第二次月考七年级上册数学(华师版)
2019-2020学年江苏省南京市鼓楼区树人学校七年级(上)第二次月考数学试卷(附答案详解)

2019-2020学年江苏省南京市鼓楼区树人学校七年级(上)第二次月考数学试卷1.下列方程是一元一次方程的是()A. x−y=0B. x2=1C. 2xy=1D. x=32.圆柱的侧面展开图是()A. 长方形B. 正方形C. 长方形和两个圆D. 扇形3.在水平的讲台上放置圆柱形水杯和长方体形粉笔盒(如图),则它的俯视图是()A.B.C.D.4.正方体的平面展开图可能是下列图形中的()A. B.C. D.5.某班级共有学生40人,当该班减少四名男生时,男生的人数恰好为女生人数的一半.设该班共有男生x人,则下列方程中,正确的是()A. 2(x−4)+x=40B. 2(x+4)+x=40C. x−4+2x=40D. x+4+2x=406.如图,方格纸中,有两个完全相同的三角形甲和乙,运用平移、旋转、翻折可以将三角形甲重合到三角形乙上,下列方法可行的是()A. 将三角形甲绕点A顺时针旋转90°,再向上平移一个单位长度B. 将三角形甲向下平移一个单位长度,再绕点C顺时针旋转90°C. 将三角形甲绕点C顺时针旋转90°,再向右平移一个单位长度D. 将三角形甲绕点B顺时针旋转90°7.把笔尖看成一个点,用笔在纸上写字的过程揭示了“______”的数学现象.8.圆锥可以看作是由一个______绕着它的一条______旋转1周而成的几何体.9.有的几何体的主视图、左视图、俯视图完全相同,试举一例:______.10.一个长方体的主视图和左视图如图(单位:cm),则其俯视图的面积是______ cm2.11.如图是我国古代的“以绳测井”问题:用一条绳子量一口枯井的深度,把绳子折成三折(忽略弯折处的长度)垂到井底,井口外还余出四尺绳子,把绳子折成四折垂到井底,井口外还余出一尺绳子.如果设绳长为x尺,可以列出方程:______.12.如图的几何体是用平面截正方体得到的,该几何体有______条棱.13.一般地,解一元一次方程的步骤是:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.其中步骤______(填序号)的依据是“等式两边都乘(或除以)同一个不等于0的数,所得结果仍是等式”.14.如图所示是计算机程序计算,若开始输入x=−1,则最后输出的结果是______ .15.计算(12+13+14+15)−(1−12−13−14−15)−2(12+13+14+15+16)的结果是______ .16.在丰富的方程世界中,解的个数是不确定的.阅读如下材料:方程x−1=0有唯一的解,分别是x=1;方程x(x−1)=0也有两个不同的解,分别是x1=0,x2=1;方程x(x−1)(x−2)=0也有三个不同的解,分别是x1=0,x2=1,x3=2.根据以上材料,请写出一个有四个不同解的方程:______.17.化简:(1)5(3a−b)−4(−a+3b);(2)(2x2−y2)−2(3y2−2x2).18.先化简,再求值:(1)3x2y−[2x2y−3(2xy−x2y)−xy],其中x=−12,y=2.(2)已知:A=−a2+4ab−2b2,B=2a2−3ab+b2,求:A−2(2A−B)−2B.19.解方程:(1)4x−3=2(x−1)(2)x−32−2x+13=120.图1是正四棱锥(地面是正方形)的直观图,在图2中画出它的主视图、左视图和俯视图.21.已知某商品按20%的利润率制定标价,并且按标价打八折销售每件亏10元.求该商品的标价.22.某工厂有甲、乙两种型号的机器生产同样的产品,两种型号的机器一共48台,其中甲型号机器比乙型号机器多10台.(1)乙型号机器有______台(请直接写出答案);(2)若已知4台甲型号机器一天生产的产品装满6箱后还剩8个,5台乙型号机器的产品还缺1个就可以装满8箱,每台甲型号机器比每台乙型号机器一天多生产1个产品,求每箱装多少个产品?(3)在前两问的条件下,若某天有2台甲型号机器和若干台乙型号机器同时开工,问这天生产的产品能否恰好装满35箱,请说明理由.23.用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个等边三角形底面组成,硬纸板用如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,其中x张硬纸板用A方法裁剪,其余硬纸板用B方法裁剪.(1)根据以上信息,完成表:(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?24.为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元,已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度,问该户居民五、六月份各用电多少度?25.两根蜡烛,粗蜡烛长是细蜡烛的2倍,点完一根粗蜡烛要1.5小时,而点完一根细蜡烛要1小时.一天晚上停电,同时点燃了这两支蜡烛看书,若干小时后来电了,再将两根蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的3倍,求停电多少小时?26.问题提出:用若干相同的一个单位长度的细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数的规律.问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法.探究一用若干木棒来搭建横长是m,纵长是n的矩形框架(m、n是正整数),需要木棒的条数.如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;如图③,当m=2,n=2时,横放木棒为2×(2+1))条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.问题(一):当m=4,n=2时,共需木棒______条.问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为______条,纵放的木棒为______条.探究二用若干木棒来搭建横长是m,纵长是n,高是s的长方体框架(m、n、s是正整数),需要木棒的条数.如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+ 1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+ 1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+ 1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为______条,竖放木棒条数为______条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是______.拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒______条.答案和解析1.【答案】D【解析】解:A.x−y=0,含有两个未知数,不是一元一次方程,故本选项不符合题意;B.x2=1,未知数的最高次数不是1,不是一元一次方程,故本选项不符合题意;C.2xy=1,含有两个未知数,不是一元一次方程,故本选项不符合题意;D.x=3,只含有一个未知数(元),且未知数的次数是1,是一元一次方程,故本选项符合题意;故选:D.根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义.2.【答案】A【解析】解:圆柱的侧面展开图是长方形.故选:A.根据常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.即可解答.本题考查了几何体的展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.3.【答案】C【解析】解:由于从上面看可得到中间有空隙的一个圆和一个长方形的组合图形,故选C.找到从上面看所得到的图形即可.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【答案】C【解析】解:A、根据图象可得出上面两正方形会重合,无法构成正方体,故此选项错误;B、根据图象可得出最上面正方形会与下面一个正方形重合,故此选项错误;C、能够组成正方形,故此选项正确;D、只要出现田字形无法构成正方体,故此选项错误;故选:C。
华师版七年级数学上册作业课件(HS)第2章 有理数 有理数

第2章 有理数
2.1 有理数
2.1.2 有理数
1.(重庆中考)下列四个数中,是正整数的是( D )
A.-1 B.0 C.12
D.1
2.(郸城月考)对于下列各数:-5,0,312 ,-0.3,10%,9. 其中说法错误的是( D ) A.-5,0,9 都是整数 B.分数有 312 ,-0.3,10%
整数集合:7{_,__-__1_0_1_,__0_,__2_,__-__7_,__-__3_______…};
分数集合:-{_0_.2_5_,__-__54__,__13___,__-__3_.5_,__5_12__,__1_._2_5_,__-__34______…}; 正数集合:{7_,__1_3__,__2_,__5_12__,__1_.2_5___________…}; 负数集合:-{0_._2_5_,__-__54__,__-__1_0_1_,__-__3_._5_,__-__7_,__-__3_,__-__34_____…}; 非负有理数集合:{___7_,__13__,__0_,__2_,__5_12__,__1_._2_5___________…}.
9.(南阳十三中月考)已知数 0.2,-0.01,-12 ,π,-3.14,0.101 001…, 其中有理数有__4__个.
10.(1)将下面一组数填入相应的圈内: -0.6,-8,+2.1,-809,-212 ,89.9,0.4,9;
解:略 (2)写出负整数,正整数. 解:负整数:-8,-809;正整数:9
11.(习题4变式)观察下面每一列数,探究它们的排列有什么规律,
并填出横线上的数. (1)1,-3,1,-3,1,_-__3_,__1__,_-__3_,…, 第100个数是_-__3_; (2)-2,4,-6,8,-10,_1_2__,-__1_4_,__1_6_,…,
1.5 有理数的大小比较(课件)七年级数学上册(华东师大版2024)

5.回答下列问题
(1)有没有最小的正数?有没有最大的负数?为什么?
(2)有没有绝对值最小的有理数?若有,请把它写出来
解:(1)没有,没有,均可以借助数轴说明;
(2)有,是0;
分层练习-基础
知识点1 两个负数的大小比较
1. [2024·重庆]下列四个数中,最小的数是( A
A. -2
B. 0
C. 3
D. -
8
且 0.625>0.618
所以 ﹣5 <0.618
8
;
.
;
练 习
(1)﹣3,﹣2,﹣1;
(2)1,2,3;
(3)0,±1,±2,±3.
习题1.5A组
(1)﹣9.1<﹣9.099;
5
6
7
8
(3)﹣ >﹣
;
(2)﹣8<|﹣8|;
(4)﹣|﹣3.2|=﹣(﹢3.2) ;
习题1.5A组
22
解:﹣4<﹣ <﹣3.14<0<0.14<2.7
因为-1< c <0<1< a ,所以 c - a +1<0.
(3)化简:| c - b |-| c - a +1|+| a -1|.
【解】由 a , b , c 在数轴上的位置可得 c - b <0, c - a +1<0,
a -1>0,所以| c - b |-| c - a +1|+| a -1|
−
3
3
2
,所以− <−
4
3
3
−
4
1
=− .
10
1
−
10
.
3 9
= = ,
4 12
2
−
3
2 8
= = .
河南省鹤壁市2024-2025学年七年级上学期月考数学试题(含答案)

2024-2025学年上学期阶段性评价卷一七年级数学(华师版)注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个选项、其中只有一个是正确的。
1.表示( )A .2024的倒数B.的相反数 C .的绝对值D .的倒数2.数轴上表示数a 的点的位置如图所示,则a 可以是()A .B .C .0D .33.下列有关0的说法中,不正确的是( )A .0是整数B .0既不是正数,也不是负数C .0乘任何有理数仍得0D .0除以任何有理数仍得04.下表是12月份河南省其中4个市某一天的平均气温,则这天平均气温最低的是()地区郑州市安阳市焦作市洛阳市平均气温/2A .郑州市B .安阳市C .焦作市D .洛阳市5.将算式改写成省略加号和括号的形式是( )A .B .C .D .6.下面各组大小关系中,正确的是( )A .B .C .D .7.下列各式中,与的运算结果相同的是( )A . B . C . D . 8.定义一种新运算*,已知,则的结果为( )A .B .C .0D .9.如图,圆的周长为3个单位长度,该圆上的3个点将圆的周长平均分成3份,在3个点处分别标上1,2,3,先让圆周上表示数字1的点与数轴上表示0的点重台,再将圆沿着数轴向右滚动,则数轴上表示2024的点2024-120242024-12024-4-2-C ︒1-2-2(1)(3)(4)--+--+2134-+-2134+--2134++-2134+-+302>-332288⎛⎫--=-- ⎪⎝⎭113333⎛⎫⎛⎫÷-<⨯- ⎪ ⎪⎝⎭⎝⎭(4)3|43|--<-+48577÷÷48577⎛⎫÷÷⎪⎝⎭48577⎛⎫÷⨯⎪⎝⎭84577⎛⎫÷÷⎪⎝⎭78547⨯⨯1*21211,2*(3)2(3)28=⨯-=-=⨯--=-1*(1)2-1-12-12与圆周上重合的点上标的数字为( )A .1B .2C .3D .无法确定10.在一条可以折叠的数轴上,点A ,B 表示的数分别是,5,如图,以点C 为折点,将此数轴向右对折,使A ,B 之间的距离为1,则点C 表示的数是()A .0B .C .或D .或二、填空题(每小题3分,共15分)11.请写出一个使的a 值:__________.12.2024年巴黎奥运会结束后,部分运动员组成代表团访问香港和澳门,弘扬体育强国精神,激励港澳同胞的爱国热情.大帽山是香港最高的山峰,海拔为,记作,螺洲门是香港海拔最低点,海拔为海平面以下,记作__________.13.数轴上与点A 距离3个单位长度的点表示的数是1,则点A 表示的数是__________.14.小华在计算时(代表一个有理数),误将“”看成“”,按照正确的运算顺序计算,结果为,则的正确结果是__________.15.一只蜗牛从树根沿竖直方向往上爬,每天白天向上爬行,晚上又下滑,这只蜗牛要爬到距离树根的树洞处,需要__________天.(填整数)三、解答题(本大题共8个小题,共75分)16.(10分)计算:(1) (2)17.(8分)把下列各数填入相应的大括号里.正整数集:{ …}负数集:{ …}分数集:{ …}非负有理数集:{ …}18.(9分)阅读下面题目的运算过程,并解答问题.计算:10-2-1-2-2-3-a a >958m 958m +66m 2(30)5-÷⨯☆☆÷+26-2(30)5-÷⨯☆24cm 10cm 1m 233136135454⎛⎫⎛⎫⎛⎫⎛⎫-++-+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭157(24)368⎛⎫-⨯+- ⎪⎝⎭354,,0,10,1.090909,|3|,1,(1)27------ 4(8)25625(6)10253⎛⎫-⨯-⨯+-⨯-+⨯ ⎪⎝⎭解:原式①②③④.⑤(1)第①步运用的运算律是____________________;第②步运用的运算律是____________________;(2)上述计算过程,从第__________步出现错误,本题运算的正确结果是__________;(3)运用上述解法,计算:.19.(9分)(1)如图,在数轴上画出表示下列各数的点:(2)如图,已知A ,B ,C ,D 是数轴上的点.①若点A 和点C 表示的数互为相反数,则点B 表示的数为__________;②如果将点D 向右移动2个单位长度,再向左移动5个单位长度,终点表示的数是,求原来点D 表示的数.20.(9分)规定表示不超过有理数a 的最大整数,例如:.(1)填空:__________,__________;(2)比大小:__________;(填“>”“<”或“=”)(3)计算:.21.(10分)学习了绝对值的概念后,我们知道:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,例如:.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式(不算出结果):4(8)256251025(6)3⎛⎫=-⨯-⨯+⨯+-⨯- ⎪⎝⎭4(8610)25(6)3⎛⎫=--+⨯+-⨯- ⎪⎝⎭442563=⨯-⨯1008=-92=11(170)3(2)0.2524.5525%42⎛⎫⎛⎫-⨯--⨯-+⨯--⨯ ⎪ ⎪⎝⎭⎝⎭1,(2),2.5,0,|4|2--+--1-[]a [1.2]1,[ 1.8]2=-=-[3.7]=94⎡⎤-=⎢⎥⎣⎦[0.8][ 4.2]+-[0.8 4.2]-73[3.14π][π 3.14]22⎡⎤---+-⨯⎢⎥⎣⎦|23|23,|23|32,|32|32,|23|23+=+-=--=---=+①__________;②__________;③__________;(2)用合理的方法计算:.22.(10分)奥运pin (徽章)是奥运会期间由主办方、参赛代表队等推出的一种纪念品,奥运pin 的交换,不仅是一种收藏行为,更是一种跨越语言障碍的文化交流,也传递了奥林匹克精神中的团结与相互理解.巴黎奥运会期间,中国的熊猫pin 因其可爱的形象和精美的工艺深受大家的喜爱.某工厂从制作的熊猫pin 中抽取30枚样品,检测每枚的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)30枚样品中,质量最大的一枚比质量最小的一枚多__________g ;(2)与标准质量相比,30枚样品总计超过或不足的质量为多少克?(3)①若允许有的误差,30枚样品中不合格的有__________枚;②海枚熊猫pin 的制作成本是12元,工厂以20元的价格批发给某代理商800枚(不合格产品占),不合格产品需要返厂重新加工(重新加工费用忽略不计),且工厂需将不合格产品的进价费用返还代理商并承担每枚0.5元的返还运费,工厂在这次销售中的利润是多少?(利润=总价-成本)与标准质量的差值/g0123枚数135964223.(10分)观察下列等式,并解答问题.第1个等式:;第2个等式:;第3个等式:;第4个等式:;……(1)按以上规律填空:①第5个等式:____________________;②第50个等式:____________________;(2)计算:.213-=| 5.44|-+=|3π|--=237037011999399322-+---2g ±8%3-2-1-211133=-⨯2113535=-⨯2115757=-⨯2117979=-⨯2222213355779399401+++++⨯⨯⨯⨯⨯2024-2025学年上学期阶段性评价卷一七年级数学(华师版)参考答案一、选择题(每小题3分,共30分)1.D 2.A 3.D 4.C 5.B 6.C 7.B 8.A 9.C 10.D二、填空题(每小题3分,共15分)11.(答案不唯一)12.13.或414. 15.7三、解答题(本大题共8个小题,共75分)16.解:(1)原式2分3分5分(2)原式2分.5分17.解:正整数集:10,; 2分负数集:; 4分分数集:;6分非负有理数集:.8分18.解:(1)加法交换律 乘法分配律 2分(2)③ 4分(3)原式 5分7分9分19.解:(1)画图如下所示:1-66m -2-65-233136135454=-+-+233131635544⎛⎫⎛⎫=--++ ⎪ ⎪⎝⎭⎝⎭510=-+5=157(24)(24)(24)368=-⨯+-⨯--⨯82021=--+7=-(1)--54,|3|,17----35,1.090909,127- 3,0,10,1.090909,(1)2-- 92-11(170)0.2524.5525%3(2)42⎛⎫⎛⎫=-⨯-+⨯--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭11117024.5 5.532444=⨯+⨯+⨯+⨯1(17024.5 5.5)324=⨯+++⨯1200324=⨯+⨯56=5分(2)① 7分②.所以原来点D 表示的数是2. 9分20.解:(1)3 2分(2)<4分(3)因为,所以. 6分原式9分21.解:(1)①2分② 4分③ 6分(2)原式 8分10分22.解:(1)62分(2). 4分因为,所以30枚样品总计超过的质量为. 5分(3)①36分②由题意得,不合格产品有(枚),(元).答:工厂在这次销售中的利润是5088元.10分23.解:(1)① 2分② 4分(2)原式6分05-.(1)522-+-=3-0 3.14π1,1π 3.140>->->->[3.14π]1,[π 3.14]0-=--=310(4)2=--+-⨯7=-213-5.44-3π+370213701993929932=-+--29=-(3)1(2)3(1)5091624326(g)-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯=60>6g 8008%64⨯=.800(18%)2080012640.55088⨯-⨯-⨯-⨯=211911911=-⨯2119910199101=-⨯11111111113355779399401⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++- ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭9分. 10分11111111113355779399401=-+-+-+-++-11401=-400401=。
2020学年秋季七年级数学(上册)月考数学试卷 (2)

2020学年秋季七年级数学(上册)月考数学试卷一、选择题(本大题共10小题,共30.0分)1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,−0.5的相反数是()A. 0.5B. ±0.5C. −0.5D. 5【答案】A【解析】解:−0.5的相反数是0.5,故选:A.2.在实数−3,2,0,−4中,最大的数是()A. −3B. 2C. 0D. −4【答案】B【解答】解:∵−4<−3<0<2,∴四个实数中,最大的实数是2.故选B.3.我市2015年某一天的最高气温为8℃,最低气温为−2℃,那么这天的最高气温比最低气温高()A. −10℃B. −6℃C. 6℃D. 10℃【答案】D【解答】解:8−(−2)=8+2=10℃.故选D.4.计算4+(−6)的结果等于()A. −2B. 2C. 10D. −10【答案】A【解析】解:4+(−6)=−(6−4)=−2.故选:A.5.计算(−6)+(−2)的结果等于()A. 8B. −8C. 12D. −12【答案】B【解答】解:原式=−(6+2)=−8,故选B.6.四位同学画数轴如图所示,你认为正确的是()A. B.C. D.【答案】C【解析】解:A中,无原点;B中,无正方向;D中,数的顺序错了.故选:C.7.−2的相反数是()A. 2B. −2C. 12D. −12【答案】A【解析】解:根据相反数的定义,−2的相反数是2.故选:A.8.若x与3互为相反数,则等于()A. 0B. 1C. 2D. 3【答案】A【解答】解:∵x与3互为相反数,∴x=−3,∴|x+3|=|−3+3|=0.故选A.9.下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()景区潜山公园陆水湖隐水洞三湖连江气温−1℃0℃−2℃2℃A. 潜山公园B. 陆水湖C. 隐水洞D. 三湖连江【答案】C【解答】解:∵−2<−1<0<2,∴隐水洞的气温最低,故选:C.10.实数a,b在数轴上的对应点的位置如图所示,把−a,−b,0按照从小到大的顺序排列,正确的是()A. −a<0<−bB. 0<−a<−bC. −b<0<−aD. 0<−b<−a 【答案】C【解答】解:∵从数轴可知:a<0<b,∴−b<0,−a>0,∴−b<0<−a,故选:C.二、填空题(本大题共7小题,共21.0分)11.比较大小:−12______ −|−13|(填“>”、“=”或“<”).【答案】<【解析】解:∵−|−13|=−13,|−12|>|−13|,∴−12<−13,∴:−12<−|−13|.故答案是:<.12.在3.5,−312,0,−8这四个数中,最小的数是______ ,最大的数是______ ,绝对值最大的数是______ ,互为相反数的两个数是______ 和______ .【答案】−8;3.5;−8;3.5;−312【解析】解:在3.5,−312,0,−8这四个数中,最小的数是−8,最大的数是3.5,绝对值最大的数是−8,互为相反数的两个数是3.5和−312,故答案为:−8,3.5,−8,3.5,−312.13.在−23,3.14,0.161616…,π2中,分数有______个.【答案】3【解析】解:−23,3.14,0.161616…是分数,故答案为:3.14.学习了有理数的加法后,小明同学画出了如图:请问图中①为______,②为______.【答案】取相同符号用较大绝对值减去较小绝对值15. 冰冰家新安装了一台太阳能热水器,一天她测量发现18:00时,太阳能热水器水箱内水的温度是80℃,以后每小时下降4℃,第二天,冰冰早晨起来后测得水箱内水的温度为32℃,请你猜一猜她起床的时间是______ . 【答案】6:00【解析】解:由题意可得,冰冰起床的时间是:18+(80−32)÷4−24=18+48÷4−24=18+12−24=6, 即冰冰起床的时间是6:00, 故答案为:6:00.16. 计算:(1)(+21)+(−31)=______; (2)(−3.125)+(+318)=______;(3)(−13)+(+12)=______; (4)(−313)+(−13)=______; (5)(−2)+|−2|=______; (6)|−113|+|−56|=______.【答案】−10 0 16 −323 0 216 【解析】解:(1)(+21)+(−31)=−10; (2)(−3.125)+(+318)=0;(3)(−13)+(+12)=16;(4)(−313)+(−13)=−323; (5)(−2)+|−2|=0; (6)|−113|+|−56|=216.故答案为:−10;0;16;−323;0;216.17. 计算:①(+215)+(−45)=______;②(−2)+713+(−43)+12=______.【答案】125 16【解析】解:①(+215)+(−45)=125; ②(−2)+713+(−43)+12=[(−2)+12]+[713+(−43)]=10+6 =16.三、计算题(本大题共3小题,共18.0分)18. 先将下列各式写成省略加号的和的形式,再按括号内要求交换加数的位置.(1)(+16)+(−28)−(−6)−(−13)−(+7)=______(写成省略加号的和) =______(使符号相同的加数在一起) =______(运算结果);(2)(−3.1)−(−4.5)+(4.4)−(+1.3)+(−2.5)=______(写成省略加号的和) =______(使和为整数的加数在一起) =______(运算结果).【答案】16−28+6+13−7 16+6+13+(−28−7) 0 −3.1+4.5+4.4−1.3−2.5 (4.4−3.1−1.3)+(4.5−2.5) 2 【解析】解:(1)原式=16−28+6+13−7 =16+6+13+(−28−7) =0;(2)原式=−3.1+4.5+4.4−1.3−2.5 =(4.4−3.1−1.3)+(4.5−2.5) =2.故答案为:(1)16−28+6+13−7;16+6+13+(−28−7);0. (2)−3.1+4.5+4.4−1.3−2.5;(4.4−3.1−1.3)+(4.5−2.5);2.19. (1)在数1.2.3.4.5.6.7.8前添加“+”,“−”并依次运算,所得结果可能的最小非负数是多少?(列式计算,列出一个算式即可)(2)在数1.2.3…2015前添加“+”,“−”并依次运算,所得结果可能的最小非负数是多少?(列式计算,列出一个算式即可)(3)在数1.2.3…n 前添加“+”,“−”并依次运算,所得结果可能的最小非负数是多少?(只写出答案即可)【答案】解:(1)根据题意得:(1−2−3+4)+(5−6−7+8)=0;(2)根据题意得:(1+2−3)+(4−5−6+7)+⋯+(2012−2013−2014+2015)=0;(3)当n 是4的倍数时,结果可能的最小非负数为0; 当n 除以4余1时,结果可能的最小非负数为1; 当n 除以4余2时,结果可能的最小非负数为1; 当n 除以4余3时,结果可能的最小非负数为0.20. 阅读下面材料并解决有关问题:我们知道:|x|={x(x >0)0(x =0)−x(x <0).现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x +1|+|x −2|时,可令x +1=0和x −2=0,分别求得x =−1,x =2(称−1,2分别为|x +1|与|x −2|的零点值).在实数范围内,零点值x =−1和,x =2可将全体实数分成不重复且不遗漏的如下3种情况:①x <−1;②−1≤x <2;③x ≥2.从而化简代数式|x +1|+|x −2|可分以下3种情况: ①当x <−1时,原式=−(x +1)−(x −2)=−2x +1; ②当−1≤x <2时,原式=x +1−(x −2)=3;③当x ≥2时,原式=x +1+x −2=2x −1.综上讨论,原式={−2x +1(x <−1)3(−1≤x <2)2x −1(x ≥2). 通过以上阅读,请你解决以下问题: (1)化简代数式|x +2|+|x −4|. (2)求|x −1|−4|x +1|的最大值.【答案】解:(1)当x <−2时,|x +2|+|x −4|=−x −2+4−x =−2x +2; 当−2≤x <4时,|x +2|+|x −4|=x +2+4−x =6; 当x ≥4时,|x +2|+|x −4|=x +2+x −4=2x −2; (2)当x <−1时,原式=3x +5<2,当−1≤x ≤1时,原式=−5x −3,−8≤−5x −3≤2,当x >1时,原式=−3x −5<−8, 则|x −1|−4|x +1|的最大值为2.四、解答题(本大题共8小题,共64.0分) 21. 把下列各数填在相应的集合内.−3,2,−1,−14,−0.58,0,−3.1415926,0.618,139 整数集合:{______ } 负数集合:{______ } 分数集合:{______ } 非负数集合:{______ } 正有理数集合:{______ }. 【答案】−3,2,−1,0;−3,−1,−14,−0.58,−3.1415926; −14,−0.58,−3.1415926,0.618,139; 2,0,0.618,139; 2,0.618,139【解析】解:整数集合:{−3,2,−1,0 }负数集合:{−3,−1,−14,−0.58,−3.1415926 } 分数集合:{−14,−0.58,−3.1415926,0.618,139 } 非负数集合:{ 2,0,0.618,139 } 正有理数集合:{2,0.618,139 },故答案为:−3,2,−1,0;−3,−1,−14,−0.58,−3.1415926;−14,−0.58,−3.1415926,0.618,139;2,0,0.618; 2,0.618,139.22. 计算:(1)(+9)−(+10)+(−2)−(−8)+3; (2)−5.13+4.62+(−8.47)−(−2.3);(3)(+425)−(+110)−815; (4)34−72+(−16)−(−23)−1.【答案】解:(1)(+9)−(+10)+(−2)−(−8)+3 =−1−2+8+3 =8.(2)−5.13+4.62+(−8.47)−(−2.3) =[−5.13+(−8.47)]+[4.62−(−2.3)] =−13.6+6.92 =−6.68.(3)(+42)−(+1)−81=4310−815=−3910.(4)34−72+(−16)−(−23)−1 =−114+12−1 =−134.23. 简便运算:(1)112−114+334−0.25−3.75−4.5;(2)1214−(+1.75)−(−512)+(−7.25)−(−234)−2.5.【答案】解:(1)原式=32−54+154−14−154−92=32−54−14−92 =−3−32 =−92;(2)原式=1214−134+512−714+234−52 =(494−74−294)+(112−52)=134+3=254.24. 计算:−32+(−47)−(−25)+|−24|−10. 【答案】解:原式=−32−47+25+24−10 =−79+25+24−10 =−30−10 =−40.25. 在数轴上表示下列各数:0,−4.2,312,−2,+7,113,并用“<”号连接.【答案】解:这些数分别为0,−4.2,312,−2,7,113,在数轴上表示出来如图所示,根据这些点在数轴上的排列顺序,从左至右分别用“<”连接为: −4.2<−2<0<113<312<+7.26. 操作题:公元初,中美洲玛雅人使用的一种数字系统与其他计数方式都不相同,它采用二十进位制但只有3个符号,用点“⋅”划“”、卵形“”来表示我们所使用的自然数,如自然数1~19的表示见下表,另外在任何数的下方加一个卵形,就表示把这个数扩大到它的20倍,如表中20和100的表示.(1)玛雅符号 表示的自然数是______;(2)请你在右边的方框中画出表示自然数280的玛雅符号:. 【答案】(1)18; (2)【解析】解:(1)玛雅符号表示的自然数是18;(2)表示自然数的玛雅符合为:. 故答案为:(1)18.(2).27. 设[a]表示不超过a 的最大整数,例如:[2.3]=2,[−413]=−5,[5]=5.(1)求[215]+[−3.6]−[−7]的值;(2)令{a}=a −[a],求{234}−[−2.4]+{−614}.【答案】解:(1)[215]+[−3.6]−[−7],=2+(−4)−(−7),=2−4+7,=5;(2){234}−[−2.4]+{−614},=234−[234]−[−2.4]+(−614)−[−614],=114−2+3−254+7,=8−144,=8−3.5,=4.5.28.(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB.当A、B两点中有一点在原点时,不妨设点A在原点,如图甲,AB=OB=|b|=|a−b|;当A、B两点都不在原点时,1如图乙,点A、B都在原点的右边,AB=OB−OA=|b|−|a|=b−a=|a−b|;②如图丙,点A、B都在原点的左边,AB=OB−OA=|b|−|a|=−b−(−a)=|a−b|;③如图丁,点A、B在原点的两边AB=OA+OB=|a|+|b|=a+(−b)=|a−b|.综上,数轴上A、B两点之间的距离AB=|a−b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是______,数轴上表示−2和−5的两点之间的距离是______,数轴上表示1和−3的两点之间的距离是______;②数轴上表示x和−1的两点分别是点A和B,则A、B之间的距离是______,如果|AB|=2,那么x=______;③当代数式|x+2|+|x−5|取最小值时,相应的x的取值范围是______.④当代数式|x−1|+|x+2|+|x−5|取最小值时,相应的x的值是______.⑤当代数式|x−5|−|x+2|取最大值时,相应的x的取值范围是______.【答案】3 3 4 |x+1| 1或3 −2≤x≤5x=1x≤−2【解析】解:①.5−2=3,−2−(−5)=3,1−(−3)=4;②、|x+1|,|x+1|=2则x=1或−3;③|x+2|+|x−5|表示数轴上一点到−2与5两点的距离的和,当这点在−2和5之间时和最小,最小距离是:5−(−2)=7;④代数式|x−1|+|x+2|+|x−5|表示数轴上一点到1、−2与5三点的距离的和,根据两点之间线段最短,则当x=1时和最小,最小值是5到−2的距离,是5−(−2)=7;⑤代数式|x−5|−|x+2|表示数轴上一点到5与−2两点的距离的差,当点小于等于−2时差最大,最大值是5与−2之间的距离,是7.故答案是:①3,3,4;②|x+1|,1或3;③−2≤x≤5;④x=1;⑤x≤−2.①根据(1)中的知识可以得到两点之间的距离就是较大的数与较小的数的差,据此即可求解;②根据(1),即可直接写出结果;③|x+2|+|x−5|表示数轴上一点到−2与5两点的距离的和,当这点是−2或5,以及它们之间时和最小,最小距离是−2与5之间的距离;④代数式|x−1|+|x+2|+|x−5|表示数轴上一点到1、−2与5三点的距离的和,根据两点之间线段最短,则当x=1时和最小,最小值是5到−2的距离;⑤代数式|x−5|−|x+2|表示数轴上一点到5与−2两点的距离的差,当点小于等于−2时差最大,最大值是5与−2之间的距离.。
福建省莆田市涵江区莆田锦江中学2023-2024学年七年级上册第二次月考数学试题(含解析)

A.402B.403C.404D.405(1)的值能否为79?若能,求a 的值;若不能,说明理由;(2)值能否为51,若能,求a 的值;若不能,说明理由;(3)若,求的最小值为 (直接写结果)22.列一元一次方程解决实际问题(两问均需用方程求解)第19届亚洲夏季运动会于2023年9月23日在杭州举行,通过不同色彩、不同纹饰向世界讲述“江南忆”的美丽故事.现有工厂生产吉祥物的盲盒,分为1S 12S S +12187S S =+12S S -【简单应用】如图1,点A 在数轴上所对应的数为,点B 表示的数为)则A 、B 两点间的距离________, A 、B 两点的中点M 5-AB =∴甲捐书本,乙捐书本,丙捐书为本.21.(1)不能,理由见解析;(2)能,的值为或;(3)【分析】本题考查了一元一次方程的应用,理解、的实际意义是解题关键.(1)设“T ”型阴影覆盖的最小数字为,则其他数字分别为、、,根据的值为79列方程,求出的值,再根据的实际意义分析,即可得到答案;(2)根据题意,将其他数字用、表示出来,然后根据值为51列方程,得到,再根据、的实际意义分析,即可得到答案;(3)根据,得到,再根据、的实际意义,找出满足条件的、的值,然后得出,即可求出最小值.【详解】(1)解:不能,理由如下:设“T ”型阴影覆盖的最小数字为,则其他数字分别为、、,,解得:,由月历可知,时,不能构成“T ”型阴影,即的值不能为79;(2)解:能,的值为或,理由如下:设“T ”型阴影覆盖的最小数字为,则“T ”型阴影覆盖的其他数字分别为、、,,设“田”型阴影覆盖的最小数字为b , “田”型阴影覆盖的其他数字分别为、、,,,整理得:,、都是正整数,当时,,满足条件;当时,,“田”型阴影条件不满足;当时,,满足条件;值能为51,此时的值为或;(3)解:由(2)可知,、、,585x =8136x =9153x =a 1513-a b a 1a +2a +8a +1S a a a b 12S S +6a b +=a b 12187S S =+40a b +=a b a b ()1245S S a b -=--a 1a +2a +8a +()()()112841179S a a a a a ∴=++++++=+=17a =17a =1S a 15a 1a +2a +8a +()()()1128411S a a a a a ∴=++++++=+1b +7b +8b +()()()2178416S b b b b b ∴=++++++=+12442751S S a b ∴+=++=6a b +=a b 1a =5b =2a =4b =5a =1b =12S S ∴+a 151411S a =+2416S b =+124427S S a b +=++,,,、都是正整数,满足条件的、的值为或或,,即当的值最小时,最小,当,时,有最小值,为,故答案为:22.(1)生产盲盒的工人人数为600人(2)该工厂应该安排250名工人生产,750名工人生产才能使每天生产的盲盒正好配套【分析】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.(1)设生产盲盒B 的工人人数为x 人,则生产盲盒A 的工人人数为人,根据该工厂共有1000名工人,列出一元一次方程,解方程即可;(2)设安排m 人生产盲盒A ,则安排人生产盲盒B ,根据盲盒大礼包由2个盲盒A 和3个盲盒B 组成.列出一元一次方程,解方程即可.【详解】(1)设生产的人数为人,则生产的人数为人,于是解得:(人)答:生产盲盒的工人人数为600人.(2)设安排人生产,则安排人生产于是解得:(人)答:该工厂应该安排250名工人生产,750名工人生产才能使每天生产的盲盒正好配套.23.(1)选择类卡(2)类卡通话200分钟,类卡通话350分钟12187S S =+ 4427187a b ∴++=40a b ∴+=a b ∴a b 1921a b =⎧⎨=⎩2020a b =⎧⎨=⎩2119a b =⎧⎨=⎩()()1241141644545S S a b a b a b -=+-+=--=-- a b -12S S -∴19=a 21b =12S S -()41921513⨯--=-13-A A B ()2200x -()1000m -B x A ()2200x -()22001000x x -+=400x =22002400200600x ∴-=⨯-=A m A ()1000m -B()3202101000m m ⨯=⨯-250m =10001000250750m ∴-=-=A B B A B(3)当通话时长小于50分钟时,选类卡;当通话时长等于50分钟时,选类卡或类卡皆可;当通话时长大于50分钟时,选类卡【分析】此题主要考查了一元一次方程的应用,根据题意分别表示出两种卡的费用是解题关键.(1)根据付费标准分别得出通话费用即可求解;(2)根据付费标准分别得出通话时间即可求解;(3)设他一个月通话时长为分钟,根据付费标准列出方程,求解即可.【详解】(1)解:由题意可得:类卡:(元),类卡:(元),∴他应该选择类卡.(2)由题意可得:类卡通话时间为:(分钟),类卡通话时间为:(分钟)答:类卡通话200分钟,类卡通话350分钟;(3)设他一个月通话时长为分钟,类卡付费关系式为:元,设通话分钟,类卡付费关系式为:元,则,解得:.所以,当通话时长小于50分钟时,选类卡;当通话时长等于50分钟时,选类卡或类卡皆可;当通话时长大于50分钟时,选类卡.24.(1)5;(2)35分;(3) 3场.【详解】解:(1)设这个球队胜x 场,则平(8-1-x )场,依题意可得3x+(8-1-x=17解得x=5;(2)打满14场最高得分17+(14-8)×3=35(分);(3)由题意可知,在以后的6场比赛中,只要得分不低于(12分)即可,所以胜场不少于4场,一定可达到预定目标.而胜3场,平3场,正好也达到预定目标.因此在以后的比赛中至少要胜3场.答:(1)这支球队共胜了5场;(2)最高能得35分;(3)至少胜3场.【点睛】本题考查了一元一次不等式的运用,此类试题难度很大,考生解答此类问题时要求熟练把握一元一次不等式的基本性质运算.25.【小问1】9, 【小问2】或2A AB B x 0.6150.3x x =+A 1000.660⨯=B 1000.31545⨯+=B A 1200.6200÷=B ()120150.3350-÷=A B x A 0.6x x B ()150.3x +0.6150.3x x =+50x =A A B B 0.5-12-。
2.1.1 用字母表示数 课件 2024-2025-华东师大版(2024)数学七年级上册

问题3 你能用字母表示图形的面积、体积、周长、
表面积吗? a
b
h
a
a
a
S = a2
S = ab
S = ah b
h
S ah 2
a
h
S 1 a bh
2
a
r
.
a
c
面积 πr2 周长 2πr
体积 a3 表面积 6a2
ab 体积 abc
从这些例子,我们可以体会到,用字母表示 数之后,有些数量之间的关系用含有字母的式子 表示,看上去更加简明,更具有普遍意义.
(3) 用式子表示数 n 的相反数.
解:数 n 的相反数是 -n.
总结
⑦ 当“1”与任何字母相乘时,“1”省略不写; 当“-1”乘字母时,只要在字母前加上“-”号.
(4)
若每斤苹果3 1
3
元,则买
m
斤苹果需
元.
总结
பைடு நூலகம்
⑧ 带分数与字母相乘时,把带分数化成假分数.
练一练
1. 下列各式中,符合书写要求的是( D ).
A. x×5
B. 4m×n
C. 1 2 a
5
D. 1 y
2
练一练
2. 判断下列式子书写是否规范,不规范的请改正.
x y 2 5 ab
6
1n
x3 m 3
xy
17 ab n 3x
6
m 3
课后小结
用字
用 母表
字 示数
母
表
示 数
书写 规范
有些数量之间的关系用含有字母的式子表示, 看上去更加简明,更具有普遍意义
式子中出现乘号,通常写作“ ·”或_省__略__不__写
华师大版七年级数学上册第二次月考.docx

70︒15︒东北CA B北斗星南校区2014—2015年度七年级第二次月考数 学 试 卷时间:120分钟 满分:120分一、选择题(每题3分,共30分)1、-0.5的倒数的绝对值的相反数是( )A 、2B 、-2C 、21D 、-212、对任意实数a ,下列各式不一定成立的是( ) A 、22)(a a -= B 、33)(a a -= C 、a a -= D 、02≥a3、m ,n 都是正整数,多项式x m+y n+3m+n的次数是( ).A .2m+2nB .m 或nC .m+nD .m ,n 中的较大数4、如果多项式3x 3-2x 2+x+│k │x 2-5中不含x 2项,则k 的值为( ). A .±2 B .-2 C .2 D .0 5、用一副三角板不能画出( )A.75°角 B.135°角 C.160°角 D.105°角6、从上向下看图(1),应是下图中所示的( )CDB A7、如图,甲从A 点出发向北偏东70°方向走50m 至点B,乙从A 出发向南偏西15°方向走80m 至点C,则∠BAC 的度数是( )A.85°B.160°C.125°D.105°8、下图各图形中,不能..经过折叠围成正方体的是( )A B C D9、若M =4x 2-5x +11,N =3x 2-5x +10,则M 与N 的大小关系是( ).A .M >NB .M =NC .M <ND .无法确定 10、若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则ba cd m ++-2 值为学校 班级 姓名 学号 考场号 座号 密 封 线 内 不 要 答 题....-1514-1312-11108-76-54 -3 2 -1 -916( )A 、3-B 、3C 、5-D 、3或5- 二、填空题(每题3分,共24分)11、如果3-m 与2m+1互为相反数,则m= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
'
# $
7&3/$'!'&"0!
解 $ 原 式 1 * &+ 2"*,.#0 -, 2"*,.#*&&/*"*,.# 1.*-+0, 1 */,
解 $ 原 式 1 *&0 " * &/ # 2 &- 2( 1 *&* (+ 1 *&+&
#(!4 分 先 化 简 #再 求 值 '若""/$"/ !$#'1"$6%#求 代 数 式 '$!"$#/"#$"'$!$"$#'#"'$"#$ ' $的值! 解 $/""/#0"#/# */"/"/#*&# */"#/ */1/"/#0/"#/ *,"/#0/*/"#/ */1 */"/# :""0/"0 "/#*,#/ 1%! 5"1 */!#1/! 5 */"/#1 */* " */#/ */1 *&+
数 式 表 示 "!
#$!有 理 数"%# 在 数 轴 上 的 对 应 的 位 置 如 图 所 示 #则"/# ! # !%!
#&!使 用 计 算 器 进 行 计 算 时 #按 键 程 序 为 0/ !'5"#则 运 算 结 果 为 ! *,! ! #1!观 察 下 列 单 项 式 的 规 律 '"%'$"$%&"& %'1"1 %) 第 $%#4 个 单 项 式 为
)*"$'"'$#/&$6"$'"'$#/&$
+*"/',/-'$6"',/-'$
,*$"/#'$"$'#$6$"/#'$"$/#$
-*' ,/-/ "'#6 ','-/"
1!桌 面 上 放 置 的 几 何 体 中 主 视 图 与 左 视 图 可 能 不 同 的 是
#
! " ! " 第二
次后
剩
下饮
料是
原
来的
$&*
& /
*
& /
&*
& /
1
&*
& /
/
1
& ,
!
! " ! " ! " ! " ! " 第三次后剩下饮料是原来的$ &*&/
*&/
&*
& /
*&/% &*&/
*&/
&*
& /
&1 &*&/
-
1
& .
!
! " ! " 第五次后剩下饮料是原来的$
&*
& /
(
#4!4 分 由 小 立 方 体 堆 成 的 某 几 何 体 的 俯 视 图 如 图 所 示 #其 中 正 方 形 内 的 数 字 表 示 该 位 置 小 方 块 的 个 数 #请 你 画 出 该 几 何 体 的 主 视 图 和 左 视 图 ! 解$
& #12 &
#5!#%分某水泥仓库2天内进出水泥的吨 数 如 下 !+/,表 示 进 库#+',表 示 出 库"'/$%%'$0% '#&%/$4%'$5%'#2! !#"经过这2天#仓库里的水泥是增多还是减少了- 增多或减少了多少吨!$"经过这2天#仓库管理员结算发现库里还有$%%吨水泥#那么2天前#仓库里存有水泥多少吨!&"如 果 进 出 仓 库 的 水 泥 装 卸 费 都 是 每 吨 0 元 #那 么 这 2 天 要 付 多 少 元 装 卸 费 解 $"&# 0/%0 " */(# 0 " *&-# 0 " 0/.# 0 " */)# 0 " *&+# 1/%*/(*&-0/.*/)*&+1 *-( 答 $ 仓 库 里 的 水 泥 是 减 少 了 ! 减 少 了 -( 吨 + "/#/%%*"*-(#1/-("吨# 答 $ 仓 库 里 存 有 水 泥 /-( 吨 + "-#""0/%"0"*/("0"*&-"0"0/."0"*/)"0"*&+"#2(1&-&2(1+(("元# 答 $ 这 + 天 要 付 +(( 元 装 卸 费 !
+*% 是 非 负 数 也 是 非 正 数
,*有 最 小 的 正 整 数 没 有 最 小 的 负 整 数
-*一 个 有 理 数 不 是 正 数 就 是 负 数
5!一个三角形一条边长为"/#另一条边长比这 条 边 大 $"/#第 三 条 边 长 比 这 条 边 小 &"'#则
这个三角形的周长为
! */%&."/%&. ! !
#0!如图#直线 ()%01 相交于点'#(#' ($60%;#(('06 !&&(;!#()'0
6 !+(;! !
三 解 答 题 本 大 题 共 4 小 题 共 (0 分
#2!4 分 化 简 '
! " ! " !#"
'
# 2
/
&1 '##$
3 !'14"$! ! ! ! ! ! ! ! ! ! !$"'#1 /
$
)*'
# $
+*'$
,*#$
-*$
$!据统计$%#&年河南省旅游业总收入达到 约 &4(0!0 亿 元若 将 &4(0!0 亿 用 科 学 记 数 法 表 示 为
&!4(003#%+则+ 等于
"
)*#%
+*##
,*#$
-*#&
&!下 列 去 括 号 运 算 中 正 确 的 是
"
)*圆 柱
+*正 方 体
,*球
-*直 立 圆 锥
0!已知代数式,/$- 的值是&则代数式$,/1-/#的值是
#
)*(
+*1
,*#
-*5
2!按 下 面 的 程 序 计 算 当 输 入 ,6#%% 时 输 出 结 果 为 0%#当 输 入 ,6$% 时 输 出 结 果 为 0%2如 果
$%!4 分 已 知"""62#"#"60#"$"61#且 "###%#$#求 "/#/$ 的 值 ! 解 $ :"""1+!"#"1(!"###%! 5"1 *+!#1 *(! :"$"1,!%#$! 5$1,!"0#0$1 *+*(0,1 *'!
$#!4 分如 图#点 ' 是 直 线 () 上 的 一 点#'1 是 (('0 的 平 分 线#'5 是 (0') 的 平 分 线#若
('2/0
&/ ((2/1'+;0&,;1)%;!
故 (1201)%;! ('201'+;!
& #1( &
$$!#$分某地电话拨号上网有两种收费方式#用 户 可 以 任 意 选 择 其 中 一 种'第 一 种 是 计 时 制#每 分钟%!%0元$第二种是包月制#每月0%元!只限一部宅电上 网"!此外#每种 上网方 式都 要加收 通 讯 费 每 分 钟 %!%$ 元 ! !#"某用户某月上网的时间为" 小时#请你!用含有" 的代数式"写出两种收费方式下该用户应 支付的费用$ !$"如 果 某 用 户 估 计 他 们 家 一 个 月 上 网 的 时 间 约 为 &% 小 时 #你 认 为 应 选 择 哪 种 上 网 方 式 合 算 解 $"&# 由 题 意 得 ! 第 一 种 费 用 $"%!%(0%!%/# 2+%"1,!/"! 第 二 种 费 用 $(%0%!%/2+%"1(%0&!/"+ "/#当 "1-%时! 第 一 种 费 用 $,!/2-%1&/+" 元 # ! 第 二 种 费 用 $(%0&!/2-%1.+" 元 # ! 答$第二种上网方式更合算!
$
)*&"/#
+*2"/#
,*$"/0#