2020七年级数学下册 10.1 轴对称 画轴对称图形导学案(无答案)(新版)华东师大版
七年级数学下册第10章轴对称、平移与旋转10.1轴对称10.1.1生活中的轴对称导学案华东师大版

10.1.1 生活中的轴对称学习目标:(1)通过生活中的轴对称现象,了解轴对称图形及轴对称的区别与联系;(2)加深这两个概念的理解,能正确识别轴对称图形,培养观察能力;(3)体会轴对称在现实生活中的广泛运用和它的美学价值;重点、轴对称图形的概念.难点:判断图形是否是轴对称图形。
一、新知准备自学:1、观察一下书P8010.1.1中的图形,它们都是图形,这些图形有什么特点呢?(让学生说一说)2、轴对称图形的定义:如果一个图形沿某条直线对折,对折两部分,那么这个图形,这条直线叫做这个图形的。
3、画出书中图10.1.1中各图形的对称轴。
是不是每一个轴对称图形都只有一条对称轴?答:。
4、轴对称的定义:把一个图形沿着某一条直线翻折过去,如果它能够与重合,那么就说这两个图形,这条直线就是,两个图形中的对应点(即两个图形重合时互相重合的点)叫做。
5、轴对称图形和轴对称的区别与联系区别:(1)轴对称图形是指一个具有特殊形状的图形,只对个图形而言;轴对称是指个图形的位置的关系,必须涉及个图形。
(2)轴对称图形的对称轴;轴对称只有。
联系:(1)图中都有一条直线,都要沿着这条直线。
(2)如果把两个成轴对称图形拼在一起,看成一个整体,那么它就是一个。
如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成。
轴对称图形(或关于某条直线对称的两个图形)沿对称轴对折后的两部分是的,所以它的对应线段(对折后重合的线段),对应角(对折后重合的角)。
二、探究、发现1、如图是否为轴对称图形,若是请画出对称轴。
2、观察下图中各种图形,说出哪些图形可以放在一起形成轴对称(可以将图形上下放置或左右放置)解:左右放置可以形成轴对称的有:(1)和(),(2)和(),(9)和();上下放置可以形成轴对称的有:(2)和(),(5 和(),(7)和()。
3、下图中的各图形共同特点是什么?你觉得图中哪一个图形比较独特,简单说明你的理由。
解:它们的共同特点是都是。
七年级数学下册第10章轴对称、平移与旋转10.1轴对称10.1.1生活中的轴对称教案(新版)华东师大版

10.1.1生活中轴对称教学目标:1、知识与技能:通过实例欣赏,了解轴对称、对称轴以及轴对称图形的概念。
2、过程与方法:根据轴对称的定义,能够设计出轴对称图形。
3、情感、态度与价值观:能够说出轴对称图形和轴对称的区别与联系。
重点:轴对称图形、两个图形形成轴对称的区别与联系。
难点:通过实例欣赏得出轴对称图形、对称轴的定义。
课堂用具:手工纸、剪刀、尺子等。
课型:新授教学过程:一、导入新课我们生活在大千世界中,许多物体都具有对称美。
自古以来,对称的形式被认为是和谐、美丽且真实的。
山倒映在水中,这是令人难忘的对称景象。
我们每天从镜子里看到自己的形象,把自己的手掌盖在镜子上,镜子中的手和你的手就完全重合在一起了,这其实就是奇妙的数学现象——对称的体现。
这一节我们就来学习:生活中的轴对称。
二、新授(一)轴对称图形1、学生举例:举出日常生活中一些轴对称图形的例子,并画出草图。
2、学生实验:把一张纸对折,然后从折叠处剪出一个图形,看看展开后是一个什么样的图形?3、学生思考并回答:以上的这些图形有什么特点?折痕所在的直线与两边的图形有什么关系?4、师总结:如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形。
5、注意几点:1)轴对称图形是指一个图形,具有特殊形状。
2)轴对称图形的对称轴是一条直线。
有的轴对称图形并非只有一条对称轴。
3)轴对称图形沿着某条直线对折后,它的对应线段相等,对应角相等。
6、做一做:用一张半透明的纸描出下列图形:然后用不同的方式对折,用直尺画出折痕,看看这颗星有多少条对称轴。
(二)轴对称1、分组实验:把下列图形沿某一直线对折,让左右的两个图形完全重合。
2、讨论:什么情况下这两个图形完全重合?这两个图形的位置有什么特殊性?3、学生总结:“轴对称”不但要求两个图形的形状大小完全一样,且要求这两个图形的位置有一定的特殊性,特殊性就体现在沿某条直线对折能够完全重合。
4、总结讨论结果,得出轴对称的概念:把一个图形沿某一条直线翻过去后,如果能够与另一条直线重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形的对应点叫做对称点。
七年级数学下册第10章轴对称、平移与旋转10.1轴对称10.1.4设计轴对称图案教案1(新版)华东师大版

跟着我画容易画吧?好下面我们来设计一些具有创造性的图案。
三、动一动、试一试
你知道什么是麦田圆圈吗?(投影图片)
现在老师想当一回外星人,要请你们帮忙设计一些图案。你们也可以这样想:“如果你是图案的设计者,你会怎么设计图案呢?”
学生设计方案----“如果你是图案的设计者,你会怎么设计图案呢?现征集设计方案,要求设计的图案由圆和三角形组成(圆和三角形的个数不限),使整个图案成轴对称图形。并说明你所要表达的含义。”
(2)可以利用轴对称性来画出它吗?(转到几何画板)
2、请准备一张正方形纸片,按以下5个步骤一起来画。
拿出预先准备好的正方形纸片,
(1)在正方形纸片上画出四条对称轴。
(2)在其中一个三角形中,如图,画出图形形状的基本线条。(注意:不同的线条最终会得到不同的图案,你可以自己设计线条,而不必和书上一样。)
一、找一找,查一查
1、利用学生课前制作的PPT展示大量的图片,回顾在生活中的轴对称,使学生知道原来轴对称就在自己的身边。
2、展示学生的优秀作品,引出设诲-“自强不息,厚德载物”;通过这位同学的展示,很好地对其他同学进行了一次德育教育。
[情感目标]:
培养学生勇于探索和积极参与的精神。
2、教材分析
图案设计是建立在学生具有一定空间观念基础上,对有关图形知识的一个巩固过程。它是对学生空间观念,基本图形知识以及动手操作能力的一种综合培养。
3、习方法:自主学习法、合作学习法、探究式学习法。
4、教学过程
学生上台讲解并展示他们的设计,教师给予评价。
四、练一练、玩一玩
让你们任意发挥你们都做得不错,下面我们来一个比赛,看看那个小组更厉害。
用四块如右图所示的瓷砖拼成一个正方形,形成轴对称的图案,和你的同学比一比,看谁的拼法最多。
最新数学:七年级下册10.1.3 画轴对称图形导学案 (含答案) (华东师大版)

3.画轴对称图形学前温故1.把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.2.轴对称图形(或成轴对称的两个图形)的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等.新课早知1.垂直并且平分一条线段的直线称为这条线段的垂直平分线.2.如果一个图形是轴对称图形,那么连结对称点的线段的垂直平分线就是该图形的对称轴.3.如果图形是由直线、线段或射线组成时,那么在画出它关于某一条直线的对称图形时,只要画出图形中的特殊点(如线段的端点,角的顶点等)的对称点,然后连结对称点,就可以画出关于这条直线的对称图形.画轴对称图形【例题】已知△ABC和直线l,作出与△ABC关于直线l对称的图形.分析:题中的三角形可以由三个顶点的位置确定,只要能分别作出这三个顶点关于直线l的对称点,连结这些对称点,就能得到要作的图形.解:作法:(如图)(1)过点A作直线l的垂线,垂足为O,在垂线上截取OA′=OA,点A′就是点A关于直线l的对称点.(2)同理,分别作出点B,C关于直线l的对称点B′,C′.(3)连结A′B′,B′C′,C′A′,得△A′B′C′即为所求.点拨:一般地,画线段的轴对称图形,选择对称点是选择线段的端点;直线则是选择直线上任何两点;射线是选择端点和其他任何一点;多边形是选择其所有顶点;圆则是选择圆心及圆上任意一点.1.下列说法中正确的是().A.长方形有且只有一条对称轴B.垂直于线段的直线就是线段的对称轴C.角的对称轴是角的平分线D.角平分线所在直线是角的对称轴答案:D2.如图,给出的虚线是图形的对称轴的是().A.①③⑤B.②④⑥C.①②④D.②⑤⑥答案:B3.下列图形中,是对称图形且只有一条对称轴的是________,有两条对称轴的是________,有三条对称轴的是______,有无数条对称轴的是________.答案:(1)(2)(5)(6)(3)(4)4.画出下面图形的一条对称轴.解:如图所示.5.已知△ABC和直线l,点A在直线l上.画出△ABC关于直线l的对称图形.解:(1)点A在对称轴l上,则它的对称点A′也在l上,且一定和A重合.(2)过点B作BD⊥l于D,并延长到B′,使DB′=DB,则点B′就是点B关于直线l的对称点.(3)同理画出点C关于l的对称点C′.(4)连结A′B′,B′C′,C′A′,则△A′B′C′就是所要画的图形.。
华师大版七年级下册数学教案-第10章 轴对称、平移与旋转-10.1 轴对称

10.1 轴对称10.1.1 生活中的轴对称教学目标一、基本目标1.通过观察、分析现实生活实例和典型图形的过程,认识轴对称和轴对称图形.2.会找出简单的轴对称图形的对称轴,了解轴对称和轴对称图形的联系和区别.二、重难点目标【教学重点】轴对称图形的概念及判断图形是否是轴对称图形.【教学难点】1.寻找轴对称图形的对称轴.2.轴对称图形与成对称轴的区别与联系.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P98~P100的内容,完成下面练习.【3 min反馈】1.如果一个图形沿某条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做这个图形的对称轴.2.把一个图形沿某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称;这条直线就是对称轴.两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.3.轴对称图形(或成轴对称的两个图形)的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等.4.下列体育运动标志中,从图案看不是轴对称图形的有(B)A.4个B.3个C.2个D.1个环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】下列图标中,是轴对称图形的是()【互动探索】(引发学生思考)根据轴对称图形的概念可知,只有D是轴对称图形.【答案】D【互动总结】(学生总结,老师点评)如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就是轴对称图形.【例2】如图,△ABC和△AED关于直线l对称,若AB=2 cm,∠C=95°,则AE=________,∠D=________.【互动总结】(引发学生思考)根据轴对称的性质,有AE=AB=2 cm,∠D=∠C=95°.【答案】2 cm95°【互动总结】(学生总结,老师点评)根据成轴对称的两个图形的对应线段相等,对应角相等.活动2巩固练习(学生独学)1.下列图形中,不是轴对称图形的是(C)2.下面的图形中,是轴对称图形的是(D)3.如图,正方形ABCD的边长为4 cm,则图中阴影部分的面积为(B)A.4 cm2B.8 cm2C.12 cm2D.16 cm24.观察下图中各组图形,其中成轴对称的为①②④.(填序号)5.如图所示,哪一组的右边图形与左边图形成轴对称?解:④⑤⑥中右边图形与左边图形成轴对称.活动3拓展延伸(学生对学)【例3】如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有()A.4种B.3种C.2种D.1种【互动探索】根据轴对称图形的概念可知,一共有3种涂法,如下图所示:【答案】B【互动总结】(学生总结,老师点评)本题考查了轴对称图形的知识,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.环节3 课堂小结,当堂达标 (学生总结,老师点评) 生活中的轴对称⎩⎪⎨⎪⎧轴对称图形图形成轴对称特征练习设计请完成本课时对应练习!10.1.2 轴对称的再认识教学目标 一、基本目标1.掌握用“连结对称点的线段被对称轴垂直平分”验证一个图形是不是轴对称图形. 2.能熟练画出轴对称图形的对称轴.3.通过动手操作探索轴对称的性质,运用轴对称性质解决实际问题. 二、重难点目标 【教学重点】线段垂直平分线概念的理解及作法,画轴对称图形的对称轴. 【教学难点】归纳总结画轴对称图形对称轴的方法. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P102~P104的内容,完成下面练习. 【3 min 反馈】1.经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线.线段是轴对称图形,它的对称轴是垂直平分线.2.角是轴对称图形,它的对称轴是它的角平分线所在的直线.3.如果一个图形是轴对称图形,那么连结对称点的线段的垂直平分线就是该图形的对称轴.4.以下图标中,是轴对称图形的有(C)A.1个B.2个C.3个D.4个环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】下列轴对称图形中,恰好有两条对称轴的是()A.正方形B.等腰三角形C.长方形D.圆【互动探索】(引发学生思考)A.正方形有四条对称轴;B.等腰三角形有一条对称轴;C.长方形有两条对称轴;D.圆有无数条对称轴.故选C.【答案】C【互动总结】(学生总结,老师点评)判断轴对称的条数,仍然是根据定义进行判断,判断轴对称图形的关键是寻找对称轴,注意不要遗漏.【例2】找出下列图形的所有的对称轴,并画出来.【互动探索】(引发学生思考)找到并连结对称点,作出对称点的连线的垂直平分线.【解答】所画对称轴如下所示:【互动总结】(学生总结,老师点评)如果图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.活动2巩固练习(学生独学)1.下列图形中,对称轴最多的是(D)A.等边三角形B.正方形C.角D.圆2.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线(C)A .l 1B .l 2C .l 3D .l 43.试画出下列正多边形的所有对称轴,并完成表格.正多边形的边数 3 4 5 6 7 … 对称轴的条数34567…根据上表,猜想正n 边形有n 条对称轴. 4.如图,作出它们的对称轴.解:如图所示.环节3 课堂小结,当堂达标 (学生总结,老师点评)轴对称的再认识⎩⎪⎨⎪⎧轴对称的判定画对称轴练习设计请完成本课时对应练习!10.1.3 画轴对称图形教学目标 一、基本目标1.掌握作已知图形关于直线的轴对称图形的方法.2.在探索问题的过程中体会知识间的关系,并从实践中体会轴对称变换在实际生活中的应用,感受数学与生活的联系.二、重难点目标【教学重点】让学生识别轴对称图形与画轴对称图形的对称轴.【教学难点】作平面图形关于直线的轴对称图形.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P105~P106的内容,完成下面练习.【3 min反馈】1.画出下列轴对称图形的所有对称轴.略2.由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的形状、大小完全一样;新图形上一个点,都是原图形上的某一点关于直线l的对称点;连结任意一对对应点的线段被对称轴垂直平分.3.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连结这些对应点,就可以得到原图形的轴对称图形.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】画出△ABC关于直线l的对称图形.【互动探索】(引发学生思考)画已知图形关于直线对称的图形的关键是什么?【解答】如图所示:【互动总结】(学生总结,老师点评)画一个图形关于某条直线对称的图形的方法:先确定一些特殊的点,然后作这些特殊点的对称点,最后顺次连结即可.【例2】如图,将长方形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=()A.20°B.30°C.40°D.50°【互动探索】(引发学生思考)根据图形翻折变换可知,∠EAD=∠EFD=90°.∵∠EFB=60°,∴∠CFD=30°,故选B.【答案】B【互动总结】(学生总结,老师点评)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.活动2巩固练习(学生独学)1.下面是四位同学作△ABC关于直线MN的轴对称图形的方法,其中正确的是(B)2.如图所示,以虚线为对称轴画出图形的另一半.解:如图所示:3.在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.解:如图所示:环节3课堂小结,当堂达标(学生总结,老师点评)作与图形成轴对称的图形,关键在于将图形抽象成各点,然后作点的对称点,再连线即可.练习设计请完成本课时对应练习!10.1.4 设计轴对称图形教学目标一、基本目标1.使学生能设计简单的轴对称图案.2.使学生能够欣赏现实生活中的轴对称图形.二、重难点目标【教学重点】利用称轴对进行图案设计.【教学难点】寻找对称轴以及如何利用对称轴作轴对称图形.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P107~P108的内容,完成下面练习.【3 min反馈】1.下列各图,均是圆与等边三角形的组合,其中不是轴对称图形的是(B)2.观察下列轴对称图形的构成,然后在答题纸横线上画出恰当的图形.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】某居民小区搞绿化,要在一块长方形空地(如下图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个长方形场地成轴对称图形.请在下边长方形中画出你的设计方案.【互动探索】(引发学生思考)长方形是轴对称图形吗?正方形和圆呢?怎样设计图案才能保证其成轴对称图形?【解答】如图所示(答案不唯一).【互动总结】(学生总结,老师点评)利用轴对称可以设计出精美的图案,一个图形经过不同位置的几次变换,若再结合平移、旋转等,便可以得到非常美丽的图案.【例2】将一个四边形纸片依次按图1、2的方式对折,然后沿图3中的虚线裁剪成图4样式.将纸片展开铺平,所得到的图形是图中的()【互动探索】(引发学生思考)严格按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个和菱形位置基本一致的正方形.故选A.【答案】A【互动总结】(学生总结,老师点评)对于此类问题,只要亲自动手操作,答案就会很直观地呈现.【例3】如图,A是锐角MON内部任意一点,在∠MON的两边OM、ON上各求作一点B、C,组成△ABC,使△ABC的周长最小.【互动探索】(引发学生思考)分别作点A关于OM的对称点A′、关于ON的对称点A″,连结A′A″,则A′A″与OM交点为点B的位置,与ON交点为点C的位置.【解答】如图所示,点B、C即为所求作的点.【互动总结】(学生总结,老师点评)解决此类问题时,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合所学轴对称变换来解决,多数情况要作点关于某直线的对称点.活动2巩固练习(学生独学)1.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用轴对称知识的是(C)2.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是(B)3.小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.解:如图所示,答案不唯一,参见下图.环节3课堂小结,当堂达标(学生总结,老师点评)轴对称图形给人以美感,所以人们常利用轴对称来设计图案.练习设计请完成本课时对应练习!。
初中数学华东师大版七年级下册10.1 轴对称 第1课时 教案 教学设计

10.1 轴对称第1课时教学目标【知识与技能】通过观察、分析现实生活实例和典型图形的过程,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴,了解轴对称和轴对称图形的联系和区别.【过程与方法】通过大量的实例初步认识轴对称,能识别简单的轴对称图形及其对称轴.【情感态度】通过欣赏现实生活中的轴对称图形,体验轴对称在现实生活中的广泛应用,体会数学来源于生活.教学重难点【教学重点】正确理解轴对称图形以及轴对称的概念.【教学难点】能正确区分轴对称图形和轴对称.课前准备课件教学过程一、情境导入,初步认识从各小组收集的图片中选择一些有代表性的,用投影仪演示,使学生能够形象直观地感受图形的对称 .看完图片以后老师总结:自远古以来,对称形式被认为是和谐、美丽并且真实的.不论在自然界里还是在建筑中,不论在艺术中还是在科学中,甚至最普通的日常生活用品中,对称的形式都随处可见.请学生自己讨论,在生活中你见过哪些对称图形.例如:青山倒映在水中(教材第98页图),这是令人难忘的景象.还有一些伟大的建筑物,它们都是轴对称图形.【教学说明】通过观察图片.使学生能够形象直观地感受图形的对称.使学生明白对称在美学和自然界中的作用.二、思考探究,获取新知探究1轴对称图形这些美丽的图形来自生活,细心观察之后,你能发现这些图形有什么共同特征么?用自己的语言描述.你能不能在上面的每个图形中画一条线,在把这个图形沿你所画的线对折,使左右两旁的部分完全重合.【归纳结论】如果图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形.这条直线叫做这个图形的对称轴.理解轴对称图形应注意三点:(1)轴对称图形是一个图形;(2)对折;(3)重合.探究2轴对称观察下面两组图形.图(1)中有几个天使呢?请注意观察,当把这两个天使沿着一条直线折叠后,会发现什么样的现象?请同学再看图(2),当沿着一条直线折叠后,这两个五边形会有什么现象?这就是说两个图形也可以是对称的.我们把这样的两个图形称为成轴对称.【归纳结论】像上面所述,把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形的对应点(即两个图形重合时互相重合的点)叫做对称点.理解轴对称图形应注意三点:(1)“轴对称”是两个图形.(2)对折.(3)重合.试一试:请同学标出第(2)个图中A、B、C三点的对称点A1、B1、C1.在图(2)中,如果把它看作两个五边形,那么它就是成轴对称的,如果我们把它看作是一个图形的两个部分,那么它就成了轴对称图形.从上图中我们可以发现,轴对称图形(或成轴对称的两个图形)沿对称轴对折后的两部分是完全重合的,所以它的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等.【教学说明】通过感官加深对轴对称图形和成轴对称的理解.三、运用新知,深化理解1.如图所示的几个图案中,是轴对称图形的是()2如图所示,下面的5个英文字母中是轴对称图形的有()A.2个B.3个C.4个D.5个3.如图所示的图案中,是轴对称图形的有()A.1个B.2个C.3个D.4个4.如图所示,从轴对称的角度来看,你觉得下面哪一个图形比较独特?简单说明你的理由.5.观察如图所示的图案,它们都是轴对称图形,它们各有几条对称轴?在图中画出所有的对称轴.6.如图所示的四个图形中,从几何图形的性质考虑哪一个与其他三个不同?请指出这个图形,并简述你的理由.【教学说明】进行适当的由浅入深,由感性到理性的一些练习,老师进行了一些必要的讲解,打好学生的知识技能和运算能力的基础.【答案】1.A 2.B 3.B 4.解:(3)比较独特,它有无数条对称轴,其他图形只有两条对称轴. 5.解:(1)2条(2)4条(3)5条(4)3条画图略 6.解:②不是轴对称图形四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师加以补充.课后作业1.布置作业:教材第100页“练习”.2.完成练习册中本课时练习.五、教学反思本节通过大量生动的生活中的实例引领学生进入图形中的对称世界,深刻体会对称在现实生活中的广泛应用和丰富的文化价值.同时通过本节的学习与探索,使同学们对对称的认识由感性到理性,由浅到深,为后面抽象的对称图形的学习作好铺垫工作.。
七年级数学下册第10章轴对称平移与旋转10.1轴对称4设计轴对称图案教案华东师大版

10.1.4 设计轴对称图案会设计简单的轴对称图案.重点能灵活运用轴对称进行简单的图案设计.难点能灵活运用轴对称进行简单的图案设计.一、创设情境,问题引入随着人们生活水平的不断提高,各种小汽车已经走进我们的家庭.道路交通也越来越堵塞,我们必须遵守交通规则,安全出行.下面是一些交通标志牌,仔细观察这些图案,发现其中有很多轴对称图形.生活中还有很多复杂的轴对称图形,那么我们如何设计轴对称图案呢?二、探索问题,引入新知如图,是一个轴对称图形.(1)有多少条对称轴呢?(2)可以利用轴对称性来画出它吗?准备一张正方形纸片,按以下五个步骤一起来画:(1)在正方形纸片上用虚线画出四条对称轴.(2)如图,在其中一个三角形中,画出图形形状的基本线条(可以自己设计线条).(3)按照其中一条斜的对称轴画出(2)中图形的对称图形.(4)按照其中一条斜的对称轴画出(3)中图形的对称图形.(5)按照水平(或垂直)对称轴画出(4)中图形的对称图形.画好后可以涂上自己喜欢的颜色,擦掉其它多余的线条,一幅对称的图案就完成了(如下图).【例】把如图(实线部分)补成以虚线m为对称轴的轴对称图形,你会得到一只美丽蝴蝶的图案.(不用写作法,保留作图痕迹).分析:作A,B,C,D关于直线m的对称点A′,B′,C′,D′即可解决问题.解:作A,B,C,D关于直线m的对称点A′,B′,C′,D′,图案如图所示.三、巩固练习1.长城是我国古代劳动人民创造的伟大奇迹,是中国悠久历史的见证,是中华民族的象征,被列为世界文化遗产.下列以长城为背景的标志设计中,不是轴对称图形的是()2.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有________个.3.如图是由16个小正方形组成的正方形网格图,现已将其中的两个涂黑.请你用四种不同的方法分别在下图中再涂黑三个空白的小正方形,使它成为轴对称图形.4.观察设计.(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)四、小结与作业小结先小组内交流收获和感想,然后以小组为单位派代表进行总结.教师加以补充.作业1.教材第109页“练习”.2.完成练习册中本课时练习.课前让学生充分收集生活中的利用轴对称设计的图案,使学生感受到轴对称在生活中的广泛存在和丰富的文化价值.课堂上各个环节为学生展示自己聪明才智提供机会,并在此过程中让学生去发现问题、分析问题、解决问题形成独到见解.课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度.。
七年级数学下册第10章轴对称、平移与旋转10.1轴对称10.1.2轴对称的再认识(1)学案(新版)华东师大版

10.1.2 轴对称的再认识(1)一、学习目标:1.探索简单图形线段、角的对称性;2.了解线段的垂直平分线、角平分线的性质。
3.在动手折叠的过程中,感受轴对称图形的对称美。
二、依据问题自主探究,体验独立解决问题的乐趣(一)、复习回顾1.下面各图,哪几个是轴对称图形?你能画出它的对称轴吗?2.线段是轴对称图形吗?如果是,那它有几条对称轴呢?(二)、自学课本内容,完成下列问题:1.通过“做一做”,我们可以发现:①线段______ (是、不是)轴对称图形。
②右图中,直线______是线段AB的对称轴;直线CD既______线段AB,又______线段AB。
我们把垂直并且平分一条线段的直线称为这条线段的______________。
③线段的垂直平分线,又称为__________。
2观察下图,已知直线CD垂直平分线段AB,在直线CD上任取一点M,连接MA与MB。
如果把线段AB沿直线CD对折,那么MA与MB会重合吗?请在纸上仿照上图画下来,试试看。
归纳:通过折叠,可以发现:点A与点B是________的,所以无论M点取在直线CD的何处,线段MA和MB都是________。
概括:线段的________________的点到__________________的距离相等。
3、角是轴对称图形吗?按课本上的要求进行折叠,完成以下几个问题:(1)、射线OM与∠AOB是什么关系?。
(2)、从上面的操作可以看出,角是图形,对称轴是它的所在的直线.4、结合图交流以下几个问题:图10.2.4(1)、线段MC和MD相等吗?再在OA上找一点,量一量这一点到角两边的距离,你发现了什么?(2)、结论:。
三、问题反馈:四、提升自我,体验收获的快乐1、下列几何图形中:①角、②线段、③圆、④正方形、⑤等腰直角三角形,其中轴对称图形有个。
2、角是图形,它的对称轴是。
3、完成课后练习1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
画轴对称图形
【学习目标】
1. 会画对称轴和轴对称图形并会设计轴对称图案
2.通过把画轴对称图形转化为画已知图形中各点的轴对称点的方法画图
3.开发学生创新性思维,感悟几何图形的美。
【重点】画轴对称图形
【难点】画轴对称图形
【使用说明与学法指导】
1、 认真阅读课本P105-P108勾画出疑问点;再针对预习案二次阅读教材,解答预习案中的问题。
2、通过预习能够初步了解画对称轴和画轴对称图形的基本步骤。
预 习 案
一、预习自学
1.垂直并且平分一条线段的直线称为这条线段的
2.如果一个图形是轴对称图形,那么连结对称点的线段的 就是该图形的对称轴.
3.如果图形是由直线、线段或射线组成时,那么在画出它关于某一条直线的对称图形时,只要画出
图形中的特殊点(如线段的端点,角的顶点等)的 ,然后连结对称点,就可以画出关于
这条直线的对称图形.
二、我的疑惑
2
探 究 案
探究一:画图形的对称轴
例1.画出以下图形的对称轴.
例2.画出下列图形的对称轴.
总结:画对称轴的步骤是什么?
探究点二: 画轴对称图形
例1.实线所构成的图形为已知图形,虚线为对称轴,是画出已知图形的轴对称图形
例2. 已知△ABC和直线l,画出△ABC关于直线l的对称图形.
3
画轴对称图形归纳:
1.先找( ),
2.然后作出其( ),
3.最后顺次连结( )构成轴对称图形
训练案
1. 画出下面图形的一条对称轴.
2. 下列图形中,是对称图形且只有一条对称轴的是________,有两条对称轴的是________,
有三条对称轴的是______,有无数条对称轴的是________.
3. 下列说法中正确的是( ).
A.长方形有且只有一条对称轴
B.垂直于线段的直线就是线段的对称轴
C.角的对称轴是角的平分线
D.角平分线所在直线是角的对称轴
4. 在图右侧画的四个三角形中,与△ABC成轴对称的是( ).
5.如图,将长方形纸片沿对称轴折叠,在对称轴处剪下一块,余下部分的展开图为( ).
拓展提升
4
1. 已知△ABC和直线l,作出与△ABC关于直线l对称的图形.
2.分别以直线l为对称轴,画出图形的另一半.
3.用四块如图1所示的瓷砖拼成一个正方形图案,使拼成的图案成一个轴对称图形(如图2),请你
分别在本题的图3、图4中各画一种与图2不同的拼法,要求两种拼法各不相同.