医学统计学知识点总结

合集下载

医学统计学知识点汇总(精华)

医学统计学知识点汇总(精华)

医学统计学知识点汇总(精华)一.概论1,医学统计学:运用概率论和数理统计学的原理和方法,研究医学领域中随机现象有关数据的搜集、整理、分析和推断,进而阐明其客观规律性的一门应用科学。

2,医学统计学的主要内容:1)统计研究设计调查研究设计和实验研究设计2)医学统计学的基本原理和方法研究设计和数据处理中的基本统计理论和方法。

A:资料的搜集与整理 B:常用统计描述,集中趋势和离散趋势,相对数,相关系数,回归系数,统计表,统计图 C:统计推断,如参数估计和假设检验。

3)医学多元统计方法多元线性回归和逐步回归分析、判别分析、聚类分析、主成分分析、因子分析、logistic回归与Cox回归分析。

3,统计工作步骤:1)设计明确研究目的和研究假说,确定观察对象与观察单位,样本含量和抽样方法,拟定研究方案,预期分析指标,误差控制措施,进度与费用。

2)搜集材料A,搜集材料的原则及时、准确、完整B,统计资料的来源医学领域的统计资料的来源主要有三个方面。

一是统计报表,二是经常性工作记录,三是专题调查或专题实验。

C,资料贮存3)整理资料 a检查核对b设计分组c拟定整理表d归表4)分析资料统计分析包括统计描述和统计推断4,同质(homogeneity):指被研究指标的影响因素相同。

变异(variation):同质基础上的各观察单位间的差异。

变量(variable):收集资料过程中,根据研究目的确定同质观察单位,再对每个观察单位的某项特征进行测量或观察,这种特征称为变量变量值:变量的观察结果或测量值。

变量类型变量值表现实例资料类型数值变量离散型定量测量值,有计量单位产前检查次数计量资料连续型身高分类变量无序二分类对立的两类属性性别(男女)计数资料多分类不相容的多类属性血型(A,B,O,AB)有序多分类类间有程度差异的属性受教育程度(小学,中学,高中,大学…)等级资料5,总体(population)根据研究目的所确定的同质研究对象中所有观察单位某变量值的集合。

临床医学统计学知识点

临床医学统计学知识点

临床医学统计学知识点统计学在临床医学中扮演着至关重要的角色,它通过收集、分析和解释数据,帮助医生做出准确的诊断和治疗方案。

本文将介绍一些临床医学中常用的统计学知识点。

1. 样本与总体在临床医学中,样本指的是从总体中抽取出来的一部分个体或数据。

总体是指研究对象的全体。

通过对样本的研究分析,可以推断总体的特征。

在医学研究中,样本的选择要具有代表性和随机性,以保证研究结果的可靠性。

2. 平均数、中位数、众数在统计学中,平均数指的是将一组数据相加后除以数据的个数所得到的值,用来表示数据的集中趋势。

中位数是按照数据大小排列后位于中间位置的值,众数是数据中出现次数最多的数值。

在临床医学中,这些统计指标常用于描述疾病的发病率、临床表现等。

3. 标准差、方差标准差和方差是衡量数据的离散程度的指标。

标准差是方差的平方根,它表示数据偏离平均值的程度。

在临床医学中,标准差和方差常用于评估治疗效果的稳定性和数据的稳定性。

4. t检验、方差分析t检验和方差分析是常用的统计方法,用于比较两组或多组数据之间的差异性。

在临床医学中,这两种方法可以帮助医生判断治疗方案的有效性,疾病的进展情况等。

5. 敏感度、特异度敏感度和特异度是评价诊断检测方法准确性的重要指标。

敏感度指的是在疾病存在的情况下,检测方法能够正确识别出疾病的能力;特异度指的是在疾病不存在的情况下,检测方法能够正确排除疾病的能力。

在临床医学中,敏感度和特异度的值越高,说明诊断方法越准确。

6. 风险比、相对危险度风险比和相对危险度是疾病发病风险的评估指标。

风险比表示两组人群中发病率的比值,相对危险度表示一组人群某种因素的风险相对于另一组的倍数。

在临床医学研究中,这两种指标可以帮助医生评估疾病的危险程度和相关因素的作用程度。

7. 生存分析、回归分析生存分析和回归分析是用于评估疾病预后和危险因素的统计方法。

生存分析可以分析患者的生存时间和生存率,回归分析可以研究疾病发生的相关因素。

医学统计学知识点

医学统计学知识点

1.一般来说,两均数比较用t检验,而两个以上均数的比较就必须用方差分析了。

t检验的应用条件:当样本含量n较小时(如n< 50=,理论上要求样本取自正态总体,两小样本均数比较时还要求两样本总体方差相等。

但在实际应用时,与上述条件略有偏离,只要其分布为单峰近似对称分布,则对结果亦影响不大。

u检验的应用条件:样本含量n较大,一般要求n>50。

其实,u检验和t检验都属同类,其方法步骤也基本相同,不同的地方仅在于确定P值时界值的选择。

2.两均数比较可选用t检验,(当样本含量较大,如n>100时可用u检验);两样本方差比较可选用F检验、率的比较可选用u检验或x2检验。

3.完全随机设计是分别从两个研究总体中随机抽取样本,对这两个样本均数进行比较,以推断它们所代表的总体是否一致。

4.t检验的基本步骤:①建立假设:H0、H1②确定检验水准:α=0.05③计算统计量t:根据不同的资料选用相应的计算公式④查t值表,确定P值:t ≥ tα,υP≤αt ≤ tα,υP≥α⑤统计推断结论P>0.05,接受H0,差别无显著意义;0.01<P≤0.05,拒绝H0,接受H1,差别有显著意义;P≤0.01 拒绝H0,接受H1,差别有非常显著意义。

5.t检验的注意事项①资料必须有可比性;②必须是计量资料;③资料必须呈正态或近似正态分布;④要根据不同的资料类型选用不同的计算公式;要正确理解统计结论的含义。

方差分析一、方差分析的用途及应用条件(一)用途1、检验两个或多个样本均数间的差异有无统计学意义;2、回归方程的线性假设检验;3、检验两个或多个因素间有无交互作用。

(二)应用条件1、各个样本是相互独立的随机样本;2、各个样本来自正态总体;3、各个处理组(样本)的总体方差方差相等,即方差齐。

二、 方差分析的基本思想 (一)方差分析中变异的分解此类资料的变异,可以分出三种:1、总变异:表现为所有数据大小不等,用总的离均差平方和表示,记为SS 总。

医学统计学第三版仇丽霞知识点

医学统计学第三版仇丽霞知识点

医学统计学第三版仇丽霞知识点
《医学统计学第三版》是由仇丽霞编写的医学统计学教材。

以下是一些该书的知识点:
1. 医学研究设计与数据的收集方法:介绍了医学研究的不同设计类型,如前瞻性研究、回顾性研究和试验研究,并介绍了数据的收集方法。

2. 数据的描述性统计学:介绍了描述性统计学的概念和方法,包括测量尺度、集中趋势和离散程度的度量以及数据分布的形态。

3. 参数统计学的基本概念:介绍了参数、统计量、抽样分布和置信区间的概念,以及与参数估计和假设检验相关的方法。

4. 两种或多个样本之间比较的统计方法:介绍了两个或多个样本之间比较的统计方法,包括t检验、方差分析和非参数检验。

5. 相关与回归分析:介绍了相关与回归分析的基本概念和方法,包括Pearson相关系数、Spearman相关系数、线性回归和多元
回归分析。

6. 生存分析与生存率估计:介绍了生存分析的基本概念和方法,包括生存函数、生存率、危险比和生存曲线的估计。

7. 统计学软件的应用:介绍了常用的统计学软件,如SPSS和
R的基本操作和分析方法。

以上是《医学统计学第三版》的一些知识点,该书还涵盖了更多医学统计学相关的知识,如统计学的假设检验、重复测量数据的分析和非参数统计方法等。

医学统计学知识点梳理

医学统计学知识点梳理

医学统计学知识点梳理医学统计学:?是用统计学原理和方法研究生物医学问题的一门学科。

他包括了研究设计、数据收集、整理、分析以及分析结果的正确解释和表达。

统计描述:用统计指标、统计图表对资料的数量特征及分布规律进行客观的描述和表达。

统计推断:在一定的置信度和概率保证下,用样本信息推断总体特征:? ①参数估计:用样本的指标去推断总体相应的指标? ②假设检验:由样本的差异推断总体之间是否可能存在的差异同质:一个总体中有许多个体,他们之所以共同成为人们研究的对象,必定存在共性,我们说一些个体处于同一总体,就是指他们大同小异,具有同质性。

总体(population)是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。

总体可分为有限总体和无限总体。

总体中的所有单位都能够标识者为有限总体,反之为无限总体。

样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。

样本应具有代表性。

所谓有代表性的样本,是指用随机抽样方法获得的样本。

随机抽样:随机抽样(random sampling)是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。

随机抽样是样本具有代表性的保证。

变异:在自然状态下,个体间测量结果的差异称为变异(variation)。

变异是生物医学研究领域普遍存在的现象。

严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。

(1)计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。

计量资料亦称定量资料、测量资料。

.其变量值是定量的,表现为数值大小,一般有度量衡单位。

(2)计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料(count data)。

计数资料亦称定性资料或分类资料。

医学统计学知识点

医学统计学知识点

医学统计学知识点医学统计学是应用统计学原理和方法于医学领域的一门学科,通过对医学数据的收集、整理、分析和解释,可以帮助医学研究者和临床医生更好地理解和应用医学知识。

本文将介绍一些医学统计学中的重要知识点。

一、数据的类型在医学统计学中,我们常常需要处理各种类型的数据,其中最常见的数据类型包括:1. 定性数据:也称为分类数据,指描述事物性质或属性的数据,如性别、疾病类型等。

2. 定量数据:也称为连续数据,指可以用数字进行度量的数据,如身高、体重、血压等。

3. 二分类数据:指只有两种可能取值的数据,如阳性/阴性、生/死等。

4. 多分类数据:指有多种可能取值的数据,如血型、既往医疗史等。

二、描述统计学1. 描述性统计:描述性统计是对数据进行整理、总结和描述的过程,主要包括以下指标:- 频数与频率:频数是指某一数值在数据集中出现的次数,频率是频数与数据总数的比值。

- 中心趋势指标:包括均值、中位数和众数,用于描述数据的集中程度。

- 离散程度指标:包括标准差、方差和四分位差等,用于描述数据的分散程度。

2. 绘图方法:绘图是描述性统计的重要手段之一,常用的绘图方法包括:- 饼图:用于展示分类数据的比例关系。

- 条形图:用于展示不同类别之间的数量关系。

- 箱线图:用于展示数据的分布情况和异常值。

- 散点图:用于展示两个变量之间的相关性关系。

三、推断统计学推断统计学是从样本中得出总体特征的方法,通过对样本数据的分析来进行推断。

其中的重要概念和方法包括:1. 总体与样本:总体是我们研究的对象的全体,样本是从总体中选取的一部分。

2. 参数与统计量:参数是总体的特征值,统计量是样本的特征值,通过统计量来估计参数。

3. 抽样分布:抽样分布是样本统计量的概率分布,常用的抽样分布包括正态分布和t分布。

4. 假设检验:假设检验是通过对样本数据进行统计推断,判断总体参数是否满足某个假设。

5. 置信区间:置信区间是对总体参数的一个范围估计,常用于估计总体均值和总体比例。

医学统计学知识点总结

知识点1.统计学是应用概率论和数理统计的基本原理和方法,研究数据的搜集、整理、分析、表达和解释的一门学科。

2.医学统计学是应用统计学的基本原理和方法,研究医学及其有关领域数据信息的搜集、整理、分析、表达和解释的一门学科。

3.统计软件包是对资料进行各种统计处理分析的一系列程序的组合。

4.统计工作的基本步骤:研究设计、搜集资料、整理资料和分析资料。

5.科研结果的好坏取决于研究设计的好坏,研究设计是统计工作中的基础和关键,决定着整个统计工作的成败。

6.统计分析包括统计描述和统计推断。

统计描述是对已知的样本(或总体)的分布情况或特征值进行分析表述;统计推断是根据已知的样本信息来推断未知的总体。

7.医学原始资料的类型有:计量资料、计数资料、等级资料。

8.计量资料是用定量的方法对每一个观察单位的某项指标进行测定所得的资料。

9.计数资料是把观察单位按某种属性(性质)或类别进行分组,清点各组观察单位数所得资料。

10.等级资料是把观察单位按属性程度或等级顺序分组,清点各组观察单位数所得资料。

各属性之间有程度的差别。

等级资料的等级顺序不能任意颠倒。

11.同质:是指所研究的观察对象具有某些相同的性质或特征。

12.变异:是同质个体的某项指标之间的差异,即个体变异或个体差异性。

13.总体是根据研究目的确定的同质研究对象的总体。

样本是总体中具有代表性的一部分个体。

14.抽样研究是通过从总体中随机抽取样本,对样本信息进行分析,从而推断总体的研究方法。

抽样误差是由随机抽样造成的样本指标与总体指标之间、样本指标与样本指标之间的差异,其根源在于总体中的个体存在变异性,只要是抽样研究,就一定存在抽样误差,不能用样本的指标直接下结论。

15.统计学的主要任务是进行统计推断,包括参数估计和假设检验。

16.概率是某随机事件发生可能性大小(或机会大小)的数值度量。

概率的取值为0≤P≤1。

小概率事件是指P≤0.05的随机事件。

17.频数表和频数分布图的用途:(1)揭示计量资料的分布类型。

医学统计学知识点汇总

医学统计学知识点汇总医学统计学是指应用统计学原理和方法进行医学研究设计、数据分析和结果解释的学科。

医学统计学的知识点非常丰富,包括统计学基础知识、研究设计、样本量计算、控制方法、参数估计、假设检验和数据分析等方面。

以下是医学统计学知识点的一些精华汇总。

1.统计学基本概念:包括基本统计量(均值、中位数、众数)、数据类型(定量数据、定性数据)、数据的描述方法(频数分布表、直方图等)。

2.研究设计:包括随机对照试验、队列研究、病例对照研究等,了解不同研究设计的优缺点及适用场景。

3.样本量计算:确定研究样本量是保证研究结果可靠性的重要一环,需要根据研究目的、效应量和统计显著性水平确定样本量。

4.控制方法:包括随机分组、盲法、配对设计等,用于减少实验误差和避免偏倚。

5.参数估计:常用的参数估计方法有点估计和区间估计。

点估计是通过样本数据得到总体参数的一个点估计值,区间估计是对总体参数的一个区间估计。

6.假设检验:假设检验是用来判断样本数据与总体假设之间的差异是否显著的统计方法。

常用的假设检验方法有t检验、卡方检验、方差分析等。

7.数据分析:包括描述性统计分析和推断性统计分析。

描述性统计分析用来描述研究变量的基本情况,推断性统计分析用来推断样本数据与总体数据之间的关系。

8.相关分析:用来分析变量之间的关联程度,包括皮尔逊相关系数和斯皮尔曼等级相关系数等。

9. 回归分析:用来分析因变量与自变量之间的关系,包括线性回归分析和 logistic回归分析等。

10.生存分析:用来分析时间到达事件发生的概率,包括生存曲线的绘制、生存率的估计和影响因素的分析等。

11. 多变量分析:用来分析多个自变量对因变量的影响,包括多元方差分析、多元回归分析和多元Logistic回归分析等。

12. Meta分析:用于综合多个独立研究结果,对总体效应进行定量分析和综合评价。

以上是医学统计学的一些精华知识点的汇总。

医学统计学的应用非常广泛,不仅在医学研究中需要应用统计学的原理和方法,也在临床实践中需要对医学统计学知识有一定的了解和应用。

医学统计知识点整理

医学统计学知识点整理第一节统计学中基本概念一、同质与变异同质:统计研究中,给观察单位规定一些相同的因素情况。

如儿童的生长发育,规定同性别、同年龄、健康的儿童即为同质的儿童。

变异:同质的基础上个体间的差异。

“同质”是相对的,是客观事物在特定条件下的相对一致性,而“变异”则是绝对的μ.δ.πX.S.p1.2.变量:确定总体之后,研究者应对每个观察单位的某项特征进行观察或测量,这种特征能表现观察单位的变异性,称为变量。

一、数值变量资料又称为计量资料、定量资料:观测每个观察单位某项指标的大小而获得的资料。

表现为数值大小,带有度、量、衡单位。

如身高(cm)、体重(kg)、血红蛋白(g)等。

二、无序分类变量资料又称为定性资料或计数资料:将观察对象按观察对象的某种类别或属性进行分组计数,分组汇总各组观察单位后得到的资料。

分类:二分类:+ -;有效,无效;多分类:ABO血型系统特点:没有度量衡单位,多为间断性资料【例题单选】某地A、B、O、AB血型人数分布的数据资料是( )A.定量资料B.计量资料C.计数资料D.等级资料分组统计描述:是利用统计指标、统计表和统计图相结合来描述样本资料的数量特征及分布规律。

统计推断:是使用样本信息来推断总体特征。

统计推断包括区间估计和假设检验。

第四节统计表与统计图★一、统计表统计表的基本结构与要求标题:高度概括表的主要内容,时间、地点、研究内容,位于表的上方,居中摆放,左侧加表的序号。

标目:横标目和纵标目。

线条:通常采用三线表和四线表的形式。

没有竖线或斜线。

数字:表内数字一律用阿拉伯数字。

同一指标,小数位数应一致,位次对齐。

无数字用“—”表示。

暂缺用“…”表示。

“0”为确切值。

备注:位于表的下面,通常是对表内数字的注解和说明,必要时可以用“*”等标出。

一张统计表的备注不宜太多。

二、制表原则1.(7理分布。

【例题填空】描述某地十年间结核病死亡率的变化趋势宜绘制_________图。

医学统计学知识点

医学统计学知识点1.数据类型:医学研究中使用的数据包括定类数据和定量数据。

定类数据是非数值型的数据,例如性别、种族等;定量数据是数值型的数据,例如年龄、体重等。

了解数据类型是分析数据的第一步。

2.数据收集:医学研究中的数据可以通过不同的方式收集,例如问卷调查、实验研究、观察等。

在数据收集过程中,需要注意样本的选择、数据的完整性和准确性。

3.描述统计学:描述统计学包括对数据的整体特征进行描述和总结。

常用的描述统计学方法包括中心趋势度量(例如均值、中位数、众数)、离散程度度量(例如标准差、方差)和数据分布描述等。

4.推断统计学:推断统计学是从样本数据推断总体特征的一种方法。

通过推断统计学,可以根据样本数据的统计量(例如样本均值、样本比例)来推断总体参数的区间估计或假设检验。

5.假设检验:假设检验是根据样本数据对总体参数提出假设,并通过计算概率值来判断是否接受或拒绝该假设。

常用的假设检验方法包括t检验、卡方检验、方差分析等。

6.相关分析:相关分析用于研究两个或多个变量之间的关系。

常见的相关分析方法有皮尔逊相关系数、斯皮尔曼相关系数等。

相关分析可以帮助研究者了解变量之间的线性关系和方向。

7. 回归分析:回归分析用于研究因变量与自变量之间的关系,并可用于预测因变量的数值。

常用的回归分析方法有简单线性回归分析、多元线性回归分析和 logistic 回归分析等。

8. 生存分析:生存分析用于研究时间相关的数据,例如疾病患者的生存时间或事件发生的时间。

生存分析方法包括 Kaplan-Meier 曲线、Cox 比例风险模型等。

9.双盲试验和随机分组:在医学研究中,双盲试验和随机分组是常用的研究设计方法。

双盲试验是指研究中既不知道接受治疗的病人,也不知道给予治疗的医生;随机分组是指将研究对象随机分配到不同的治疗组和对照组。

10.统计软件:为了进行医学统计分析,研究者可以使用专业的统计软件,例如SPSS、SAS、R等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医学统计学1. 对定量资料进行统计描述时,如何选择适宜的指标定量资料统计描述常用的统计指标及其适用场合描述内容指标意义适用场合平均水平;均数个体的平均值·对称分布几何均数平均倍数取对数后对称分布中位数[位次居中的观察值①非对称分布;②半定量资料;③末端开口资料;④分布不明众数频数最多的观察值不拘分布形式,概略分析?调和均数基于倒数变换的平均值正偏峰分布资料变异度全距观察值取值范围不拘分布形式,概略分析标准差(方差)观察值平均离开均数的程度对称分布,特别是正态分布资料四分位数间距?居中半数观察值的全距①非对称分布;②半定量资料;③末端开口资料;④分布不明变异系数标准差与均数的相对比①不同量纲的变量间比较;②量纲相同但数量级相差悬殊的变量间比较定性资料:阳性事件的概率,概率分布,强度和相对比。

¥2. 应用相对数时应注意哪些问题答:(1)防止概念混淆相对数的计算是两部分观察结果的比值,根据这两部分观察结果的特点,就可以判断所计算的相对数属于前述何种指标。

(2)计算相对数时分母不宜过小样本量较小时以直接报告绝对数为宜。

(3)观察单位数不等的几个相对数,不能直接相加求其平均水平。

(4)相对数间的比较须注意可比性,有时需分组讨论或计算标准化率。

3. 常用统计图有哪些分别适用于什么分析目的常用统计图的适用资料及实施方法<图形适用资料实施方法条图组间数量对比用直条高度表示数量大小直方图用直条的面积表示各组段的频数或频率(定量资料的分布百分条图构成比用直条分段的长度表示全体中各部分的构成比饼图构成比用圆饼的扇形面积表示全体中各部分的构成比定量资料数值变动线条位于横、纵坐标均为算术尺度的坐标系、线图半对数线图定量资料发展速度线条位于算术尺度为横坐标和对数尺度为纵坐标的坐标系散点图}双变量间的关联点的密集程度和形成的趋势,表示两现象间的相关关系箱式图定量资料取值范围用箱体、线条标志四分位数间距及中位数、全距的位置茎叶图定量资料的分布'用茎表示组段的设置情形,叶片为个体值,叶长为频数第3章概率分布(连续随机变量的正态分布;离散随机变量的二项分布及Poisson分布)1. 服从二项分布及Poisson分布的条件分别是什么二项分布成立的条件:①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。

Poisson分布成立的条件:除二项分布成立的三个条件外,还要求试验次数n很大,而所关心的事件发生的概率 很小。

、2. 二项分布、Poisson分布分别有什么特征①二项分布、Poisson分布都是离散型分布。

②二项分布的形状取决于π与n的大小。

π=时,不论n大小,对称分布。

π≠时,图形呈偏态,随n增大而逐渐对称。

当n足够大,π或1-π不太小,二项分布近似正态。

③Poisson分布μ越小,分布越偏。

μ越大,分布越对称。

当n足够大时,分布接近正态。

4、正态分布应用①估计变量值的频数分布《②制定参考值范围③质量控制④正态分布是很多统计方法的基础5. 正态分布特征①以均数为中心,左右对称②正态曲线在横轴上方均数处取得最高点~③正态分布有两个参数,即均数(位置参数)和标准差(变异度参数)(μ,σ2 ;标准0,1)④正态曲线下面积有一定规律第4章参数估计1. 标准误与标准差的区别(1)标准差反映个体值散布的程度;标准误反映估计总体参数的精确程度。

&(2)标准误小于标准差。

(3)样本含量越大,标准误越小,其样本均数更有可能接近于总体均数,随着样本含量的增大,标准差有可能增大,也有可能减小。

(4)用途不同。

标准差的用途:①反映一组资料的离散程度②计算变异系数③④结合均数与正态分布的规律,估计参考值范围—标准误的用途:⑤衡量样本均数的可靠性⑥与样本均数结合,估计总体均数的置信区间⑦可用于进行均数的假设检验标准误与标准差的区别与联系3. 简述置信区间与医学参考值范围的区别。

~区别置信区间参考值范围含义》用途计算公式总体参数的波动范围,即按事先给定的概率100(1α)%所确定的包含未知总体参数的一个波动范围%估计未知总体均数所在范围未知:/2,XX t Sαν±已知或未知但n≥30,有/2XX Zασ±或/2XX Z Sα±个体值的波动范围,即按事先给定的范围100(1α)%所确定的“正常人”的解剖、生理、生化指标的波动范围供判断观察个体某项指标是否“正常”时参考(辅助诊断)正态分布:/2X Z Sα±—偏峰分布:P X~P100X4 何谓置信区间准确度与精确度如何协调两者间的关系。

置信区间有准确度与精密度两个要素。

(1)准确度由置信度(1-α) 的大小确定,即由置信区间包含总体参数的可能性大小来反映。

从准确度的角度看,置信度愈接近于1愈好,(2)精密度是置信区间宽度的一半,意指置信区间的两端点值离样本统计量(如X、p)的距离。

从精密度的角度看,置信区间宽度愈窄愈好。

(3)在抽样误差确定的情况下,两者是相互矛盾的。

为了同时兼顾置信区间的准确度与精密度,可适当增加样本含量。

《3、参考值范围估计的基本步骤①从正常人的总体中进行随机抽样②对选定的正常人进行准确的测定③确定取单侧还是双侧范围④确定范围常用95%。

⑤根据资料的分布类型选用恰当的界值估计方法`第5章假设检验1.试述假设检验中α与P的联系与区别。

区别:(1)值是事先确定的一个小的概率值。

为一次检验中,甘愿冒的风险。

(2)P值是在0H成立的条件下,出现当前检验统计量以及更极端状况的概率。

为一次检验中,实际冒的风险。

联系:以t检验为例,P、都可以用t分布尾部面积大小表示。

P≤时,拒绝0H假设,差异有统计学意义。

2. 试述假设检验与置信区间的联系与区别。

…联系:区间估计与假设检验是由样本数据对总体参数做出统计学推断的两种主要方法。

区别:置信区间用于说明量的大小,即推断总体参数的置信范围;假设检验用于推断质的不同,即判断两总体参数是否不等。

3. 怎样正确运用单侧检验和双侧检验需要根据数据的特征及专业知识进行确定。

若比较甲、乙两种方法有无差异,则应选用双侧检验。

若需要区分何者为优,,则应选用单侧检验。

在没有特殊专业知识说明的情况下,一般采用双侧检验即可。

4. 试述两类错误的意义及其关系。

⑴Ⅰ类错误:如果检验假设0H 实际是正确的,由样本数据计算获得的检验统计量得出拒绝0H 的结论,此时就犯了错误,统计学上将这种拒绝了正确的零假设0H (弃真)的错误称为Ⅰ类错误。

Ⅰ类错误的概率用 α表示。

⑵Ⅱ类错误:若检验假设0H 原本不正确(1H 正确),由样本数据计算获得的检验统计量得出不拒绝0H (纳伪)的结论,此时就犯了Ⅱ类错误。

Ⅱ类错误的概率用 表示。

&在假设检验时,应兼顾犯Ⅰ类错误的概率(α)和犯Ⅱ类错误的概率(β)。

犯Ⅰ类错误的概率(α)和犯Ⅱ类错误的概率(β)成反比。

如果把Ⅰ类错误的概率定得很小,势必增加犯Ⅱ类错误的概率,从而降低检验效能;反之,如果把Ⅱ类错误的概率定得很小,势必增加犯Ⅰ类错误的概率,从而降低了置信度。

为了同时减小α和β,只有通过增加样本含量,减少抽样误差大小来实现。

5.试述检验功效的概念和主要影响因素。

答:拒绝不正确的0H 的概率,在统计学中称为检验功效(power of test),记为1β-。

检验功效的意义是:当两个总体参数间存在差异时(如备择假设1H :0μμ≠成立时),所使用的统计检验能够发现这种差异(拒绝零假设0H :0μμ=)的概率,一般情况下要求检验功效应在以上。

影响检验功效的四要素为总体参数的差异δ、总体标准差σ、检验水准α及样本量n 。

6.简述假设检验的基本思想。

~假设检验是在H 0成立的前提下,从样本数据中寻找证据来拒绝0H 、接受1H 的一种“反证”方法。

如果从样本数据中得到的证据不足,则只能不拒绝0H ,暂且认为0H 成立,即样本与总体间的差异仅仅是由于抽样误差所引起。

拒绝0H 是根据某个界值,即根据小概率事件确定的。

所谓小概率事件是指如果比检验统计量更极端(即绝对值更大)的概率较小,比如小于等于,则认为零假设的事件在某一次抽样研究中不会发生,此时有充分理由拒绝0H ,即有足够证据推断差异具有统计学意义。

7. 建设检验四步骤:⑧ 建立检验假设H 0和备择假设H 1(判断是单侧检验还是双侧检验再作假设) ⑨ 确定检验水准⑩ 选定检验方法和计算检验统计量 ⑪ 确定P 值和作出推断结论(第6章 两样本定量资料的比较1. 对于完全随机设计两样本定量资料的比较,如何选择统计方法答:完全随机设计两样本定量资料比较统计方法的选择最关键的是看是否满足正态性(样本量较大时n>50不必进行正态性检验)和方差齐性。

如果资料来自正态总体且总体方差齐,采用t 检验;如果满足正态性但总体方差不齐,采用t ′检验;当两者都不满足时,才考虑选用秩和检验。

当然,我们也可采用变量变换的方法使其满足t 或t ′检验的条件。

检验有几种,适用条件是什么t检验是以t分布为理论基础。

小样本时,要求资料符合正态分布和方差齐性。

一般有以下三种:⑫(⑬样本均数与总体均数的比较⑭配对资料的比较⑮两个样本均数的比较此外,还有相关系数,回归系数的t检验。

3.两组定量独立样本的比较/(1)两独立样本的t检验(满足正态性和方差齐性)(2)校正的t检验(正态但方差不齐)(3)u检验(大样本,且方差齐)(4)秩和检验(Wilcoxon)(小样本,不正不齐){p值确定分为T值在范围内还是范围外(范H假设}围可查表知,在范围外则P≤,拒绝04.配对定量资料的比较(对差值进行正态检验即可,无方差分析)(1)配对资料的t检验(差值服从正态)-(2)符号秩和检验(signed rank sum test)(不正){p值确定类似于t检验}第7章多组定量资料的比较1. 方差分析的基本思想和应用条件是什么基本思想将处理间平均变异与误差平均变异比较。

根据试验设计的类型和研究目的,将全部观测值总的离均差平方和及其自由度分解为两个或多个部分,除随机误差作用外,每个部分的变异可由某个因素的作用加以解释,通过比较不同变异来源的均方,借助F分布做出统计推断,从而推论各种研究因素对试验结果有无影响。

$应用条件①各样本是相互独立的随机样本,均服从正态分布;②各样本的总体方差相等,即方差齐性。

2.方差分析的步骤①建立假设检验和检验水准(H0:总体均数都相等)②计算统计量F③确定P值和作出推断结论|④作两两均数之间的比较(若P>,可省略此步)3. 多组定量资料比较时,统计处理的基本流程是什么多组定量资料比较时首先应考虑用方差分析。

(1)若方差齐性,且各样本均服从正态分布,选单因素方差分析。

(2)若方差不齐,或某样本不服从正态分布,选Kruskal-Wallis秩和检验,或通过某种形式的数据变换使其满足方差分析的条件。

相关文档
最新文档