医学统计学知识点范文.doc
医学统计学重点归纳

医学统计学重点归纳
嘿,大家好呀!今天咱来聊聊医学统计学的重点归纳哈。
首先呢,咱得知道啥是医学统计学呀,简单说就是用些数字方法来研究医学那点事儿。
就好比医生看病,光凭感觉可不行,得有数据支持才行嘞。
样本和总体可别搞混咯,总体就是一大群,样本就是从里面挑出来的一小部分。
咱得从这小部分里看出点门道来,推断总体的情况。
还有那个均值、中位数和众数,可别小瞧它们。
均值就是平均数啦,大家都懂;中位数就是中间那个数;众数呢就是出现最多的那个数。
就像一群人里找个代表一样。
再说说概率吧,这东西可神奇了。
有时候生病的概率就像抽奖,不知道啥时候就轮到你啦。
相关和回归也很重要呀,就像两个人的关系,能看出它们之间有没有关联。
要是能找到规律,那可就厉害咯。
方差和标准差呢,就是看数据波动大不大。
波动大就像小孩调皮,不太稳定;波动小就像乖宝宝,比较靠谱。
哎呀呀,医学统计学虽然听着有点复杂,但其实就像生活中的小智慧一样。
咱医生就是靠着这些来诊断病情、判断治疗效果呢。
总之呢,医学统计学就像医生的秘密武器,能让咱看病更靠谱,治病更有把握。
大家可别小瞧它哟!好啦,今天就说到这啦,希望你们对医学统计学也有了更深的了解呀!拜拜咯!
怎么样,是不是对医学统计学有了点初步认识啦?哈哈,以后再遇到相关的事儿,就不会摸不着头脑啦!。
医学统计学知识点【范本模板】

第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。
2、研究对象:具有不确定性结果的事物。
3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。
4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。
5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断。
6、医学统计学中的基本概念(1)同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同。
变异,指总体内的个体间存在的、绝对的差异.统计学通过对变异的研究来探索事物。
(2) 变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。
变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果。
(如身高、体重、血压、温度等)定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。
包括二分类、无序多分类。
(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、AB等)有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。
统计方法的选用与数据类型有密切的关系。
(3)总体与样本总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。
样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。
抽样,是从研究总体中随机抽取部分有代表性的观察单位。
参数,指描述总体特征的指标.统计量,指描述样本特征的指标.(4)误差误差,指观测值与真实值、统计量与参数之间的差别。
可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性.随机测量误差,是偶然机遇所致,误差没有固定的大小和方向。
抽样误差,是抽样引起的统计量与参数间的差异。
抽样误差主要来源于个体的变异。
(完整版)医学统计学总结,推荐文档

医学统计学总结(基础部分)一、医学统计学基础(一)基本概念同质与变异总体与样本参数与统计量变量与数据类型概率误差1.由变异(variation)衍生出的术语:变量variable 方差variance方差分析、变异数分析(ANOVA analysis of variance)多反应变量multivariate2.变量:数值变量(顺序变量、连续性变量、定量变量)名义变量(定性变量、无序分类变量)等级变量(有序分类变量)3.资料类型:定量资料/定性资料计数资料/计量资料连续型资料/离散型资料。
4.统计步骤:(1)统计设计;(2)搜集资料;(3)整理资料;(4)分析资料(二)统计描述:1.定量资料的统计描述:平均数(均数,中位数,几何均指标意义应用场合平均数均数平均水平对称分布,特别是正态分布或近似正态分布资料几何均数平均增(减)倍数对数正态分布资料中位数排序后位次居中的观察值水平偏态分布;分布不明;分布末端无确定值变异度极差(全距)个体差异范围说明传染病,食物中毒等的最短、最长潜伏期等四分位数间距个体变异程度偏态分布、分布不明、分布末端无确定值资料的离散程度方差/标准差个体变异程度描述正态分布或近似正态分布资料的离散程度变异系数相对变异程度比较度量衡单位不同或单位相同但均数相差悬殊的多组资料的变异度2.理解:标准差与标准误的区别与联系3.定性资料的统计描述:相对数(率,构成比,比),一些常用率的应用:发病率与患病率死亡率与病死率、因病死亡率等标准化法动态数列4.统计图表:统计图(线图,半对数线图,直条图,直方图,百分条图,圆图,散点图,统计地图,箱式图)图形适用资料做图方法条图组间数量对比用直条高度表示数量大小直方图定量资料的分布用直条的面积表示各组段的频数或频率百分条图构成比用直条分段的长度表示全体中各部分的构成比饼图构成比用圆饼的扇形面积表示全体中各部分的构成比线图定量资料数值变动线条位于横、纵坐标均为算术尺度的坐标系半对数线图定量资料发展速度线条位于算术尺度为横坐标和对数尺度为纵坐标的坐标系散点图双变量间的关联点的密集程度和形成的趋势,表示两现象间的相关关系箱式图定量资料取值范围用箱体、线条标志四分位数间距及中位数、全距的位置茎叶图定量资料的分布用茎表示组段的设置情形,叶片为个体值,叶长为频数(三)统计推断:1.抽样误差、标准误2.t 分布特点:①以0 为中心左右对称的单峰分布;②自由度越小,曲线越扁平,自由度越大曲线越尖峭;③自由度 ∞,t 分布曲线趋近与标准正态分布曲线。
医科大学医学统计学重点知识总结

第一章绪论1、统计学的定义:统计学研究数据的收集、整理、分析的一门学科。
医学统计学:医学统计学是以医学理论为指导,应用概率论与数理统计的有关原理、方法,研究医学资料的搜集、整理、分析和推断的一门科学。
2、医学统计研究三个步骤:研究设计、资料分析、结论3、(必考的)几个概念:(1)同质:性质相同异质:性质不同观察单位间的同质性是进行研究的前提同质是相对的(不同研究中或同一研究中不同观察指标对观察对象的同质性的要求不同)(2)个体变异:同质个体间的差异。
变异的两个方面:不同观察单位(个体)间的差别;同一个体在不同阶段的差别(重复测量)个体变异是普遍存在的;个体变异是有规律的。
注意:由于个体变异的存在,同质个体指标的取值会存在差异!(例:体温波动)(3)总体:按研究目的所确定的同质研究对象的全体。
有限总体:有时间、空间的概念,观察单位有限无限总体:无时间、空间的概念(例:某种治疗措施的效果,就包括接受这种治疗措施的所有病人过去、现在、未来,因而观察单位无限)(4)个体:组成总体的基本单位。
样本:从研究总体中随机抽取具有代表性的部分观察单位随机性的三个体现:抽样随机、分组随机、试验顺序随机(5)随机变量:观察对象个体的特征或测量的结果观察结果在一定范围内以一定的概率分布随机取值的变量,表示随机现象。
在一定条件下,并不总是出现相同结果变量值:个体观察指标具体取值(6)总体参数:总体的统计指标或特征值固有的、不变的,但往往是未知的(7)样本统计量:由样本所算出的统计指标或特征值已知的,且随着试验的不同而不同,但分布是有规律的(8)样本含量:样本中包含个体的数量(9)频率f=m/n,f的值随n的增大接近常数p,概率P(A)=p即:频率为一变量,是样本统计量;概率为常数,是一总体参数小概率事件:概率小于等于0.05小概率原理:小概率事件在一次试验中是不会发生的(10)抽样误差:两个表现:样本统计量与总体参数间的差别;不同样本统计量间的差别两个原因:个体变异;抽样过程抽样误差不可避免,但是有规律。
医学统计学基础

医学统计学基础医学统计学是一门研究医学中数据的收集、分析和解释的科学。
它在医学研究中扮演着至关重要的角色,并且对医学实践和决策具有深远影响。
本文将介绍医学统计学的基本概念、常用的统计方法以及其在医学领域的应用。
一、基本概念1.1 总体与样本在医学统计学中,我们常常需要研究某个感兴趣的群体,这个群体被称为总体。
总体可以是人群中的所有个体,也可以是其他单位,如医院、地区等。
由于总体往往很大,我们无法对其进行全面的研究,因此我们从总体中选取一部分个体进行研究,这部分个体称为样本。
1.2 数据类型医学研究中常见的数据类型包括定性数据和定量数据。
定性数据是描述性质或属性的数据,如性别、病情分类等;定量数据是可度量或计数的数据,如年龄、生命体征等。
了解数据类型对选择合适的统计方法至关重要。
1.3 描述统计学与推断统计学描述统计学用于总结和描述已有数据的特征,如均值、中位数、标准差等。
推断统计学则是通过对样本进行分析,推断总体的特征,并对结果进行估计和推断。
推断统计学可通过假设检验和置信区间来实现。
二、常用统计方法2.1 均值与标准差均值是用来描述一组数据集中趋势的指标,一般用于定量数据。
标准差则衡量了数据的离散程度,即数据的波动情况。
2.2 相关分析相关分析用于研究两个变量之间的关系。
通过计算相关系数,可以了解两个变量是正相关、负相关还是无关。
2.3 生存分析生存分析是用来研究事件发生和持续时间的统计方法。
在医学中,生存分析常用于研究患者的生存时间、复发时间等。
2.4 方差分析方差分析用于比较两个或多个组的均值是否存在显著差异。
它适用于一组分类变量和一个连续变量的比较。
三、医学统计学的应用3.1 临床试验设计与分析临床试验是评价药物疗效的重要手段。
医学统计学在临床试验的设计和分析中起到关键作用,如确定样本量、随机分组、双盲试验等。
3.2 流行病学研究流行病学研究可以揭示疾病的发病原因、预后以及控制策略。
医学统计学的方法可以帮助研究者分析大量数据,确定疾病的危险因素和相关性。
(完整word版)医学统计学符号,公式,重点

(完整word版)医学统计学符号,公式,重点第⼀章医学统计中的基本概念1、医学统计学是研究医学数据的收集、整理、分析、解释和呈现其结果的⼀门学科。
2、个体:研究的基本观察单位。
3、变量:⽤于观察研究对象的指标。
4、观察值:个体变量的数值。
5、资料:⼜称为数据,由变量的观察值构成。
变异:个体观察值之间具有的差异。
变异和同质是对统计学数据的要求!变异是统计学研究的真正对象!统计学是研究变异规律的科学!同质:个体观察值之间的变异在允许范围内。
异质:个体观察值之间的变异超出允许范围。
⼀、总体、抽样、样本、参数、统计量总体:同质的个体所构成的全体研究对象。
总体同时具有同质和变异两个特点。
有限总体:总体中的个体数量是有限的。
⽆限总体:总体中的个体数量是⽆限的。
样本:从总体中随机抽取的部分个体。
样本量:样本所包含的个体数⽬。
参数:刻画总体特征的指标。
统计量:刻画样本特征的指标。
抽样:从总体中随机抽取部分个体的过程。
抽样具有代表性、随机性、可靠性、可⽐性;原则:代表性:样本能充分反映总体特征。
随机性:保证总体中每个个体都有相同的⼏率被抽样。
随机性是代表性的保证;⽣活中随机性的例⼦(思考题);计量资料:由连续变量的观察值构成的资料。
对每个观察对象的观察指标⽤定量⽅法测定其数值⼤⼩所得的资料,⼀般有度量衡单位,例如年龄、⾝⾼、⾎糖。
计数资料:由离散变量的观察值构成的资料。
先将观察对象的观测指标按性质或类别进⾏分组,然后计数各组的数⽬所得的资料,例如性别、患病、⾎型。
等级分组资料:由等级变量的观测值构成的资料。
具有计数资料的特征,同时⼜具有半定量性质的资料,例如细菌培养阳性结果。
⼆、3种设计类型:完全随机设计;配对设计;配伍组设计。
三、抽样误差、概率和⼩概率事件抽样误差:由抽样引起的样本统计量与总体参数之间的差异。
抽样误差的原因;抽样误差是不可避免的。
概率P :表⽰某事件发⽣的可能性⼤⼩的度量。
⼩概率事件:统计学上习惯将P ≤0.05或P ≤0.01的事件称为⼩概率事件,表⽰该事件发⽣的可能性很⼩。
医学统计学知识点

医学统计学知识点医学统计学是应用统计学原理和方法于医学领域的一门学科,通过对医学数据的收集、整理、分析和解释,可以帮助医学研究者和临床医生更好地理解和应用医学知识。
本文将介绍一些医学统计学中的重要知识点。
一、数据的类型在医学统计学中,我们常常需要处理各种类型的数据,其中最常见的数据类型包括:1. 定性数据:也称为分类数据,指描述事物性质或属性的数据,如性别、疾病类型等。
2. 定量数据:也称为连续数据,指可以用数字进行度量的数据,如身高、体重、血压等。
3. 二分类数据:指只有两种可能取值的数据,如阳性/阴性、生/死等。
4. 多分类数据:指有多种可能取值的数据,如血型、既往医疗史等。
二、描述统计学1. 描述性统计:描述性统计是对数据进行整理、总结和描述的过程,主要包括以下指标:- 频数与频率:频数是指某一数值在数据集中出现的次数,频率是频数与数据总数的比值。
- 中心趋势指标:包括均值、中位数和众数,用于描述数据的集中程度。
- 离散程度指标:包括标准差、方差和四分位差等,用于描述数据的分散程度。
2. 绘图方法:绘图是描述性统计的重要手段之一,常用的绘图方法包括:- 饼图:用于展示分类数据的比例关系。
- 条形图:用于展示不同类别之间的数量关系。
- 箱线图:用于展示数据的分布情况和异常值。
- 散点图:用于展示两个变量之间的相关性关系。
三、推断统计学推断统计学是从样本中得出总体特征的方法,通过对样本数据的分析来进行推断。
其中的重要概念和方法包括:1. 总体与样本:总体是我们研究的对象的全体,样本是从总体中选取的一部分。
2. 参数与统计量:参数是总体的特征值,统计量是样本的特征值,通过统计量来估计参数。
3. 抽样分布:抽样分布是样本统计量的概率分布,常用的抽样分布包括正态分布和t分布。
4. 假设检验:假设检验是通过对样本数据进行统计推断,判断总体参数是否满足某个假设。
5. 置信区间:置信区间是对总体参数的一个范围估计,常用于估计总体均值和总体比例。
医学统计学 (2)重点知识总结

医学统计学第一章、绪论1、医学统计学★★★:是以医学理论为指导,应用概率论与数理统计的有关原理和方法,研究医学资料的搜集、整理、分析和推断的一门科学。
2、如何学好、用好医学统计学?①进行科学的医学科研设计;②掌握资料的收集、处理方法(流行病学);③虽不要求掌握统计公式的数理推导,但必须了解其直观的意义、用途和应用条件;④对于不同类型的数据资料选择合理的统计描述和分析方法;⑤对于统计获得的结果进行合理的解读,不能将医学问题归结到纯粹的数量问题。
3、几个基本概念(1)同质和异质:①具有相同性质的事物称为同质的(homogeneous);否则称为异质的或者间杂(heterogeneous)。
②同质和异质是相对的概念。
③不同质的个体不能笼统地混在一起分析(不同年龄组的男童身高)。
(2)变异★①同质事物之间的差别称为变异(Variation);②由于观察单位通常即观察个体,变异亦称为个体变异;③就每个观察单位而言,观察指标的变异是不可预测的,或者说是随机的;④统计学是探讨变异规律并运用其规律性进行深入分析的一门学科,因此,没有变异就没有统计学。
(3)总体、个体和样本★★★总体(Population):根据研究目的所确定的同质观察单位的全体;分为有限总体(确定的时间和空间范围,如20名患者的血红蛋白含量)和无限总体(没有时间和空间的概念,如辅助疗法对肾移植病人生存时间的影响)。
个体(Individual):是构成总体的最基本观察单位。
样本(Sample):是从总体中按照一定的目的随机抽取的一部分个体。
样本含量(Sample Size):样本中包含的个体个数。
即使是有限的总体,实际研究中也不可能逐一筛查;因此,在实际工作中,从总体中随机抽取一定含量的样本,根据样本所提供的信息推断总体的特征,这是统计推断的基础。
(4)随机★随机(Random):是指机会均等,目的是保证样本对总体的代表性、可靠性。
随机抽样:有相同的机会被抽到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。
2、研究对象:具有不确定性结果的事物。
3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。
4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。
5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断。
6、医学统计学中的基本概念(1) 同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同。
变异,指总体内的个体间存在的、绝对的差异。
统计学通过对变异的研究来探索事物。
(2) 变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。
变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果。
(如身高、体重、血压、温度等)定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。
包括二分类、无序多分类。
(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、AB等)有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。
统计方法的选用与数据类型有密切的关系。
(3)总体与样本总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。
样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。
抽样,是从研究总体中随机抽取部分有代表性的观察单位。
参数,指描述总体特征的指标。
统计量,指描述样本特征的指标。
(4)误差误差,指观测值与真实值、统计量与参数之间的差别。
可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。
随机测量误差,是偶然机遇所致,误差没有固定的大小和方向。
抽样误差,是抽样引起的统计量与参数间的差异。
抽样误差主要来源于个体的变异。
统计学主要研究抽样误差。
(5)概率概率,是描述某事件发生可能性大小的量度。
必然事件,事件肯定发生,概率P(U)=1;随机事件,事件可能发生,可能不发生,概率介于0≤P(A)≤ 1;不可能事件,事件肯定不发生,概率P(∮)=0;小概率事件,事件发生的可能性很小,概率P(A)≤ 0.05、或P(A)≤ 0.01。
医学科研中,P(A)≤0.05作为事物差别有统计意义,P(A)≤ 0.01作为事物差别有高度统计意义。
第二章定量数据的统计描述定量数据的统计描述方法:频数表、直方图、统计指标。
(1)频数分布频数分布的目的:了解数据的分布范围、集中位置以及分布形态等特征,以便根据资料分布情况选择合适的统计方法。
频数分布的用途:①作为陈述资料的形式;②便于观察数据的分布类型;③便于发现数据中特大或特小的可疑值;④当样本量大时,可用各组段的频率作为概率的估计值。
计算全距(range,R):是一组数据的最大值与最小值之差。
R=Max-Min确定组数与组距样本量在100例左右,组数选择8~15之间,一般取10组左右。
组距≈全距/组数确定组限第一组段必须包括最小值,最后一组段必须包括最大值。
最后一组段包括最大值,且一般情况下应包含该组段上限,其余各组段区间左闭右开。
计算各组段频数(frequency):即计算各组段内观察值的个数。
计算各组段频率(percent):即计算各组段频数与总观察值个数之比,用百分数表示。
计算累计频数(cumulative frequency)和累计频率(cumulative percent):累计频数是由上至下将频数累加;累计频率是由上至下将频率累加。
(2)直方图直方图,是以垂直条段代表频数分布的一种图形。
(3)频数分布表的用途1、作为称述资料的形式,可以代替原始资料,便于进一步分析。
2、便于观察数据的分布类型。
资料分布类型分为:对称分布和偏态分布。
在统计分析时常需要根据资料的分布形式选择相应的统计分析方法,因此对数据分布形式的判定非常重要。
3、便于发现资料中某些远离群体的特大或特小值。
4、当样本含量比较大时,可用各组段的频率作为概率的估计值。
集中趋势的统计指标平均数,是描述一组观察值集中位置或平均水平的统计指标,常作为一组数据的代表值用于分析和进行组间的比较。
常用的有算术均数、几何均数、中位数、百分位数等。
算术均数,等于一个变量所有观察值的和除以观察值个数。
总体均数用希腊字母μ表示,样本均数用符号Χ拔表示。
算术均数适用于对称分布的资料,如分布均匀的小样本数据或近似正态分布的大样本数据。
算术均数易受极端值的影响,并且受极大值的影响大于受极小值的影响。
几何均数几何均数(geometric mean,G),等于一个变量所有n个观察值的乘积的n次方根。
几何均数适用于取对数后近似呈对称分布的资料,尤其是右偏态分布数据。
医学研究中常用于比例数据。
【注】计算几何均数的观察值不能小于或等于0,因为无法求对数。
中位数中位数(median,M),是在按大小顺序排列的变量的所有观察值中,位于正中间的一个或两个数值。
当数据呈偏态分布、或频数分布两端无确定数值,均宜采用中位数描述集中趋势。
中位数的确定取决于它在数据序列中的位置,因此对极端值不敏感。
百分位数百分位数(percentile),是一个位置指标,它将一组变量值排列后划分为若干相等部分的分割点数值。
用Px表示,X用百分数表示。
表示在按照升序排列的数据中,其左侧(≤ Px )的观察值个数在整个样本中所占百分比为X %,其右侧(≥ Px )的观察值个数在整个样本中所占百分比为(100-X )%。
百分位数不论资料分布类型均可计算,在实际工作中常用于确定医学参考值范围;在假设检验中用作拒绝或不拒绝检验假设的界值。
百分位数并非由全部观察值综合计算得来,因此,它不如均数和标准差精确;然而中间部分的百分位数因不受资料中个别极端数据的影响,具有较好的稳定性。
变异程度的统计指标变异指标,又称离散指标,用以描述一组计量资料各观察值之间参差不齐的程度。
变异指标越大,观察值之间差异愈大,说明变异程度越大;反之亦然。
常用的有极差、四分位数间距、方差、标准差和变异系数。
极差极差(range,R),等于一个变量所有观察值中最大值与最小值之间的差值。
R =Max -Min缺点:①没有利用观察值的全部信息,不能反映其它数据的离散度;②各样本含量大小悬殊时,不宜比较其极差;③极差的抽样误差也较大,所以不够稳定。
极差仅适用于对未知分布的小样本资料作粗略的分析。
四分位数间距四分位数,是统计学对特殊的三个百分位数P25% 、P50% 和P75%的统称四分位数间距(quartile range,Q),等于第三四分位数与第一四分位数之间的差值。
Q =P75% -P25%缺点:①没有利用观察值的全部信息,不能反映其它数据的离散度;四分位数间距仅用来描述大样本偏态资料的变异情况。
方差方差(variance),是描述一个变量的所有观察值与总体均数的平均离散程度的指标。
总体方差用σ2表示,样本方差用S2表示。
标准差标准差(standard deviation,S ),是描述一个变量的所有观察值与均数的平均离散程度的指标。
总体标准差用σ表示,样本标准差用S表示。
标准差方差或标准差属同类变异指标,它们多用来描述均匀分布或近似正态分布的资料,大、小样本均可,其中以标准差的应用最广,通常与均数结合使用。
比如在许多医学研究报告中常用X拔±S 的形式表达资料。
变异系数变异系数(coefficient of variation,CV ),是一个度量相对离散程度的指标。
CV是无量纲的指标,可以用来比较几个量纲不同的指标变量之间的离散程度的差异,或比较量纲相同但均数相差悬殊的变量之间的离散程度的差异。
小结第三章正态分布与医学参考值范围正态分布,是一种连续型随机变量常见而重要的分布。
正态曲线,是一条高峰位于中央,两侧逐渐下降并完全对称,曲线两端永远不与横轴相交的钟型曲线。
如果随机变量X的分布服从概率密度函数和概率分布函数称连续型随机变量X服从正态分布,记为X~N (μ, σ2 )。
π为圆周率,e为自然对数的底值,σ为总体标准差,μ为总体均数。
正态分布的特征1、正态分布是单峰分布,以X =μ为中心,左右完全对称,正态曲线以X轴为渐近线,两端与X轴不相交。
2、正态曲线在X =μ 处有最大值,其值为f(μ)=1/(μ√2π) ;X越远离μ ,f(X)值越小,在X= μ± σ 处有拐点,呈现钟形。
3、正态分布完全由参数μ和σ决定。
μ是位置参数,决定正态曲线在X轴上的位置。
在σ一定时,μ增大,曲线沿横轴向右移动;μ较小,曲线沿横轴向左移动。
σ是形状参数,决定正态曲线的分布形态。
σ越大,曲线的形状越“矮胖”,表示数据分布越分散;σ越小,曲线的形状越“瘦高”,表示数据分布越集中。
正态曲线下面积分布规律1、服从正态分布的随机变量在某一区间上的曲线下面积与其在同一区间上取值的概率相等。
2、曲线下的总面积为1或100%,以μ为中心左右两侧面积各占50%,越靠近μ 处曲线下面积越大,两边逐渐减少。
3、所有的正态曲线,在μ左右的任意个标准差范围内面积相同。
一些特殊情况,在μ±σ范围内的面积约为68.27%,在μ±1.96σ范围内的面积约为95.00%,在μ±2.58σ范围内的面积约为99.00%。
标准正态分布对任意一个服从N (μ, σ2 )分布的随机变量X,经Z=X-μ/σ变换都可以转为μ=0、σ=1的标准正态分布,也称随机变量的标准化变换。
标准正态分布的应用实际应用中,经z变换可把求解任意一个正态分布曲线下面积的问题,转化成标准正态分布曲线下相应面积的问题。
正态分布的应用1、制定医学参考值范围2、质量控制3、正态分布是很多统计方法的理论基础医学参考值范围医学参考值范围,指正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。
医学参考值范围,习惯上是包含95%的参照总体的范围。
制订的注意事项a、抽取足够例数的同质“正常人”样本★“正常人”的定义,样本量(n>120),随机化。
b、确定具有实际意义的统一测量标准★指标的测量方法等要有规定,控制测量误差。
c、根据指标的性质确定是否要分组★根据实际情况、专业知识。
d、根据指标含义决定单、双侧范围★单侧下限,过低异常;单侧上限,过高异常;双侧,过高、过低均异常。
e、选择适当的百分范围★绝大多数人,一般80%、90%、95%、99%;★减少误诊,取较大范围;减少漏诊,取较小范围。
f、估计参考值范围★根据资料分布类型:正态分布法、百分位数法。
第四章定性数据的统计描述相对数,是两个有关的绝对数之比,也可以是两个统计指标之比。