七年级数学上册第二章有理数2.7有理数的乘方知识点解读有理数的乘方素材苏科版教案
七年级数学上册 第二章 有理数 2.7 有理数的乘方 知识点解读 有理数的乘方素材 苏科版(202

七年级数学上册第二章有理数2.7 有理数的乘方知识点解读有理数的乘方素材(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第二章有理数2.7 有理数的乘方知识点解读有理数的乘方素材(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第二章有理数2.7 有理数的乘方知识点解读有理数的乘方素材(新版)苏科版的全部内容。
知识点解读:有理数的乘方同学们,一张普通白纸的厚度只有0。
01厘米,但是当你把这一张普通的白纸连续对折30次后,你知道有多厚吗?它的厚度竟然超过珠穆朗玛峰!你相信吗?通过对有理数乘方的学习,我们就会知道其中的奥妙了。
知识点一:有理数乘方的意义一般地,n个相同的因数a 相乘,即n a a a ⋅⋅⋅个,记作a n ,读作a的n 次方.求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a n中,a 叫做底数,n 叫做指数,当an 看作a的n 次方的结果时,也可读作a的n 次幂.知识点二:如何进行乘方运算1.乘方和加、减、乘、除一样,也是一种运算,是乘法运算的特殊情况。
a n就是表示n 个a 相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;2.幂的符号法则:负数的奇次幂是负的,负数的偶次幂是正的,即(-a )2n =a 2n ,(-a )2n+1=-a 2n+1(n 是正整数),a 2n ≥0,即任何有理数的偶次幂是非负数;正数的任何次幂是正的; 0的任何次幂都是0;3。
一个数可以看作这个数本身的一次方,如5就是51,通常指数为1时可以省略不写。
4。
有理数的混合运算时,应注意的运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
七年级数学上册 第二章 有理数 2.7 有理数的乘方 知识拓展 其他记数法素材 (新版)苏科版

其他记数法
记数法(Numeration System of Number)是指记录或标志数目的方法,主要指数字符号的表现形态和记数工具的使用.
在文字产生以前,人类已形成数的概念、数目用实物记录,如石子、竹片、贝壳等,有时也用人类天生的计算工具手指和脚趾,“屈指可数”反映出这种记数法.后来使用了结绳和契刻,随着记载数目的增大出现了进位制,由于各地区各民族所处的自然环境与社会环境都不相同,因此产生出各种不同的记数方法.
除整数记数法外,许多地区还有各自的分数记载方法,例如古埃及的单位分数表示法;巴比伦地区的60进位分数表示法;古希腊的字母分数表示法;古罗马的算盘分数表示法;中国古代和印度古代的分数表达式等.中国约在13世纪出现10进分数(小数)表达式,中亚细亚数学家卡西是中国以外第一个系统应用这种小数的人.
十进制是最常用的一种记数法,就正整数而言,就是以十为基数,逢十进一位,逢百进二位,逢千进三位等等,从而把一个正整数从右到左分成个位数、十位数、百位数、千位数等等.如4325=4×103+3×102+2×101+5×100.二进制也是广泛应用的一种记数法,十进制是逢十进位,二进制是逢二进位.如:(101011)2=1×25+1×24+1×23+0×22+1×21+1×20=43.。
苏科版初一数学上册第二章有理数知识点总结

苏科版初一数学上册第二章有理数知识点总结2.1 正数与负数1、正数:像小学学过的大于0的数叫做正数。
2、负数:在正数前面加上负号“-”的数叫做负数。
3、正数负数的判断方法:⑴具体的数:看是否有负号“-”,如果有“-”就是负数,否则是正数。
想要获取更多详细内容请点击gt;gt;gt;gt;gt;苏科版初一数学上册正数与负数知识点2.2 有理数与无理数无限不循环小数和开根开不尽的数叫无理数整数和分数统称为有理数数学上,有理数是两个整数的比,通常写作 a/b,这里 b 不为零。
分数是有理数的通常表达方法,而整数是分母为1的分数,当然亦是有理数。
想要获取更多详细内容请点击gt;gt;gt;gt;gt;初一苏科版数学上册有理数与无理数知识点2.3 数轴①通常用一条直线上的点表示数,这条直线叫数轴。
②数轴三要素:原点、正方向、单位长度。
③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
想要获取更多详细内容请点击gt;gt;gt;gt;gt;苏科版初一数学上册数轴知识点2.4 绝对值与相反数1、相反数的概念关键要理解“只有符号不同”的含义,规定零的相反数是零;2、互为相反数指的是一对数,甲、乙两数互为相反数包括甲是乙的相反数,乙也是甲的相反数;3、相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O的两边,并且到原点的距离相等。
想要获取更多详细内容请点击gt;gt;gt;gt;gt;初一苏科版数学上册绝对值与相反数知识点2.5 有理数的加法与减法有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.想要获取更多详细内容请点击gt;gt;gt;gt;gt;苏科版七年级数学上册有理数的加法与减法知识点2.6 有理数的乘法与除法1.倒数的概念:乘积是1的两个数互为倒数.2.有理数的除法法则(1)除以一个数等于乘以这个数的倒数,0不能做除数.(2)两数相除,同号得正,异号得负,并把绝对值相除;0•除以任何一个不为0的数是0.想要获取更多详细内容请点击gt;gt;gt;gt;gt;七年级苏科版数学上册有理数的乘法与除法知识点2.7 有理数的乘方求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
第1课时有理数的乘方课件苏科版七年级数学上册

个这种细菌分裂的个数为48个2相乘,得到的式子这么长,写不
过来了,怎么办呢?这节课我们将要学习乘方.
预习导学
乘方的概念
阅读课本本课时开始到“例1”之前的内容,回答下列问题:
1.揭示概念:一般地,n个相同因数a相乘,即
读作
为
指数
a的n次方
解得a=1,b=-2,
所以(a+b)2023=(1-2)2023=(-1)2023=-1.
D.5个
2.填空:(-5)2= 25 .
3.填空:-53= -125 .
预习导学
方法归纳交流
教学中可用具体例子引导学生明白乘方其
实就是几个相同因数的乘积,同时要注意0的任何正整数次幂都
是0,一个数可以看作这个数本身的1次方.
合作探究
幂的运算
1.计算:(1)24;(2)(-3)3;(3)
-
;(4)
键.
合作探究
乘方的实际应用
3.有一种纸的厚度为0.1毫米,若拿两张重叠在一起,将它对
折一次后,厚度为22×0.1毫米.
(1)对折2次后,厚度为多少毫米?
(2)对折6次后,厚度为多少毫米?
解:(1)根据题意得2×22×0.1=0.8(毫米).
(2)根据题意得25×22×0.1=12.8(毫米).
合作探究
2.正数的任何次幂都是 正
,负数的偶次幂是 正数
.
数.0的任何正整数次幂都是
0 .
3.思考:-1的奇数次幂是多少?偶数次幂又是多少呢?
答:-1的奇数次幂是-1,-1的偶数次幂是1.
预习导学
2023
2
秋七年级数学上册第二章有理数2.7有理数的乘方2.7.1有理数的乘法导学课件新版苏科版

第1课时 有理数的乘法
知识目标 目标突破 总结反思
2.7 有理数的乘方
知识目标
1.经历有理数乘方的意义的探索过程,理解有理数的乘方是 一种乘法运算,并能指出其底数、指数和幂. 2.通过计算、归纳,掌握幂的符号法则,能正确地计算有理 数的乘方.
2.7 有理数的乘方
目标突破
目标一 探索有理数乘方的意义
42 4×4 16 (3)- 5 =- 5 =- 5 .
2.7 有理数的乘方
反思
计算:(1)(-2)3;(2)-24;(3)-452. 解:(1)(-2)3=(-2)×3=-6. (2)-24=(-2)×(-2)×(-2)×(-2)=16.
42 4 4 16 (3)- 5 =-5×5=-25. 以上解题过程正确吗?若不正确,请写出正确答案.
2.7 有理数的乘方
例1 [教材补充例题]把下列各式写成乘方的形式,并指出其底 数和指数. (1)2×2×2×2×2×2; (2)(-3)×(-3)×(-3)×(-3)×(-3); (3)-13×-13×-13; (4)-13×13×13.
2.7 有理数的乘方
解:(1)26,底数是 2,指数是 6. (2)(-3)5,底数是-3,指数是 5. (3)-133,底数是-13,指数是 3. (4)-133,底数是13,指数是 3.
2.7 有理数的乘方
[点拨] 乘方是一种因数相同的乘法运算,一个数可以看作这个 数本身的一次方.例如:5就是51,指数1通常省略不写.另外, 当底数是负数或分数时,一定要用括号把底数括起来,再写右上 角的指数.
2.7 有理数的乘方
知识点二 幂的符号法则
正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶 数次幂是正数. 特别地,一个数的二次方,也称为这个数的平方;一个数的三 次方,也称为这个数的立方.
苏科版(2024)七年级上册数学第2章 有理数2.6 有理数的乘方 教案

苏科版(2024)七年级上册数学第2章有理数2.6 有理数的乘方教案【教材分析和学请分析】教材分析:在苏科版七年级上册的第2章“有理数”中,2.6节“有理数的乘方”是一个非常重要的概念。
这一节主要介绍了指数的概念,以及如何进行有理数的乘方运算。
教材通过丰富的实例和练习,帮助学生理解乘方的含义,掌握乘方的规则,包括正负数的乘方、零的乘方以及乘方的简化等。
同时,教材也引导学生发现和理解乘方与乘法、除法之间的关系,为后续的数学学习打下坚实的基础。
学情分析:1. 知识基础:学生在学习这一节之前,已经掌握了有理数的加减乘除运算,对数的概念有一定的理解,这为学习乘方提供了必要的知识准备。
2. 抽象理解:乘方运算对于七年级学生来说,可能相对抽象,尤其是负数的乘方和零的乘方,需要学生有一定的抽象思维能力。
3. 计算技能:学生需要通过大量的练习,提高进行有理数乘方运算的准确性和速度。
4. 应用意识:学生可能还不清楚乘方在实际生活和科学计算中的应用,需要教师引导他们发现和理解乘方的实际意义。
【教学目标】1. 知识与技能:学生应理解有理数乘方的概念,掌握有理数乘方的运算规则。
学生能熟练进行正负数的乘方运算,并能解决相关的实际问题。
2. 过程与方法:通过实例引导学生探索乘方的规律,培养他们的观察、分析和归纳能力。
通过小组活动,让学生在实践中学习和掌握乘方运算,提高他们的合作学习能力。
3. 情感态度与价值观:培养学生对数学的兴趣,让他们体验到数学的实用性和美感。
培养学生耐心细致、勇于探索的科学精神。
【教学重难点】1. 重点:理解有理数乘方的含义,掌握正负数的乘方运算规则。
2. 难点:理解并应用乘方的性质解决实际问题。
【教学方法和手段】1. 直观教学法:利用数轴和方块图示,帮助学生直观理解乘方的概念,例如,2的3次方可以表示为3个2相乘,用方块图示为3层每层2个的结构。
2. 例证法:通过大量的实例,如2的乘方、负数的乘方、零的乘方等,让学生通过实际计算理解乘方的规则。
七年级数学上册 第2章 有理数 2.7 有理数的乘方教学课件 苏科苏科级上册数学课件

12/6/2021
读作:1.039乘10的11次方
科学记数法:把一个大于10的数表示成a×10n的形式(其中a 是整数位只有一位整数的数,n是正整数).
注意:当一个数是负数,且绝对值也是一个大于10的数时, 则它的绝对值也如前边的记法,再在前面加上“-”.例如 -100 000 000 000= -1×1011.
猜想:(1) 138⁴是 正数(填正或负);
(2)( - 7)是12 数正(填正或负); (3( ) - 0.6是7)7 数负(填正或负).
12/6/2021
思考:幂的符号规律 (1)正数的幂的符号有什么规律?
正数的任何次幂都是正数. (2)负数的幂的符号又有什么规律?
负数的偶次幂是正数,负数的奇次幂是负数. (3)0呢?
12/6/2021
小结 谈谈你这一节课有哪些收获.
12/6/2021
12/6/2021
12/6/2021
试一试
1.在1210中,12是 底 数,10是 指 数,读作: 12的10次方 .
2.在
2 3
7
中,底数是
2 3
,指数是
7
,读作:
2 3
的7次方
.
3.在(-3)16中,-3是 底数,16是 指数,读作: -3的16次方 .
4.在(-a)9中,底数是 -a,指数是 9,读作: -a的9次方 .
12/6/2021
例1 用科学记数法表示下列各数:
(1)1 000 000; (2)57 000 000; (3)-123 000 000 000. 解:(1)1 000 000=106.
下面的式子等号左边整数 的位数与右边10的指数有 什么关系?
(2)57 000 000=5.7×107. (3)-123 000 000 000=-1.23×1011.
七年级数学上册第二章有理数2.7有理数的乘方有理数乘方的法则是什么素材苏科版

有理数乘方的法则是什么难易度:★★关键词:有理数答案:乘方的符号法则:(1)正数的任何次幂都是正数。
(2)零的任何次幂为零。
(3)负数的偶次幂为正数,奇次幂为负数【举一反三】典例:计算(1)、 (2) -(—3)(3)10思路导引:一般来说,此类问题分清指数、底数,运用法则判断出幂的符号即可。
1、表示的相反数,应为:= -33= —9;2、—(—3)表示求(—3)的相反数,应为:-(—3)= -(—3)(—3)(—3)(—3)= —81;3、10指5个10相乘,应为10= 100000.标准答案:1、-9;2、—81;3、100000。
尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be someunsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点解读:有理数的乘方
同学们,一张普通白纸的厚度只有0.01厘米,但是当你把这一张普通的白纸连续对折30次后,你知道有多厚吗?它的厚度竟然超过珠穆朗玛峰!你相信吗?通过对有理数乘方的学习,我们就会知道其中的奥妙了。
知识点一:有理数乘方的意义
一般地,n 个相同的因数a 相乘,即n a a a ⋅⋅⋅
个,记作a n
,读作a 的n 次方.求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a n 中,a 叫做底数,n 叫做指数,当a n
看作a 的n 次方的结果时,也可读作a 的n 次幂。
知识点二:如何进行乘方运算 1.乘方和加、减、乘、除一样,也是一种运算,是乘法运算的特殊情况。
a n
就是表示n 个a 相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;
2.幂的符号法则:负数的奇次幂是负的,负数的偶次幂是正的,即(-a )2n =a 2n ,(-
a )2n +1=-a 2n +1(n 是正整数),a 2n ≥0,即任何有理数的偶次幂是非负数;正数的任何次幂是正的; 0的任何次幂都是0;
3.一个数可以看作这个数本身的一次方,如5就是51,通常指数为1时可以省略不写。
4.有理数的混合运算时,应注意的运算顺序:
(1)先乘方,再乘除,最后加减;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 例1 计算:(1)(-3)4;(2)(-8)3;(3)(-13
)4 分析:根据乘方的意义可直接用乘法来求出各乘方的值。
解:(1)(-3)4=(-3) (-3) (-3) (-3)=81.
(2)(-8)3=(-8) (-8) (-8)=-512.
(3)(-13)4=(-13)(-13)(-13)(-13)=181
. 说明:这里应特别注意“-”号问题,计算时也可以先根据符号法则确定其结果的符号,然后直接计算正数的乘方。
例2 计算(-0.125)12×813
的值.
分析:直接计算(-0.125)12与813
有一定的难度,但观察发现0.125×8=1,于是提醒我们利用乘方的意义和乘法的运算律就能比较容易地求值了。
解: (-0.125)12×813=(0.125)12×813
=(120.1250.1250.125⨯⨯⨯ 个)×(13888⨯⨯⨯
个) =(120.12580.12580.1258⨯⨯⨯⨯⨯⨯
个
)×8 =(12111⨯⨯⨯
个
)×8=8. 说明:当发现一个题目运算起来比较麻烦时,我们不妨认真地观察思考,寻求求解的突破口,使问题获解。
值得注意的几个问题
学习有理数的乘方,除了要能掌握乘方的意义,灵活运用乘方的知识解题外,还应注意以下几个问题:
1.要认清底数。
如-34是3的4次方的相反数,而(-3)4
则是-3的4次方,前者底数是3,后者底数是-3,不能等同。
不能把(-3)4写成-34,也不能把3
45⎛⎫ ⎪⎝⎭写成345。
2.进行乘方运算时,不能将底数与指数相乘。
如23与32
看似相同,而实际上是不同的,切不可以犯23=32=2×3的错误。
3.进行乘方运算时,可以先要确定符号,再将底数的绝对值相乘。