(一) 差动变压器的性能实验
完整的变压器差动保护调试和验证方法

完整的变压器差动保护调试和验证方法变压器差动保护是一种常用的保护装置,用于保护变压器免受内部故障以及外部短路故障的影响。
为了确保差动保护能够可靠地工作,需要对其进行调试和验证。
下面将详细介绍完整的变压器差动保护调试和验证方法。
一、调试方法:1.检查保护装置的接线是否正确。
检查差动保护装置与变压器的CT (电流互感器)接线是否正确,确保保护装置能够准确测量输入和输出电流。
2.对CT进行检定。
使用专业的CT测试仪对CT进行检定,测量CT的变比、二次回路电阻等参数,确保CT工作正常。
3.调整差动保护装置的参数。
根据变压器的参数和保护装置的要求,设置合适的差动电流定值和时间延迟等参数。
4.模拟故障事件进行测试。
通过人工模拟变压器的内部短路故障或外部短路故障,观察差动保护装置的动作情况。
同时,还可以利用保护回路测试仪模拟故障事件,测试保护装置的灵敏度和可靠性。
二、验证方法:1.进行整套装置的一次性测试。
通过对整个差动保护装置进行一次性测试,包括保护装置的所有功能和功能组合的验证,确保差动保护装置能够正常工作。
2.进行稳态和动态特性测试。
测试差动保护装置的稳态特性,包括固定和变化的负荷电流等情况下的响应速度和误动作情况。
同时,还需要测试差动保护装置的动态特性,包括起动和闭锁时的动作时间和误动作情况。
3.进行电流差动特性测试。
通过让一定量的故障电流流过变压器的输入和输出侧CT,并观察差动保护装置的动作情况,验证其能够可靠地检测和保护变压器。
4.进行接地故障测试。
在变压器的输入或输出线路中引入接地故障,并观察差动保护装置的动作情况,以验证其对接地故障的保护能力。
5.进行保护可靠性测试。
通过长时间的持续运行和重复测试,验证差动保护装置的稳定性和可靠性。
同时,进行周期性的差动保护装置的校验和定期的维护,确保其长期可靠工作。
总结:变压器差动保护调试和验证方法包括接线检查、CT检定、参数调整、故障模拟测试等步骤,通过这些步骤可以确保差动保护装置能够可靠地保护变压器。
变压器差动保护试验方法

变压器差动保护试验方法第一,绕组电压比差动试验。
该试验是通过加载不同的变压器绕组,在不同测点进行电压测量,然后计算电压差值来验证绕组之间的电压比差动。
具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置等。
2.进行变压器空载试验,记录各测点的电压值。
3.按照试验参数设置电流,对绕组进行加载试验。
4.在各测点测量电压,计算电压差值。
5.比较计算得到的电压差值与设定的差动值,如差值在允许范围内,则差动保护正常。
第二,同侧相位关系试验。
该试验是通过对变压器同侧绕组的相位关系进行检查,以保证差动保护系统的相位一致。
具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置等。
2.进行变压器空载试验,记录各测点的相位关系。
3.按照试验参数设置电流,对绕组进行加载试验。
4.在各测点测量电压和相位,检查相位关系是否一致。
5.如相位关系一致,则差动保护正常。
第三,误差变换试验。
该试验是通过对差动保护变压器继电器进行误差变换试验,以验证差动保护系统的测量误差是否满足要求。
具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置以及变比等。
2.进行变压器空载试验,记录各测点的电压和相位值。
3.按照试验参数设置电流,对绕组进行加载试验。
4.在继电器的输出端口测量电流,计算误差。
5.比较计算得到的误差与设定的误差范围,如误差在合理范围内,则差动保护正常。
第四,保护性校验试验。
该试验是通过在差动保护系统感应线圈内引入额外的故障源,观察差动保护系统的动作情况,以确保差动保护装置对变压器故障进行准确快速的切除。
1.在差动保护系统的感应线圈内接入故障源。
2.设置故障源的类型和参数,例如短路故障。
3.观察差动保护系统的动作情况,包括动作时间、动作电流等。
4.比较观察结果与设定的保护动作要求,如满足要求,则差动保护正常。
总结起来,变压器差动保护试验方法主要包括绕组电压比差动试验、同侧相位关系试验、误差变换试验以及保护性校验试验等。
差动变压器性能实验1

差动变压器性能实验1差动变压器是电力系统中常用的一种电力变压器,其具有保护电力系统的重要作用。
差动变压器可用于检测电力系统中的故障,并在故障发生时及时切断电力系统,以防止事故的发生。
为了保证差动变压器的性能和可靠性,需要开展相应的实验以检测其性能。
本文就差动变压器性能实验逐一进行介绍。
I. 实验目的1. 学习差动变压器的原理和结构;2. 掌握差动变压器的性能测试方法;3. 理解差动保护的基本原理,了解保护系统的作用;4. 学会对差动变压器性能测试结果进行分析和处理。
差动变压器、电源、电压表、电流表、直线阻抗测试仪、开关等。
差动变压器的原理是将电流互感器的原理应用到电力变压器中。
在一定的工作电压下,电流互感器中的一侧绕绕组所产生的磁通会感应到另一侧绕绕组中的电势,从而将电流传送到另一侧。
差动变压器由采样变压器和比率变压器组成,其中采样变压器用于测量绕组中的电流,比率变压器用于将电压进行变形,从而使电流保持平衡。
差动保护是一种非常重要的保护方式,其基本原理是通过对差流进行检测,以判断电力系统中是否存在故障。
在正常运行时,电流经过差动变压器的两侧绕组时是相等的,由于采样变压器可采集绕组中的电流,因此通过对两侧绕组的电流进行比较,即可得出电力系统中是否存在故障。
当系统中发生故障时,绕组间会产生一定的差流,此时保护系统会将信号反馈给操作员,使其切断电力系统以保证电力系统的安全。
1. 搭建差动变压器测试电路,连接直线阻抗测试仪,检查电路是否连接正确;2. 检测差动变压器的电气参数,包括绕组阻抗、变比、绕组耦合系数、相位差等;3. 测试差动保护的作用,包括灵敏度试验、速动保护试验和完整性试验等;4. 对测试结果进行分析,分析差动变压器的工作状态和保护系统的工作状态,确定是否达到安全标准;5. 记录测试结果,撰写实验报告。
V. 实验结果通过测试差动变压器的工作状态和保护系统的工作状态,得到了以下重要参数:1. 差动保护的灵敏度:建议灵敏度位于1%至10%之间,且灵敏度应该能够检测到所有系统中可能出现的故障;2. 差动保护的速动系数:速动系数应该足够高,以确保在故障发生时能够及时切断电力系统;3. 差动保护的完整性:保护系统应该具有良好的完整性,能够在系统出现故障时正常工作,不受其他因素的影响。
差动变压器的性能实验

差动变压器的性能实验一、实验目的:了解差动变压器的工作原理和特性。
二、基本原理:差动变压器的工作原理电磁互感原理。
差动变压器的结构如图所示,由一个一次绕组1和二个二次绕组2、3及一个衔铁4组成。
差动变压器一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移改变而变化。
由于把二个二次绕组反向串接(*同名端相接),以差动电势输出,所以把这种传感器称为差动变压器式电感传感器,通常简称差动变压器。
当差动变压器工作在理想情况下(忽略涡流损耗、磁滞损耗和分布电容等影响),它的等效电路如图所示。
图中U1为一次绕组激励电压;M1、M2分别为一次绕组与两个二次绕组间的互感:L1、R1分别为一次绕组的电感和有效电阻;L21、L22分别为两个二次绕组的电感;R21、R22分别为两个二次绕组的有效电阻。
对于差动变压器,当衔铁处于中间位置时,两个二次绕组互感相同,因而由一次侧激励引起的感应电动势相同。
由于两个二次绕组反向串接,所以差动输出电动势为零。
当衔铁移向二次绕组L21,这时互感M1大,M2小,差动变压器的结构示意图差动变压器的等效电路图因而二次绕组L21内感应电动势大于二次绕组L22内感应电动势,这时差动输出电动势不为零。
在传感器的量程内,衔铁位移越大,差动输出电动势就越大。
同样道理,当衔铁向二次绕组L22一边移动差动输出电动势仍不为零,但由于移动方向改变,所以输出电动势反相。
因此通过差动变压器输出电动势的大小和相位可以知道衔铁位移量的大小和方向。
由图可以看出一次绕组的电流为:二次绕组的感应动势为:由于二次绕组反向串接,所以输出总电动势为:其有效值为:差动变压器的输出特性曲线如图所示.图中E21、E22分别为两个二次绕组的输出感应电动势,E2为差动输出电动势,x表示衔铁偏离中心位置的距离。
其中E2的实线表示理想的输出特性,而虚线部分表示实际的输出特性。
E0为零点残余电动势,这是由于差动变压器制作上的不对称以及铁心位置等因素所造成的。
差动变压器实验报告

差动变压器实验报告差动变压器实验报告引言:差动变压器是一种常用的电力设备,用于保护电力系统中的变压器。
本次实验旨在深入了解差动变压器的原理和工作机制,并通过实验验证其性能。
一、实验目的:1. 掌握差动变压器的基本原理和结构;2. 了解差动保护的工作原理;3. 通过实验验证差动变压器的性能。
二、实验仪器与设备:1. 差动变压器实验装置;2. 电源;3. 电流互感器;4. 电压互感器;5. 示波器。
三、实验原理:差动变压器是由两个或多个互感器组成的,其中一个为主互感器,其余为副互感器。
主互感器的一侧与电源相连,另一侧与负载相连。
副互感器的一侧与主互感器的相同端子相连,另一侧与差动继电器相连。
差动保护的基本原理是通过比较主互感器和副互感器的输出信号来判断系统是否发生故障。
在正常情况下,主互感器和副互感器的输出信号相等,差动继电器不动作;而在发生故障时,由于主互感器和副互感器的输出信号不同,差动继电器会动作,从而实现对系统的保护。
四、实验步骤:1. 将差动变压器实验装置接入电源,调整电压和电流的大小;2. 通过电流互感器和电压互感器分别测量主互感器和副互感器的输出信号;3. 将测得的信号输入示波器,观察波形;4. 通过改变电流和电压的大小,以及引入不同的故障情况,观察差动继电器的动作情况。
五、实验结果与分析:通过实验观察,我们可以得到以下结论:1. 在正常情况下,主互感器和副互感器的输出信号相等,差动继电器不动作;2. 在发生故障时,主互感器和副互感器的输出信号不同,差动继电器会动作;3. 不同类型的故障会导致差动继电器的动作时间和动作方式不同。
六、实验总结:通过本次实验,我们深入了解了差动变压器的原理和工作机制,并通过实验验证了其性能。
差动变压器作为一种重要的保护设备,在电力系统中起着至关重要的作用。
掌握差动保护的原理和应用,对于保障电力系统的安全运行具有重要意义。
在今后的学习和工作中,我们应该进一步加深对差动变压器的理解和应用,不断提高自己的技能和知识水平。
差动变压器的特性实验-实验报告

一、实验目的1、了解差动变压器的基本结构。
2、掌握差动变压器及整流电路的工作原理。
3、掌握差动变压器的调试方法。
二、实验原理1、差动变压器由一个初级线圈和两个次级线圈及一个铁芯组成,当铁芯移动时,由于初级线圈和次级线圈之间的互感发生变化使次级线圈的感应电势产生变化,一个次级线圈的感应电势增加,另一个则减少,将两个次级线圈反向串接,就可以引出差值输出,其输出电势反映出铁芯的位移量。
2、差动变压器实验电路图如图1-1所示。
图1-1传感器的两个次级线圈(N2、N3)电压分别经 UR1、UR2两组桥式整流电路变换为直流电压,然后相减,经过差动放大器放大后,由电压表显示出来R1、R2为两桥臂电阻,RP1为调零电位器,R3、R4、C1组成滤波电路,R5为负载电阻,采用这种差动整流电路可以减少零点残余电压。
三、实验过程与数据处理1.固定好位移台架,将电感式传感器置于位移台架上。
调节测微器使其指示12mm左右,将测微器装入台架上部的开口处,再将测微器的测杆与电感式传感器的可动铁芯旋紧。
然后调节两个滚花螺母,使铁芯离开底面 10mm,注意要使铁芯能在传感器中轻松滑动,再将两个滚花螺母旋紧。
2.差动放大器调零,用导线将差动放大器的正负输入端连接,再将其输出端接到数字电压表的输入端;按下面板上电压量程转换开关的20V档按键(实验台为将电压量程拨到20V 档);接通电源开关,旋动放大器的调零电位器RP2旋钮使电压表指示向零趋近,然后换到2V量程,旋动调零电位器RP2旋钮使电压表指示为零;此后调零电位器 RP2旋钮不再调节,根据实验适当调节增益电位器RP1。
3.按图1-1将信号源的两输出端 A,B接到传感器的初级线圈N1上,传感器次级线圈 N2、N3分别接到转换电路板的 C、D 与 H、I上,并将F与L用导线连接,将差动放大器与数字电压表连接好。
这样构成差动变压器实验电路。
4、接通电源,调节信号源输出幅度电位器RP2到较大位置,平衡电位器RP1处于中间位置,调节测微器使输出电压接近零,然后上移或下移测微器 1mm,调节差动放大器增益使输出电压的值为300mV左右,再回调测微器使输出电压为 0mV。
变压器差动保护动作后试验项目

变压器差动保护动作后试验项目
变压器差动保护动作后的试验项目主要包括以下几个步骤:
1.检查变压器本体:拉开变压器各侧闸刀,对变压器本体进
行认真检查,如油温、油色、防爆玻璃、瓷套管等,确定是否有明显异常。
2.检查差动保护范围内的设备:对变压器差动保护区范围的
所有一次设备进行检查,即变压器高压侧及低压侧断路器之间的所有设备、引线、母线等,以便发现在差动保护区内有无异常。
3.检查差动保护回路:对变压器差动保护回路进行检查,看
有无短路、击穿以及有人误碰等情况。
4.外部测量:对变压器进行外部测量,以判断变压器内部有
无故障。
测量项目主要是摇测绝缘电阻。
5.进一步的测量分析:如果不能判断为外部原因,则应对变
压器进行更进一步的测量分析,如测量直流电阻、进行油的简化分析、或油的色谱分析等,以确定故障性质及差动保护动作的原因。
如果发现有内部故障的特征,则须进行吊芯检查。
在进行以上步骤时,检测人员应着重检测主变三侧差动CT间的情况,例如是否出现闪络放电和是否受损等。
同时,检测人员还应对避雷器、断路器、变压器等设备进行检查,检测这些设备表面是否存在异物,以及是否出现接地短路现象。
差动变压器式电感传感器的静态位移性能实验实验报告

差动变压器式电感传感器的静态位移性能实验实验报告差动变压器式电感传感器的静态位移性能实验实验报告实验三电感式传感器实验传感器实验三、电感传感器实验——差动变压器性能实验(一)实验内容1.项目一、差动变压器式电感传感器性能实验2.项目二、差动螺管式电感传感器的静态位移性能实验 (二)实验目的1.了解差动变压器式电感传感器的原理和工作情况2.了解差动螺管式电感传感器测量系统的组成和工作情况 (三)实验原理螺旋测微器产生位移,经弹性梁带动衔铁在线圈中移动,交流电源激励,数字电压表显示数字,计算机自动生成示波器显示波形。
(四)实验操做步骤实验项目一、1.将音频振荡器LV输出接至数字频率计和数据采集CH1,由频率计显示频率,计算机自动生成示波器显示波形,调节音频振荡器频率为4kHz,峰峰值为5V。
2.将音频振荡器LV输出接差动变压器一次绕组,输出接CH1。
3.调螺旋测微器使衔铁处于中心位置(输出为零),向下每1mm读一个数。
实验项目二、1.按图接线2.将音频振荡器输出接至CH1,调节峰峰值为2V。
3.V/F表调至20V档。
4.接好电桥平衡网络、放大器、相敏检波器、LPF、V/F表、示波器。
5.将螺旋测微器与梁脱离,使梁处于自由状态;调节W1、W2,使输出最小(灵敏度最大)。
6.将螺旋测微器与梁相吸,调节螺旋测微器使输出最小(CH1示),再向上移2.5mm。
7.调节移相器使输出最大(CH2示);观察检波器波形,若两半波不对称,则微调放大器调零电位器。
8.向下每0.5mm读一个数。
项目一数据表第 1 页共 1 页项目二数据表篇二:传感器与检测技术实验报告准考证号:100214101370 姓名:倪帅彪院校:河南科技大学专业名称:080302机械制造及自动化(独立本科段)《传感器与检测技术》实验报告实验一常用传感器(电感式、电阻式或电容式)静态性能测试一、实验目的:1(进一步认识电阻式、电感式、电容式传感器的工作原理、基本结构、性能与应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三电磁式传感器
(一)差动变压器的性能实验
一、实验目的:了解差动变压器的工作原理和特性。
二、基本原理:差动变压器同一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式
和三段式,本实验采用三段式结构。
当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。
其输出电势反映出被测体的移动量。
三、需用器件与单元:差动变压器实验模板、测微头、双线示波器、差动变压器、电感式传感器、音频信号源
(音频振荡器)、直流电源、万用表。
四、实验步骤:
1、根据图3-1,将差动变压器装在差动变压器实验模板上。
图3-1 差动变压器电容传感器安装示意图
2、在模块上近图3-2接线,音频振荡器信号必须从主控箱中的L v端子输出,调节音频振荡器的频率,输出频率
为4~5KHz(可用主控箱的数显表的频率档Fin输入来监测)。
调节幅度使输出幅度为峰一峰值 V p-p=2V(可用示波器监测:X轴为0.25ms/div、Y轴CH1为1V/div、CH2为20mv/div)。
判别初次级线圈及次级线圈同名端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。
当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅值变化很大,基本上能过零点,而且相位与初级圈波形(L v音频信号V p-p=2V波形)比较能同相和反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。
图中(1)、(2)、(3)、(4)为模块中的实验插孔。
图3-2 双线示波与差动变压器连结示意图
3、旋动测微头,使示波器第二通道显示的波形峰一峰值V p-p为最小。
这时可以左右位移,假设其中一个方向为
正位移,则另一方向移为负。
从V p-p最小开始旋动测微头,每隔0.2mm从示波器上读出输出电压V p-p值填入下表(3-1)。
再从V p-p最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。
表(3-1)差动变压器位移ΔX值与输出电压V p-p数据表
X(mm) 无数据-←0mm 1.5 3.0 4.5 6.0 7.5
V(mv) 233 248 264 288 312 336
4、实验过程中注意差动变压输出的最小值即为差动变压器的零点残余电压大小。
根据表4-1画出V op-p-X曲线,作出量程为±1mm、±3mm灵敏度和非线性误差。
>> axis([0 7.5 233 336 ]);
coords=[0,1.5,3.0,4.5,6.0,7.5;233,248,264,288,312,366];
grid;
hold;
plot(coords(1,:),coords(2,:),'*');
x=coords(1,:)
y=coords(2,:)'
b=size(coords);
c=ones(1,b(2));
MT=[c;x];
M=MT';
f=inv(MT*M)*MT*y
['y=',num2str(f(2)),'x+',num2str(f(1))]
x=-max(x):0.01:max(x);
y=f(1)+f(2)*x;
mistake=max(x-y)/(max(y)-min(y));
fprintf('传感器的系数灵敏度S=%5.3f%%\n',abs(f(2)));
fprintf('非线性误差f=%5.3f%%\n',mistake);
plot(x,y);
xlabel('x/mm');
ylabel('V/mv');
title('差动变压器的性能试验');
legend(['y=',num2str(f(2)),'x+',num2str(f(1))]);
计算结果:
ans =
y=16.781x+222.2381
传感器的系数灵敏度S=16.781%
非线性误差f=-0.413%
五、思考题:
1)用差动变压器测量较高频率的振幅,例如1KHz的振动幅填,可以吗?差动变压器测量频率的上限受到什么影响?
答:可以,受铁磁材料磁感应频率响应上限影响。
2)试分析差动变压器与一般电源变压器的异同?
答:差动变压器一般用于作为检测元件,而一般变压器作为电源变换部件或者信号转换部件;差动变压器由一只初级线圈和两只次级线圈及铁心组成,当传感器随着被测物体移动时,由于初级线圈和次级线圈之间的互感发生变换,使次级线圈产生感应电势的变化,而两只次级线圈是同名端相连,就引出差动输出,其输出电势反映出来的就是被测体的位移量。
而一般电源变压器就是把连个线圈套在同一个铁心上构成的。