大学物理公式大全
((完整版))大学物理公式大全(大学物理所有的公式应有尽有),推荐文档

2.30 I r 2dm r 2 dv 转动惯量 (dv 为相应质元
m
v
dm 的体积元,p 为体积元 dv 处的密度)
2.31 L I 角动量
2.32 M Ia dL 物体所受对某给定轴的合外力矩等 dt
于物体对该轴的角动量的变化量
2.33 Mdt dL 冲量距
2.34
t
Mdt
v gt
y
1
at 2
v
2
2 2gy
v v0 gt
y
v0t
1 2
gt
2
v 2 v0 2 2gy
1.17
抛体运动速度分量
v
y
vx
v0
v0 cos a sin a gt
x v0 cos a t
1.18
抛体运动距离分量
y
v0 sin a t
1 2
gt 2
1.19 射程 X= v02 sin 2a g
F=ma 牛顿第三定律:若物体 A 以力 F1 作用与物体 B,则同 时物体 B 必以力 F2 作用与物体 A;这两个力的大小相等、 方向相反,而且沿同一直线。
万有引力定律:自然界任何两质点间存在着相互 吸引力,其大小与两质点质量的乘积成正比,与两质点 间的距离的二次方成反比;引力的方向沿两质点的连线
dv d 2r
1.8 瞬时加速度 a= =
dt dt 2
1.11 匀速直线运动质点坐标 x=x0+vt 1.12 变速运动速度 v=v0+at
1
1.13 变速运动质点坐标 x=x0+v0t+ at2
2
1.14 速度随坐标变化公式:v2-v02=2a(x-x0) 1.15 自由落体运动 1.16 竖直上抛运动
大学普通物理公式大全

1.地位矢量:r ,其在直角坐标系中:k z j y i x r++=;222z y x r ++=角地位:θ2.速度:dtr d V=平均速度:tr V ∆∆=速度:dtds V =(τV V =)角速度:dt d θω=角速度与速度的关系:V=rω3.加快度:dt V d a =或22dt r d a = 平均加快度:t V a ∆∆=角加快度:dtd ωβ=在天然坐标系中n a a a n+=ττ个中dtdV a =τ(=rβ),rV n a 2=(=r 2ω)4.力:F=ma(或F=dtp d ) 力矩:F r M⨯=(大小:M=rFcos θ偏向:右手螺旋轨则)5.动量:V m p=,角动量:V m r L ⨯=(大小:L=rmvcos θ偏向:右手螺旋轨则)6.冲量:⎰=dt F I(=FΔt);功:⎰⋅=r d F A(气体对外做功:A=∫PdV )7.动能:mV 2/28.势能:A保= – ΔE p 不合互相感化力势能情势不合且零点选择不合其情势不合,在默认势能零点的情形下:机械能:E=E K +E Pmg(重力) → mgh-kx (弹性力) → kx 2/2F= r r Mm G ˆ2- (万有引力) →rMm G - =E pr rQq ˆ420πε(静电力) →r Qq 04πε9.热量:CRTM Q μ=个中:摩尔热容量C 与进程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R10. 压强:ωn tSI S F P 32=∆==11.分子平均平动能:kT 23=ω;幻想气体内能:RT s r t ME )2(2++=μ 12.麦克斯韦速度散布函数:NdVdN V f =)((意义:在V 邻近单位速度距离内的分子数所占比率)13.平均速度:πμRTN dN dV V Vf VV 80)(==⎰⎰∞方均根速度:μRTV22=;最可几速度:μRTp V 3=14.电场强度:E =F/q 0 (对点电荷:rr q E ˆ420πε= ) 15.电势:⎰∞⋅=aa r d E U(对点电荷rq U04πε=);电势能:W a =qU a (A= –ΔW)16.电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/217.磁感应强度:大小,B=F max /qv(T);偏向,小磁针指向(S →N ).定律和定理1.矢量叠加道理:随意率性一矢量A 可算作其自力的分量i A的和.即:A =Σi A (把式中A 换成r .V .a .F.E .B就分离成了地位.速度.加快度.力.电场强度和磁感应强度的叠加道理).2.牛顿定律:F=ma(或F=dtp d);牛顿第三定律:F ′=F;万有引力定律:rr Mm G F ˆ2-=3.动量定理:p I∆=→动量守恒:0=∆p 前提∑=0外F4.角动量定理:dtL d M=→角动量守恒:0=∆L 前提∑=0外M5.动能道理:k E A ∆=(比较势能界说式:p E A ∆-=保)6.功效道理:A外+A非保内=ΔE →机械能守恒:ΔE=0前提A 外+A非保内=07.幻想气体状况方程:RTM PV μ=或P=nkT (n=N/V,k=R/N 0)8.能量均分道理:在均衡态下,物资分子的每个自由度都具有雷同的平均动能,其大小都为kT/2.10.库仑定律: rr Qq k F ˆ2= (k=1/4πε0) 11.高斯定理:⎰⎰=⋅0εqS d E (静电场是有源场)→无穷大平板:E=σ/2ε012. 环路定理:⎰=⋅0l d E13.毕奥—沙伐尔定律:204ˆrrl Id B d πμ⨯=直长载流导线:)cos (cos 4210θθπμ-=rIB无穷长载流导线:rI B πμ20=载流圆圈:RI B 20μ= ,圆弧:πθμ220R I B =。
大学物理公式总结

引言在大学物理学习的过程中,公式总结是非常重要的。
公式的掌握和运用对于解决物理问题至关重要。
本文将对大学物理学中常见的公式进行总结,帮助读者更好地理解和应用这些公式。
概述一、运动学公式1.位移公式:s=v0t+(1/2)at^22.速度公式:v=v0+at3.加速度公式:a=(vv0)/t4.时间公式:t=(vv0)/a5.加速度与位移公式:s=v0t+(1/2)a(t^2)二、牛顿力学公式1.牛顿第一定律:F=ma2.牛顿第二定律:F=dp/dt=m(dv/dt)3.动量公式:p=mv4.力与位移公式:W=Fdcosθ5.原动力学公式:F=ma=m(dv/dt)三、能量和功的公式1.功公式:W=Fdcosθ2.重力势能公式:PE=mgh3.动能公式:KE=(1/2)mv^24.动能定理:ΔKE=W_net5.功率公式:P=W/t四、电动力学公式1.电流公式:I=Q/t2.电压公式:V=W/Q3.电阻公式:R=V/I4.电功率公式:P=IV=I^2R5.电容公式:C=Q/V五、光学公式1.光速公式:c=λf2.光的折射公式:n1sinθ1=n2sinθ23.焦距公式:1/f=1/v+1/u4.薄透镜成像公式:(1/f)=(1/v)+(1/u)5.杨氏双缝干涉公式:dsinθ=mλ总结通过本文对大学物理学中常见公式的总结,我们可以看到这些公式在解决问题中起到至关重要的作用。
运动学公式帮助我们了解物体的运动,牛顿力学公式帮助我们理解物体受力的原理,能量和功的公式帮助我们理解能量的转化和传递,电动力学公式帮助我们理解电路中的电流、电压和电阻的关系,光学公式帮助我们理解光的传播和成像的原理。
在学习这些公式时,我们需要深入理解它们的物理意义,并能够熟练地运用到实际问题中。
只有通过不断的练习和实践,才能真正掌握这些公式。
希望本文对读者学习大学物理学中的公式有所帮助,能够更好地应用于解决实际问题。
大学常用的物理公式

引言概述:物理公式是大学物理课程中不可或缺的一部分,它们是描述自然现象的数学表达式。
本文将介绍一些大学常用的物理公式,包括力学、热力学、电磁学和光学公式等。
这些公式不仅在学习物理理论和解题中起到重要的作用,而且在工程、科学研究和实际应用中也具有广泛的应用价值。
正文内容:一、力学公式1.1运动学公式1.1.1位移公式s=ut+(1/2)at^21.1.2速度公式v=u+at1.1.3加速度公式a=(vu)/t1.2动力学公式1.2.1牛顿第二定律F=ma1.2.2动能公式Ek=(1/2)mv^21.2.3动量公式p=mv1.3静力学公式1.3.1弹性力公式F=kx1.3.2引力公式F=G(m1m2)/r^21.3.3摩擦力公式Ff=μFn二、热力学公式2.1热传导公式2.1.1热传导方程q=kΔT/L2.1.2热导率公式k=(QL)/(AΔT)2.2热膨胀公式2.2.1线膨胀公式ΔL=αL0ΔT2.2.2体膨胀公式ΔV=βV0ΔT2.3热力学循环公式2.3.1热转化效率公式η=(W_net/Q_h)100%2.3.2卡诺循环效率公式η_C=(T_hT_c)/T_h三、电磁学公式3.1电场公式3.1.1电场强度公式E=F/q3.1.2电势差公式V=W/q3.2磁场公式3.2.1磁场强度公式B=F/(qv)3.2.2磁场感应公式ε=BLv3.3法拉第电磁感应公式3.3.1法拉第电磁感应定律ε=dΦ/dt3.3.2洛伦兹力公式F=q(E+vxB)四、光学公式4.1光速公式4.1.1光速定义c=λf4.1.2光速在介质中的速度v=c/n4.2折射公式4.2.1斯涅尔定律n1sin(θ1)=n2sin(θ2)4.2.2光线传播路径差公式Δx=d(n1)(cot(θ2)cot(θ1))4.3球面镜公式4.3.1球面镜公式1/f=(n1)(1/R11/R2)五、总结本文介绍了大学常用的物理公式,涵盖了力学、热力学、电磁学和光学等方面。
大学物理所有公式

大学物理所有公式文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)大物一刚体mvR R p L =•=圆周运动角动量 R 为半径mvd d p L =•= 非圆周运动,d 为参考点o 到p 点的垂直距离 φsin mvr L = 同上φsin Fr Fd M == F 对参考点的力矩 F r M •= 力矩 dtdLM =作用在质点上的合外力矩等于质点角动量的时间变化率 ⎪⎭⎪⎬⎫==常矢量L dt dL 0如果对于某一固定参考点,质点(系)所受的外力矩的矢量和为零,则此质点对于该参考点的角动量保持不变。
质点系的角动量守恒定律 ∑∆=ii i r m I 2 刚体对给定转轴的转动惯量αI M = (刚体的合外力矩)刚体在外力矩M 的作用下所获得的角加速度a 与外合力矩的大小成正比,并于转动惯量I 成反比;这就是刚体的定轴转动定律。
⎰⎰==vmdv r dm r I ρ22 转动惯量 (dv 为相应质元dm 的体积元,p 为体积元dv 处的密度)ωI L = 角动量 dtdLIa M == 物体所受对某给定轴的合外力矩等于物体对该轴的角动量的变化量 dL Mdt =冲量距000ωωI I L L dL Mdt LL tt -=-==⎰⎰常量==ωI L二保守力和非保守力k k E E W W -=+内外质点系动能的增量等于所有外力的功和内力的功的代数和(质点系的动能定理)k k E E W W W -=++非内保内外保守内力和不保守内力p p p E E E W ∆-=-=0保内系统中的保守内力的功等于系统势能的减少量)()(00p k p k E E E E W W +-+=+非内外p k E E E +=系统的动能k 和势能p 之和称为系统的机械能0E E W W -=+非内外质点系在运动过程中,他的机械能增量等于外力的功和非保守内力的功的总和(功能原理)常量时,有、当非内外=+===p k E E E W W 00如果在一个系统的运动过程中的任意一小段时间内,外力对系统所作总功都为零,系统内部又没有非保守内力做功,则在运动过程中系统的动能与势能之和保持不变,即系统的机械能不随时间改变,这就是机械能守恒定律。
大学物理公式大全(大学物理所有的公式应有尽有)

第一章 质点运动学和牛顿运动定律1。
1平均速度 v =t△△r1。
2 瞬时速度 v=lim 0△t →△t△r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1。
6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t△v =dt dv1。
8瞬时加速度a=dt dv =22dtrd1.11匀速直线运动质点坐标x=x 0+vt 1。
12变速运动速度 v=v 0+at 1。
13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a (x —x 0) 1。
15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gyv v gt t v y gt v v 221202200 1。
17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=gav 2sin 21.20射高Y=gav 22sin 201。
21飞行时间y=xtga-g gx 21。
22轨迹方程y=xtga-av gx 2202cos 21.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21。
27切向加速度只改变速度的大小a t =dtdv 1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1。
31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
大学普通物理公式大全

1.位置矢量:r,其在直角坐标系中:kz j y i x r ++=;222z y x r ++=角位置:θ之阿布丰王创作2.速度:dtr d V=平均速度:tr V ∆∆=速率:dtds V =(τV V =)角速度:dt d θω=角速度与速度的关系:V=rω3.加速度:dt V d a =或22dt r d a = 平均加速度:t V a ∆∆=角加速度:dtd ωβ=在自然坐标系中n a a a n+=ττ其中dtdV a =τ(=rβ),rV n a 2=(=r 2ω)4.力:F=ma(或F=dtp d ) 力矩:F r M⨯=(大小:M=rFcos θ方向:右手螺旋法则)5.动量:V m p=,角动量:V m r L ⨯=(大小:L=rmvcos θ方向:右手螺旋法则)6.冲量:⎰=dt F I(=FΔt);功:⎰⋅=r d F A(气体对外做功:A=∫PdV )7.动能:mV 2/28.势能:A保= – ΔE p 分歧相互作用力势能形式分歧且零点选择分歧其形式分歧,在默认势能零点的情况下:机械能:E=E K +E Pmg(重力) → mgh-kx (弹性力) → kx 2/2F= r r Mm G ˆ2- (万有引力) →rMm G - =E pr rQq ˆ420πε(静电力) →r Qq 04πε9.热量:CRT M Q μ=其中:摩尔热容量C 与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R10. 压强:ωn tSI S F P 32=∆==11.分子平均平动能:kT 23=ω;理想气体内能:RT s r t ME )2(2++=μ 12.麦克斯韦速率分布函数:NdVdN V f =)((意义:在V 附近单位速度间隔内的分子数所占比率)13.平均速率:πμRTNdN dV V Vf VV 80)(==⎰⎰∞方均根速率:μRTV 22=;最可几速率:μRTp V 3=14.电场强度:E=F/q 0 (对点电荷:rr q E ˆ420πε=) 15.电势:⎰∞⋅=aa r d E U(对点电荷rqU04πε=);电势能:W a =qU a (A= –ΔW)16.电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/217.磁感应强度:大小,B=F max /qv(T);方向,小磁针指向(S →N )。
大学普通物理公式大全

1.地位矢量:r,其在直角坐标系中:kz j y i x r ++=;222z y x r ++=角地位:θ之杨若古兰创作2.速度:dtr d V=平均速度:tr V ∆∆=速率:dtds V =(τV V =)角速度:dt d θω=角速度与速度的关系:V=rω3.加速度:dtV d a =或22dt r d a=平均加速度:tV a ∆∆=角加速度:dtd ωβ=在天然坐标系中n a a a n+=ττ其中dtdV a =τ(=rβ),rV n a 2=(=r 2 ω)4.力:F=ma(或F=dtp d ) 力矩:Fr M⨯=(大小:M=rFcos θ方向:右手螺旋法则)5.动量:V m p=,角动量:Vm r L ⨯=(大小:L=rmvcos θ方向:右手螺旋法则)6.冲量:⎰=dt F I(=FΔt);功:⎰⋅=r d F A(气体对外做功:A=∫PdV )7.动能:mV2/28.势能:A 保= – ΔE p 分歧彼此感化力势能方式分歧且零点选择分歧其方式分歧,在默认势能零点的情况下: 机械能:E=E K +E Pmg(重力) → mgh -kx (弹性力) → kx 2/2F= r r Mm G ˆ2- (万有引力) →rMm G - =E prr Qqˆ420πε(静电力) →rQq 04πε9.热量:CRTM Q μ=其中:摩尔热容量C 与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R10. 压强:ωn tSISFP 32=∆==11.分子平均平动能:kT 23=ω;理想气体内能:RT s r t ME )2(2++=μ 12.麦克斯韦速率分布函数:NdVdN V f =)((意义:在V 附近单位速度间隔内的分子数所占比率)13.平均速率:πμRTNdN dV V Vf VV 80)(==⎰⎰∞方均根速率:μRTV 22=;最可几速率:μRTp V 3=14.电场强度:E =F/q 0 (对点电荷:rr q E ˆ420πε=)15.电势:⎰∞⋅=aa rd E U(对点电荷rq U 04πε=);电势能:W a =qU a (A= –ΔW)16.电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/217.磁感应强度:大小,B=F max /qv(T);方向,小磁针指向(S →N ). 定律和定理1.矢量叠加道理:任意一矢量A 可看成其独立的分量i A 的和.即:A =Σi A (把式中A 换成r、V 、a 、F 、E 、B就分别成了地位、速度、加速度、力、电场强度和磁感应强度的叠加道理).2.牛顿定律:F=ma(或F=dtp d );牛顿第三定律:F′=F ;万有引力定律:r r Mm GFˆ2-=3.动量定理:p I∆=→动量守恒:0=∆p 条件∑=0外F4.角动量定理:dtL d M =→角动量守恒:=∆L条件∑=0外M5.动能道理:k E A ∆=(比较势能定义式:p E A ∆-=保)6.功能道理:A 外+A 非保内=ΔE →机械能守恒:ΔE=0条件A外+A 非保内=07.理想气体形态方程:RTM PV μ=或P=nkT (n=N/V ,k=R/N 0)8.能量均分道理:在平衡态下,物资分子的每个自在度都具有不异的平均动能,其大小都为kT/2.10.库仑定律: r r Qq k F ˆ2= (k=1/4πε0) 11.高斯定理:⎰⎰=⋅0εqS d E (静电场是有源场)→无量大平板:E=σ/2ε012.环路定理:⎰=⋅0l d E(静电场无旋,是以是守旧场)13.毕奥—沙伐尔定律:204ˆrr l Id B d πμ⨯=直长载流导线:)cos (cos 4210θθπμ-=rIB无穷长载流导线:rI B πμ20=载流圆圈:RI B 20μ= ,圆弧:πθμ220R I B =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 质点运动学和牛顿运动定律平均速度 v =t△△r瞬时速度 v=lim 0△t →△t△r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 平均加速度a =△t△v瞬时加速度(加速度)a=lim 0△t →△t△v =dt dv瞬时加速度a=dt dv =22dtrd匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v 0+at变速运动质点坐标x=x 0+v 0t+21at 2 ;速度随坐标变化公式:v 2-v 02=2a(x-x 0)自由落体运动 竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gy v v gt t v y gt v v 221202200 抛体运动速度分量⎩⎨⎧-==gt a v v av v y x sin cos 00抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x射程 X=g av 2sin 2射高Y=gav 22sin 20飞行时间y=xtga —ggx 2轨迹方程y=xtga —av gx 2202cos 2 向心加速度 a=Rv 2#圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n加速度数值 a=22n t a a +法向加速度和匀速圆周运动的向心加速度相同a n =Rv 2切向加速度只改变速度的大小a t =dtdvωΦR dtd R dt ds v ===角速度 dtφωd =角加速度 22dt dtd d φωα== 角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==;牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。
1.37 F=ma牛顿第三定律:若物体A 以力F 1作用与物体B ,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线。
万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 1.39 F=G221rm m G 为万有引力称量=×10-11N •m 2/kg 2 重力 P=mg (g 重力加速度)重力 P=G2rMm有上两式重力加速度g=G 2rM(物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变) 胡克定律 F=—kx (k 是比例常数,称为弹簧的劲度系数)%最大静摩擦力 f 最大=μ0N (μ0静摩擦系数) 滑动摩擦系数 f=μN (μ滑动摩擦系数略小于μ0) 第二章 守恒定律 动量P=mv 牛顿第二定律F=dtdPdt mv d =)( 动量定理的微分形式Fdt=mdv=d(mv) F=ma=m dtdv⎰21t t Fdt =⎰21)(v v mv d =mv 2-mv 1冲量 I=⎰21t t Fdt动量定理 I=P 2-P 1 平均冲力F 与冲量 I=⎰21t t Fdt =F (t 2-t 1))平均冲力F =12t t I -=1221t t Fdt t t -⎰=1212t t mv mv --质点系的动量定理 (F 1+F 2)△t=(m 1v 1+m 2v 2)—(m 1v 10+m 2v 20)左面为系统所受的外力的总动量,第一项为系统的末动量,二为初动量 质点系的动量定理:∑∑∑===-=n i ni i i n i ii ivm v m t F 111△作用在系统上的外力的总冲量等于系统总动量的增量质点系的动量守恒定律(系统不受外力或外力矢量和为零)∑=n i i i v m 1=∑=ni i i vm 1=常矢量mvR R p L =•=圆周运动角动量 R 为半径mvd d p L =•= 非圆周运动,d 为参考点o 到p 点的垂直距离φsin mvr L = 同上)2.21 φsin Fr Fd M == F 对参考点的力矩 F r M •= 力矩 dtdLM =作用在质点上的合外力矩等于质点角动量的时间变化率⎪⎭⎪⎬⎫==常矢量L dtdL 0如果对于某一固定参考点,质点(系)所受的外力矩的矢量和为零,则此质点对于该参考点的角动量保持不变。
质点系的角动量守恒定律∑∆=iii rm I 2刚体对给定转轴的转动惯量αI M = (刚体的合外力矩)刚体在外力矩M 的作用下所获得的角加速度a 与外合力矩的大小成正比,并于转动惯量I 成反比;这就是刚体的定轴转动定律。
⎰⎰==vmdv r dm r I ρ22 转动惯量 (dv 为相应质元dm的体积元,p 为体积元dv 处的密度) ωI L = 角动量 dtdLIa M == 物体所受对某给定轴的合外力矩等于物体对该轴的角动量的变化量 dL Mdt =冲量距 …000ωωI I L L dL Mdt LL t t -=-==⎰⎰常量==ωI Lθcos Fr W =r F W •=力的功等于力沿质点位移方向的分量与质点位移大小的乘积 ds F dr F dW W b L a b L a b L a ab θcos )()()(⎰=•⎰=⎰=n b L a b L a WW W dr F F F dr F W +++=•++⎰=•⎰= 2121)()()(合力的功等于各分力功的代数和 tWN ∆∆=功率等于功比上时间 dtdWt W N t =∆∆=→∆0limv F v F tsF N t •==∆∆=→∆θθcos cos lim 0瞬时功率等于力F 与质点瞬时速度v 的标乘积 20221210mv mv mvdv W vv -=⎰=功等于动能的增量 "221mv E k =物体的动能 0k k E E W -=合力对物体所作的功等于物体动能的增量(动能定理))(b a ab h h mg W -=重力做的功 )()(ba b aab r GMmr GMm dr F W ---=•⎰=万有引力做的功222121b a ba ab kx kx dr F W -=•⎰=弹性力做的功 p p p E E E W b a ab ∆-=-=保势能定义mgh E p =重力的势能表达式 rGMmE p -=万有引力势能 221kx E p =弹性势能表达式 0k k E E W W -=+内外质点系动能的增量等于所有外力的功和内力的功的代数和(质点系的动能定理) *0k k E E W W W -=++非内保内外保守内力和不保守内力 p p p E E E W ∆-=-=0保内系统中的保守内力的功等于系统势能的减少量)()(00p k p k E E E E W W +-+=+非内外p k E E E +=系统的动能k 和势能p 之和称为系统的机械能0E E W W -=+非内外质点系在运动过程中,他的机械能增量等于外力的功和非保守内力的功的总和(功能原理) 常量时,有、当非内外=+===p k E E E W W 00如果在一个系统的运动过程中的任意一小段时间内,外力对系统所作总功都为零,系统内部又没有非保守内力做功,则在运动过程中系统的动能与势能之和保持不变,即系统的机械能不随时间改变,这就是机械能守恒定律。
02022121mgh mv mgh mv +=+重力作用下机械能守恒的一个特例20202221212121kx mv kx mv +=+弹性力作用下的机械能守恒第三章 气体动理论《1毫米汞柱等于 1mmHg=1标准大气压等户760毫米汞柱1atm=760mmHg=×105Pa 热力学温度 T=+t气体定律==222111T V P T V P 常量 即 TV P =常量 阿付伽德罗定律:在相同的温度和压强下,1摩尔的任何气体所占据的体积都相同。
在标准状态下,即压强P 0=1atm 、温度T 0=时,1摩尔的任何气体体积均为v 0=22.41 L/mol罗常量 N a =1023 mol -1普适气体常量R 00T v P ≡国际单位制为: J/ 压强用大气压,体积用升×10-2 理想气体的状态方程: PV=RT M M mol v=molM M(质量为M ,摩尔质量为M mol 的气体中包含的摩尔数)(R 为与气体无关的普适常量,称为普适气体常量)理想气体压强公式 P=231v mn (n=VN 为单位体积中的平均分字数,称为分子数密度;m 为每个分子的质量,v 为分子热运动的速率);P=VNn nkT T N R V N mV N NmRT V M MRT A A mol ====(为气体分子密度,R 和N A 都是普适常量,二者之比称为波尔兹常量k=K J N RA/1038.123-⨯=气体动理论温度公式:平均动能kT t 23=ε(平均动能只与温度有关)完全确定一个物体在一个空间的位置所需的独立坐标数目,称为这个物体运动的自由度。
双原子分子共有五个自由度,其中三个是平动自由度,两个适转动自由度,三原子或多原子分子,共有六个自由度)分子自由度数越大,其热运动平均动能越大。
每个具有相同的品均动能kT 21kT i t 2=ε i 为自由度数,上面3/2为一个原子分子自由度1摩尔理想气体的内能为:E 0=RT ikT N N A A 221==ε 质量为M ,摩尔质量为M mol 的理想气体能能为E=RT iM M E M M E mol mol 200==υ 气体分子热运动速率的三种统计平均值最概然速率(就是与速率分布曲线的极大值所对应哦速率,物理意义:速率在p υ附近的单位速率间隔内的分子数百分比最大)mkTm kT p 41.12≈=υ(温度越高,p υ越大,分子质量m 越大p υ)因为k=A N R 和mNA=Mmol 所以上式可表示为molmol A p M RTM RT mN RTmkT41.1222≈===υ #平均速率molmol M RTM RT m kT v 60.188≈==ππ方均根速率molmol M RTM RT v 73.132≈=三种速率,方均根速率最大,平均速率次之,最概速率最小;在讨论速率分布时用最概然速率,计算分子运动通过的平均距离时用平均速率,计算分子的平均平动动能时用分均根第四章 热力学基础热力学第一定律:热力学系统从平衡状态1向状态2的变化中,外界对系统所做的功W ’和外界传给系统的热量Q 二者之和是恒定的,等于系统内能的改变E 2-E 1W ’+Q= E 2-E 1Q= E 2-E 1+W 注意这里为W 同一过程中系统对外界所做的功(Q>0系统从外界吸收热量;Q<0表示系统向外界放出热量;W>0系统对外界做正功;W<0系统对外界做负功) dQ=dE+dW (系统从外界吸收微小热量dQ ,内能增加微小两dE,对外界做微量功dW 平衡过程功的计算dW=PS dl =P dV W=⎰21V V PdV、平衡过程中热量的计算 Q=)(12T T C M Mmol-(C 为摩尔热容量,1摩尔物质温度改变1度所吸收或放出的热量)等压过程:)(12T T C M MQ p molp -=定压摩尔热容量 等容过程:)(12T T C M MQ v molv -=定容摩尔热容量 内能增量E 2-E 1=)(212T T R iM M mol -RdTiM M dE mol 2=等容过程2211 T P T P V RM M T P mol ===或常量 Q v =E 2-E 1=)(12T T C M Mv mol-等容过程系统不对外界做功;等容过程内能变化等压过程2211 T V T V P RM M T V mol ===或常量 )()(121221T T R M MV V P PdV W V V mol⎰-=-==W E E Q P +-=12(等压膨胀过程中,系统从外界吸收的热量中只有一部分用于增加系统的内能,其余部分对于外部功) >R C C v p =- (1摩尔理想气体在等压过程温度升高1度时比在等容过程中要多吸收焦耳的热量,用来转化为体积膨胀时对外所做的功,由此可见,普适气体常量R 的物理意义:1摩尔理想气体在等压过程中升温1度对外界所做的功。