比率差动试验方法

比率差动试验方法
比率差动试验方法

比率差动保护实验方法

汉川供电公司石巍

主题词比率差动实验方法

随着综合自动化装置的普遍推广使用,变压器比率差动保护得到了广泛的使用,但是由于厂家众多,计算方法和保护原理略有差异,而且没有统一的实验方法,尤其是比率制动中制动特性实验不准确,给运行和维护带来了不便,下面介绍两种比较简单和实用的,用微机继电保护测试装置测试差动保护的实验方法。

一、比率差动原理简介:

差动动作方程如下:

Id>Icd (Ir

Id>Icd+k*(Ir-Ird) (Ir>Ird)

式中:Id——差动电流

Ir——制动电流

Icd——差动门槛定值(最小动作值)

Ird——拐点电流定值

k——比率制动系数

多数厂家采用以下公式计算差动电流;

Id=︱?h+?l︱(1)

制动电流的公式较多,有以下几种:

Ir=︱?h-?l︱/2 (2)

Ir=︱?h-?l︱(3)

Ir=max{︱?1︱,︱?2︱,︱?3︱…︱?n︱}(4)

为方便起见,以下就采用比较简单常用的公式(3)。

由于变压器差动保护二次CT为全星形接线,对于一次绕组为Y/?,Y/Y/?,Y/?/?,Y形接线的二次电流与?形接线的二次电流有30度相位差,需要软件对所有一次绕组为Y形接线的二次电流进行相位和幅值补偿,补偿的方式为:?A=(?A’—?B’)/1.732/K hp

?B=(?B’—?C’)/1.732/K hp

?C=(?C’—?A’)/1.732/K hp

其中?A、?B、?C为补偿后的二次电流(即保护装置实时显示的电流),?A’、?B’、?C’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流。K hp为高压的平衡系数(有的保护装置采用的是乘上平衡系数),一般设定为1。

这样经过软件补偿后,在一次绕组为Y形的一侧加入单相电流时,保护会同时测到两相电流,加入A相电流,则保护同时测到A、C两相电流;加入B相电流,则保护同时测到B、A两相电流;加入C相电流,则保护同时测到C、B两相电流。

对于绕组为?形接线的二次电流就不需要软件补偿相位,只要对由于CT变比不同引起的二次电流系数进行补偿了,电流计算公式为:

?a=?a’ /K lp

?a’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流;?a为补偿后的二次电流(即保护装置实时显示的电流)。唯一要注意的是保护装置要求低压侧电流与高压侧电流反相位输入,高压侧的A相与低压侧的A相间应相差150度。K lp为低压的平衡系数(有的保护装置采用的是乘上平衡系数),与保护用的CT

变比大小有关。

这样,差动保护差流的计算公式就可写成:

Ida=︱?hA+?la︱=︱(?A’—?B’)/1.732/K hp +?la/K lp︱(5)

Idb=︱?hB+?lb︱=︱(?B’—?C’)/1.732/K hp +?lb/K lp︱(6)

Idc=︱?hC+?lc︱=︱(?C’—?A’)/1.732/K hp +?lc/K lp︱(7)

制动电流的计算公式为:

Ida=︱?hA—?la︱=︱(?A’—?B’)/1.732/K hp—?la/K lp︱(8)

Idb=︱?hB—?lb︱=︱(?B’—?C’)/1.732/K hp—?lb/K lp︱(9)

Idc=︱?hC—?lc︱=︱(?C’—?A’)/1.732/K hp—?lc/K lp︱(10)

二、实验方法简介:

下面以变压器一次绕组接线方式为Y/?的形式为例介绍比率差动保护性能的实验方法:

1、最小动作电流(Icd):

高压侧实验公式为:I=1.732*Icd/K hp

低压侧实验公式为:I=Icd/K lp

式中:I为实验所施加的实验电流值;

K hp、K lp为高压及低压侧的平衡系数;

Icd为最小动作电流整定值。

按变压器各侧A、B、C分别施加电流I,保护应可靠动作,误差应符合技术条件的要求,必须注意的高压侧实验与低压侧实验不同的是:通入A相电流,A、C相动作;通入B相电流,B、A相动作;通入C相电流,C、B相动作;

2、制动特性斜率K

制动特性斜率实验时,要同时输入两侧电流,而且要注意两侧电流的相位关系,但是一般的保护测试仪只能同时输出三相电流,这样就要找出一种能满足测试要求

的实验方法。

根据式(5)、(6)、(7)及差动保护动作方程:

在做A相的实验时:

令?B’= ?C’=0,则Idb=0,

如要求Idc=0,则?A’ /1.732/K hp=?lc/K lp

即?lc= K lp*?A’ /1.732/K hp

因此高压侧A相加电流I1? 0 o,低压侧A、C相电流分别为I2?-150 o,I3?- 3 0o,固定I1,I3大小为I3= K lp* I1 /1.732/K hp,改变I2的大小,测出保护刚好动作时的电流大小,就可计算出制动特性斜率K,然后改变I1,I3大小,再测出另外的动作点。

制动特性斜率K的公式为:

K=(Id-Icd)/(Ir-Ird)=(I1 /1.732/K hp- I3/ K lp- Icd)/ I1 /1.732/K hp+ I3/ K lp-Ird)如果根据以上的公式推导就可得到一种只需同时输出三相电流就可测试差动保护的实验方法了。具体的接线方法为:

同理,如果令?B’= ?C’,

则Idb=0,

?C=(?C’—?A’)/1.732/K hp=(?B’—?A’)/1.732/K hp=—?A

假设?bl=0, ?cl=-?al

则有?a=-?c,

所以Ida=︱?hA+?la︱

Idb=︱?hB+?lb︱=0

Idc=︱?hC+?lc︱=︱-?hA+(-?la)︱=Ida

为达到?B’= ?C’、?bl=0, ?cl=-?al可用下面的接线方式:

注意?形绕组电流回路的N没有接到Y形绕组电流回路的N上,而是用Ic接到N上,这样才能满足假设条件。于是就可以在高压侧A相加电流I1?0 o,B、C 相并联后加I3?- 12 0o,低压侧A相电流为I2?-150 o,固定I1、I3,I3大小为I3= 2* I1,改变I2的大小,测出保护刚好动作时的电流大小,就可计算出制动特性斜率K,K 值计算公式同上法。

三、结论:

两种实验方法没有本质的区别,都是通过公式推导,找出补偿电流的补偿方式,计算补偿电流的大小和角度关系,然后再应用到实际中去;但通过比较不难发现后一种方法比前一种方法所加补偿电流计算方法简单,相位角与实际运行时一致,而且可同时测量两相的差动保护。

总之只要通过了解保护的原理,掌握其内在的关系就不难找到简单而实用的方法。

差动保护试验方法总结

数字式发电机、变压器差动保护试 验方法 关键词: 电机变压器差动保护 摘要:变压器、发电机等大型主设备价值昂贵,当他们发生故障时,变压器、发电机的主保护纵向电流差动保护应准确及时地将他们从电力系统中切除,确保设备不受损坏。模拟发电机、变压器实际故障时的电流情况来进行差动试验,验证保护动作的正确性至关重要。 关键词:数字式差动保护试验方法 我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,

然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

变压器差动保护的比率制动特性曲线及现场测试方法

变压器差动保护的比率制动特性曲线及现场测试方法 摘要:目前变压器都安装了差动保护,并引入比率制动式差动继电器继电器AL3 AL4 ,以保障电力系统的安全运行水平。为此,介绍变压器差动保护的制动特性曲线及现场测试方法。 关键词:变压器;差动保护;制动特性;测试方法 1前言 变压器是现代电力系统中的主要电气设备之一。由于变压器发生故障时造成的影响很大,故应加强对其继电保护装置功能的调试,以提高电力系统的安全运行水平。变压器保护装置中最重要一项配置——差动保护,就是为了防御变压器内部线圈及引出线的相间及匝间短路,以及在中性点直接接地系统侧的引出线和线圈上的接地短路。同时,由于差动保护选择性好,灵敏度高,因此,我们还应该考虑该保护能躲过励磁涌流和外部短路所产生的不平衡电流,同时应在变压器过励磁时能不误动。 2差动保护中引入比率制动特性曲线 变压器在正常负荷状态下,电流互感器电流互感器LDZ1 的误差很校这时,差动保护的差回路不平衡电流也很小,但随着外部短路电流的增大,电流互感器就可能饱和,误差也随之增大,这时的不平衡电流也随之增大。当电流超过保护动作电流时,差动保护就会误动,因此,为了防止变压器区外故障发生时差动保护误动作,我们希望引入一种继电器,其动作特性是:它的动作电流将随着不平衡电流的增大而按比例增大,并且比不平衡电流增大的还要快,这样误动就不会出现。因此,我们在差动保护中引入了比率制动式差动继电器,它除了以差动电流作为动作电流外,还引入了外部短路电流作为制动电流。当外部短路电流增大时,制动电流也随之增大,使继电器的动作电流也相应增大,从而有效地防止了变压器区外故障发生时差动保护误动作,制动特性曲线见图1。 由图1可知,该保护继电器能可靠地躲过外部故障时的不平衡电流,能有效地防止变压器区外故障发生时保护误动作,因此,差动保护的制动特性曲线的精确性是决定保护装置正确动作的关键,故制动特性曲线的测试是整套保护装置的调试重点。 3制动特性曲线的测试方法 以往在实际工作中,由于试验仪器所限,我们很容易忽略比率制动特性的测试,认为制动系数装置已固有,不用测试,结果往往造成保护装置因调试工作不细致而误动作。但随着现场

几种型号的分相电流差动保护的异同

几种常见型号的分相电流差动保护的比较 本文将对目前工区范围内常见的几种分相电流差动的保护原理,装置结构、日常运行操作等方面做一个简要的介绍和比较,从而找出其共性和不同之处,为日常运行工作提供参考。 1. 分相电流差动的基本原理 1) 基本原理 保护通过通讯通道把一端的带有时标的电流信息数据传送到另一端,各侧保护利用本地和对侧电流数据按相将同一时刻的电流值进行差动电流计算,比较两端的电流的大小与相位,以此判断出是正常运行、区内故障还是区外故障。 以母线指向线路为正方向,根据基尔霍夫电流定律,在不考虑电容电流和CT 采样误差的情况下:正常运行或区外故障时一侧电流由母线流向线路,为正值,另一侧电流由线路流向母线,为负值,两电流大小相同,方向相反,所以0M N I I += ,差流元件不动作。区内故障时两侧实际短路电流都是由母线流向线路,和参考方向一致,都是正值,差动电流会很大,满足差动方程,差流元件动作。 2) 与相差高频在原理上的区别 相差高频保护是比较被保护线路两侧电流相位的高频保护。当两侧故障电流相位相同时保护被闭锁,两侧电流相位相反时保护动作跳闸。 两者区别在于相差高频不比较电流值只比较相位,分相电流差动同时比较两侧的电流幅值和相位。 3) 保护的通道 分相电流差动保护需要将线路两端的电流信息进行比较,应此要有专门的通道来传输这些电流信息,目前保护通道主要有载波通道与光纤通道。由于光纤通道具有可靠性好,传输信息量大的优点,因此分相电流差动保护均使用光纤通道。 光纤通道分为两种:一种为复用通道,另一种为专用通道。 专用光纤通道:专用纤芯方式相对比较简单,运行的可靠性也比较高 ,220kV 及以下线路光纤保护多采用专用纤芯方式 复用光纤通道:两地之间通过通信网通信。由于通信网是复用的,所以需要用通信设备进行信号的复接。多用于500kV 长距离输电线路。 2. 分相电流差动保护的优势 与高频距离、相差高频等纵联保护相比分相电流差动主要有以下优点: A. 分相电流的差动保护中只要引入电流量就能实现故障判别,而无需引入电压量。因 而在原理上得到了很大的简化。 B. 分相电流差动保护中只对电流值进行测量计算,不对故障距离阻抗进行计算,因此 提高了耐过渡电阻的能力。 C. 分相电流差动保护中只要对两端电流差值和相位进行测量计算就能明确选出故障 相,故障选相变得非常容易,而这在其它保护方法中是难点。 D. 分相电流差动保护不受系统振荡影响。在系统振荡时两端电流方向与正常时相同, 相位的摆动完全一致,即使在系统振荡时发生故障,保护装置也能根据两端电流相位变化正确动作。

PST-1200差动保护试验方法

差动保护平衡系数的作用: 通常变压器各侧的额定二次电流是不同的,但是为了差动保护的需要,我们要把变压器正常工作时高低压侧的二次电流转换成是一样的,这里就需要引入一个平衡系数,举例说明:设变压器高压侧额定二次电流为4.6A(设已经过Y/△变化),低压侧额定二次电流为3.8安,选择高压侧为基本侧,则高压侧的平衡系数为Kph=4.6/4.6=1,低压侧的平衡系数为Kpl=4.6/3.8=1.21,经过平衡折算后,差动保护内部计算各侧额定二次电流分别为:高压侧=4.6*Kph=4.6A,低压侧=3.8*Kpl=4.6A,可见经过 平衡折算后,保护内部计算用变压器两侧额定二次电流相等,都等于基本侧的额定二次电流。 平衡系数其实就是一个比例系数 (二)PST-1200数字式变压器保护 相关保护参数定值:CT额定电流:5A; 差动动作电流:2A; 速断动作电流:20A; 高压侧额定电流:3A; 高压侧额定电压:220kV; 高压侧CT变比:200; 中压侧额定电压:110kV; 中压侧CT变比:600; 低压侧额定电压:10kV; 低压侧CT变比:2000; 相关保护设置:制动方程:Ir=max{│Ih│,│Im│,│Il│},比率制动特性曲线:第一个拐点电流Izd=高压侧额定电流值,在此定值中为3A,斜率K1=0.5;第二个拐点电流3Izd,在此定值中为3×3=9A,斜率K2=0.7。 1、三相测试仪 (1)保护控制字:0C10,内转角方式;三相测试仪;同时做三侧。 测试仪:测试对象选择3圈变,Y/Y/D-11接线方式,CT外转角。 电流接线方法:测试仪Ia→高压侧(Y侧),电流从A相极性端进入,非极性端流出; 测试仪Ic→中压侧(Y侧),电流从A相极性端进入,非极性端流 出;测试仪Ib→低压侧(D侧),电流从A相极性端进入,非极性 端流出后进入C相非极性端,由C相极性端流回测试仪。 平衡系数的设置:高压侧 1/3=0.577; 中压侧(MCT×MDY)/(HCT×HDY×3)=(600×110)/(200×220×3)=0.866; 低压侧(LCT×LDY)/(HCT×HDY)=(2000×10)/(200×220)=0.455。 (2)保护控制字:0C13,外转角方式;三相测试仪;同时做三侧。

主变比率制动式差动保护

主变比率制动式差动保 护 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

1.1.1. 主变比率制动式差动保护 比率制动式差动保护能反映主变内部相间短路故障、高压侧单相接地短路及匝间层间短路故障,既要考虑励磁涌流和过励磁运行工况,同时也要考虑TA 断线、TA 饱和、TA 暂态特性不一致的情况。 由于变压器联结组不同和各侧TA 变比的不同,变压器各侧电流幅值相位也不同,差动保护首先要消除这些影响。本保护装置利用数字的方法对变比和相位进行补偿,以下说明均基于已消除变压器各侧电流幅值相位差异的基础之上。 1.1.1.1. 比率差动动作方程 ? ?? ??-+-+≥-+≥>)I 6I (6.0)I I 6(S I I ) I I (S I I I I e res 0.res e 0.op op 0.res res 0.op op 0.op op ) I 6I ()I 6I I ()I I (e res e res 0.res res.0res >≤<≤ (6-3-1) op I 为差动电流,0.op I 为差动最小动作电流整定值,res I 为制动电流,0.res I 为最小制动电流整定 值,S 为动作特性折线中间段比率制动系数。op.0I ,res.0I ,S 需用户整定。 对于两侧差动: 21I I I op += (6-3-2) 2I 21res I I -= (6-3-3) 1I ,2I 分别为变压器高、低压侧电流互感器二次侧的电流。各侧电流的方向都以指向变压器为正方向。 1.1.1. 2. 比率差动动作特性 比率差动动作特性同图6-3-1所示: 图6-3-1 主变(厂变、励磁变)比率差动动作特性 注:只有主变比率差动保护动作特性才有速动区,厂变和励磁变均没有速动区。 1.1.1.3. 主比率差动启动条件 当三相最大差动电流大于倍最小动作电流时,比率制动式差动启动元件动作。 图6-3-2 主变增量差动保护动作特性图 1.1. 2. 主变差动保护逻辑图 主变差动保护逻辑如图6-3-3所示: 图6-3-3 主变(厂变、励磁变)差动保护逻辑图

发变组差动保护测试的方法和步骤

发变组差动保护测试的方法和步骤 摘要:本文介绍了组发电机差动保护的基本配置方案。通过对差动速断保护和 比例差动保护的制动面积进行分析,测试了比率制动差动保护原理并对发电机差 动保护的简易型测试方法和步骤进行了讨论。 关键词:发变组;差动保护;发电机 引言随着我国电力工业的迅猛发展 ,发电机也时刻受到外界负荷的影响。为了保证供电 的可靠性和连续性,必须对电力发电机继电保护装置的性能和动作可靠性做出相应的严格设置。 1.发电机差动保护的原理与配置 发电机纵差动保护是发电机的主保护,它采集发电机定子绕组两端的电流。如图1所示:发电机中性点侧和发电机出口断路器的各安装了一组电流互感器,它的二次侧输出直接 连接到发电机的主保护装置。根据两侧的电流相量差和差动保护整定值来决定是否动作。在 正常情况下,中性侧电流和出口侧的电流是大小相等,方向相同,两侧的差动电流是零。当 相间短路故障发生时,两侧的电流互感器的短路电流均流向短路点。此时,两侧电流的方向 相反,所以差动电流将不再为零。 事实上,由于类型、特性等存在不同,两侧的电流互感器存在一些差异。在正常情况下,两侧的每相绕组一次侧电流是相同的,但二次侧电流也可能存在不平衡电流。因此,对差动 保护动作电流的整定值不能太小,以躲开不平衡电流。根据上面的整定方法,可能导致差动保 护不能动作,需要等待故障进一步发展后,保护才能动作。但到那个时候,发电机可能已经 造成了巨大的伤害。 第三部分的动作区域包含比率制动差动保护和差动速断保护,只要任一条件满足,保护将会 动作。 2.发电机微机保护的测试方法 测试分为比率制动差动保护和差动速断保护两部分分别测试,其完整的测试连接如图3 所示。整定定值为, 根据测试结果表1的连接,正确设置系统保护装置的参数,可以使比率制动差动保护和 差动速断保护正确动作。 3.简易型比率制动差动保护的测试方法和流程 对于中小机组来说,由于测试设备较为简单,可以使用固定制动电流,改变差动电流, 寻找差动保护动作的关键点来判断保护是否正确动作,即为简易型保护测试方法。 (1)保护测试接线如图3所示,IA和IB是保护测试仪连接保护装置的差动保护电流输入,并根据正确的极性分别设定IA和IB的相角。 (2)向保护测试仪输入IA=1.5A,IB=0.5A,IA和IB的相角根据极性来设定。在保护测试 仪中设置IA、IB的电流步长为0.01A。在测试过程中使用手动功能增加/减少电流,使制动电 流不变,可以实现锁定制动电流Ir为2.0A如图4所示。然后逐渐增加差动电流Id,找到并 验证差动保护制动特性的当前值。 图4 比率制动差动保护的动作特性 采用手动调整电流的测试方法,首先用手动逐步减小测试电流,使IA=1.3A,IB=0.7A,然后将测试电流加入保护装置。此时Ir=2.0A,Id=0.6A,而且Id>Id0,但根据比率制动特性,保 护装置应可靠的不动作。当采用手动调整逐渐增加电流IA,沿垂线找到相应的差动保护电流。观察交流采样结果和差动保护电流、制动电流的计算值,记录当前保护的动作值。根据灵敏 度要求,当差动电流为整定值的95%时,保护装置应可靠的没有不动作。 根据上述方法进行实际测试,采用博电PW30保护测试仪对差动保护测试,试验结果如 表2所示。

各种差动保护比较..

采样值差动于常规相量差动的比较 与常规相量差动相比较,采样值差动的一个突出特点是它不是计算某一数据窗的差流值,而是通过多点重复判别来判定动作与否。利用这个特点,通过合理选择重复判别次数R,S,可有效抑制区外故障时TA暂态响应不一致对差动保护的影响。利用采样值差动能有效区分区内区外故障,同时也能有效鉴别励磁涌流,比传统相量差动更能保证故障快速动作具体分析见《采样值差动及其应用》胡玉峰、陈树德、尹相根,电力系统自动化,2000,24,No10,第42页。 基于故障分量的菜采样值差动保护与常规相量差动和采样值差动的比较常规的相量电流差动保护还是采样值电流差动保护,都无法解决差动保护在内部高阻接地故障时的敏度和负荷电流对差动保护的影响等问题.而基于故障分量的保护存原理上与正常运行时的负荷几关,与接地故障时的过渡电阻大小无直接关系,具有相当优越性 故障分量的差动保护与常规相量差动保护相比,其突出特点是可大幅度提高保护灵敏度,并可较好地解决高阻接地或轻微短路且有负荷电流流出时差动保护所存在的缺陷, 采样值电流差动保护可以提高电流差动保护的动作速度,但是并没有改善保护的灵敏度 故障分量差动保护动作特性详见||王维倚(Wang Weijian).电气主设备继电保护原理与应用(The Theory and Application of Electric Main Equipments Protection).北京I中国电力出版社(Beiiing:China Electdeal Powar Press),1996/尹项根,陈德树,张哲,等(Yin Xianggent Chen Deshu—Zhang Zhe,et a1).故障分量差动保护(DifferentialProtection Ba sed On Fault—Component).电力系统自动化(Automation of Electric Power Systems).1999.23(11) 由图中可以看出,由于制动区与动作区之间存在一个缓冲区,因而可使故障分量差动保护具有极为优良的动作选择性。 将采样值差动与故障分量原理相结合,同样可起到提高灵敏度的作用。对于采样值差动,由于存在过零点附近采样值差动判据不满足,最严重时可能出现过零点为两采样值的中点而导致连续两点不满足判据。故差动电流需达到一定幅值才能保证可靠动作。因而对于某些故障情况,如变压器轻微匝问故障同时有负荷

实验五变压器差动保护实验指导书(完,11.12)

实验五 变压器差动保护实验 (一)实验目的 1 .熟悉变压器纵差保护的组成原理及整定值的调整方法。 2 .了解 Y ∕Δ接线的变压器,其电流互感器二次接线方式对减少不平衡电 流的影响。 3 .了解差动保护制动特性的特点。 (二)变压器纵联差动保护的基本原理 1 .变压器保护的配置 变压器是十分重要和贵重的电力设备, 电力部门中使用相当普遍。 变压器如 发生故障将给供电的可靠性带来严重的后果, 因此在变压器上应装设灵敏、快 速、可靠和选择性好的保护装置。 变压器上装设的保护一般有两类:一种为主保护,如瓦斯保护,差动保护; 另一种称后备保护,如过电流保护、低电压起动的过流保护等。 本试验台的主保护采用二次谐波制动原理的比率制动差动保护 2.变压器纵联差动保护基本原理 如图 7-1 所示为双绕组纵联差动保 护的单 相原理说明图,元件两侧的电流 互感 器的接线应使在正常和外部故障时 流 入继电器的电流为两侧电流之差,其 值接近于零,继电器不动作;内部故障 时流入继电器的电流为两侧电流之和, 其值为短路电流,继电器动作。但是, 由于变压器高压侧和低压侧的额定电流 不同,为了保证正常和外部故障时, 变压器两侧的两个电流相等, 从而使流入继 电器的电流为零。即: 式中: K TAY 、 K TA △——分别为变压器 Y 侧和△侧电流互感器变比; KT ——变压器变比。 显然要使正常和外部故障时流入继电器的电流为零, 就必须适当选择两侧互感器 的变比, 使其比值等于变压器变比。 但是, 实际上正常或外部故障时流入继电器 的电流不会为零,即有不平衡电流出现。原因是: (1)各侧电流互感器的磁化特性不可能一致。 (2)为满足( 7-1 )式要求,计算出的电流互感器的变比,与选用的标准化变 比不可能相同; (3)当采用带负荷调压的变压器时,由于运行的需要为维持电压水平,常常 变化变比 KT ,从而使( 7-1 )式不能得到满足。

母线差动保护调试方法

母线差动保护调试方法 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

母线差动保护调试方法 1、区内故障模拟,不加电压,将CT断线闭锁定值抬高。 选取Ⅰ母上任意单元(将相应隔离刀强制至Ⅰ母),任选一相加电流,升至差动保护动作电流值,模拟Ⅰ母区内故障,差动保护瞬时动作,跳开母联及Ⅰ母上所有连接单元。跳开Ⅰ母、母联保护信号灯亮,信号接点接通,事件自动弹出。在Ⅱ母线上相同试验,跳开母联及Ⅱ母上所有连接单元。 将任一CT一次值不为0的单元两把隔刀同时短接,模拟倒闸操作,此时模拟上述区内故障,差动保护动作切除两段母线上所有连接单元。(自动互联)。 投入母线互联压板,重复模拟倒闸过程中区内故障,差动保护动作切除两段母线上所有连接单元。(手动互联) 任选Ⅰ母一单元,Ⅱ母一单元,同名相加大小相等,方向相反的两路电流,电流大于CT断线闭锁定值,母联无流,此时大差平衡,两小差均不平衡,保护装置强制互联,再选Ⅰ母(或Ⅱ母)任一单元加电流大于差流启动值,模拟区内故障,此时差动动作切除两段母线上所有连接单元。 任选Ⅰ母上变比相同的的两个单元,同名相加大小相等,方向相反的的两路电流,固定其中一路,升高另外一路电流至差动动作,根据公式计算比率制动系数,满足说明书条件。(大差比例高值,大差比例低值,小差比例高值,小差比例低值,当大差高值或小差高值任一动作,且同时大差和小差比例低值均动作,相应比例差动元件动作。) 2、复合电压闭锁。非互联状态,Ⅱ母无压,满足复压条件。Ⅰ母加入正常电压,单独于Ⅰ母任一支路加入电流大于差动启动电流定值,小于CT断线闭锁定值,

比率差动保护测试

使用微机型测试仪后,在测试软件中提供了对应微机保护算法的自动测试方案,可由制动电流和差动电流根据制动方程和动作方程自动计算出变压器各侧所需输入的电流值,并且可以采用扫描的方法扫描出动作边界,自动计算出比率制动系数。 目前国内的主要微机型测试仪有三路电流和六路电流两种。采用六路电流测试时,接线比较简单,并且可以同时检测两侧三相。采用三路电流测试时,只能进行分相检测,并且在测试过程中要注意补偿电流还要防止其他相误动,接线比较复杂。 本节通过具体的测试实例,重点介绍三绕组变压器差动保护装置的测试方法。其他具有相同原理的保护测试可参考此试验方法。主要包括: (1)六路电流测试仪测试采用Y→?变化的变压器保护:以国电南自PST-1200 型变压器保护为例,通过该例介绍对于Y/Y/?-11 接线方式的变压器,当差动保护采用保护内部Y 侧补偿时,采用六路电流测试仪进行星—角及星—星两侧分别测试的具体方法。 (2)三路电流测试仪测试采用Y→?变化的变压器保护:以国电南自PST-1200 型变压器保护为例,通过该例介绍对于Y/Y/?-11 接线方式的变压器,当差动保护采用保护内部Y 侧补偿时,采用三路电流测试仪进行星—角及星—星两侧分别测试的具体方法。 (3)六路电流测试仪测试采用?→Y 变化的变压器保护:以南瑞继保RCS-978 变压器保护为例,通过该例介绍对于Y/Y/?-11 接线方式的变压器,当差动保护采用保护内部?侧补偿时,采用六路电流测试仪进行星—角及星—星两侧分别测试的具体方法。 (4)三路电流测试仪测试采用?→Y 变化变压器保护:以南瑞继保RCS-978 变压器保护为例,通过该例介绍对于Y/Y/?-11 接线方式的变压器,当差动保护采用保护内部?侧补偿时,采用三路电流测试仪进行星—角及星—星两侧分别测试的具体方法。

差动保护及比率差动保护

差动保护主要是内部短路的保护,但当外部故障时有不平衡电流可能穿越差动保护电流互感器,造成差动保护误动作。因此为了躲过外部故障时不平衡电流引起差动保护动作,采用了制动电流来平衡穿越电流引起差动保护的启动电流。 发电机采用机端电流作为制动电流,能在外部短路时取得足够的制动电流,又能在内部短路时减少中性点电流的制动作用。变压器采用二次谐波作为励磁涌流闭锁判据。 一般设有CT断线闭锁保护。如下图: 图中Ie为额定电流, Icdqd为启动电流, Ir为制动电流, Kb1为比率制动系数。 阴影部分为动作区

差动保护灵敏度与启动电流、制动系数和原理之间的关系摘要:分析了差动保护的有关整定原则,明确提出了差动保护的灵敏度与许多因素有关,如定值、原理和实现方式等。不能仅改变某一个因素(如定值)来提高灵敏度,而需要综合考虑各个因素的影响,否则适得其反。 0 引言 随着继电保护技术的不断发展和进步,技术人员对保护的认识越来越深刻,对许多继电保护约定俗成的做法开始了反思。如规程上对差动保护规定:使用比率制动原理的差动保护,不要校核灵敏度,其灵敏度自然满足。那么这个“自然满足”的灵敏度是什么灵敏度呢?其实对发电机差动保护而言,就是在发电机机端发生两相短路,该差动继电器的灵敏度校验结果肯定能够满足要求;在现场运行过程中,经常有人将保护中的比率制动系数和比率制动斜率混淆,究竟这两个概念有什么区别,又有什么联系?标积制动原理对提高差动保护的灵敏度有什么有利的地方,它和比率制动之间又有什么关系,它们之间从根本上是否一致呢?本文就这些用户所关心的问题展开深入的分析和讨论,并阐明作者自己的观点 [1,2] 。 1 差动保护灵敏度系数的定义与校验 设流入发电机的电流为正方向,取继电电器差动电流Id为:

比率制动式差动保护

比率制动式差动保护 变压器差动保护 :这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简 称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 :下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述:

1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高=220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KVA, 11'流过变压器高压侧的一次电流; I ” :流过变压器低压侧的一次电流; 12'流过变压器高压侧所装设电流互感器即CT1的二次电流; I2 ”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:11'12 ' nh I”/12 ”= nl I2 ' I2 ” I1'/l”= nh/ n 1=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)

单相接地故障以及匝间、层间短路故障; 四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 动作电流lop 4 d Iopo 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; P:比率制动斜线上的任一点; e: p点的纵坐标; b: p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于 电流大于最小制动电流,此时保护开始进行比率制动运算,曲线抬 高,此时只有当电流在比率制动曲线以上时保护动作;因此,图中阴 影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区;比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算岀此斜线的斜率,就等于算出了比率制动系数。以p点为例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2撮小制动电流Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流Il=6A,180度,低压侧电流I2=6A,0度,固定II升12,当12升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(11+12) /2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)= 1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 f Ires, o 图二 b 制动电流Ires

差动保护调试方法

微机变压器差动保护 一、微机变压器差动保护中电流互感器二次电流的相位校正问题电力系统中变压器 常采用Y/D-11接线方式,因此,变压器两侧电流的相位差为30°。如果不采取措施,差回路中将会由于变压器两侧电流相位不同而产生不平衡电流。必需消除这种不平衡电流。 (中华人民共和国行业标准DL —400—91《继电保护和安全自 动装置技术规程》2.3.32条:对6.3MVA及以上厂用工作变压器和并联运行变压器。10MVA 及上厂用变压器和备用变压器和单独运行的变压器。以及2MVA及以上用电速断保护灵敏度不符合要求的变压器,应装设纵联差动保护。) (一)用电流互感器二次接线进行相位补偿 其方法是将变压器星形侧的电流互感器接成三角形,将变压器三角形侧的电流互感器 接成星形,如图1所示 图1变压器为Y o/ △ -11连接和TA/Y连接的差动保护原理接线

采用相位补偿后,变压器星形侧电流互感器二次回路差动臂中的电流 I A2、丨B2、I C2 , 刚好与三角形侧的电流互感器二次回路中的电流 I a 2、I b2、I c2同相位,如图2所示。 (二) 用保护内部算法进行相位补偿 当变压器各侧电流互感器二次均采用星型接线时,其二次电流直接接入保护装置,从 而简化了 TA 二次接线,增加了电流回路的可靠性。但是如图 3当变压器为Y 。/ △ -11连接 时,高、低两侧TA 二次电流之间将存在30°的角度差,图4(a )为TA 原边的电流相量 图2向量图 b

图3变压器为Y △ -11连接和TA 为Y/Y 连接的差动保护原理接线 为消除各侧TA 二次电流之间的角度差,由保护软件通过算法进行调整 1、常规差动保护中电流互感器二次电流的相位校正 大部分保护装置采用 Y -△变化调整差流平衡,如四方的 CST31南自厂的PST-12O0 WBZ-500H 南瑞的LFP-972、RCS-985等,其校正方法如下: Y 0侧: I A2 = ( I A2 — I B2 ) / 3 I B2= ( I B2 — I C2 ) / 3 I C 2 = ( I C2 — I A2 ) / 3 △侧: I a2=I a2 I b2 = I b2 I c2=I c2 式中: I A2、I B 2、I C2为Y 0侧TA 二次电流,*、?、I C 2为侧校正后的各相电流;、 I b2、I c2为△侧TA 二次电流,I a2、I b2、丨c2为△侧校正后的各相电流 经过软件校正后,差动回路两侧电流之间的相位一致,见图 4 (b )所示。同理,对于 三绕组变压器,若采用Y o / Y 。/ △ -11接线方式,Y o 侧的相位校正方法都是相同的。 2、RCS- 978中电流互感器二次电流的相位校正 RCS-978中电流互感器二次电流的相位校正方法与其它微机变压器保护有所不同,此

差动保护基本原理

差动保护基本原理 1、母线差动保护基本原理 母线差动保护基本原理,用通俗的比喻,就是按照收、支平衡的原理进行判断和动作的。因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位相同。如果母线发生故障,这一平衡就会破坏。有的保护采用比较电流是否平衡,有的保护采用比较电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器。如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电范围 2、什么是差动保护?为什么叫差动?这样有什么优点? 差动保护是变压器的主保护,是按循环电流原理装设的。 主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。 在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,则将同级性端子相连,并在两接线之间并联接入电流继电器。在继电器线圈中流过的电流是两侧电流互感器的二次电流只差,也就是说差动继电器是接在差动回路的。 从理论上讲,正常运行及外部故障时,差动回路电流为零。实际上由于两侧电流互感器的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡点流Iumb流过,此时流过继电器的电流IK 为Ik=I1-I2=Iumb 要求不平衡点流应尽量的小,以确保继电器不会误动。 当变压器内部发生相间短路故障时,在差动回路中由于I2改变了方向或等于零(无电源侧),这是流过继电器的电流为I1与I2之和,即 Ik=I1+I2=Iumb 能使继电器可靠动作。 变压器差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备、以及连接这些设备的导线。由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,所以在区内故障时,可以瞬时动作。 3、为什么220KV高压线路保护用电压取母线TV不取线路TV 事实上,两个电压都接入保护装置的,它们的作用各不相同 母线电压,一般用来判别正方向故障和反方向故障,通过电流与电压之间的夹角来判别 线路电压,一般用来重合闸的时候用,作为线路有压无压的判据 现在220kV线路保护比较常用的就是一套光纤电流差动以及一套高频距离保护 也有采用两套光纤电流,两套高频的比较少了 4、变压器差动保护的基本原理 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。

差动保护试验

谈差动保护试验 差动保护在电力系统中被广泛采用在变压器、母线、短线路保护中。差动保护模拟试验起来比较难,主要有以下原因:第一,差动保护的电流回路比较多,两卷变压器需要高、低压两侧电流,三卷变压器需要高、中、低压三侧电流,母线保护需要更多;第二、差动保护的核心是提供给差动继电器或自动化系统差动保护单元差电流, 要求各电流回路的极性一定要正确,否则极性接错即变成和电流; 第三,差动保护的特性测试比较难。 传统的检验极性的方法是做六角图,但新投运的变压器负荷一般较小,做六角图有难度,还有,即便是六角图对也不能保证保护屏内接就正确(笔者曾发现过屏内配线错误,做六角图时,保护动作不正确)。曾经看到用人为加大变压器负荷的方法来准确地做出六角图的文章.如用投电容器来人为加大主变负荷,还有用两台变比不同的主变并列后产生环流来人为加大主变负荷。笔者认为以上方法与有关运行规程有矛盾:变压器并列变比相同,负载轻时不许投电容器都是运行规程明确规定的,就是试验没问题,在与运行人员的工作协调中也有难度。因此,以上方法不便采用。下面介绍我们的经验,我们只在二次回路上试验,不必人为加大主变负荷即可全面、系统地验证差动保护的正确性。

一、用试验箱从保护屏端子排加电流,检查保护屏内及保护单元的接线正确性 变压器的差动保护电流互感器接线,传统上都是和变压器绕组接线相对应的,即变压器绕组接成星形,相应电流互感器接成角形; 变压器绕组接成角形,相应电流互感器接成星形。这样,变压器各侧电流回路正好反相。现在的自动化系统差动保护单元有的继承了原来的接法,有的为了简化接线则要求各侧均为星形,这样对一般Y,D-11接线的变压器高压侧电流超前低压侧150°,接线系数为√3,这些差异由计算机来处理,最后差电流为零。 上面讨论了电流互感器接线类型,下面就做对保护屏加模拟电流来验证其接线是否正确的试验。如果为传统的接线方式,可以加反相的两路模拟电流(从一侧头进尾出后从另一侧尾进头出即可实现),如果各侧均是星接,则加高压侧超前低压侧150°的电流来模拟。现在的自动化系统差动保护单元都有差动电流显示,根据显示数据即可判定其接线正确性——若为两电流有效值之差则接线正确,若为两电流有效值之和电流则有极性接反,若为两电流和与差之间的数值则相位处理有错误。如果无差电流显示则只能靠动作与否来判断接线正确与否了,即不动作为正确,动作为不正确,试验时一定要吃透图纸,注意接线极性,可规定从某相(头)流入保护屏,从地(尾)流出保护屏为正方向。这样A、B、

比率制动差动保护

1比率制动差动保护特性 随着计算机技术在继电保护领域日益广泛的应用,比率制动特性的差动保护作为双圈及三圈变压器的主保护具有动作可靠,实时数据采集、计算、比较、判断等较为方便简单等优点,得到用户的认可。 所谓比率制动特性差动保护简单说就是使差动电流定值随制动电流的增大而成某一比率的提高。使制动电流在不平衡电流较大的外部故障时有制动作用。而在内部故障时,制动作用最小。 图1 图1中曲线1为差动回路的不平衡电流,它随着短路电流的增大而增大。根据差动回路接线方法的不同,在整定时,通过调整不平衡比例系数使得计算机在实时计算时的Ibp最小。 曲线2是无制动时差动保护的整定电流,它是按躲过最大不平衡电流Ibpmax来整定的。曲线3为变压器差动保护区内短路时的差电流,它随短路电流的增大而线性的增大。 曲线4为具有制动特性的差动继电器的差动保护特性。 在无制动时,曲线3与曲线2相交于B点,这时保护的不动作区为0B,即保护区内短路时的短路电流必须大于0B所代表的电流值时,保护才能动作。 在有制动时,曲线3与曲线4相交于A点,短路电流只要大于0A所代表的电流值,保护即能动作。OA <0B这说明在同样的保护区内短路状态下,有制动特性的差动保护比无制动特性的差动保护灵敏度要高。 在实际的变压器差动保护装置中,其比率制动特性如下图2所示: 图2中平行于横坐标的AB段称为无制动段,它是由启动电流和最小制动电流构成的,动作值不随制动电流变化而变化。我们希望制动电流小于变压器额定电流时无制动作用,通常选取制动电流等于被保护变压器高压侧的额定电流的二次值。即:lzd=le/nLH 图2中斜线的斜率为基波制动斜率,当区外故障时短路电流中含有大量生产非周期分量,制动Izdo增大,当动作电流Idzo大于启动电流时,制动电流和动作电流的交点D必落在制动区内。当区内故障时,差电流即动作电流为全部短路电流,制动电流则为流过非电源侧的短路电流,数值较小,平行于纵、横轴的二直线交点必落在动作区内,差动保护可靠动作。 2比率制动式差动保护的整定在比率制动式差动保护的整定计算时,通常按以下原则选取: 2.1 Icdsd即差动速断电流 当变压器空载投入或变压器外部故障切除后电压恢复时,励磁涌流高达额定电流的6? 8 倍,当差动保护电流互感器选择合适时,变压器外部短路流过差动回路的不平衡电流小于

差动保护试验方法

差动保护试验方法 国测GCT-100/102差动保护装置采用的是减极性判据,即规定各侧均已流出母线侧为正方向,从而构成180度接线形式。 1. 用继保测试仪差动动作门槛实验: 投入“比率差动”软压板,其他压板退出,依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流0.90A ,步长+0.01A ,观察差流,缓慢加至差动保护动作,记录动作值。 说明: 注意CT 接线形式对试验的影响。 若CT 接为“Y-△,△-Y 型”,则在系统信息——变压器参数项目下选择“Y/D-11”,此时高侧动作值为:定值×√3,即1.73动作,低测动作值为定值,即1.00动作 若CT 接为“Y-Y 型”,则在系统信息——变压器参数项目下选择“无校正”,此时高低侧动作值均为定值,即1.00动作 2. 用继保测试仪做比率差动试验: 分别作A ,B ,C 相比率差动,其他相查动方法与此类似。 以A 相为例,做比率差动试验的方法:在高,低两侧A 相同时加电流(测试仪的A 相电流接装置的高压侧A 相,B 相电流接装置的低压侧A 相),高压侧假如固定电流,角度为0度,低压侧幅值初值设为x ,角度为180度,以0.02A 为步长增减,找到保护动作的临界点,然后将x 代入下列公式进行验证。 0Ir Ir Id Id k --= 其中: Id :差动电流,等于高侧电流减低侧电流 Id0:差动电流定值 Ir :制动电流,等于各侧电流中最大值 Ir0:制动电流定值 K :制动系数 例如: 定值:Id0=1(A ); Ir0=1(A ); K =0.15 接线:测试仪的Ia 接装置的高压侧A 相,Ib 接装置的低压侧A 相 输入:Ia =∠0 o5A Ib =∠180 o5A 步长Ib =0.02A 试验:逐步减小Ib 电流,当Ib=3.4A 时装置动作。 验证:Id =5-3.4=1.6A Id0=1A Ir =5A Ir0=1A 15.04 6.0151)4.35(==---=k 3. 用继保测试仪做差动速断试验 投入“差动速断”压板,其他压板退出。依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流9.8A ,每次以0.01A 为步长缓慢增加电流值至动作,记录动作值。 例如:

变压器差动保护试验方法

我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电XX自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该XX小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

下面我们先来分析一下微机差动保护的算法原理(三相变压器)。这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。具体接线见图1: 图1

差动保护的比率制动特性曲线及现场测试方法

差动保护是许多电气设备的必备保护,变压器的差动保护由于有变比误差和星角变换问题,相对其他电气设备的差动保护较为复杂,常规的变压器差动保护为了保证星角接线方式的变压器保护差流的平衡,一般将星侧的CT接角形,而将角侧的CT接成星形。而现代的微机变压器差动保护已开始采用将变压器两侧CT均接成星形进入装置,由装置内部软件完成星角转换。做常规变压器差动保护制动特性时,可用一个三相试验台通过调整角度输出两相电流,模拟区内或区外故障两侧CT的同名相的电流加入装置,分别做每相的制动特性。如何用一个三相试验台做微机变压器差动保护比率制动曲线呢?下面以 Y/△-11接线的两卷变压器为例进行说明。 假定变压器星侧二次电流为IH,角侧二次电流为IL。确定输入装置的CT电流极性为: 当一次电流流入变压器时,装置的感应电流都为正极性电流流入装置(如图1),这样在正常运行或区外故障时,星侧流入装置的电流与一次同向,角侧流入装置的电流与一次反向,但又由于星角变换而使一次星侧电流滞后角侧30度,所以最后流入装置的二次电流为星侧超前角侧150度,向量如图2,进入装置后,软件通过以下计算完成转角:

图2 图3 即星侧电流 通过以上转换之后,两侧电流大小未变,方向相反,但由于变压器变比和CT变比问题,进入装置的两侧电流大小不相等,所以还要加上平衡系数,最后计算差电流的算法为: 经过以上运算,可以得出,在区外故障和正常运行时,装置算得的差流为零。这就是国内微机变压器差动保护的算法。 由于星角变换由软件进行,所以在做单相比率制动特性时就不一样了。可以看到,如果在星侧加入A相电流I,而软件却计算出星侧: 这时,要做A相比率制动特性,首先要在角侧加入C相电流,方向与星侧所加A相电流相同,大小适当,平衡掉C相差流,否则C相总能使差动保护先动作。之后,在角侧A相加入与星侧A相方向相反的电流,调整电流大小,就可以作出差动保护的比率制动特性曲线。B相和C相做法与此相同。以此类推,也可以得出其他星角接线方式的变压器的微机差动保护比率制动特性曲线的做法。

相关文档
最新文档