3-3第三章 三角函数、解三角形

合集下载

高考数学一轮复习 第三章 三角函数、解三角形 第3讲 两角和与差的正弦、余弦和正切公式课件 文

高考数学一轮复习 第三章 三角函数、解三角形 第3讲 两角和与差的正弦、余弦和正切公式课件 文

xcos
x+1(x∈R),当函数
y

最大值时,求自变量 x 的集合.
12/11/2021
【解】 (1)①因为 tanπ4+α=11-+ttaann αα=12,
(2)因为 tan α=tan[(α-β)+β]=1t-ant(anα(-αβ-)β+)ttaannββ
=1+12-12×17 17=13>0,所以
π 0<α<2.
又因为 tan 2α=1-2tatannα2α=1-2×31312=34>0,
12/11/2021
所以 0<2α<π2, 所以 tan(2α-β)=1t+anta2nα-2αttaannββ=1-34+34×17 17=1. 因为 tan β=-17<0, 所以π2<β<π,-π<2α-β<0,所以 2α-β=-34π.
所以 0<α+β<π3或23π<α+β<π;
又由 cos α=17<12且 α 为锐角得π3<α<π2,
所以23π<α+β<π,
于是 cos(α+β)=-1114,sin α=4 7 3,故 cos β=12.
12/11/2021
3.在△ABC 中,tan A+tan B+ 3= 3tan A·tan B,则 C π
12/11/2021
2cos 1.
10°-sin sin 70°
20°的值是___3_____.
[解析] 原式=2cos(30°-sin207°0°)-sin 20°
=2(cos
30°·cos
20°+sin 30°·sin sin 70°
20°)-sin

2018年高考数学(理)一轮复习文档第三章三角函数、解三角形第2讲同角三角函数的基本关系与诱导公式Word版

2018年高考数学(理)一轮复习文档第三章三角函数、解三角形第2讲同角三角函数的基本关系与诱导公式Word版

第2讲 同角三角函数的基本关系与诱导公式1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:tan α=sin αcos α.2.六组诱导公式简记口诀:把角统一表示为k π2±α(k ∈Z )的形式,奇变偶不变,符号看象限.1.辨明三个易误点(1)“同角”有两层含义:一是“角相同”,二是代表“任意”一个使三角函数有意义的角.“同角”的概念与角的表达形式有关,如:sin 23α+cos 23α=1,sinα2cosα2=tan α2.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化. 2.三角函数求值与化简的三种常用方法(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….1.cos ⎝ ⎛⎭⎪⎫-20π3=( ) A.12 B.32 C .-12D .-32C2.已知sin ⎝ ⎛⎭⎪⎫π2+α=35,α∈⎝⎛⎭⎪⎫0,π2,则sin(π+α)等于( )A.35 B .-35C.45D .-45D 因为sin ⎝⎛⎭⎪⎫π2+α=35,α∈⎝ ⎛⎭⎪⎫0,π2, 所以cos α=35,所以sin α=45,所以sin(π+α)=-sin α=-45.3.若sin θcos θ=12,则tan θ+cos θsin θ的值是( )A .-2B .2C .±2D.12B tan θ+cos θsin θ=sin θcos θ+cos θsin θ=1cos θsin θ=2.4.若sin θ=-45,tan θ>0,则cos θ=________.由已知,θ在第三象限, 所以cos θ=-1-sin 2θ=-1-(-45)2=-35.-355.教材习题改编 已知tan θ=2,则sin θ·cos θ=________. sin θcos θ=sin θ·cos θsin 2θ+cos 2θ=tan θtan 2θ+1=222+1=25. 25同角三角函数的基本关系式(高频考点)同角三角函数的基本关系式的应用很广泛,也比较灵活.高考中常以选择题、填空题的形式出现.高考对同角三角函数基本关系式的考查主要有以下三个命题角度: (1)知弦求弦; (2)知弦求切; (3)知切求弦.(1)(2016·高考全国卷丙)若tan α=34,则cos 2α+2sin 2α=( )A.6425 B.4825C .1D.1625(2)已知sin α+2cos α=3,则tan α=( ) A.22 B. 2 C .-22D .- 2【解析】 (1)法一:由tan α=sin αcos α=34,cos 2α+sin 2α=1,得⎩⎪⎨⎪⎧sin α=35,cos α=45或⎩⎪⎨⎪⎧sin α=-35,cos α=-45,则sin 2α=2sin αcos α=2425,则cos 2α+2sin 2α=1625+4825=6425. 法二:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=1+31+916=6425. (2)因为sin α+2cos α=3, 所以(sin α+2cos α)2=3,所以sin 2α+22sin αcos α+2cos 2α=3, 所以sin 2α+22sin αcos α+2cos 2αsin 2α+cos 2α=3,所以tan 2α+22tan α+2tan 2α+1=3, 所以2tan 2α-22tan α+1=0,所以tan α=22. 【答案】 (1)A (2)A同角三角函数关系式及变形公式的应用(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.角度一 知弦求弦1.(2017·雅安模拟)已知sin θ+cos θ=43,θ∈(0,π4),则sin θ-cos θ的值为( )A.23 B.13 C .-23D .-13C (sin θ+cos θ)2=169,所以1+2sin θcos θ=169,所以2sin θcos θ=79,由(sin θ-cos θ)2=1-2sin θ·cos θ=1-79=29,可得sin θ-cos θ=±23.又因为θ∈(0,π4),sin θ<cos θ,所以sin θ-cos θ=-23.角度二 知弦求切2.已知cos ⎝ ⎛⎭⎪⎫π2+α=35,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则tan α=( )A.43 B.34 C .-34D .±34B 因为cos ⎝⎛⎭⎪⎫π2+α=35,所以sin α=-35,显然α在第三象限,所以cos α=-45,故tan α=34.角度三 知切求弦3.若sin α=2sin β,tan α=3tan β,则cos α=________. 因为sin α=2sin β,① tan α=3tan β, tan 2α=9tan 2β.②由①2÷②得:9cos 2α=4cos 2β.③ 由①2+③得sin 2α+9cos 2α=4. 又sin 2α+cos 2α=1, 所以cos 2α=38,所以cos α=±64. ±64诱导公式的应用(1)sin(-1 200°)cos 1 290°+cos(-1 020°)·sin(-1 050°)=________.(2)已知cos α是方程3x 2-x -2=0的根,且α是第三象限角,则sin (-α+3π2)cos (3π2+α)tan 2(π-α)cos (π2+α)sin (π2-α)等于________.(3)已知cos(π6-α)=23,则sin(α-2π3)=________.【解析】 (1)原式=-sin 1 200°cos 1 290°-cos 1 020°·sin 1 050°=-sin(3×360°+120°)cos(3×360°+210°)-cos(2×360°+300°)sin(2×360°+330°)=-sin 120°cos 210°-cos 300°sin 330°=-sin(180°-60°)cos(180°+30°)-cos(360°-60°)·sin(360°-30°) =sin 60°cos 30°+cos 60°sin 30° =32×32+12×12=1. (2)因为方程3x 2-x -2=0的根为x 1=1,x 2=-23,由题知cos α=-23,所以sin α=-53,tan α=52. 所以原式=-cos αsin αtan 2α-sin αcos α=tan 2α=54.(3)因为⎝ ⎛⎭⎪⎫π6-α+⎝ ⎛⎭⎪⎫α-2π3=-π2,所以α-2π3=-π2-⎝ ⎛⎭⎪⎫π6-α,所以sin ⎝ ⎛⎭⎪⎫α-2π3=sin ⎣⎢⎡⎦⎥⎤-π2-⎝ ⎛⎭⎪⎫π6-α=-cos ⎝ ⎛⎭⎪⎫π6-α=-23.【答案】 (1)1 (2)54 (3)-23(1)诱导公式用法的一般思路 ①化大角为小角.②角中含有加减π2的整数倍时,用公式去掉π2的整数倍.(2)常见的互余和互补的角①常见的互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等.②常见的互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等.(3)三角函数式化简的方向 ①切化弦,统一名. ②用诱导公式,统一角.③用因式分解将式子变形,化为最简.1.(2017·福建省毕业班质量检测)若sin(π2+α)=-35,且α∈(π2,π),则sin(π-2α)=( )A.2425 B.1225C .-1225D .-2425D 由sin(π2+α)=cos α=-35,且α∈(π2,π),得sin α=45,所以sin(π-2α)=sin 2α=2sin αcos α=-2425,选项D 正确.2.sin(-1 071°)si n 99°+sin(-171°)sin(-261°)=________. 原式=(-sin 1 071°)·sin 99°+sin 171°·sin 261°=-sin (3×360°-9°)sin(90°+9°)+sin(180°-9°)·sin(270°-9°)=sin 9°cos 9°-sin 9°cos 9°=0.故填0.3.已知cos(π+α)=-12,求sin[α+(2n +1)π]+sin (π+α)sin (π-α)·cos (α+2n π)(n ∈Z ).因为cos(π+α)=-12,所以-cos α=-12,cos α=12.sin[α+(2n +1)π]+sin (π+α)sin (π-α)cos (α+2n π)=sin (α+2n π+π)-sin αsin αcos α=sin (π+α)-sin αsin αcos α=-2sin αsin αcos α=-2cos α=-4.——方程思想求解三角函数值已知sin θ+cos θ=713,θ∈(0,π),则tan θ=________.【解析】 法一:因为sin θ+cos θ=713,θ∈(0,π),所以(sin θ+cos θ)2=1+2sin θcos θ=49169,所以sin θcos θ=-60169.由根与系数的关系,知sin θ,cos θ是方程x 2-713x -60169=0的两根,所以x 1=1213,x 2=-513.又sin θcos θ=-60169<0,所以sin θ>0,cos θ<0.所以sin θ=1213,cos θ=-513.所以tan θ=sin θcos θ=-125.法二:同法一,得sin θcos θ=-60169,所以sin θcos θsin 2θ+cos 2θ=-60169. 齐次化切,得tan θtan 2 θ+1=-60169,即60tan 2θ+169tan θ+60=0, 解得tan θ=-125或tan θ=-512.又θ∈(0,π),sin θ+cos θ=713>0,sin θcos θ=-60169<0.所以θ∈(π2,3π4),所以tan θ=-125.【答案】 -125(1)本题利用方程思想法一:由sin θ+cos θ、sin θcos θ的值构造一元二次方程,把sin θ与cos θ看作此方程的两根,即可求出sin θ与cos θ的值,便可求解.法二:利用三角函数的基本关系转化为关于tan θ的一元二次方程求解.(2)所谓方程思想就是在解决问题时,用事先设定的未知数沟通问题中所涉及的各量间的等量关系,建立方程或方程组,求出未知数及各量的值,或者用方程的性质去分析、转化问题,使问题获得解决.已知sin(3π-α)=-2sin(π2+α),则sin αcos α等于( )A .-25 B.25C.25或-25D .-15A 因为sin(3π-α)=sin(π-α)=-2sin(π2+α),所以sin α=-2cos α,所以tan α=-2,当α在第二象限时,⎩⎪⎨⎪⎧sin α=255cos α=-55,所以sin αcos α=-25;当α在第四象限时,⎩⎪⎨⎪⎧sin α=-255cos α=55,所以sin αcos α=-25,综上,sin αcosα=-25,故选A.1.tan(-233π)的值为( )A. 3 B .- 3 C.33D .-33A A tan(-233π)=tan(-8π+π3)=tan π3= 3.2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3C.π6D.π3D 因为sin(π+θ)=-3cos(2π-θ), 所以-sin θ=-3cos θ,所以tan θ= 3. 因为|θ|<π2,所以θ=π3.3.(2017·福建省毕业班质量检测)已知cos(α+π2)=13,则cos 2α的值等于( )A.79 B .-79C.89D .-89A 法一:因为cos(α+π2)=13,所以sin α=-13,所以cos α=±223,所以cos 2α=cos 2α-sin 2α=(±223)2-(-13)2=79,故选A.法二:因为cos(α+π2)=13,所以sin α=-13,所以cos 2α=1-2sin 2α=1-2×19=79,故选A.4.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α的值为( )A .-15B .-25C.15D.25D 依题意得tan α+33-tan α=5,所以tan α=2.所以sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25. 5.已知f (x )=a sin(πx +α)+b cos(πx +β)+4,若f (2 016)=5,则f (2 017)的值是( )A .2B .3C .4D .5B 因为f (2 016)=5.所以a sin(2 016π+α)+b cos(2 016π+β)+4=5, 即a sin α+b cos β=1.所以f (2 017)=a sin(2 017π+α)+b cos(2 017π+β)+4=-a sin α-b cos β+4=-1+4=3.6.已知sin α+3cos α+1=0,则tan α的值为( ) A.43或34 B .-34或-43C.34或-43D .-43或不存在D 由sin α=-3cos α-1,可得(-3cos α-1)2+cos 2α=1,即5cos 2α+3cos α=0,解得cos α=-35或cos α=0,当cos α=0时,tan α的值不存在,当cos α=-35时,sin α=-3cos α-1=45,tan α=sin αcos α=-43,故选D.7.化简sin (π2+α)cos (π2-α)cos (π+α)+sin (π-α)cos (π2+α)sin (π+α)=________. 原式=cos αsin α-cos α+sin α(-sin α)-sin α=-sin α+sin α=0. 08.在△ABC 中,若tan A =23,则sin A =________. 因为tan A =23>0,所以A 为锐角,于是1+tan 2A =1+29=119=1cos 2A ,cos 2A =911,cos A =31111,sin A =tan A cos A =2211. 2211 9.sin 43π·cos 56π·tan(-43π)的值是________. 原式=sin(π+π3)·cos(π-π6)·tan(-π-π3) =(-sin π3)·(-cos π6)·(-tan π3) =(-32)×(-32)×(-3)=-334. -33410.已知sin ⎝ ⎛⎭⎪⎫7π12+α=23,则cos ⎝⎛⎭⎪⎫α-11π12=________. cos ⎝ ⎛⎭⎪⎫α-11π12=cos ⎝ ⎛⎭⎪⎫11π12-α =cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π12+α=-cos ⎝ ⎛⎭⎪⎫π12+α, 而sin ⎝ ⎛⎭⎪⎫7π12+α=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π12+α =cos ⎝ ⎛⎭⎪⎫π12+α=23, 所以cos ⎝⎛⎭⎪⎫α-11π12=-23. -2311.已知sin θ=45,π2<θ<π. (1)求tan θ的值;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值.(1)因为sin 2θ+cos 2θ=1,所以cos 2θ=925.又π2<θ<π,所以cos θ=-35.所以tan θ=sin θcos θ=-43.(2)由(1)知,sin 2θ+2sin θcos θ3sin 2θ+cos 2 θ=tan 2θ+2tan θ3tan 2θ+1=-857.12.已知α为第三象限角,f (α)=sin (α-π2)·cos (3π2+α)·tan (π-α)tan (-α-π)·sin (-α-π).(1)化简f (α);(2)若cos(α-3π2)=15,求f (α)的值.(1)f (α)=sin (α-π2)·cos (3π2+α)·tan (π-α)tan (-α-π)·sin (-α-π)=(-cos α)·sin α·(-tan α)(-tan α)· sin α=-cos α.(2)因为cos(α-3π2)=15,所以-sin α=15,从而sin α=-15.又α为第三象限角,所以cos α=-1-sin 2α=-265,所以f (α)=-cos α=265.13.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为() A .-32 B.32C .-34 D.34B 因为5π4<α<3π2,所以cos α<0,sin α<0且|cos α|<|sin α|,所以cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34, 所以cos α-sin α=32. 14.化简1-2sin 40°cos 40°cos 40°-1-sin 250°=________. 原式=sin 240°+cos 240°-2sin 40°cos 40°cos 40°-cos 50°=|sin 40°-cos 40°|sin 50°-sin 40° =|sin 40°-sin 50°|sin 50°-sin 40° =sin 50°-sin 40°si n 50°-sin 40° =1.115.已知在△ABC 中,sin A +cos A =15. (1)求sin A cos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形;(3)求tan A 的值.(1)因为sin A +cos A =15,① 所以两边平方得1+2sin A cos A =125, 所以sin A cos A =-1225. (2)由sin A cos A =-1225<0,且0<A <π, 可知cos A <0,所以A 为钝角,所以△ABC 是钝角三角形.(3)因为(sin A -cos A )2=1-2sin A cos A =1+2425=4925, 又sin A >0,cos A <0,所以sin A -cos A >0,所以sin A -cos A =75,② 所以由①,②可得sin A =45,cos A =-35,所以tan A =sin A cos A =45-35=-43. 16.已知f (x )=cos 2(n π+x )·sin 2(n π-x )cos 2[(2n +1)π-x ](n ∈Z ). (1)化简f (x )的表达式; (2)求f ⎝ ⎛⎭⎪⎫π2 016+f ⎝ ⎛⎭⎪⎫1 007π2 016的值. (1)当n 为偶数,即n =2k (k ∈Z )时,f (x )=cos 2(2k π+x )·sin 2(2k π-x )cos 2[(2×2k +1)π-x ]=cos 2x ·sin 2(-x )cos 2(π-x )=cos 2x ·(-sin x )2(-cos x )2 =sin 2x (n =2k ,k ∈Z );当n 为奇数,即n =2k +1(k ∈Z )时,f (x )=cos 2[(2k +1)π+x ]·sin 2[(2k +1)π-x ]cos 2{[2×(2k +1)+1]π-x }=cos 2[2k π+(π+x )]·sin 2[2k π+(π-x )]cos 2[2×(2k +1)π+(π-x )]=cos 2(π+x )·sin 2(π-x )cos 2(π-x )=(-cos x )2sin 2x (-cos x )2 =sin 2x (n =2k +1,k ∈Z ).综上得f (x )=sin 2x . (2)由(1)得f ⎝ ⎛⎭⎪⎫π2 016+f ⎝ ⎛⎭⎪⎫1 007π2 016 =sin2π2 016+sin 21 007π2 016 =sin2π2 016+sin 2⎝ ⎛⎭⎪⎫π2-π2 016 =sin2π2 016+cos 2π2 016=1.。

2020年高考数学(文)二轮专项复习专题03 三角函数与解三角形含答案

2020年高考数学(文)二轮专项复习专题03 三角函数与解三角形含答案

专题03 三角函数与解三角形§3-1 三角函数的概念【知识要点】1.角扩充到任意角:通过旋转和弧度制使得三角函数成为以实数为自变量的函数.2.弧度rad 以及度与弧度的互化:οοο3.57)π180(rad 1,π180;≈===r l α. 3.三角函数的定义:在平面直角坐标系中,任意角α 的顶点在原点,始边在x 轴正半轴上,终边上任意一点P (x ,y ),|OP |=r (r ≠0),则;cos ;sin r x r y ==αα⋅=xy αtan5.三角函数线:正弦线,余弦线OM ,正切线6.同角三角函数基本关系式:⋅==+αααααcos sin tan ,1cos sin 22 7.诱导公式:任意角α 的三角函数与角ααα±±-2π,π,等的三角函数之间的关系,可以统一为“k ·2π±α ”形式,记忆规律为“将α 看作锐角,符号看象限,(函数名)奇变偶不变”.【复习要求】1.会用弧度表示角的大小,能进行弧度制与角度制的互化;会表示终边相同的角;会象限角的表示方法. 2.根据三角函数定义,熟练掌握三角函数在各个象限中的符号,牢记特殊角的三角函数值, 3.会根据三角函数定义,求任意角的三个三角函数值. 4.理解并熟练掌握同角三角函数关系式和诱导公式. 【例题分析】例1 (1)已知角α 的终边经过点A (-1,-2),求sin α ,cos α ,tan α 的值;(2)设角α 的终边上一点),3(y P -,且1312sin =α,求y 的值和tan α . 解:(1)5||==OA r ,所以.2tan ,55cos ,55252sin ==-==-=-==x y r x r y ααα(2),13123sin ,3||22=+=+==y y y OP r α 得⎪⎩⎪⎨⎧=+>13123022y y y ,解得.3236tan ,6-=-===x y y α 【评析】利用三角函数的定义求某一角三角函数值应熟练掌握,同时应关注其中变量的符号.例2 (1)判断下列各式的符号:①sin330°cos(-260°)tan225° ②sin(-3)cos4 (2)已知cos θ <0且tan θ <0,那么角θ 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 (3)已知α 是第二象限角,求角αα2,2的终边所处的位置.解:如图3-1-1,图3-1-2(1)①330°是第四象限角,sin330°<0;-260°是第二象限角,cos(-260°)<0;225°是第三象限角,tan225°>0;所以sin330°cos(-260°)tan225°>0.②-3是第三象限角,sin(-3)<0;5是第四象限角,cos5>0,所以sin(-3)cos5<0或:-3≈-3×57.3°=-171.9°,为第三象限角;5≈5×57.3°=286.5°,是第四象限角【评析】角的终边所处的象限可以通过在坐标系中逆时针、顺时针两个方向旋转进行判断,图3-1-1,图3-1-2两个坐标系应予以重视.(2)cos θ <0,所以角θ 终边在第二或第三象限或在x 轴负半轴上tan θ <0,所以角θ 终边在第二或第四象限中,所以角θ 终边在第二象限中,选B.【评析】角的终边在各个象限中时角的函数值的符号应熟练掌握,(3)分析:容易误认为2α是第一象限角,其错误原因为认为第二象限角的范围是),π,2π(α 是第二象限角,所以2k π+2π<α <2k π+π,(k ∈Z ),所以,2ππ2π4ππ+<<+k k )(Z ∈k 如下图3-1-3,可得2α是第一象限或第三象限角,又4k π+π<2α <4k π+2π,2α 是第三象限或第四象限角或终边落在y 轴负半轴的角.【评析】处理角的象限问题常用方法(1)利用旋转成角,结合图3-1-1,图3-1-2,从角度制和弧度制两个角度处理; (2)遇到弧度制问题也可以由)π180(rad 1=°≈57.3°化为角度处理; (3)在考虑角的终边位置时,应注意考虑终边在坐标轴上的情况. (4)对于象限角和轴上角的表示方法应很熟练. 如第一象限角:)(,2ππ2π2Z ∈+<<k k k α,注意防止2π0<<α的错误写法.例3 (1)已知tan α =3,且α 为第三象限角,求sin α ,cos α 的值; (2)已知31cos -=α,求sin α +tan α 的值;(3)已知tan α =-2,求值:①ααααcos sin cos sin 2-+;②sin 2α +sin α cos α .解:(1)因为α 为第三象限角,所以sin α <0,cos α <0⎪⎩⎪⎨⎧=+=1cos sin 3cos sin 22αααα,得到.1010cos 10103sin ⎪⎪⎩⎪⎪⎨⎧-=-=αα (2)因为031cos <-=α,且不等于-1,所以α 为第二或第三象限角, 当α 为第二象限角时,sin α >0,,22cos sin tan ,322cos 1sin 2-===-=ααααα 所以⋅-=+324tan sin αα 当α 为第三象限角时,sin α <0,,22cos sin tan ,322cos 1sin 2==-=--=ααααα 所以⋅=+324tan sin αα综上所述:当α 为第二象限角时,324tan sin -=+αα,当α 为第三象限角时,⋅=+324tan sin αα 【评析】已知一个角的某一个三角函数值,求其余的三角函数值的步骤:(1)先定所给角的范围:根据所给角的函数值的符号进行判断(2)利用同角三角函数的基本关系式,求其余的三角函数值(注意所求函数值的符号) (3)当角的范围不确定时,应对角的范围进行分类讨论(3)(法一):因为tan α =-2,所以.cos 2sin ,2cos sin αααα-=-= ①原式1cos 3cos 3cos cos 2cos cos 4=--=--+-=αααααα,②原式=(-2cos α )2+(-2cos α )cos α =2cos 2α , 因为⎩⎨⎧=+-=1cos sin cos 2sin 22αααα,得到51cos 2=α,所以⋅=+52cos sin sin 2ααα (法二):①原式,112141tan 1tan 21cos sin 1cos sin 2=--+-=-+=-+=αααααα②原式⋅=+-=++=++=5214241tan tan tan cos sin cos sin sin 22222αααααααα 【评析】已知一个角的正切值,求含正弦、余弦的齐次式的值:(1)可以利用αααcos sin tan =将切化弦,使得问题得以解决; (2)1的灵活运用,也可以利用sin 2α +cos 2α =1,αααcos sin tan =,将弦化为切.例4 求值:(1)tan2010°=______; (2))6π19sin(-=______; (3)⋅+---+-)2πcos()π3sin()2π3sin()πcos()π2sin(ααααα解:(1)tan2010°=tan(1800°+210°)=tan210°=tan(180°+30°)=3330tan =ο (2)216πsin )6ππsin()6ππ3sin(619πsin )6π19sin(==+-=+-=-=-或:216πsin )6ππsin()6ππ3sin()6π19sin(==--=--=-【评析】“将α 看做锐角,符号看象限,(函数名)奇变偶不变”,6π2π26ππ-⨯-=--,可以看出是2π的-2倍(偶数倍),借助图3-1-2看出6ππ--为第二象限角,正弦值为正.(3)原式)2πcos()πsin()]2π(πsin[)cos (sin ααααα---+--=⋅⋅⋅⋅-=-=--=αααααααααsin 1sin cos cos sin sin )2πsin(cos ·sin【分析】αα-⨯=-2π32π3,将α 看做锐角,借助图3-1-2看出α-2π3为第三象限角,正弦值为负,2π的3倍(奇数倍),改变函数名,变为余弦,所以可得ααcos )2π3sin(-=-,同理可得ααsin )2πcos(=+-,所以原式αααααααcsc sin 1sin sin cos )cos (sin -=-=---=⋅⋅⋅.【评析】诱导公式重在理解它的本质规律,对于“将α 看做锐角,符号看象限,(函数名)奇变偶不变”要灵活运用,否则容易陷入公式的包围,给诱导公式的应用带来麻烦.例5 已知角α 的终边经过点)5πsin ,5πcos (-,则α 的值为( ) A .5π- B .5π4 C )(,π5πZ ∈+-k k D .)(,π25π4Z ∈+k k解:因为05πsin ,05πcos >>,所以点)5πsin ,5πcos (-在第二象限中,由三角函数定义得,5πtan 5πcos 5πsin tan -=-==x y α,因为角α 的终边在第二象限, 所以)π25π4tan(5π4tan )5ππtan(tan k +==-=α,所以,)(,π25π4Z ∈+=k k α,选D .例6 化简下列各式:(1)若θ 为第四象限角,化简θθ2sin 1tan - (2)化简θθ2tan 1cos +(3)化简)4πcos(4sin 21--解:(1)原式=|cos |cos sin |cos |tan cos tan 2θθθθθθθ===, 因为θ 为第四象限角,所以cos θ >0,原式=θθθθsin cos cos sin ==⋅,(2)原式=⋅==+=+=|cos |cos cos 1cos cos sin cos cos cos sin 1cos 222222θθθθθθθθθθθ当θ 为第二、三象限角或终边在x 轴负半轴上时,cos θ <0,所以原式1cos cos -=-=θθ,当θ 为第一、四象限角或终边在x 轴正半轴上时,cos θ >0,所以原式1cos cos ==θθ.(3)原式|4cos 4sin |)4cos 4(sin 4cos 4sin 212+=+=+=.4弧度属于第三象限角,所以sin4<0,cos4<0, 所以原式=-(sin4+cos4)=-sin4-cos4.【评析】利用同角三角函数关系式化简的基本原则和方法:(1)函数名称有弦有切:切化弦;(2)分式化简:分式化整式;(3)根式化简:无理化有理(被开方式凑平方),运用||2x x =,注意对符号的分析讨论;(4)注意公式(sin α ±cos α )2=1±2sin α cos α =1±sin2α 的应用.例7 扇形的周长为定值L ,问它的圆心角θ (0<θ <π)取何值时,扇形的面积S 最大?并求出最大值. 解:设扇形的半径为)20(Lr r <<,则周长L =r ·θ +2r (0<θ <π) 所以44214421)2(2121ππ2,22222222++=++=+==⋅=+=θθθθθθθθθθL L L r r S L r . 因为844244=+⨯≥++θθθθ,当且仅当θθ4=,即θ =2∈(0,π)时等号成立.此时16812122L L S =⨯≤,所以,当θ =2时,S 的最大值为162L .练习3-1一、选择题1.已知32cos -=α,角α 终边上一点P (-2,t ),则t 的值为( ) A .5 B .5± C .55 D .55±2.“tan α =1”是“Z ∈+=k k ,4ππ2α”的( )A .充分而不必要条件B .必要不而充分条件C .充要条件D .既不充分也不必要条件3.已知点P (sin α -cos α ,tan α )在第一象限,则在[0,2π]上角α 的取值范围是( )A .)4π5,π()4π3,2π(Y B .)4π5,π()2π,4π(YC .)2π3,4π5()4π3,2π(YD .)π,4π3()2π,4π(Y4.化简=+οο170cos 10sin 21( ) A .sin10°+cos10° B .sin10°-cos10° C .cos10°-sin10°D .-sin10°-cos10°二、填空题5.已知角α ,β 满足关系2π0;<<<βα,则α -β 的取值范围是______. 6.扇形的周长为16,圆心角为2弧度,则扇形的面积为______.7.若2π3π,sin <<=ααm ,则tan(π-α )=______. 8.已知:2π4π,81cos sin <<=ααα,则cos α -sin α =______.三、解答题9.已知tan α =-2,且cos(π+α )<0,求(1)sin α +cos α 的值 (2)θθ2cos sin 22--的值10.已知21tan =α,求值: (1)ααααcos sin cos 2sin -+; (2)cos 2α -2sin α cos α .11.化简ααααααααtan 1tan cos sin ]π)1cos[(]π)1sin[()πcos()πsin(2+++++++-⋅k k k k§3-2 三角变换【知识要点】1.两角和与差的正弦、余弦、正切公式sin(α +β )=sin α cos β +cos α sin β ;sin(α -β )=sin α cos β -cos α sin β ; cos(α +β )=cos α cos β -sin α sin β ;cos(α -β )=cos α cos β +sin α sin β ;⋅+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(;tan tan 1tan tan )tan(2.正弦、余弦、正切的二倍角公式sin2α =2sin α cos α :cos2α =cos 2α -sin 2α =1-2sin 2α =2cos 2α -1;⋅-=ααα2tan 1tan 22tan 【复习要求】1.牢记两角和、差、倍的正弦、余弦、正切公式,并熟练应用; 2.掌握三角变换的通法和一般规律; 3.熟练掌握三角函数求值问题. 【例题分析】例1 (1)求值sin75°=______;(2)设54sin ),π,2π(=∈αα,则=+)4πcos(α______; (3)已知角2α的终边经过点(-1,-2),则)4πtan(+α的值为______;(4)求值=+-οο15tan 115tan 1______.解:(1)=︒︒+︒︒=︒+︒=︒30sin 45cos 30cos 45sin )3045sin(75sin 222322+⨯21⨯426+=. (2)因为53cos ,54sin ),π,2π(-==∈ααα所以, 1027)5453(22sin 22cos 22)4πcos(-=--=-=+ααα(3)由三角函数定义得,342tan 12tan2tan ,22tan2-=-==αααα, 所以71tan 1tan 1tan 4πtan 14πtantan )4πtan(-=-+=-+=+ααααα. (4)3330tan )1545tan(15tan 45tan 115tan 45tan 15tan 115tan 1=︒=︒-︒=︒︒+︒-︒=︒+︒-⋅==-=+-=+-3330tan )1545tan(15tan 45tan 115tan 45tan 15tan 115tan 1οοοοοοοοo【评析】两角的和、差、二倍等基本三角公式应该熟练掌握,灵活运用,这是处理三角问题尤其是三角变换的基础和核心.注意αααtan 1tan 1)4πtan(-+=+和αααtan 1tan 1)4πtan(+-=-运用. 例2 求值: (1)=-12πsin 12πcos3______; (2)cos43°cos77°+sin43°cos167°=______; (3)=++οοο37tan 23tan 337tan 23tan o______. 解:(1)原式)12πsin 3πcos 12πcos 3π(sin 2)12πsin 2112πcos 23(2-=-= 24πsin 2)12π3πsin(2==-=.【评析】辅助角公式:,cos ),sin(cos sin 2222ba a xb a x b x a +=++=+ϕϕ⋅+=22sin b a b ϕ应熟练掌握,另外本题还可变形为=-)12πsin 2112πcos 23(2 -12πcos 6π(cos 2.24πcos 2)12π6πcos(2)12πsin 6πsin ==+=(2)分析所给的角有如下关系:77°+43°=120°,167°=90°+77°,原式=cos43°cos77°+sin43°cos(90°+77°)=cos43°cos77°-sin43°sin77°=cos(43°+77°)=cos120°=⋅-21 (3)分析所给的角有如下关系:37°+23°=60°,函数名均为正切,而且出现两角正切的和tan a +tan β 与两角正切的积tan α tan β ,所有均指向公式⋅-+=+βαβαβαtan tan 1tan tan )tan(∵,337tan 23tan 137tan 23tan )3723tan(60tan =︒︒-︒+︒=+=οοο∴,37tan 23tan 3337tan 23tan οοοο-=+∴337tan 23tan 337tan 23tan =++οοοo .【评析】三角变换的一般规律:看角的关系、看函数名称、看运算结构.以上题目是给角求值问题,应首看角的关系:先从所给角的关系入手,观察所给角的和、差、倍是否为特殊角,然后看包含的函数名称,以及所给三角式的结构,结合三角公式,找到题目的突破口.公式βαβαβαtan tan 1tan tan )tan(-+=+的变形tan α+tan β =tan(α +β )(1-tan α tan β )应予以灵活运用.例3 41)tan(,52)tan(=-=+βαβα,则tan2α =______; (2)已知1312)4πsin(,53)sin(),π,4π3(,=--=+∈ββαβα,求)4πcos(+α的值.解:(1)分析所给的两个已知角α +β ,α -β 和所求的角2α 之间有关系(α +β )+(α -β )=2α ,=-++=)]()tan[(2tan ββa a a 1813415214152)tan()tan(1)tan()tan(=⨯-+=-+--++βαβαβαβα,(2)∵)π,4π3(,∈βα,∴)43,2π(4π),π2,23π(π∈-∈+ββα,又∵53)sin(-=+βα,∴54)cos(=+βα;∵1312)4πsin(=-β,∴135)4πcos(-=-β.)4πsin()sin()4πcos()cos()]4π()cos[()4πcos(-++-+=--+=+ββαββαββαα65561312)53()135(54-=⨯-+-⨯=. 【评析】此类题目重在考察所给已知角与所求角之间的运算关系,主要是指看两角之间的和、差、倍的关系,如αββαααββα2)(,4π)4π()(,+-=+=--+++=)(βα)(βα-等,找到它们的关系可以简化运算,同时在求三角函数值时应关注函数值的符号.例4 如图,在平面直角坐标系xOy 中,以Ox 轴为始边做两个锐角α ,β ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 的横坐标分别为552,102.(Ⅰ)求tan(α +β )的值; (Ⅱ)求α +2β 的值.解:由三角函数定义可得552cos ,102cos ==βα, 又因为α ,β 为锐角,所以55sin ,1027sin ==βα,因此tan α =7,21tan =β (Ⅰ)3tan tan 1tan tan )tan(-=-+=+βαβαβα;(Ⅱ) 34tan 1tan 22tan 2=-=βββ,所以12tan tan 12tan tan )2tan(-=-+=+βαβαβα, ∵α ,β 为锐角,∴4π32,2π320=+∴<+<βαβα 【评析】将三角函数的定义、两角和的正切、二倍角的正切公式结合在一起进行考查,要求基础知识掌握牢固,灵活运用;根据三角函数值求角,注意所求角的取值范围.例5 化简(1)12cos2sin22sin 22cos 2-+αααα;(2).2sin 3)4πcos()4πcos(2x x x +-+解:(1)原式⋅+-=--=--=-=)4πsin(2sin cos cos sin sin cos cos sin 2cos 22αααααααααα (2)法一:原式x x x x x 2sin 3)sin 22cos 22)(sin 22cos 22(2++-= x x x 2sin 3sin cos 22+-=⋅+=+=+=)6π2sin(2)2sin 232cos 21(22sin 32cos x x x x x法二:,2π)4π()4π(=--+x x 原式x x x 2sin 3)4πcos()]4π(2πcos[2+--+=x x x x x 2sin 3)2π2sin(2sin 3)4πcos()4πsin(2+--=+---=⋅+=+=)6π2sin(22sin 32cos x x x【评析】在进行三角变换时,应从三个角度:角的关系、函数的名称、所给运算式的结构全面入手,注意二倍角的变式(降幂升角)和辅助角公式的应用,此类变换是处理三角问题的基础.例6 (1)已知α 为第二象限角,且415sin =α,求12cos 2sin )4πsin(+++ααα的值. (2)已知323cos sin 32cos 62-=-x x x ,求sin2x 的值. 解:(1)因为α 为第二象限角,且415sin =α,所以41cos -=α, 原式.2cos 42)cos (sin cos 2)cos (sin 221)1cos 2(cos sin 2)cos (sin 222-==++=+-++=ααααααααααα 【评析】此类题目为给值求值问题,从分析已知和所求的三角式关系入手,如角的关系,另一个特征是往往先对所求的三角式进行整理化简,可降低运算量.(2)因为32sin 32cos 32sin 322cos 16+-=-+⋅x x x x3233)6π2cos(323)2sin 212cos 23(32-=++=+-=x x x 所以0)6π2sin(,1)6π2cos(=+-=+x x 216πsin )6π2cos(6πcos )6π2sin(]6π)6π2sin[(2sin =+-+=-+=x x x x【评析】在进行三角变换时,应从三个角度:角的关系、函数的名称、所给运算式的结构全面入手,注意二倍角的变式(降幂升角)22cos 1sin ,22cos 1cos 22αααα-=+=和辅助角公式的应用,此类变换是处理三角问题的基础,因为处理三角函数图象性质问题时往往先进行三角变换.练习3-2一、选择题1.已知53sin ),π,2π(=∈αα,则)4πtan(+α等于( ) A .71 B .7 C .71-D .-72.cos24°cos54°-sin24°cos144°=( ) A .23-B .21 C .23 D .21-3.=-o30sin 1( ) A .sin15°-cos15° B .sin15°+cos15° C .-sin15°-cos15° D .cos15°-sin15°4.若22)4πsin(2cos -=-αα,则cos α +sin α 的值为( )A .27-B .21-C .21 D .27 二、填空题 5.若53)2πsin(=+θ,则cos2θ =______. 6.=-οο10cos 310sin 1______.7.若53)cos(,51)cos(=-=+βαβα,则tan α tan β =______. 8.已知31tan -=α,则=+-ααα2cos 1cos 2sin 2______. 三、解答题 9.证明⋅=++2tan cos 1cos .2cos 12sin ααααα10.已知α 为第四象限角,且54sin -=α,求ααcos )4π2sin(21--的值.11.已知α 为第三象限角,且33cos sin =-αα. (1)求sin α +cos α 的值;(2)求αααααcos 82cos 112cos2sin82sin 522-++的值.§3-3 三角函数【知识要点】12.三角函数图象是研究三角函数的有效工具,应熟练掌握三角函数的基本作图方法.会用“五点法”画正弦函数、余弦函数和函数y =A sin(ω x +ϕ)(A >0,ω >0)的简图.3.三角函数是描述周期函数的重要函数模型,通过三角函数体会函数的周期性.函数y =A sin(ω x +ϕ)(ω ≠0)的最小正周期:||π2ω=T ;y =A tan(ω x +ϕ)(ω ≠0)的最小正周期:||πω=T .同时应明确三角函数与周期函数是两个不同的概念,带三角函数符号的函数不一定是周期函数,周期函数不一定带三角函数符号.【复习要求】1.掌握三角函数y =sin x ,y =cos x ,y =tan x 的图象性质:定义域、值域(最值)、单调性、周期性、奇偶性、对称性等.2.会用五点法画出函数y =sin x ,y =cos x ,y =A sin(ω x +ϕ)(A >0,ω >0)的简图,掌握图象的变换方法,并能解决相关图象性质的问题.3.本节内容应与三角恒等变换相结合,通过变换,整理出三角函数的解析式,注意使用换元法,转化为最基本的三个三角函数y =sin x ,y =cos x ,y =tan x ,结合三角函数图象,综合考察三角函数性质 【例题分析】例1 求下列函数的定义域(1)xxy cos 2cos 1+=;(2)x y 2sin =.解:(1)cos x ≠0,定义域为},2ππ|{Z ∈+≠k k x x (2)sin2x ≥0,由正弦函数y =sin x 图象(或利用在各象限中和轴上角的正弦函数值的符号可得终边在第一二象限,x 轴,y 轴正半轴上) 可得2k π≤2x ≤2k π+π, 定义域为},2πππ|{Z ∈+≤≤k k x k x例2 求下列函数的最小正周期 (1))23πsin(x y -=;(2))4π2πtan(+=x y ;x y 2cos )3(2=; (4)y =2sin 2x +2sin x cos x ;(5)y =|sin x |.解:(1)π|2|π2=-=T .(2)22ππ==T .(3)214cos 2124cos 1+=+=x x y ,所以2π=T .(4)1)4π2sin(212cos 2sin 2sin 22cos 12+-=+-=+-⨯=x x x x x y ,所以T =π.(5)y =|sin x |的图象为下图,可得,T =π.【评析】(1)求三角函数的周期时,通常利用二倍角公式(降幂升角)和辅助角公式先将函数解析式进行化简,然后用||π2ω=T (正余弦)或||πω=T (正切)求最小正周期. (2)对于含绝对值的三角函数周期问题,可通过函数图象来解决周期问题.例3 (1)已知函数f (x )=(1+cos2x )sin 2x ,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 (2)若函数f (x )=2sin(2x +ϕ)为R 上的奇函数,则ϕ=______. (3)函数)2π2π(lncos <<-=x x y 的图象( )解:(1),,44cos 12sin 21)cos sin 2(21sin cos 2)(2222R ∈-====x xx x x x x x f 周期为2π,偶函数,选D (2)f (x )为奇函数,f (-x )=-f (x ),所以2sin(-2x +ϕ)=-2sin(2x +ϕ)对x ∈R 恒成立,即sin ϕcos2x -cos ϕsin2x =-sin2x cos ϕ-cos2x sin ϕ, 所以2sin ϕcos2x =0对x ∈R 恒成立,即sin ϕ=0,所以ϕ=k π,k ∈Z .【评析】三角函数的奇偶性问题可以通过奇偶性定义以及与诱导公式结合加以解决.如在本题(2)中除了使用奇偶性的定义之外,还可以从公式sin(x +π)=-sin x ,sin(x +2π)=sin x 得到当ϕ=2k π+π或ϕ=2k π+π,k ∈Z ,即ϕ=k π,k ∈Z 时,f (x )=2sin(2x +ϕ)可以化为f (x )=sin x 或f (x )=-sin x ,f (x )为奇函数.(3)分析:首先考虑奇偶性,f (-x )=lncos(-x )=lncos x =f (x ),为偶函数,排除掉B ,D 选项 考虑(0,2π)上的函数值,因为0<cos x <1,所以lncos x <0,应选A 【评析】处理函数图象,多从函数的定义域,值域,奇偶性,单调性等方面综合考虑.例4 求下列函数的单调增区间(1))3π21cos(-=x y ;(2) ]0,π[),6π2sin(2-∈+=x x y ; (3) x x y 2sin 32cos -=;(4))23πsin(2x y -=解:(1)y =cos x 的增区间为[2k π+π,2k π+2π],k ∈Z ,由π2π23π21ππ2+≤-≤+k x k 可得3π14π43π8π4+≤≤+k x k )3π21cos(-=x y 的增区间为Z ∈++k k k ],3π14π4,3π8π4[,(2)先求出函数)6π2sin(2+=x y 的增区间Z ∈+-k k k ],6ππ,3ππ[然后与区间[-π,0]取交集得到该函数的增区间为]6π5,π[--和]0,3π[-,(3))3π2cos(2)2sin 232cos 21(2+=-=x x x y ,转化为问题(1),增区间为 Z ∈++k k k ],6π5π,3ππ[(4)原函数变为)3π2sin(2--=x y ,需求函数)3π2sin(-=x y 的减区间, 2π3π23π22ππ2+≤-≤+k x k ,得12π11π12π5π+≤≤+k x k , )23πsin(2x y -=的增区间为.],12π11π,12π5π[Z ∈++k k k【评析】处理形如y =A sin(ω x +ϕ)+k ,(ω <0)的函数单调性时,可以利用诱导公式将x 的分数化正,然后再求相应的单调区间.求三角函数单调区间的一般方法:(1)利用三角变换将解析式化为只含有一个函数的解析式,利用换元法转化到基本三角函数的单调性问题. (2)对于给定区间上的单调性问题,可采用问题(2)中的方法,求出所有的单调增区间,然后与给定的区间取交集即可.例5 求下列函数的值域(1)函数1)6π21cos(2++-=x y 的最大值以及此时x 的取值集合(2))3π2,6π(,sin 2-∈=x x y (3) )3π,2π(),3π2cos(2-∈+=x x y (4)y =cos2x -2sin x解:(1)当Z ∈+=+k k x ,ππ26π21时,1)6π21cos(-=+x ,函数的最大值为3,此时x 的取值集合为},3π5π4|{Z ∈+=k k x x(2)结合正弦函数图象得:当)3π2,6π(-∈x 时,1sin 21≤<-x该函数的值域为(-1,2](3)分析:利用换元法,转化为题(2)的形式.)6π,3π(),3π2cos(2-∈+=x x y ,,3π23π23π),6π,3π(<+<-∴-∈x x Θ设3π2+=x t ,则原函数变为3π23π,cos 2<<-=t t y ,结合余弦函数图象得:1cos 21≤<-t ,所以函数的值域为(-1,2].(4)y =-2sin 2x -2sin x +1,设t =sin x ,则函数变为y =-2t 2-2t +1,t ∈[-1,1], 因为⋅++-=23)21(22t y 结合二次函数图象得,当t =1时,函数最小值为-3,当21-=t 时,函数最大值为23,所以函数的值域为].23,3[-【评析】处理三角函数值域(最值)的常用方法: (1)转化为只含有一个三角函数名的形式,如y =A sin(ω x +ϕ)+k ,y =A cos(ω x +ϕ)+k ,y =A tan(ω x +ϕ)+k 等,利用换元法,结合三角函数图象进行处理. (2)转化为二次型:如A sin 2x +B sin x +C ,A cos 2x +B cos x +C 形式,结合一元二次函数的图象性质求值域. 例6 函数y =sin(ω x +ϕ)的图象(部分)如图所示,则ω 和ϕ的取值是( )A .3π,1==ϕω B .3π,1-==ϕω C .6π,21==ϕω D .6π,21-==ϕω解:π)3π(3π24=--=T ,即ωπ2π4==T ,所以21=ω, 当3π-=x 时,0])3π(21sin[=+-⨯ω,所以Z ∈+=k k ,6ππω,选C例7 (1)将函数x y 21sin =的图象如何变换可得到函数)6π21sin(+=x y 的图象(2)已知函数y =sin x 的图象,将它怎样变换,可得到函数)3π2sin(2-=x y 的图象解:(1)x y 21sin =−−−−−−−−→−个单位图象向左平移3π)6π21sin()3π(21sin +=+=x x y (2)法一:y =sin x −−−−−−−−→−个单位图象向右平移3π)3πsin(-=x y −−−−−−−−−−−−−−−→−倍横坐标变为原来图象上点的纵坐标不变21,)3π2sin(-=x y−−−−−−−−−−−−−−−→−倍纵坐标变为原来图象上点的横坐标不变2,)3π2sin(2-=x y法二:y =sin x −−−−−−−−−−−−−−→−倍横坐标变为原来图象上点的纵坐标不变21,x y 2sin = −−−−−−−−→−个单位图象向右平移6π)6π(2sin -=x y−−−−−−−−−−−−−−−→−倍纵坐标变为原来图象上点的横坐标不变2,)3π2sin(2-=x y【评析】由y =sin x 的图象变换为y =A cos(ω x +ϕ)(ω >0)的图象时,特别要注意伸缩变换和横向平移的先后顺序不同,其横向平移过程中左右平移的距离不同.例8 (1)函数)3π21sin(2-=x y 的一条对称轴方程为( ) A .3π4-=x B .6π5-=x C .3π-=x D .3π2=x (2)函数)3π2cos(-=x y 的对称轴方程和对称中心的坐标解:(1)法一:)3π21sin(2-=x y 的对称轴为Z ∈+=-k k x ,2ππ3π21, 即Z ∈+=k k x ,3π5π2,当k =-1时,3π-=x ,选C法二:将四个选项依次代入)3π21sin(2-=x y 中,寻找使得函数取得最小值或最大值的选项当3π-=x 时,22πsin 2)3π6πsin(2-=-=--=y ,选C (2) )3π2cos(-=x y 的对称轴为Z ∈=-k k x ,π3π2,即Z ∈+=k k x ,6π2π对称中心:,,2ππ3π2Z ∈+=-k k x 此时Z ∈+=k k x ,12π52π所以对称中心的坐标为Z ∈+k k ),0,12π52π(【评析】正余弦函数的对称轴经过它的函数图象的最高点或最低点,对称中心是正余弦函数图象与x 轴的交点,处理选择题时可以灵活运用.例9 已知函数)0(),2πsin(sin 3,sin )(2>++=ωωωωx x x x f 的最小正周期为π. (1)求ω 的值. (2)求f (x )在区间]3π2,0[上的值域. (3)画出函数y =2f (x )-1在一个周期[0,π]上的简图.(4)若直线y =a 与(3)中图象有2个不同的交点,求实数a 的取值范围. 解:(1)x x xx f ωωωcos sin 322cos 1)(+-=21)6π2sin(212cos 21sin 23+-=+-=x x x ωωω 因为函数f (x )的最小正周期为π,且ω >0,所以π2π2=ω,解得ω =1 (2)由(1)得21)6π2sin()(+-=x x f ,因为3π20≤≤x ,所以6π76π26π≤-≤-x ,结合正弦函数图象,得1)6π2sin(21≤-≤-x因此2321)6π2sin(0≤+-≤x ,即f (x )的取值范围为]23,0[(3)由(1)得)6π2sin(21)(2-=-=x x f y(4)由图象可得,-2<a <2且a ≠-1.【评析】本节内容应与三角恒等变换相结合,利用降幂升角公式和辅助角公式等三角公式化简三角函数解析式,整理、变形为只含有一个函数名的解析式,如y =A sin(ω x +ϕ)(ω >0)或y =A cos(ω x +ϕ)(ω >0)的形式,利用换元法,结合y =sin x 、y =cos x 的图象,再研究它的各种性质,如求函数的周期,单调性,值域等问题,这是处理三角函数问题的基本方法.练习3-3一、选择题1.设函数),2π2sin()(-=x x f x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 2.把函数y =sin x (x ∈R )的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ) A .R ∈-=x x y ),3π2sin( B .R ∈+=x x y ),6π2sin(C .R ∈+=x x y ),3π2sin(D .R ∈+=x x y ),32π2sin(3.函数)3π2sin(+=x y 的图象( )A .关于点(3π,0)对称B .关于直线4π=x 对称C .关于点(4π,0)对称D .关于直线3π=x 对称4.函数y =tan x +sin x -|tan x -sin x |在区间)2π3,2π(内的图象大致是( )二、填空题5.函数)2πsin(sin 3)(x x x f ++=的最大值是______. 6.函数)]1(2πcos[)2πcos(-=x x y 的最小正周期为______.7.函数)2π0,0)(sin(<<>+=ϕωϕωx y 的图象的一部分如图所示,则该函数的解析式为y =______.8.函数y =cos2x +cos x 的值域为______. 三、解答题9.已知函数f (x )=2cos x (sin x -cos x )+1,x ∈R . (Ⅰ)求函数f (x )的对称轴的方程; (Ⅱ)求函数f (x )的单调减区间. 10.已知函数.34sin 324cos 4sin2)(2+-=xx x x f (Ⅰ)求函数f (x )的最小正周期及最值; (Ⅱ)令)3π()(+=x f x g ,判断函数g (x )的奇偶性,并说明理由.11.已知R ∈>++=a a x x x x f ,0(,cos sin 32cos 2)(2ωωωω,a 为常数),且满足条件f (x 1)=f (x 2)=0的|x 1-x 2|的最小值为2π. (Ⅰ)求ω 的值; (Ⅱ)若f (x )在]3π,6π[-上的最大值与最小值之和为3,求a 的值.§3-4 解三角形【知识要点】1.三角形内角和为A +B +C =πA CB -=+π,2π222=++C B A ,注意与诱导公式相结合的问题. 2.正弦定理和余弦定理正弦定理:r CcB b A a 2sin sin sin ===,(r 为△ABC 外接圆的半径). 余弦定理:abc b a C ac b c a B bc a c b A 2cos ;2cos ;2cos 222222222-+=-+=-+=&. a 2=b 2+c 2-2bc cos A ;b 2=a 2+c 2-2ac cos B ;c 2=a 2+b 2-2ab cos C .3.在解三角形中注意三角形面积公式的运用:21=∆ABC S ×底×高.21=∆ABC S ab sin .sin 21sin 21B ac A bc C == 4.解三角形中注意进行“边角转化”,往往结合三角变换处理问题.【复习要求】1.会正确运用正余弦定理进行边角的相互转化;2.会熟练运用正弦定理和余弦定理解决三角形中的求角,求边,求面积问题. 【例题分析】例1 (1)在△ABC 中,3=a ,b =1,B =30°,则角A 等于( )A .60°B .30°C .120°D .60°或120° (2)△ABC 中,内角A ,B ,C 所对的边分别为a 、b 、c ,满足等式(a +b )2=ab +c 2,则角C 的大小为______. (3)在△ABC 中,若sin A ∶sin B ∶sin C =5∶7∶8,则∠B 的大小是______. (4)在△ABC 中,若31tan =A ,C =150°,BC =1,则AB =______. 解:(1)∵,23sin ,30sin 1sin 3,sin sin =∴=∴=A A B b A a ο又∵a >b ,∴A >B =30°,∴A =60°或120°,(2)∵(a +b )2=ab +c 2,∴a 2+b 2-c 2=-ab ,∴,120,2122cos 222ο=∴-=-=-+=C ab ab ab c b a C (3)∵CcB b A a sin sin sin ==,sin A ∶sin B ∶sin C =5∶7∶8. ∴a ∶b ∶c =5∶7∶8,∴21852*******cos 222=⨯⨯-+=-+=ac b c a B ,∴B =60°. (4)分析:已知条件为两角和一条对边,求另一条对边,考虑使用正弦定理,借助于31tan =A 求sin A 210,150sin 10101,sin sin ,1010sin ,31tan =∴=∴==∴=AB AB B AC A BC A A οΘΘ. 【评析】对于正弦定理和余弦定理应熟练掌握,应清楚它们各自的使用条件,做到合理地选择定理解决问题.例2 (1)在△ABC 中,a cos A =b cos B ,则△ABC 一定是( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰三角形或直角三角形 (2)在△ABC 中,2sin B ·sin C =1+cos A ,则△ABC 的形状为( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形解:(1)法一:BbA a sin sin =Θ,a cos A =b cos B , ∴sin A cos A =sin B cos B ,∴sin2A =sin2B ,∵2A ,2B ∈(0,2π),∴2A =2B 或2A +2B =π,∴A =B 或2π=+B A ,选D . 法二:∵a cos A =b cos B ,∴acb c a b bc a c b a 2)(2)(222222-+=-+,整理得(a 2-b 2)(a 2+b 2-c 2)=0.所以:a =b 或a 2+b 2=c 2,选D .(2)∵2sin B ·sin C =1+cos A ,cos(B +C )=cos(π-A )=-cos A , ∴2sin B ·sin C =1-(cos B cos C -sin B sin C ), ∴cos B cos C +sin B ·sin C =1, ∴cos(B -C )=1,∵B ,C ∈(0,π),∴B -C ∈(-π,π), ∴B -C =0,∴B =C ,选C .【评析】判断三角形形状,可以从两个角度考虑(1)多通过正弦定理将边的关系转化为角的关系,进而判断三角形形状,(2)多通过余弦定理将角的关系转化为边的关系,进而判断三角形形状,通常情况下,以将边的关系转化为角的关系为主要方向,特别需要关注三角形内角和结合诱导公式带给我们的角的之间的转化.例3 已知△ABC 的周长为12+,且sin A +sin B =2sin C (1)求边AB 的长;(2)若△ABC 的面积为C sin 61,求角C 的度数. 解:(1)由题意及正弦定理,得⎪⎩⎪⎨⎧=++=++ABAC BC AC BC AB 212,解得AB =1. (2)由△ABC 的面积C C AC BC S sin 61sin 21=⋅=,得31=⋅AC BC ,因为2=+AC BC ,所以(BC +AC )2=BC 2+AC 2+2AC ·BC =2,可得3422=+AC BC ,由余弦定理,得212cos 222=-+=⋅BC AC AB BC AC C , 所以C =60°.例4 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别为a 、b 、c ,设a 、b 、c 满足条件b 2+c 2-bc =a 2和b c =321+,求∠A 和tan B 的值. 解(1)由已知和余弦定理得212cos 222=-+=bc a c b A ,所以∠A =60°. (2)分析:所给的条件是边的关系,所求的问题为角,可考虑将利用正弦定理将边的关系转化为角的关系.在△ABC 中,sin C =sin(A +B )=sin(60°+B ),因为BBB B B BC b c sin sin 60cos cos 60sin sin )60sin(sin sin οοο+⋅=+==.32121tan 123+=+=B所以⋅=21tan B 【评析】体现了将已知条件(边321+==b c )向所求问题(角tan B →sin a ,cos α )转化,充分利用了正弦定理和三角形内角关系实现转化过程.例5 在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,3π=C . (Ⅰ)若△ABC 的面积等于3,求a ,b ;(Ⅱ)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.解:(Ⅰ)由余弦定理abc b a C 2cos 222-+=及已知条件得,a 2+b 2-ab =4,又因为△ABC 的面积等于3,所以3sin 21=C ab ,得ab =4.联立方程组⎩⎨⎧==-+,4,422ab ab b a 解得a =2,b =2.(Ⅱ)由题意得sin(B +A )+sin(B -A )=4sin A cos A ,(sin B cos A +cos B sin A )+(sin B cos A -cos B sin A )=4sin A cos A , 即sin B cos A =2sin A cos A , 当cos A =0时,332,334,6π,2π====b a B A ,当cos A ≠0时,得sin B =2sin A ,由正弦定理得b =2a ,联立方程组⎩⎨⎧==-+,2,422a b ab b a 解得334,332==b a . 所以△ABC 的面积332sin 21==C ab S .【评析】以上两例题主要考查利用正弦定理、余弦定理来确定三角形边、角关系等基础知识和基本运算能力.以及三角形面积公式B ac A bc C ab S ABC sin 21sin 21sin 21===∆的运用.同时应注意从题目中提炼未知与已知的关系,合理选择定理公式,综合运用正弦定理和余弦定理实现边角之间的转化.例6 如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α ,∠BDC =β ,CD =s ,并在点C 测得塔顶A 的仰角为θ ,求塔高AB .解:在△BCD 中,∠CBD =π-α -β . 由正弦定理得.sin sin CBDCDBDC BC ∠=∠所以)sin(sin sin sin βαβ+=∠∠=⋅s CBD BDC CD BC .在Rt △ABC 中,⋅+=∠=⋅)sin(sin tan tan βαβθs ACB BC AB例7 已知在△ABC 中,sin A (sin B +cos B )-sin C =0,sin B +cos2C =0,求角A ,B ,C 的大小. 解:sin A sin B +sin A cos B -sin(A +B )=0,sin A sin B +sin A cos B -(sin A cos B +cos A sin B )=0, sin A sin B -cos A sin B =sin B (sin A -cos A )=0, 因为sin B ≠0,所以sin A -cos A =0,所以tan A =1,4π=A ,可得BC +=4π3, 所以02sin sin )22π3cos(sin )4π3(2cos sin =+=++=++B B B B B B ,sin B +2sin B cos B =0,因为sin B ≠0,所以12π,3π2,21cos ==-=C B B .【评析】考查了三角形中角的相互转化关系,同时兼顾了两角和、二倍角、诱导公式等综合应用.练习3-4一、选择题1.在△ABC 中,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =( ) A .1∶2∶3B .2:3:1C .1∶4∶9D .3:2:12.在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,3,3π==a A ,b =1,则c =( ) A .1B .2C .13-D .33.△ABC 中,若a =2b cos C ,则△ABC 的形状一定为( ) A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形4.△ABC 的三内角A ,B ,C 的对边边长分别为a ,b ,c ,若b a 25=,A =2B ,则cos B =( ) A .35B .45 C .55 D .65二、填空题5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,3π,3==C c ,则A =______. 6.在△ABC 中,角ABC 的对边分别为a 、b 、c ,若ac B b c a 3tan )(222=-+,则角B 的值为______.7.设△ABC 的内角6π=A ,则2sinB cosC -sin(B -C )的值为______. 8.在三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若b cos C =(2a -c )cos B ,则∠B 的大小为______. 三、解答题9.在△ABC 中,53tan ,41tan ==B A . (Ⅰ)求角C 的大小;(Ⅱ)若AB 的边长为17,求边BC 的边长.10.如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD ,DC ,且拐弯处的转角为120°.已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米. 求该扇形的半径OA 的长(精确到1米).11.在三角形ABC 中,5522cos ,4π,2===B C a ,求三角形ABC 的面积S .专题03 三角函数与解三角形参考答案练习3-1一、选择题:1.B 2.B 3.B 4.C 二、填空题 5.)0,2π(-6.16 7.21mm - 8.23- 三、解答题9.解:(1)⋅-=+=-=>55cos sin ,55cos ,552sin ,0cos ααααα (2)原式=222)sin 1(sin sin 21cos 1sin 21θθθθθ-=+-=-+-=⋅+=-=-=5521sin 1|sin 1|θθ 10.解:(1)原式51tan 2tan -=-+=αα(2)原式.0tan 1tan 212=+-=αα11.解:当k 为偶数时,原式.0cos sin cos sin 1cos sin 1cos sin .cos sin )cos (sin cos sin 22=+-=++---=αααααααααααααα 当k 为奇数时,原式01cos sin )cos (sin =+-=αααα,综上所述,原式=0.练习3-2一、选择题1.A 2.C 3.D 4.C 二、填空题 5257-6.4 7.21 8.65- 三、解答题 9.解:左边=====2tan 2cos 22cos2sin22cos2sin 2cos 2cos cos 2cos sin 22222.ααααααααααα右边.10.解:原式)sin (cos 2cos 1cos 2cos sin 21cos )2cos 2(sin 12ααααααααα-=-+-=--=, 因为α 为第四象限角,且54sin -=α,所以53cos =α, 所以原式514=. 11.解:(1)由a a a a cos sin 21)cos (sin 2-=-=31可得32cos sin 2=αα, 所以a a a a cos sin 21)cos (sin 2+=+=35,因为α 为第三象限角,所以sin α <0,cos α <0,sin α +cos α <0,所以315cos sin -=+αα. (2)原式αααααααααcos cos 3sin 4cos )12cos 2(3sin 4cos 82cos 6sin 4522+=-+=-++=3tan 4+=α,因为51tan 1tan cos sin cos sin -=-+=-+αααααα,所以2531515tan -=+-=α, 所以原式.52932534-=+-⨯= 练习3-3一、选择题1.B 2.C 3.A 4.D 二、填空题5.2 6.2 7.)3π2sin(+=x y 8.]2,89[- 三、解答题9.解:x x x x x x f 2cos 2sin 1cos 2cos sin 2)(2-=+-==)4π2sin(2-x . (1)Z ∈+=-k k x ,2ππ4π2,对称轴方程为Z ∈+=k k x ,8π32π, (2)Z ∈+≤-≤+k k x k ,2π3π24π22ππ2,即Z ∈+≤≤+k k x k ,8π7π8π3π,f (x )的单调减区间为Z ∈++k k k ],8π7π,8π3π[.10.解:(I)∵⋅+=+=-+=)3π2sin(22cos 32sin )4sin 21(32sin )(2x x x x x x f∴f (x )的最小正周期.π421π2==T当1)3π2sin(-=+x 时,f (x )取得最小值-2;当1)3π2sin(=+x 时,f (x )取得最大值2.(Ⅱ)由(I)知⋅+=+=)3π()().3π2sin(2)(x f x g x x f 又⋅=+=++=∴2cos 2)2π2sin(2]3π)3π(21sin[2)(xx x x g).(2cos 2)2cos(2)(x g xx x g ==-=-Θ∴函数g (x )是偶函数.11.解:(1)12cos 2sin 32sin 322cos 12)(+++=+++⨯=a x x a x xx f ωωωω,1)6π2sin(2+++=a x ω由满足条件f (x 1)=f (x 2)=0的|x 1-x 2|的最小值为2π,可得的最小正周期为π,所以ω =1.。

高中数学:三角函数全章课件

高中数学:三角函数全章课件

内容分析
1.弧度制和角的概念的推广是三角函数的基 础,弧度制的引入,也简化了弧长公式、面 积公式等. 2.三角函数同二次函数、幂函数、指数函数 、对数函数一样,其图象、性质和应用是考 查的重点,其中y=Asin(ωx+φ)的图象是研 究函数图象变换的代表. 3.三角恒等式的化简、求值和证明,是培养 学生分析问题、解决问题能力和提升学生思 维品质的良好载体.公式的逆用和变形都需 要较强的应变能力. 4.解三角形进一步体现了数学的应用性,正 弦定理和余弦定理的推导和应用,有利于培 养学生的建模、解模能力. 5.本章概念多、公式多(如同角三角函数关 系式、诱导公式、两角和与差的正余弦、正 切、正余弦定理等)、符号变化多,这几多决 定了学习本章要加强记忆.本章与其他章节 联系也很密切,是综合应用所学知识的一章.
第三章 三角函数、解三角形
高考目标定位
目标了然于胸,让讲台见证您的高瞻远瞩
命题热点
近几年的高考中,对本章内容的考查多以选 择题和填空题的形式出现,解答题独立命题 的情形也有,主要是三角与其他知识的综合 渗透,如与数列、不等式综合;独立命题, 考查三角函数性质及图象变换.从高考试题 分析,高考对本章考查侧重于: 1.三角函数的性质、图象及其变换,主要是 y=Asin(ωx+φ)的性质、图象及变换. 2.已知三角函数值求角. 3.灵活运用公式,通过简单的三角恒等变换 解决三角函数的化简、求值或证明问题,借 助三角变换解与三角形有关的问题. 根据高考的最新动态,我们预测今后有关三 角函数高考命题的趋势是:①试题的题型、 题量及难度将基本保持稳定.②三角函数是 重要的基本初等函数,是研究其他知识的重 要工具,高考将注重基础知识、基本技能、 基本思想和方法的考查.③考查的重点仍是 三角函数的定义、图象和性质.④新教材更 加突出了应用问题的地位,这也是今后的命 题方向.

一轮复习三角函数PPT课件

一轮复习三角函数PPT课件

[自主解答] (1)∵在(0,π)内终边在直线 y= 3x 上的角 是π3,∴终边在直线 y= 3x 上的角的集合为
α|α=π3+kπ,k∈Z. (2)∵θ=67π+2kπ(k∈Z), ∴θ3=27π+2k3π(k∈Z). 依题意 0≤27π+2k3π<2π⇒-37≤k<178,k∈Z.
[备考方向要明了]
考什么 1.了解任意角的概念. 2.了解弧度制的概念,能进
行弧度与角度的互化. 3.理解任意角三角函数(正
弦、余弦、正切)的定 义.
1.三角函怎数么的定考义与三 角恒等变换等相结 合,考查三角函数
求 值问 题,如2008
年 高考T15等.
[归纳
1.角的有关概念
知识整合]
角的特点
三角函数线
有向线段 ____ 有向线段____ 有向线段____
MP
OM
AT
为正弦线
为余弦线
为正切线
[探究] 3.三角函数线的长度及方向各有什么 意义?
提示:三角函数线的长度表示三角函数值的绝 对值,方向表示三角函数值的正负.
[自测 牛刀小试] 1.(教材习题改编)下列与94π的终边相同的角 α 的集合为___.
解析:∵94π=94×180°=360°+45° ∴与94π 终边相同的角可表示为 k·360°+45°(k∈Z)
答案:{α|α=k·360°+ 45°(k∈Z)}
2.(教材习题改编)若角θ同时满足sin θ<0且tan θ<0, 则角θ的终边一定落在第________象限. 解析:由sin θ<0,可知θ的终边可能位于第三或第 四象限,也可能与y轴的非正半轴重合.由tan θ<0, 可知θ的终边可能位于第二象限或第四象限,可知θ的
2.弧度的概念与公式

202新数学复习第三章三角函数解三角形3.4三角函数的图象与性质学案含解析

202新数学复习第三章三角函数解三角形3.4三角函数的图象与性质学案含解析

第四节三角函数的图象与性质课标要求考情分析1。

能画出y=sin x,y=cos x,y=tanx的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在错误!内的单调性.以考查三角函数的图象和性质为主,题目涉及三角函数的图象及应用、图象的对称性、单调性、周期性、最值、零点.考查三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识.题型既有选择题和填空题,又有解答题,中档难度.知识点一用五点法作正弦函数和余弦函数的简图1.正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),错误!,(π,0),错误!,(2π,0).2.余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),错误!,(π,-1),错误!,(2π,1).知识点二正弦、余弦、正切函数的图象与性质下表中k∈Z1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是错误!个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.要注意求函数y=A sin(ωx+φ)的单调区间时A和ω的符号,尽量化成ω>0的情况,避免出现增减区间的混淆.3.对于y=tan x不能认为其在定义域上为增函数,而是在每个区间错误!(k∈Z)内为增函数.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)正切函数y=tan x在定义域内是增函数.(×)(2)已知y=k sin x+1,x∈R,则y的最大值为k+1。

(×) (3)y=sin|x|是偶函数.(√)(4)由sin错误!=sin错误!知,错误!是正弦函数y=sin x(x∈R)的一个周期.(×)解析:根据三角函数的图象与性质知(1)(2)(4)是错误的,(3)是正确的.2.小题热身(1)函数y=tan3x的定义域为(D)A。

数学一轮复习第三章三角函数解三角形第1讲任意角和蝗制及任意角的三角函数学案含解析

数学一轮复习第三章三角函数解三角形第1讲任意角和蝗制及任意角的三角函数学案含解析

第三章三角函数、解三角形第1讲任意角和弧度制及任意角的三角函数[考纲解读]1。

了解任意角的概念及弧度制的概念,能进行弧度与角度的互化.(重点)2.理解任意角的三角函数(正弦、余弦、正切)的定义,并能熟练运用基本知识与基本技能、转化与化归思想等.(重点、难点)[考向预测]从近三年高考情况来看,本讲内容属于基础考查范围.预测2021年高考会考查三角函数的定义、根据终边上点的坐标求三角函数值或根据三角函数值求参数值.常以客观题形式考查,属中、低档试题.1.任意角的概念(1)定义:角可以看成平面内的一条射线绕着错误!端点从一个位置旋转到另一个位置所成的图形.(2)角的分类(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于错误!半径长的弧所对的圆心角叫做1弧度的角.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0。

(2)公式3.任意角的三角函数定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sinα=错误!y,cosα=错误!x,tanα=错误!错误!.1.概念辨析(1)锐角是第一象限的角,第一象限的角也都是锐角.()(2)角α的三角函数值与其终边上点P的位置无关.()(3)不相等的角终边一定不相同.()(4)三角形的内角必是第一、第二象限角.()答案(1)×(2)√(3)×(4)×2.小题热身(1)下列与错误!的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z)B.k·360°+错误!(k∈Z)C.k·360°-315°(k∈Z) D.kπ+5π4(k∈Z)答案C解析角度制与弧度制不能混用,排除A,B;因为错误!=2π+π4,所以与错误!终边相同的角可表示为k·360°+45°(k∈Z)或k·360°-315°等,故选C。

202新数学复习第三章三角函数解三角形3.3.两角和与差的三角公式学案含解析

202新数学复习第三章三角函数解三角形3.3.两角和与差的三角公式学案含解析

第三节简单的三角恒等变换课标要求考情分析1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式推导出两角差的正弦、正切公式.3.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.1。

利用两角和与差的正弦、余弦、正切公式及二倍角公式进行化简、求值是高考考查的热点,本部分内容常与三角函数的性质、向量、解三角形的知识相结合命题.2.命题形式多种多样,既有选择题、填空题,也有综合性的解答题.知识点一基本公式1.两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)=cosαcosβ+sinαsinβ.C(α+β):cos(α+β)=cosαcosβ-sinαsinβ。

S(α+β):sin(α+β)=sinαcosβ+cosαsinβ.S(α-β):sin(α-β)=sinαcosβ-cosαsinβ。

T(α+β):tan(α+β)=错误!(α,β,α+β≠错误!+kπ,k∈Z).T(α-β):tan(α-β)=错误!(α,β,α-β≠错误!+kπ,k∈Z).2.二倍角的正弦、余弦、正切公式S2α:sin2α=2sinαcosα.C2α:cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α。

T2α:tan2α=2tanα1-tanα错误!知识点二三角公式的变形技巧1.降幂公式:cos2α=错误!,sin2α=错误!。

2.升幂公式:1+cos2α=2cos2α,1-cos2α=2sin2α。

3.公式变形:tanα±tanβ=tan(α±β)(1∓tanαtanβ).4.辅助角公式:a sin x+b cos x=a2+b2sin(x+φ)错误!知识点三三角恒等变换1.重视三角函数的“三变”:“三变”是指“变角、变名、变式".(1)变角:对角的分拆要尽可能化成同角、特殊角;(2)变名:尽可能减少函数名称;(3)变式:对式子变形一般要尽可能有理化、整式化、降低次数等.2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.1.思考辨析判断下列结论正误(在括号内打“√”或“×")(1)存在实数α,β,使等式sin(α+β)=sinα+sinβ成立.(√)(2)在锐角△ABC中,sin A sin B和cos A cos B大小不确定.(×)(3)公式tan(α+β)=tanα+tanβ1-tanαtanβ可以变形为tanα+tanβ=tan(α+β)(1-tanαtanβ),且对任意角α,β都成立.(×)(4)公式a sin x+b cos x=错误!sin(x+φ)中φ的取值与a,b的值无关.(×)解析:根据正弦、余弦和正切的和角、差角公式知(2)(3)(4)是错误的,(1)是正确的.2.小题热身(1)(2019·全国卷Ⅰ)tan255°=(D)A.-2-错误!B.-2+错误!C.2-错误!D.2+错误!(2)若sinα=错误!,则cos2α=(B)A.错误!B.错误!C.-错误!D.-错误!(3)sin347°cos148°+sin77°·cos58°=错误!.(4)已知tan(α-错误!)=错误!,则tanα=错误!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析
1 3 1 3 2 (1)f(x)=1-2sin x+2sinx=-2 sinx-2 所以当 sin x = 时, f ( x ) f(x)min + , max= , 2 2 2 当 sinx=-1 时,
2

=-3,故选 C. (2)要使函数 y=lg (2sinx-1)+ 1-2cosx有意义,

π π 2.函数 f(x)=sin 2x-4在区间0,2 上的最小值为(

)
A.-1 2 C. 2
2 B.- 2 D.0
π π π 3π 解析 由 0≤x≤2得-4≤2x-4≤ 4 ,结合 y=sinx 的图象易得 B.
π x ≠ k π + , k ∈ Z x π 3 . 3.[教材改编]函数 y=-tanx+ +2 的定义域为______________________


)
π π π π kπ π kπ 5π 解析 由 kπ-2<2x-3<kπ+2(k∈Z)得,2 -12<x< 2 +12(k∈Z), 所以函数 f(x)=tan2x-3 的单调递增
kπ π kπ 5π 区间为 2 -12, 2 +12 (k∈Z),故选 B.
) B.2 D.5
π π π π π π +2 解析 ∵f(x)在 6,2 =0, 上单调递减,且 f +f =0,∴f6 6 2 2 π ∵f(x)=sinωx+ 3cosωx=2sinωx+3 , π+π π π π ∴f6 2=f3=2sin3ω+3 =0, 2 π π 1 2π π π ∴3ω+3=kπ(k∈Z),又2· ω ≥2-6,ω>0, ∴ω=2.
第三章
三角函数、解三角形
第 3讲
三角函数的图象与性质
考纲展示
三年高考总结
本课时一直是高考的热点, 1.能画出 y=sinx, y=cosx, y=tanx 的图象, 从近三年高考情况来看, 尤其是三角函数的奇偶性、周期性与单调性及对称 了解三角函数的周期性. 2.理解正弦函数、余弦函数在[0,2π]上的 性等性质及图象的平移变换.在考查时经常与三角 性质(如单调性、最大值和最小值、图象与 恒等变换相结合,题型既有选择题、填空题,又经 常作为解答题中的一问出现.解题时要充分利用三 π π x 轴的交点等), 理解正切函数在 -2,2内 角函数的图象及性质,利用数形结合、函数与方程 的单调性. 思想等进行求解.

考点多维探究
考点 1 回扣教材
三角函数的定义域、值域及最值
正弦、余弦、正切函数的定义域、值域及最值
小题快做 1.思考辨析 (1)函数 y=sinx 的图象介于直线 y=1 与 y=-1 之间.( √ ) (2)y=ksinx+1(x∈R)的最大值为 k+1.( × )
π 3π (3)函数 y=tan 4-x的定义域是xx≠kπ+ 4 ,k∈Z .( √ )

π π 3.已知 ω>0,函数 f(x)=sin ωx+4在2,π 上单调递减,则 ω 的取值范围是(

)
1 5 A. 2,4 1 C. 0,2


1 3 B. 2,4 D.(0,2)

典例1 A.-2
(1)[2015· 皖南八校模拟]函数 f(x)=cos2x+2sinx 的最大值与最小值的和是( B.0 3 C.-2 1 D.-2

)
π 5π 2kπ+3,2kπ+ 6 ,k∈Z (2)函数 y=lg (2sinx-1)+ 1-2cosx的定义域是_______________________ .
【跟踪训练】 x x x 1.[2015· 北京高考]已知函数 f(x)= 2sin2cos2- 2sin22. (1)求 f(x)的最小正周期; (2)求 f(x)在区间[-π,0]上的最小值.
解 2 2 (1)f(x)= 2 sinx- 2 (1-cosx)

π 2 =sin x+4 - 2, 所以 f(x)的最小正周期为 2π. 3π π π (2)因为-π≤x≤0,所以- 4 ≤x+4≤4. π π 3π 当 x+4=-2,即 x=- 4 时,f(x)取得最小值. 3π 2 所以 f(x)在区间[-π,0]上的最小值为 f - 4 =- 1 - 2.
命题角度 2 已知三角函数的单调区间求参数 典例3 递减,则 ω=( A.3 C.6

π π π π [2015· 唐山期末]已知函数 f(x)=sinωx+ 3cosωx(ω>0),f 6+f2=0,且 f(x)在区间6,2 上
π 3 1 3 1 +cos2x)+ 4 =4sin2x- 4 cos2x=2sin2x-3 . 2π 所以,f(x)的最小正周期 T= 2 =π.
π π (2)求 f(x)在闭区间 -4,4 上的最大值和最小值.

π π π π (2)因为 f(x)在区间 -4,-12上是减函数,在区间-12,4 上是增函数,

三角函数的单调性是每年高考的热点,题型有选择题、填空题,也有解答题中的一问,难度适中,为 中、低档试题,且主要有以下几种命题角度.
命题角度 1 求三角函数的单调区间 典例2 π [2015· 山东高考]设 f(x)=sinxcosx-cos x+4 .
2


(1)求 f(x)的单调区间;

π 1+cos 2x+2 sin2x (1)由题意知 f(x)= 2 - 2
sin2x 1-sin2x 1 = 2 - = sin2 x - 2 2. π π π π 由-2+2kπ≤2x≤2+2kπ,k∈Z,可得-4+kπ≤x≤4+kπ,k∈Z; π 3π π 3π 由2+2kπ≤2x≤ 2 +2kπ,k∈Z,可得4+kπ≤x≤ 4 +kπ,k∈Z.

考点多维探究
考点 2 回扣教材 三角函数的单调性
三角函数的单调性
π π [提醒] 正切函数 y=tanx 在定义域上不是单调函数,但存在单调区间,即 -2+kπ,2+kπ ,k∈Z 为

其单调递增区间. 小题快做 1.思考辨析 (1)y=tanx 在整个定义域上是增函数.( × ) (2)y=cosx 在[0,π]上是减函数.( √ ) π π (3)函数 f(x)=sin(-2x)与 f(x)=sin2x 的单调增区间都是 kπ-4,kπ+4 (k∈Z).( × )

π π 1 1 1 π f -4=-4,f-12=-2,f4=4,
π π 1 1 所以函数 f(x)在闭区间 -4,4 上的最大值为 ,最小值为- . 4 2

三角函数单调性问题的常见类型及解题策略 (1)已知三角函数解析式求单调区间.①求函数的单调区间应遵循简单化原则,将解析式 先化简,并注意复合函数单调性规律“同增异减”;②求形如 y=Asin(ωx+φ)或 y= Acos(ωx+φ)(其中,ω>0)的单调区间时,要视“ωx+φ”为一个整体,通过解不等式求 解.但如果 ω<0,那么一定先借助诱导公式将 ω 化为正数,防止把单调性弄错. (2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求 解. (3)利用三角函数的单调性求值域(或最值). 形如 y=Asin(ωx+φ)+b 或可化为 y=Asin(ωx +φ)+b 的三角函数的值域(或最值)问题常利用三角函数的单调性解决.
解析
π 1 3 ∵y=2sinx+ 2 cosx=sinx+3 ,

5π π π π ∴函数的单调递增区间为 2kπ- 6 ,2kπ+6(k∈Z),又 x∈0,2,∴单调递增区间为0,6 .

π 2.[2015· 石家庄一模]函数 f(x)=tan 2x-3 的单调递增区间是( kπ π kπ 5π A. 2 -12, 2 +12 (k∈Z) kπ π kπ 5π B. 2 -12, 2 +12 (k∈Z) π 2π C. kπ+6,kπ+ 3 (k∈Z) π 5π D. kπ-12,kπ+12 (k∈Z)
π π 所以 f(x)的单调递增区间是 -4+kπ,4+kπ (k∈Z); π 3π 单调递减区间是 4+kπ, 4 +kπ (k∈Z).
A (2)在锐角△ABC 中,角 A,B,C 的对边分别为 a,b,c.若 f 2 =0,a=1,求△ABC 面积的最大值.

6
解析
π π π x+6≠kπ+2⇒x≠kπ+3,k∈Z.

3π π 2 k π + 5 4 ,k∈Z 4.函数 y=3-2cos x+4的最大值为________ ,此时 x=______________________.
解析 π π 3π 当 cos x+4 =-1 时 y 取得最大值 5,此时,x+ =2kπ+π,(k∈Z),得 x=2kπ+ 4 4 (k∈Z).
解 A 1 1 3 (2)由 f 2 =sinA-2=0,得 sinA=2,由题意知 A 为锐角,所以 cosA= 2 .


由余弦定理 a2=b2+c2-2bccosA, 可得 1+ 3bc=b2+c2≥2bc, 即 bc≤2+ 3,且当 b=c 时等号成立. 2+ 3 1 因此2bcsinA≤ 4 . 2+ 3 所以△ABC 面积的最大值为 4 .
命题角度 3 利用三角函数的单调性求最值(或 值域) 典例4 π 3 2 [2014· 天津高考]已知函数 f(x)=cosx· sin x+3 - 3cos x+ 4 ,x∈R.
相关文档
最新文档