医学统计学-知识梳理(精.选)

合集下载

医学统计学复习重点

医学统计学复习重点

整理分析和2.计描述4.(集合)。

1.抽样随机2.分组随机3.实验顺序随机。

称全距,用离散系数,为标准差与均数只比,常:CV=s/x究,1.抽样研究2.个体变异。

系统误差:指数据搜集和测量过程中由于仪器不准确、造成观察结果呈倾向性的偏大或偏小,这种误差称为系统误差由于一些非人真实性(validity):观察值与真值的接近程度,受系统误差的影响( (reliabiliy)——也称精密度(precision)或重复性(repeatability)是直接用样本统计量作为对应的总体参数最常用的是95%10095有5在描述两变量间的关系时,若散点图呈直线趋势或有直线相关关系,可进行直线回归分析。

参数:根根据样本的分布特征而计算得到的1、★医学统计学工作基本步骤:统计设计;收集资料.;整理资料;分析资料2、★统计分析包括:统计描述、统计推断3、频数分布的两个重要特征:集中趋势和离散趋势4、正态分布的两个参数:均数;标准差。

5、★频数表的用途:揭示计量资料的分布类型;揭示计量资料的分布特征;便于发现特大值和特小值;便于进一步进行统计分析★常见的统计资料的类型有:计量资料;计数资料;等级资料7、★t检验的应用条件是:①正态分布:当样本含量较小时,要求样本来自正态总体。

②方差齐性:两样本均数比较时,要求两总体方差相等。

U检验的应用条件是:①大样本(如n>50);②小样本,σ已知且样本来自正态总体。

8、★.描述分类变量常用的指标有率、构成比、相对数。

9、率是指某种现象在一定条件下,实际发生的观察单位数与可能发生该现象的总观察单位数之比,常用来描述某种现象发生的频率大小或强度构成比是指一事物内部某一组成部分的观察单位数与该事物各组成部分的观察单位总数之比,常用来描述某一事物内部各组成部分所占的比重或分布。

10、★四格表卡方专用公式应用条件n≥40,且Tmin≥5 研究事物或现象间的线性关系用相关分析,研究事物或现象间的线性数量依存关系用回归分析。

(完整版),医学统计学第三版复习总结,推荐文档

(完整版),医学统计学第三版复习总结,推荐文档

方差由Y 及 b (x - x)的方差两部分构成个体Yi 值的范围预测
直线回归方程的应用
描述两变量的依存数量关系
利用回归方程进行预测
利用回归方程进行控制
第二直线相关 ( linear correlation )
;
()0.5,
()0.5, 对比组,
(RR)无单位,比值范围在0至∞之间。

表明暴露与疾病无联系;
表明存在负联系(提示暴露是保护因子);
消除更多因素(如大于3个)的影响:
分层分析受到限制,因为很多层可能没有病例,这时通常可使用COX回归模型
期望人数?即根据两种疗法疗效相同的假设,由总死亡人数计算出的两种疗法在该日的期望死亡人数。

1.生存率分析的概念,特点(与其它统计分析比较),适用范围。

生存分析:是将事件的结果和出现这一结果所经历的时间,结合起来分析的一种统计分析方法,它不仅可以从事件结局的好坏,如疾病的治愈(成功)和死亡(失败),而且可以从事件的持续时间,如某病经治疗后存活的时间长短进行分析比较,因而能够更全面、更精确地反映该治疗的效果。

医学统计学知识点总结

医学统计学知识点总结

医学统计学1. 对定量资料进行统计描述时,如何选择适宜的指标定量资料统计描述常用的统计指标及其适用场合描述内容指标意义适用场合平均水平;均数个体的平均值·对称分布几何均数平均倍数取对数后对称分布中位数[位次居中的观察值①非对称分布;②半定量资料;③末端开口资料;④分布不明众数频数最多的观察值不拘分布形式,概略分析?调和均数基于倒数变换的平均值正偏峰分布资料变异度全距观察值取值范围不拘分布形式,概略分析标准差(方差)观察值平均离开均数的程度对称分布,特别是正态分布资料四分位数间距?居中半数观察值的全距①非对称分布;②半定量资料;③末端开口资料;④分布不明变异系数标准差与均数的相对比①不同量纲的变量间比较;②量纲相同但数量级相差悬殊的变量间比较定性资料:阳性事件的概率,概率分布,强度和相对比。

¥2. 应用相对数时应注意哪些问题答:(1)防止概念混淆相对数的计算是两部分观察结果的比值,根据这两部分观察结果的特点,就可以判断所计算的相对数属于前述何种指标。

(2)计算相对数时分母不宜过小样本量较小时以直接报告绝对数为宜。

(3)观察单位数不等的几个相对数,不能直接相加求其平均水平。

(4)相对数间的比较须注意可比性,有时需分组讨论或计算标准化率。

3. 常用统计图有哪些分别适用于什么分析目的常用统计图的适用资料及实施方法<图形适用资料实施方法条图组间数量对比用直条高度表示数量大小直方图用直条的面积表示各组段的频数或频率(定量资料的分布百分条图构成比用直条分段的长度表示全体中各部分的构成比饼图构成比用圆饼的扇形面积表示全体中各部分的构成比定量资料数值变动线条位于横、纵坐标均为算术尺度的坐标系、线图半对数线图定量资料发展速度线条位于算术尺度为横坐标和对数尺度为纵坐标的坐标系散点图}双变量间的关联点的密集程度和形成的趋势,表示两现象间的相关关系箱式图定量资料取值范围用箱体、线条标志四分位数间距及中位数、全距的位置茎叶图定量资料的分布'用茎表示组段的设置情形,叶片为个体值,叶长为频数第3章概率分布(连续随机变量的正态分布;离散随机变量的二项分布及Poisson分布)1. 服从二项分布及Poisson分布的条件分别是什么二项分布成立的条件:①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。

《医学统计学》完整课件

《医学统计学》完整课件
确保受试者在医学统计学研究中的权 益得到充分尊重,遵循知情同意原则
,不损害受试者身心健康。
保护隐私
对受试者个人信息和数据进行严格保 密,防止数据泄露和滥用,确保个人
隐私不受侵犯。
公正选择受试者
遵循公平、公正原则,合理选择受试 者,避免任何形式的歧视和偏见。
数据安全与隐私保护
1 2
数据加密与备份
对医学统计数据进行加密处理,确保数据安全; 同时定期备份数据,防止数据丢失。
医学统计学的应用领域
临床试验
流行病学
在临床试验中,医学统计学用于分析试验 数据,评估治疗效果和安全性。
在流行病学研究中,医学统计学用于分析 疾病分布和影响因素,为预防和控制疾病 提供依据。
公共卫生
生物统计学
在公共卫生领域,医学统计学用于监测和 评估公共卫生状况,制定和评估公共卫生 政策。
在生物统计学中,医学统计学用于研究生 物学数据的分布和变化规律,为生物学研 究和医学研究提供支持。
生存分析中的多因素分析方法
多因素分析方法
考虑多个因素对生存时间的影响,常用方法有Cox比例风险模型和 分层分析等。
Cox比例风险模型
一种半参数模型,用于研究多个因素对生存时间的影响,并给出相 对风险比。
分层分析
将研究对象按照某些特征进行分层,然后在各层内进行统计分析,以 探讨各层内因素对生存时间的影响。
数据整理
对收集到的数据进行整理、核对和分类,确 保数据的规范化和标准化。
数据分析
选择合适的数据分析方法和技术,对数据进 行深入分析和挖掘,得出科学结论。
报告撰写
按照学术规范和要求,撰写研究报告或论文 ,客观地呈现研究结果和结论。
07
医学统计学中的伦理问题与数 据安全

医科大学医学统计学重点知识总结

医科大学医学统计学重点知识总结

第一章绪论1、统计学的定义:统计学研究数据的收集、整理、分析的一门学科。

医学统计学:医学统计学是以医学理论为指导,应用概率论与数理统计的有关原理、方法,研究医学资料的搜集、整理、分析和推断的一门科学。

2、医学统计研究三个步骤:研究设计、资料分析、结论3、(必考的)几个概念:(1)同质:性质相同异质:性质不同观察单位间的同质性是进行研究的前提同质是相对的(不同研究中或同一研究中不同观察指标对观察对象的同质性的要求不同)(2)个体变异:同质个体间的差异。

变异的两个方面:不同观察单位(个体)间的差别;同一个体在不同阶段的差别(重复测量)个体变异是普遍存在的;个体变异是有规律的。

注意:由于个体变异的存在,同质个体指标的取值会存在差异!(例:体温波动)(3)总体:按研究目的所确定的同质研究对象的全体。

有限总体:有时间、空间的概念,观察单位有限无限总体:无时间、空间的概念(例:某种治疗措施的效果,就包括接受这种治疗措施的所有病人过去、现在、未来,因而观察单位无限)(4)个体:组成总体的基本单位。

样本:从研究总体中随机抽取具有代表性的部分观察单位随机性的三个体现:抽样随机、分组随机、试验顺序随机(5)随机变量:观察对象个体的特征或测量的结果观察结果在一定范围内以一定的概率分布随机取值的变量,表示随机现象。

在一定条件下,并不总是出现相同结果变量值:个体观察指标具体取值(6)总体参数:总体的统计指标或特征值固有的、不变的,但往往是未知的(7)样本统计量:由样本所算出的统计指标或特征值已知的,且随着试验的不同而不同,但分布是有规律的(8)样本含量:样本中包含个体的数量(9)频率f=m/n,f的值随n的增大接近常数p,概率P(A)=p即:频率为一变量,是样本统计量;概率为常数,是一总体参数小概率事件:概率小于等于0.05小概率原理:小概率事件在一次试验中是不会发生的(10)抽样误差:两个表现:样本统计量与总体参数间的差别;不同样本统计量间的差别两个原因:个体变异;抽样过程抽样误差不可避免,但是有规律。

医学统计学重点重点知识总结

医学统计学重点重点知识总结

医学统计学重点选择1.几何均数:平均血清抗体滴度(如P9例2.4)2.正态分布:横轴为μ(界值、面积)2.5% I1.962.5%单侧双侧90%: 1.6495%: 1.64 1.9699%: 2.583.P值与α的关系,α是人为规定的,它们之间没有关系;P值f,Qt(X)4.方差分析自由度V的计算,V总=nT;V组间=组数(k)-1;V组间=V总-V组间5.理论秩和(n(n+1)∕2),实际秩和(通过平均秩次算)6.可信区间的正确应用:总体参数有95%的可能落在该区间内(X);有95%的总体参数在该区间内(X);该区间包含95%的总体参数(X);该区间有95%的可能包含总体参数。

(X);这个区间的可信度为95%(√);总体参数只有一个,要么在区间内,要么不在7.相关系数与回归系数:相关系数为0,两个变量之间没有相关关系(X);回归系数t,相关系数t(X);(要做假设检验)二、名解1.参考值范围:根据正常人的数据估计绝大多数的正常人所在的范围2.区间估计(可信区间):按一定的概率或可信度(bα)用一个区间估计总体参数所在范围。

这个范围称作可信度为1-a的可信区间,又称置信区间。

3.P值:拒绝HO时所冒的风险(或“作出拒绝HO而接受H1”结论时冒了P风险)4.a(第一类错误):HO真实时被拒绝(或HO真实时,拒绝H0,接受H1)5.β(第二类错误):HO不真实时不拒绝(或HO不真实时,不拒绝HO)1-β检验效能:对真实的H1做肯定结论之概率6.秩次:是指全部观察值按某种顺序排列的位序;7.秩和:同组秩次之和8.剩余标准差:扣除了X的影响后,Y方面的变异;引进回归方程后,Y方面的变异。

三、简答1.假设检验与可信区间的联系与区别分辨多个样本是否分别属于不同的总体,并对总体作出适当的结论。

分辨一个样本是否属于某特定总体等。

区间估计(可信区间):按一定的概率或可信度(1-a)用一个区间估计总体参数所在范围。

(完整版)医学统计学重点总结

1.简述总体和样本的定义,并且举例说明。

总体是研究目的确定的所有同质观察单位的全体。

样品是从研究总体中抽取部分有代表性的观察单位。

2.简述参数和统计量的定义,并且举例说明。

描述总体特征的指标称为参数,描述样本特征的指标称为统计量。

3.变量的类型有哪几种?举例说明各种类型变量有什么特点。

①定量数据:计量资料;定量的观测值是定量的,其特点是能够用数值的大小衡量其水平的高低。

②定性数据:计数资料;变量的观测值是定性的,表现为互不相容的类别或属性。

③有序数据:半定量数据/等级资料;变量的观测值是定性的,但各类别(属性)有程度或顺序上的差异。

4.请举例说明一种类型的变量如何变换为另一种类型的变量。

定量数据>有序数据>定性数据--------------->5.请简述什么是小概率事件?概率是描述事件发生可能性大小的度量,P 0.05事件称为小概率事件。

≤6.举例说明什么是配对设计。

配对设计是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。

①同源配对:同一受试对象或同一标本的两个部分,随机分配接受两种不同处理;②异源配对:为消除混杂因素的影响,将两个同质受试对象配对分别接受两种处理。

7.非参数假设检验适合什么类型数据进行分析?①总体分布类型未知或非正态分布数据;②定量或半定量数据;③数据两端无确定的数值。

8.简述P 25 P 50 P 75的统计学意义。

(条件:明显偏态且不能转化为正态或近似对称;一端或两端无确定数值;分布情况未知)用来描述资料的观测值序列在某百分位置的水平,四分位数间距可以作为说明个体差异的指标(说明个体在不同位置的变异情况)。

9.直条图、直方图、圆饼图的使用条件是什么?直条图:各自独立的统计指标的数值大小和他们之间的对比;直方图:连续变量频数分布情况;圆饼图:全体中各部分所占的比例。

10.统计分析包括哪两个方面的内容?为什么要进行统计推断?统计描述和统计分析;统计描述用来描述及总结一组数据的重要特征,其目的是使实验或观察得到的数据表达清楚并便于分析。

医学统计学知识点总结

知识点1.统计学是应用概率论和数理统计的基本原理和方法,研究数据的搜集、整理、分析、表达和解释的一门学科。

2.医学统计学是应用统计学的基本原理和方法,研究医学及其有关领域数据信息的搜集、整理、分析、表达和解释的一门学科。

3.统计软件包是对资料进行各种统计处理分析的一系列程序的组合。

4.统计工作的基本步骤:研究设计、搜集资料、整理资料和分析资料。

5.科研结果的好坏取决于研究设计的好坏,研究设计是统计工作中的基础和关键,决定着整个统计工作的成败。

6.统计分析包括统计描述和统计推断。

统计描述是对已知的样本(或总体)的分布情况或特征值进行分析表述;统计推断是根据已知的样本信息来推断未知的总体。

7.医学原始资料的类型有:计量资料、计数资料、等级资料。

8.计量资料是用定量的方法对每一个观察单位的某项指标进行测定所得的资料。

9.计数资料是把观察单位按某种属性(性质)或类别进行分组,清点各组观察单位数所得资料。

10.等级资料是把观察单位按属性程度或等级顺序分组,清点各组观察单位数所得资料。

各属性之间有程度的差别。

等级资料的等级顺序不能任意颠倒。

11.同质:是指所研究的观察对象具有某些相同的性质或特征。

12.变异:是同质个体的某项指标之间的差异,即个体变异或个体差异性。

13.总体是根据研究目的确定的同质研究对象的总体。

样本是总体中具有代表性的一部分个体。

14.抽样研究是通过从总体中随机抽取样本,对样本信息进行分析,从而推断总体的研究方法。

抽样误差是由随机抽样造成的样本指标与总体指标之间、样本指标与样本指标之间的差异,其根源在于总体中的个体存在变异性,只要是抽样研究,就一定存在抽样误差,不能用样本的指标直接下结论。

15.统计学的主要任务是进行统计推断,包括参数估计和假设检验。

16.概率是某随机事件发生可能性大小(或机会大小)的数值度量。

概率的取值为0≤P≤1。

小概率事件是指P≤0.05的随机事件。

17.频数表和频数分布图的用途:(1)揭示计量资料的分布类型。

医学统计学复习重点

医学统计学复习重点统计设计:调查设计、实验设计第一章绪论1.基本概念:总体——根据研究目的确定,所有同质观察单位某种观察值的全体。

样本——总体中抽取的一部分具有代表性的个体组成的集合。

参数-—刻画总体特征的统计指标。

一般用希腊字母表示μ、σ、π统计量—-刻画样本特征的统计指标.抽取的样本不同,统计量会变化;一般用拉丁字母或英文字母表示、S、p抽样误差:个体变异所致,抽样研究中样本信息与总体特征间的差异。

抽样误差是不可避免的。

属于随机误差,无方向性,重复抽样可以呈现一定的规律性。

小概率事件P≤0。

052.*统计工作的四个步骤:设计、收集资料、整理资料、分析资料。

(用工作实例解释)第二章调查研究设计第三章实验研究设计1.调查研究(观察性研究):特点:无人为施加处理因素调查研究的分类:按调查涉及的对象划分:全面调查(普查)、抽样调查、典型调查注意:收集的资料要有可比性*随机抽样方法(做统计推断有意义):单纯随机抽样、系统抽样、分层抽样、整群抽样非随机抽样方法(不能做统计推断,可能有偏差):偶遇抽样、判断抽样、滚雪球抽样等2.实验研究特点:与调查研究最本质的区别:根据研究目的主动施加干预措施实验设计的三个基本要素:受试对象、处理因素、实验效应实验设计的基本原则:对照原则、随机化原则、重复原则第四章定量资料的统计描述第五章定性资料的统计描述1.定量资料(1)定量资料——*频数分布表、直方图、箱式图—-判断分布类型——(2)描述离散趋势的统计指标:✓极差R=最大值—最小值、✓四分位数间距Q:常用于描述*偏态分布资料的离散趋势、一端或两端无确切值的资料、分布不明确资料✓方差(总体、样本S2)&标准差(、S):*正态或近似正态分布✓变异系数(3)(4)正态分布及其应用:**制定医学参考值范围步骤:判断分布类型-—正态分布-—*双侧95%参考值范围:±1.96S、单侧95%参考值范围:下限为—1。

64S、上限为+1。

医学统计学-总结-重点-笔记-复习资料

第一章2选1总体:总体(population)是根据研究目的确定的同质观察单位(研究对象)的全体,实际上是某一变量值的集合。

可分为有限总体和无限总体。

总体中的所有单位都能够标识者为有限总体,反之为无限总体。

总体population根据研究目的而确定的同质观察单位的全体。

样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。

样本应具有代表性。

所谓有代表性的样本,是指用随机抽样方法获得的样本。

样本sample从总体中随机抽得的部分观察单位,其实测值的集合。

3选1小概率事件:我们把概率很接近于0(即在大量重复试验中出现的频率非常低)的事件称为小概率事件。

P值:P 值即概率,反映某一事件发生的可能性大小。

统计学根据显著性检验方法所得到的P 值反应结果真实程度,一般以P ≤ 0.05 认为有统计学意义, P ≤0.01 认为有高度统计学意义,其含义是样本间的差异由抽样误差所致的概率等于或小于0.05 或0.01。

P值是:1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。

2) 拒绝原假设的最小显著性水平。

3) 观察到的(实例的) 显著性水平。

4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。

小概率原理:一个事件如果发生的概率很小的话,那么可认为它在一次实际实验中是不会发生的,数学上称之小概率原理,也称为小概率的实际不可能性原理。

统计学中,一般认为等于或小于0.05或0.01的概率为小概率。

资料的类型(3选1)(1)计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。

计量资料亦称定量资料、测量资料。

.其变量值是定量的,表现为数值大小,一般有度量衡单位。

如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等。

计量资料measurement data定量资料quantitative data数值变量资料numerical variable为观测每个观察单位某项指标的大小,而获得的资料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

均数 方差 标准差 均数标准差/标准误 样本 X

2S

S 估计值 XS

总体  2

X

均数±2.58标准差:表示集中位置、离散程度 均数±2.58标准误:表示平均水平、抽样误差大小P75

一、标准差的主要作用是估计正常值的范围

实际应用中,估计观察值正常值范围应该用标准差(s),表示为“Mean ±SD”。此写法综合表达一组观察值的集中和离散特征的变异情况,说明样本平均数对观察值的代表性。s 的大或小说明数据取值的分散或集中。s与样本均数合用, 主要是在大样本调查研究中, 对正态或近似正态分布的总体正常值范围进行估计。如果不是为了正常值范围估计,一般不用。当数据与正态分布相差很大,或者虽为正态分布, 但样本容量太小(小于30 或100),也不宜用估计正常值范围。 二、标准差还可用来计算变异系数(CV) 当两组观察值单位不同, 或两均数相差较大时,不能直接用标准差比较其变异程度的大小, 须用变异系数系数来做比较。: 2.2 标准误的正确使用 一、标准误用来衡量抽样误差的大小和了解用样本平均数来推论总体平均数的可靠程度。 在抽样调查中,往往通过样本平均数来推论总体平均数,样本标准误 适用于正态或近似正态分布的数据, 是主要描述小样本试验中,样本容量相同的同质的多个样本平均均数间的变异程度的统计量。即如果多次重复同一个试验, 它们之间的变异程度用。显然它越小,样本平均数变异越小,越稳定,用样本平均数估计总体均数越可靠。因此,为说明它的稳定性、可靠性或通过几个对几组数据进行比较(这是科研论文中最常见的),应当用描述数据。实际应用中应该写成“平均数±标准误”或而英文表示为“Mean ±SE”的形式。 二、标准误还可以进行总体平均数的区间估计与点估计(置信区间)。 根据正态分布原理, 与 合用还可以给出正态总体平均数的可信区间估计即推论总体平均数的可靠区间,例如常用 (其中t0.05 (n-1) 为样本容量是n的t界值)表示总体均值的95%可信区间, 意指总体平均数有95%的把握在所给范围内。 三、标准误还可用来进行平均数间的显著性检验,从而判断平均数间的差别是否是由抽样误差引起的。例如:某当地小麦良种的千粒重=34克,现在从外地引入一新品种,通过多小区的田间试验得到千粒重的平均数=35.2克,问新引进品种千粒重与当地良种有无显著差异?新引进品种千粒重与当地良种有无显著差异实质是判断与的差别是否是有田间试验是抽样误差引起,所以要进行显著性检验,这里用t测验进行检验,而,由于,故,所以认为新引进品种千粒重与当地良种千粒重的不同是由于田间试验是抽样 误差引起,因此他们之间无显著差异。所以在进行平均数间的显著性检验是必须用到。 总之,标准差和标准误最常用的统计量,二者都是衡量样本变量(观察值) 随机性的指标,只是从不同角度来反映误差,二者在统计推断和误差分析中都有重要的应用。如果没有标准差,人们就无法看出一组观察值间变异程度有多大,这些数字到底有无代表性,如果没有标准误又很难看出我们的样本平均数是否可以代表总体平均数。所以二者都非常重要。

定量资料的统计描述: 频数分布表:全距,R=最大值-最小值;组距=全距/组数,(组数8-9人一组) 频数分布图:直方图 集中位置的描述:平均数3

1.算数均数:μ总体均数,X样本均数。适用定量资料,对称分布,正态或近似正态 2.几何均数:G,适用变量值呈倍数关系,偏态尤其对数变换后正态或近似正态 3.中 位 数:M,各种分布(不对称,两端无确切值,分布不明确),正态等于算数均数,对数正态等于几何均数。 离散程度描述:5 1.极差:R,同全距,各种分布,但一般单峰、对称、小样本 2.四分位数间距:P75—P25,(不对称,两端无确切值,分布不明确),P25,P50,P75,共三点将全部观察值分为四部分 3.方差:总体σ2,样本S2(计算时除以自由度n-1)。单峰对称。 4.标准差:总体σ,样本S。单峰对称,对数变换后正态或近似正态使用几何标准差。

5.变异系数:CV=S/X*100%。适用不同计量单位(身高和体重),或均数相差很大 正态分布及其应用:N(μ,σ2) 特征:4①横轴上方均数处最高;②均数为中线,左右对称;③位置参数/总体均数μ,形态参数/标准差σ;④曲线下面积分布有一定规律,对称,1.645—90.00%,1.96—95.00%,2.58—99.00%。

6.正态分布:N(,2)经标准化转换 XZ 为标准正态分布/Z分布:Z(0,1)

7.制定医学参考限值时,分双侧(±)、单侧,单侧又分只有下限(-)、只有上限(+)。 定性资料描述:分类/计数资料,性别,疾病感染情况,病情轻重...,相对数进行统计描述。 相对数:3 1.率:频率(发病率、患病率),0到1之间;速率(肿瘤患者5年生存率),分母乘以时间数(125人追踪2年死亡2人,年死亡率=2/125*2 *100%)0到∞。 2.构成比: 3.相对比:两个有关联的指标比值(变异系数,相对危险度,比值比..) 应用注意:①足够的观察单位数; ②不能以构成比代替率,事物内部各组分所占比重不能说明某现象发生的频率或强度大小; ③分别将分子和分母合计求合计率; ④相对数的比较注意可比性,其他的年龄、性别等相同或相近,可分层或标准化再比较; ⑤样本率、样本构成比应做假设检验再比较(是比较其所代表的总体~有无差异)。 率的标准化:

标准化率:p’=NpNii(pi被标化组死亡率,Ni标准组年龄别人口,N标准组总人口) 标准化死亡率比:SMR=被标化组实际死亡数/预期死亡数 被标化组实际死亡数=本年龄组死亡率*标准组本年龄组人口(用被标化组年龄别死亡率去预测标准人口中可能死亡人数) 总体均数的估计: 抽样误差:由个体变异产生的、随机抽样引起的样本统计量与总体参数间的差异。

样本均数的标准差=均数的标准误,其估计值:nSSX (进行一次抽样即可估计均数标准误)

t分布 1nS/-XS-XtXnv,μμ (总体均数的区间估计,t检验...) t分布特征:①以t=0为左右对称的单峰分布; ②曲线形态取决于自由度大小,n越小,XS越大,样本X间差异越大,n→∞,t分布就是标准正态分布(Z分布)。

总体均数的估计: 点估计用X作为μ,无法评价可信程度。 区间估计:2

1、单样本:n不论大小,μ双侧(1-α)置信区间 XvStX,2/(确切法)

n>100,t接近Z,μ双侧(1-α)置信区间 XvSZX,2/ (1.645 1.96 2.58)(正态近似法) 2、两样本: 两均数之差的标准误:① n1、n2不论大小,)11(21221nnSSCXX(确切法)

② n1、n2均较大时,t接近Z,则221221nSnSSCCXX(正态近似法) 两总体均数差值的置信区间:(μ1-μ2) 为 212/21-XXvStXX,(t与Z根据条件可互换) t检验:Student’s t检验,从样本均数推总体均数 条件:①t检验,单样本中,n<50,总体正态分布。 ②t’检验,两小样本,总体正态分布,但两样本总体方差不等。公式好复杂,P96 word.

NXC2)(

③Z检验,两大样本,n均>50,单峰、近似正态。 1、单样本t检验:样本所代表的总体均数μ与已知总体均数μ0比较 1nS/-XS-Xt0X0nv,μμ

2、配对t检验:①配对的两受试对象分别接受2种不同处理;②同一样品用两种方法或仪器检测;③同一受试对象两不同部位测定数据。

H0为两总体均数相同,差值的样本均数d所代表的总体均数d

μ为0,则

1n/Sdn/S0-dS-dtdddnvd,μ(n为对子数)

3、两独立样本/成组t检验:两样本分别正态分布,H0为两总体均数相等,则 ① n1、n2不论大小, 2)2111(21221nnvnnSXXtc,(确切法)

② n1、n2均>50,t接近Z, 22212121nSnSXXZ(正态近似法) 4、两样本几何均数t检验:(抗体滴度等)不服从正态,但服从对数正态,公式同成组t检验。 正态性检验:①图示法:P-P图法,Q-Q图法 ②统计检验法:W检验(n≤50),矩法检验(总体偏度、峰度),D检验 方差齐性检验:①两总体方差齐性检验,判断两总体方差是否相等,F检验

11(22112221nvnvSSF,,(较小)

较大)(进行假设检验,α=0.10,查F界值表)

②多样本方差齐性检验:q检验!!!Levene检验(可两总体),Bartlett检验。用于方差分析。 方差分析ANOVA/F检验:总体均数之间差别? 多样本均数的比较,通过对数据变异的分析来推断两个/多个样本均数所代表的总体均数是否有差别。 应用条件:①各样本是相互独立的随机样本,均服从正态;②各样本总体方差相等,即方差齐性。 总变异:数据的均方MS总,处理影响+随机误差(个体差异+测量误差) 组间变异:MS组间,处理因素的影响 组内变异:MS组内,随机误差的影响

21,vvMSMSF分母(服从自由度分子组内组间)

1、完全随机设计资料:成组设计的多个样本~,单因素两水平/多水平方差分析。3变异 同质的受试对象 随机分配到各处理组,各组样本含量相等或不等。

SS总=SS组间+SS组内 1XMS2总NC NXCkCnXvii221/SSMS)(,)(组间组间组间 V总=V组间+V组内

v总=N-1 V组间=k-1 V组内=N-k 21,vvMSMSF分母(服从自由度分子组内组间) v1组间,v2组内 注意:总体均数不全相同,两两之间比较用另外的方法。 2、随机区组设计资料;配伍组设计,两因素。3变异 受试对象按照性质分成b个区组/配伍组,每个区组随机分配到k个处理组。

MS总=MS处理组+MS区组+MS误差 vSS=MS v总=v处理组+v区组+v误差 =(处理-1)+(区组-1)+误差=N-1

相关文档
最新文档