变压器差动保护实验
变压器差动保护及二次回路模拟实验

变压器差动保护及二次回路模拟实验
变压器差动保护的原理是在变压器两侧的电流进行比较,通过差动保护装置实现对变压器的保护。
差动保护的一般连接方式是将两侧的电流互感器的二次侧连接在同一差动保护装置上,装置根据两侧电流的差值来判断是否存在故障。
差动保护的二次回路模拟实验可以通过模拟软件或硬件实现。
下面我给出一个简单的二次回路模拟实验步骤,供参考:
1. 准备模拟实验所需的变压器差动保护主要元件:互感器、差动保护装置、信号源等。
2. 将互感器的一次侧分别连接在变压器的两侧,二次侧连接在差动保护装置上。
3. 设置差动保护装置,确定差动电流阈值,可根据实际情况进行调整。
4. 通过信号源模拟故障情况,产生不同的故障电流,输入到差动保护装置中。
5. 监测差动保护装置的动作情况,观察是否能准确判断出故障,并及时采取保护动作。
变压器差动保护试验方法

变压器差动保护试验方法第一,绕组电压比差动试验。
该试验是通过加载不同的变压器绕组,在不同测点进行电压测量,然后计算电压差值来验证绕组之间的电压比差动。
具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置等。
2.进行变压器空载试验,记录各测点的电压值。
3.按照试验参数设置电流,对绕组进行加载试验。
4.在各测点测量电压,计算电压差值。
5.比较计算得到的电压差值与设定的差动值,如差值在允许范围内,则差动保护正常。
第二,同侧相位关系试验。
该试验是通过对变压器同侧绕组的相位关系进行检查,以保证差动保护系统的相位一致。
具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置等。
2.进行变压器空载试验,记录各测点的相位关系。
3.按照试验参数设置电流,对绕组进行加载试验。
4.在各测点测量电压和相位,检查相位关系是否一致。
5.如相位关系一致,则差动保护正常。
第三,误差变换试验。
该试验是通过对差动保护变压器继电器进行误差变换试验,以验证差动保护系统的测量误差是否满足要求。
具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置以及变比等。
2.进行变压器空载试验,记录各测点的电压和相位值。
3.按照试验参数设置电流,对绕组进行加载试验。
4.在继电器的输出端口测量电流,计算误差。
5.比较计算得到的误差与设定的误差范围,如误差在合理范围内,则差动保护正常。
第四,保护性校验试验。
该试验是通过在差动保护系统感应线圈内引入额外的故障源,观察差动保护系统的动作情况,以确保差动保护装置对变压器故障进行准确快速的切除。
1.在差动保护系统的感应线圈内接入故障源。
2.设置故障源的类型和参数,例如短路故障。
3.观察差动保护系统的动作情况,包括动作时间、动作电流等。
4.比较观察结果与设定的保护动作要求,如满足要求,则差动保护正常。
总结起来,变压器差动保护试验方法主要包括绕组电压比差动试验、同侧相位关系试验、误差变换试验以及保护性校验试验等。
差动变压器性能实验1

差动变压器性能实验1差动变压器是电力系统中常用的一种电力变压器,其具有保护电力系统的重要作用。
差动变压器可用于检测电力系统中的故障,并在故障发生时及时切断电力系统,以防止事故的发生。
为了保证差动变压器的性能和可靠性,需要开展相应的实验以检测其性能。
本文就差动变压器性能实验逐一进行介绍。
I. 实验目的1. 学习差动变压器的原理和结构;2. 掌握差动变压器的性能测试方法;3. 理解差动保护的基本原理,了解保护系统的作用;4. 学会对差动变压器性能测试结果进行分析和处理。
差动变压器、电源、电压表、电流表、直线阻抗测试仪、开关等。
差动变压器的原理是将电流互感器的原理应用到电力变压器中。
在一定的工作电压下,电流互感器中的一侧绕绕组所产生的磁通会感应到另一侧绕绕组中的电势,从而将电流传送到另一侧。
差动变压器由采样变压器和比率变压器组成,其中采样变压器用于测量绕组中的电流,比率变压器用于将电压进行变形,从而使电流保持平衡。
差动保护是一种非常重要的保护方式,其基本原理是通过对差流进行检测,以判断电力系统中是否存在故障。
在正常运行时,电流经过差动变压器的两侧绕组时是相等的,由于采样变压器可采集绕组中的电流,因此通过对两侧绕组的电流进行比较,即可得出电力系统中是否存在故障。
当系统中发生故障时,绕组间会产生一定的差流,此时保护系统会将信号反馈给操作员,使其切断电力系统以保证电力系统的安全。
1. 搭建差动变压器测试电路,连接直线阻抗测试仪,检查电路是否连接正确;2. 检测差动变压器的电气参数,包括绕组阻抗、变比、绕组耦合系数、相位差等;3. 测试差动保护的作用,包括灵敏度试验、速动保护试验和完整性试验等;4. 对测试结果进行分析,分析差动变压器的工作状态和保护系统的工作状态,确定是否达到安全标准;5. 记录测试结果,撰写实验报告。
V. 实验结果通过测试差动变压器的工作状态和保护系统的工作状态,得到了以下重要参数:1. 差动保护的灵敏度:建议灵敏度位于1%至10%之间,且灵敏度应该能够检测到所有系统中可能出现的故障;2. 差动保护的速动系数:速动系数应该足够高,以确保在故障发生时能够及时切断电力系统;3. 差动保护的完整性:保护系统应该具有良好的完整性,能够在系统出现故障时正常工作,不受其他因素的影响。
变压器差动保护动作后试验项目

变压器差动保护动作后试验项目变压器差动保护动作后试验项目是变压器保护中非常重要的一环,通过对变压器差动保护动作后的试验项目进行深入研究和探讨,可以有效提高变压器的运行稳定性和可靠性。
在实际运行中,变压器可能会受到各种外部因素的影响,导致差动保护系统误动作或漏动作,从而造成设备毁坏或事故发生。
因此,对差动保护动作后的试验项目进行详细分析和研究,对于确保变压器运行的安全性和可靠性具有重要意义。
首先,在进行变压器差动保护动作后试验项目前,需要对差动保护系统进行充分的了解和分析。
差动保护系统是变压器保护中最重要的保护手段之一,它通过检测变压器两侧电流的差值来判断设备是否存在故障。
一旦差动保护系统检测到电流差值超过设定阈值,就会发出保护动作信号,切断变压器电源,以防止事故发生。
因此,在实际运行中,差动保护系统的准确性和可靠性至关重要。
其次,在进行差动保护动作后的试验项目时,需要对试验项目进行合理设计和计划。
试验项目的设计应考虑变压器的实际运行情况和可能的故障模式,以确保试验结果的准确性和可靠性。
试验项目的计划应包括试验内容、试验方法、试验参数和试验设备等方面的详细安排,要确保试验过程的科学性和规范性。
在进行差动保护动作后的试验项目时,需要重点关注以下几个方面。
首先是试验内容,包括差动保护系统的各项功能和特性的测试、设备的动态和静态特性的测试、设备的稳定性和可靠性的测试等方面。
其次是试验方法,需要根据试验内容和设备特性选择合适的试验方法,确保试验结果的科学性和可靠性。
再次是试验参数,需要对试验参数进行合理设置和调整,以确保试验过程的准确性和有效性。
最后是试验设备,需要选择适当的试验设备和仪器,确保试验过程的顺利进行和数据的准确采集。
在变压器差动保护动作后的试验项目中,还需要考虑如何准确识别差动保护系统的误动作和漏动作。
误动作是指差动保护系统错误地判断设备存在故障,导致误动作保护动作,从而影响设备的正常运行;漏动作是指差动保护系统未能正确判断设备存在故障,未能发出保护动作,从而造成设备事故或损坏。
差动变压器实验报告

差动变压器实验报告一、实验目的二、实验原理1.差动变压器的结构和工作原理2.差动保护的基本原理三、实验器材和仪器四、实验步骤及结果分析1.接线方法及注意事项2.实验步骤及数据记录3.结果分析及误差分析五、实验结论与体会一、实验目的1.掌握差动保护的基本原理,了解差动变压器在电力系统中的应用;2.熟悉差动变压器的结构和工作原理;3.学习使用实验仪器,掌握接线方法及注意事项。
二、实验原理1.差动变压器的结构和工作原理差动变压器由两个同等容量的互感器组成,其中一个互感器为主绕组,另一个为副绕组。
主绕组和副绕组中都有相同数量的匝数。
当主绕组中通以电流时,在副绕组中也会产生相应大小和方向相反的电流。
这是由于两个互感器之间有共同磁链所致。
2.差动保护的基本原理在电力系统中,发生故障时,通常会出现电流突变。
差动保护的基本原理是通过检测主绕组和副绕组中的电流差来判断电力系统是否发生故障。
如果两个绕组中的电流差超过了设定值,则认为电力系统发生了故障,保护装置将触发并切断故障部分。
三、实验器材和仪器1.差动变压器;2.交流电源;3.数字万用表;4.示波器。
四、实验步骤及结果分析1.接线方法及注意事项将主绕组和副绕组依次接入交流电源,数字万用表和示波器上分别接入主绕组和副绕组的两端。
注意接线顺序,避免短路或错误连接。
2.实验步骤及数据记录按照实验要求依次进行以下步骤,并记录数据:(1)在未发生故障时,记录主绕组和副绕组的电流值,并计算其差值。
(2)在发生故障时,记录主绕组和副绕组的电流值,并计算其差值。
(3)比较两次测量结果,分析误差来源。
3.结果分析及误差分析通过实验数据的比较和分析,可以得出以下结论:(1)在未发生故障时,主绕组和副绕组的电流值应该相等,差异应该为零。
(2)在发生故障时,主绕组和副绕组的电流值会有所变化,差异会增大。
(3)误差来源主要包括接线不当、测量仪器精度不足等。
五、实验结论与体会通过本次实验,我们掌握了差动保护的基本原理和差动变压器的结构和工作原理。
差动变压器实验报告

差动变压器实验报告差动变压器实验报告引言:差动变压器是一种常用的电力设备,用于保护电力系统中的变压器。
本次实验旨在深入了解差动变压器的原理和工作机制,并通过实验验证其性能。
一、实验目的:1. 掌握差动变压器的基本原理和结构;2. 了解差动保护的工作原理;3. 通过实验验证差动变压器的性能。
二、实验仪器与设备:1. 差动变压器实验装置;2. 电源;3. 电流互感器;4. 电压互感器;5. 示波器。
三、实验原理:差动变压器是由两个或多个互感器组成的,其中一个为主互感器,其余为副互感器。
主互感器的一侧与电源相连,另一侧与负载相连。
副互感器的一侧与主互感器的相同端子相连,另一侧与差动继电器相连。
差动保护的基本原理是通过比较主互感器和副互感器的输出信号来判断系统是否发生故障。
在正常情况下,主互感器和副互感器的输出信号相等,差动继电器不动作;而在发生故障时,由于主互感器和副互感器的输出信号不同,差动继电器会动作,从而实现对系统的保护。
四、实验步骤:1. 将差动变压器实验装置接入电源,调整电压和电流的大小;2. 通过电流互感器和电压互感器分别测量主互感器和副互感器的输出信号;3. 将测得的信号输入示波器,观察波形;4. 通过改变电流和电压的大小,以及引入不同的故障情况,观察差动继电器的动作情况。
五、实验结果与分析:通过实验观察,我们可以得到以下结论:1. 在正常情况下,主互感器和副互感器的输出信号相等,差动继电器不动作;2. 在发生故障时,主互感器和副互感器的输出信号不同,差动继电器会动作;3. 不同类型的故障会导致差动继电器的动作时间和动作方式不同。
六、实验总结:通过本次实验,我们深入了解了差动变压器的原理和工作机制,并通过实验验证了其性能。
差动变压器作为一种重要的保护设备,在电力系统中起着至关重要的作用。
掌握差动保护的原理和应用,对于保障电力系统的安全运行具有重要意义。
在今后的学习和工作中,我们应该进一步加深对差动变压器的理解和应用,不断提高自己的技能和知识水平。
各种变压器差动保护校验

变压器保护差动保护试验中最重要的是差动电流以及制动电流的计算,其中这两项电流的计算与平衡系数和转角公式有关。
平衡系数是为了消除变压器各侧电流因为TA变比不一致带来的不平衡电流。
转角公式则是为了消除因为变压器各侧绕组的接线型式不一样而带来的不平衡电流。
1、在实际中,变压器纵差保护各侧平衡系数的计算方法是:kb=Ib/Ie上式中,Ib为基准电流,一般取高压侧的二次额定电流;Ie为各侧二次额定电流。
2、差动保护的转角公式有两种转角方式:Y-△和△-Y。
实际中各大厂家(南瑞、许继、四方、南自等)的变压器保护转角方法一般为Y-△转换方法。
这种转角方法因为Y侧在转角过程中已经将零序电流消除并且△侧不用转角,转角相对简便而被各个保护厂家所采用。
根据变压器绕组的接线钟点数不同,Y-△转换方法也有两种:即Y/△-11点转角和Y/△-1点转角。
其中Y/△-11点中Y侧电流转角公式为:Ia转换后=(Ia转角前-Ib转角前)/1.732Ib转换后=(Ib转角前-Ic转角前)/1.732Ic转换后=(Ic转角前-Ia转角前)/1.732△电流不转角。
Y/△-1点中Y侧电流转角公式为:Ia转换后=(Ia转角前-Ic转角前)/1.732Ib转换后=(Ib转角前-Ia转角前)/1.732Ic转换后=(Ic转角前-Ib转角前)/1.732△电流不转角。
注:以上的各个电流均为矢量。
了解了平衡系数和转角公式之后,就可以进行差动电流和制动电流的计算。
差动电流的计算公式为:Iopa=|Kb1×Ia转换后1+Kb2×Ia转换后2+....+Kbn×Ia转换后n|;Iopb=|Kb1×Ib转换后1+Kb2×Ib转换后2+....+IKbn×Ib转换后n|;Iopc=|Kb1×Ic转换后1+Kb2×Ic转换后2+....+Kbn×Ic转换后n|;以上公式的字面含义为:各相差动电流等于各侧该相转角后的电流的矢量和。
变压器差动保护动作后试验项目

变压器差动保护动作后试验项目
变压器差动保护动作后的试验项目主要包括以下几个步骤:
1.检查变压器本体:拉开变压器各侧闸刀,对变压器本体进
行认真检查,如油温、油色、防爆玻璃、瓷套管等,确定是否有明显异常。
2.检查差动保护范围内的设备:对变压器差动保护区范围的
所有一次设备进行检查,即变压器高压侧及低压侧断路器之间的所有设备、引线、母线等,以便发现在差动保护区内有无异常。
3.检查差动保护回路:对变压器差动保护回路进行检查,看
有无短路、击穿以及有人误碰等情况。
4.外部测量:对变压器进行外部测量,以判断变压器内部有
无故障。
测量项目主要是摇测绝缘电阻。
5.进一步的测量分析:如果不能判断为外部原因,则应对变
压器进行更进一步的测量分析,如测量直流电阻、进行油的简化分析、或油的色谱分析等,以确定故障性质及差动保护动作的原因。
如果发现有内部故障的特征,则须进行吊芯检查。
在进行以上步骤时,检测人员应着重检测主变三侧差动CT间的情况,例如是否出现闪络放电和是否受损等。
同时,检测人员还应对避雷器、断路器、变压器等设备进行检查,检测这些设备表面是否存在异物,以及是否出现接地短路现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如:高压侧采用内部星三角变换,定值整定如下:
表6:控制字
比率差动门槛
0.4 (2.0A)
比率制动系数
0.5
比率制动拐点电流
0.64(3.2ห้องสมุดไป่ตู้)
a)验证拐点
只让A相差动元件动作,所以在低压侧C相加电流制动C相差动元件,使其不动作。
一般只校验变压器某一侧(例如高压侧)的差动通道。高侧A相输入二次谐波电流,电流由小增大,使电流值分别为:0.5A、5A、10A、20A,观察并记录。将接至A相接线分别改接在B相及C相端子上,重复上述试验,观察并记录。
表10:二次谐波电流计算精度的校验
外加二次谐波电流
0.5A
5A
10A
20A
装置显示值
计算:
先计算各侧额定电流和平衡系数,结果如下:
表1:各侧额定电流和平衡系数
差动继电器内部基准电流IB
5A
高压侧二次额定电流Ie1
4.13A
高压侧平衡系数K1=IB/ Ie1
1.21
低压侧二次额定电流Ie3
4.55A
低压侧平衡系数K3=IB/ Ie3
1.10
因为外部TA接线:Y/ Y,变压器接线为YN,d11,所以,高压侧星三角变换投入,低压侧星三角变换退出。
表9:验证比率制动系数
高压侧
A相所加电流ia1
15A
星三角变换后
A相电流IA1=(Ia1-Ib1)/1.732
8.66A
B相电流IB1=(Ib1-Ic1)/1.732
0A
C相电流IC1=(Ic1-Ia1)/1.732
-8.66A
低压侧
A相初始电流ia3
-8A
A相动作电流ia3
B相
0A
B相
0A
C相电流ic3
0A
C相电流IC1=(Ic1-Ia1)/1.732
-10.48A
低压侧
A相所加电流ia3
-15A
ia3折算后电流Ia3= K3*ia3=(-15)*1.10
-16.50A
B相
0A
C相
0A
差流
A相
-6.02A
B相
0A
C相
-10.48A
同样的方法,加B相和C相,计算结果如下:
表3:加B、 C相时各相差流
0A
C相电流IC1=(Ic1-Ia1)/1.732
-4.2A
低压侧
初始值
动作值
ia3
-3A
ia3
ib3
0A
ib3
0A
ic3
4.2A
ic3
4.2A
差动电流
A相
1.2A
A相
B相
0A
B相
0A
C相
0A
C相
0A
制动电流
A相
3.6A
A相
B相
0A
B相
0A
C相
4.2A
C相
4.2A
b)验证比率制动系数
保持高压侧A相电流10A不变,低压侧A相加-5A,低压侧C相加5.77A不变,慢慢减小低压侧A相电流至保护动作,记录此时的数值,此时的A相差动和制动电流即斜线上一点X1。
若在高、低压侧A相各加15A的电流,方向相反,则高、低侧各相电流及各相差流如下:
表2:单加A相电流时的差流
高压侧
A相所加电流ia1
15A
ia1折算后电流Ia1= K1*ia1=15*1.21
18.15A
星三角变换后
A相电流IA1=(Ia1-Ib1)/1.732
10.48A
B相电流IB1=(Ib1-Ic1)/1.732
注2:下标1为高压侧,3为低压侧。
注3:试验时用实际定值根据上述方法制表计算。
2)初始动作电流校验
实验方法:单加高压侧A相电流,并缓慢增加至差动动作,记录电流值,同法测另外五组数据。
差动门槛:。
表5:初始动作电流校验
高压侧
低压侧
加流相
A
B
C
A
B
C
动作电流
3)比率制动特性校验
求各相差动的比率制动系数和拐点电流。
8.66A
C相电流ic3
8.66A
差动电流
A相
0.66A
A相
B相
0A
B相
0
C相
0A
C相
0
制动电流
A相
8.33A
A相
B相
0A
B相
0
C相
8.66A
C相
8.66A
根据X1和X2两点,可以求出比率制动系数:。
注1:试验时用实际定值根据上述方法制表计算。
4)涌流判据定值校验
a)二次谐波制动比的测量
●二次谐波电流计算精度的校验
C相差流
计算值
实验值
计算值
实验值
计算值
实验值
两侧加A相
-6.02A
0A
-10.48A
两侧加B相
-10.48A
-6.02A
0A
两侧加C相
0A
-10.48A
-6.02A
若计算值和实验结果基本相同,说明平衡系数正确,通道已调平衡。
注1:均为矢量计算,例如,加A相电流时以高压侧A相电流为正方向,负号表示与之反向。
单加B相电流
A相差流
-10.48A
B相差流
-6.02A
C相差流
0A
单加C相电流
A相差流
0A
B相差流
-10.48A
C相差流
-6.02A
现实验如下:将高低压侧中性点短接,测试仪A相接高压侧A相,测试仪N相接低压侧A相。观察装置显示的差流,并记录;同样的方法测B相和C相。
表4:通道平衡测试实验
A相差流
B相差流
A相差动
B相差动
C相差动
●测量二次谐波制动比
表8:验证比率制动系数
高压侧
A相所加电流ia1
10A
星三角变换后
A相电流IA1=(Ia1-Ib1)/1.732
5.77A
B相电流IB1=(Ib1-Ic1)/1.732
0A
C相电流IC1=(Ic1-Ia1)/1.732
-5.77A
低压侧
A相初始电流ia3
-5A
A相动作电流ia3
B相
0A
B相
0A
C相电流ic3
5.77A
C相电流ic3
5.77A
差动电流
A相
0.77A
A相
B相
0A
B相
0
C相
0A
C相
0
制动电流
A相
5.39A
A相
B相
0A
B相
0
C相
5.77A
C相
5.77A
保持高压侧A相电流15A不变,低压侧A相加-8A,低压侧C相加8.66A不变,慢慢减小低压侧A相电流至保护动作,记录此时的数值,此时的A相差动电流和制动电流即斜线上一点X2。
保持高压侧A相电流7.3A不变,低压侧A相加-3A,低压侧C相加4.2A不变,慢慢减小低压侧A相电流至保护动作,记录此时的数值,此时的A相差动和制动电流即拐点坐标。
表7:验证拐点电流
高压侧
A相所加电流ia1
7.3A
星三
角变
换后
A相电流IA1=(Ia1-Ib1)/1.732
4.2A
B相电流IB1=(Ib1-Ic1)/1.732
变压器差动保护实验
南京钛能电气研究所
南京南自电力控制系统工程公司
差动保护实验步骤如下:通道平衡情况检查,初始动作电流校验,比率制动特性校验,涌流判据定值校验,差动速断定值校验,差流越限监视校验。
1)通道平衡情况检查
试验举例。接线为YN,d11的双绕组变压器,额定电压分别为110kV及10kV,容量31500kVA,110kV侧TA:200/5,10kV侧TA:2000/5,外部TA接线:Y/ Y。