E作EM⊥BF于M,∵四边形DCOF是矩形,∴OF=DC=OA,∵OC=CE,∴AC=DE,设DE=x,则AC=x,∵在Rt△FOB中,∠FOB=90°,OF=OB,BF=2,由勾股定理得:OF=OB=2,则AB=4,BC=4﹣x,∵AC=DE,OCDF=CE,∴由勾股定理得:AE=EF,∴∠ABE=∠FBE,∵EC⊥AB,EM⊥BF∴EC=EM,∠ECB=∠M=90°,在Rt△ECA和Rt△EMF中∴Rt△ECA≌Rt△EMF,∴AC=MF=DE=x,在Rt△ECB和Rt△EMB中,由勾股定理得:BC=BM,∴BF=BM﹣MF=BC﹣MF=4﹣x﹣x=2,解得:x=2﹣,即DE=2﹣.24.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y 只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【考点】二次函数的应用.【分析】(1)把y=420代入y=30x+120,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;(3)根据(2)得出m+1=13,根据利润等于订购价减去成本价得出提价a与利润w的关系式,再根据题意列出不等式求解即可.【解答】解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,=513(元);①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,=741(元);∴当x=9时,w最大③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,=768(元);∴当x=﹣=12时,w最大综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,=(6+a﹣p)(30x+120)=510(a+1.5),设第13天提价a元,由题意得,w13∴510(a+1.5)﹣768≥48,解得a=0.1.答:第13天每只粽子至少应提价0.1元.25.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由.②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC 沿∠ABC的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?(3)拓展应用:如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,AC=AB,试探究BC,CD,BD的数量关系.【考点】四边形综合题. 【分析】(1)由“等邻边四边形”的定义易得出结论;(2)①先利用平行四边形的判定定理得平行四边形,再利用“等邻边四边形”定义得邻边相等,得出结论;②由平移的性质易得BB ′=AA ′,A ′B ′∥AB ,A ′B ′=AB=2,B ′C ′=BC=1,A ′C ′=AC=,再利用“等邻边四边形”定义分类讨论,由勾股定理得出结论;(3)由旋转的性质可得△ABF ≌△ADC ,由全等性质得∠ABF=∠ADC ,∠BAF=∠DAC ,AF=AC ,FB=CD ,利用相似三角形判定得△ACF ∽△ABD ,由相似的性质和四边形内角和得∠CBF=90°,利用勾股定理,等量代换得出结论. 【解答】解:(1)AB=BC 或BC=CD 或CD=AD 或AD=AB (任写一个即可); (2)①正确,理由为:∵四边形的对角线互相平分,∴这个四边形是平行四边形, ∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等, ∴这个“等邻边四边形”是菱形;②∵∠ABC=90°,AB=2,BC=1, ∴AC=,∵将Rt △ABC 平移得到△A ′B ′C ′,∴BB ′=AA ′,A ′B ′∥AB ,A ′B ′=AB=2,B ′C ′=BC=1,A ′C ′=AC=,(I )如图1,当AA ′=AB 时,BB ′=AA ′=AB=2;(II )如图2,当AA ′=A ′C ′时,BB ′=AA ′=A ′C ′=;(III )当A ′C ′=BC ′=时,如图3,延长C ′B ′交AB 于点D ,则C ′B ′⊥AB , ∵BB ′平分∠ABC ,∴∠ABB ′=∠ABC=45°, ∴∠BB ′D=′∠ABB ′=45° ∴B ′D=B ,设B ′D=BD=x , 则C ′D=x+1,BB ′=x ,∵在Rt △BC ′D 中,BD 2+(C ′D )2=(BC ′)2 ∴x 2+(x+1)2=()2,解得:x 1=1,x 2=﹣2(不合题意,舍去), ∴BB ′=x=(Ⅳ)当BC ′=AB=2时,如图4,与(Ⅲ)方法一同理可得:BD 2+(C ′D )2=(BC ′)2,设B ′D=BD=x , 则x 2+(x+1)2=22,解得:x 1=,x 2=(不合题意,舍去),∴BB ′=x=;(3)BC ,CD ,BD 的数量关系为:BC 2+CD 2=2BD 2,如图5, ∵AB=AD ,∴将△ADC 绕点A 旋转到△ABF ,连接CF , ∴△ABF ≌△ADC ,∴∠ABF=∠ADC ,∠BAF=∠DAC ,AF=AC ,FB=CD ,∴∠BAD=∠CAF , ==1,∴△ACF ∽△ABD ,∴==,∴BD ,∵∠BAD+∠ADC+∠BCD+∠ABC=360°,∴∠ABC+∠ADC ﹣360°﹣(∠BAD+∠BCD )=360°﹣90°=270°, ∴∠ABC+∠ABF=270°, ∴∠CBF=90°, ∴BC 2+FB 2=CF 2=(BD )2=2BD 2,∴BC 2+CD 2=2BD 2.26.如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B,C两点(点C在x 轴正半轴上),△ABC为等腰直角三角形,且面积为4,现将抛物线沿BA方向平移,平移后的抛物线过点C时,与x轴的另一点为E,其顶点为F,对称轴与x轴的交点为H.(1)求a、c的值.(2)连接OF,试判断△OEF是否为等腰三角形,并说明理由.(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使以点P、Q、E为顶点的三角形与△POE全等?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先求出A(0,c),则OA=c,再根据等腰直角三角形的性质得OA=OB=OC=c,理由三角形面积公式得•c•2c=4,解得c=2,接着把C(2,0)代入y=ax2+2可求出a 的值;(2)如图1,先利用待定系数法求出直线AB 的解析式为y=x+2,设F (t ,t+2),利用抛物线平移的规律可设平移后的抛物线解析式为y=﹣(x ﹣t )2+t+2,再把C (2,0)代入得﹣(2﹣t )2+t+2=0,可解得t=6,则平移后的抛物线解析式为y=﹣(x ﹣6)2+8,所以F (6,8),利用勾股定理计算出OF=10,接着根据抛物线与x 轴的交点问题确定E (10,0),则OE=OF=10,于是可判断△OEF 为等腰三角形; (3)分类讨论:当点Q 在射线HF 上,如图2,利用三角形全等的判定方法,当EQ=EO=10时,△EQP ≌△EOP ,则可根据勾股定理计算出QH=2,于是可得Q 点坐标为(6,2);当点Q 在射线AF 上,如图3,利用三角形全等的判定方法,当EQ=EO=10时,△EQP ≌△EOP ,设Q (m ,m+2),利用两点间的距离公式得到(m ﹣10)2+(m+2)2=102,解方程求出m 的值即可得到Q 点坐标.【解答】解:(1)∵抛物线y=ax 2+c (a ≠0)与y 轴交于点A , ∴A (0,c ),则OA=c ,∵△ABC 为等腰直角三角形, ∴OA=OB=OC=c ,∴•c •2c=4,解得c=2,∴C (2,0),把C (2,0)代入y=ax 2+2得4a+2=0,解得a=﹣;(2)△OEF 是等腰三角形.理由如下:如图1, 设直线AB 的解析式为y=kx+b ,把A (0,2)、B (﹣2,0)代入得,解得,则直线AB 的解析式为y=x+2, 设F (t ,t+2),∵抛物线y=﹣x 2+2沿BA 方向平移,平移后的抛物线过点C 时,顶点为F ,∴平移后的抛物线解析式为y=﹣(x ﹣t )2+t+2,把C (2,0)代入得﹣(2﹣t )2+t+2=0,解得t=6,∴平移后的抛物线解析式为y=﹣(x ﹣6)2+8,∴F (6,8),∴OF==10,令y=0,﹣(x ﹣6)2+8=0,解得x 1=2,x 2=10, ∴OE=10,∴OE=OF,∴△OEF为等腰三角形;(3)存在.点Q的位置分两种情形.情形一:点Q在射线HF上,当点P在x轴上方时,如图2,∵∠EQP=90°,EP=EP,∴当EQ=EO=10时,△EQP≌△EOP,而HE=10﹣6=4,∴QH==2,此时Q点坐标为(6,2);当点P在x轴下方时,如图3,有PQ=OE=10,过P点作PK⊥HF于点K,则有PK=6,在Rt△PQK中,QK===8,∵∠PQE=90°,∴∠PQK+HQE=90°,∵∠PKQ=∠QHE=90°,∴△PKQ∽△QHE,∴,∴,解得QH=3,∴Q(6,3).情形二、点Q在射线AF上,当PQ=OE=10时,如图4,有QE=PO,∴四边形POEQ为矩形,∴Q的横坐标为10,当x=10时,y=x+2=12,∴Q(10,12).当QE=OE=10时,如图5,过Q作QM⊥y轴于点M,过E点作x轴的垂线交QM于点N.设Q的坐标为为(x,x+2),∴MQ=x,QN=10﹣x,EN=x+2,在Rt△QEN中,有QE2=QN2+EN2,即102=(10﹣x)2+(x+2)2,解得x=4±,当x=4+时,如图5,y=x+2=6+,∴Q(4+,6+),当x=4﹣时,如图5,y=x+2=6﹣,∴Q(4﹣,6﹣),综上所述,Q点的坐标为(6,2)或(6,3)或(10,12)或(4+,6+)或(4﹣,6﹣),使P,Q,E三点为顶点的三角形与△POE全等.2016年6月23日。

相关文档
最新文档