2019-2020学年人教版七年级下册数学期末综合练习题有答案

合集下载

山东省青岛市西海岸新区、黄岛区2019-2020学年七年级下学期期末数学试题(含答案解析)

山东省青岛市西海岸新区、黄岛区2019-2020学年七年级下学期期末数学试题(含答案解析)
故答案是:800.
【点睛】
本题考查了全等三角形的应用:一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.
11. .
【分析】
100以内,末位数字是5的共有10种,88的1种,66或99共2种,一共有13种中奖的机会,利用概率公式计算即可.
三、解答题
17.如图,小明不慎将一块三角形模具打碎为三块,请利用学过的知识画出一个与原来三角形模具一样的三角形.
18.计算:
(1)﹣14+(﹣2)3+(π﹣3.14)0+(﹣ )﹣2;
(2)(﹣a)3•a5+(﹣4a4)2;
(3)(3ab3﹣a2b+ ab)÷(﹣ ab);
(4)先化简,再求值:(2a﹣b)2+(a+1﹣b)(a+1+b)﹣(a+1)2,其中a= ,b=﹣2.
19.如图,已知BE∥FG,∠1=∠2,∠ABC=40°,试求∠ADE的度数.
20.在一个口袋中装有4个红球和8个白球,它们除颜色外完全相同.
(1)判断事件“从口袋中随机摸出一个球是黑球”是什么事件,并写出其发生的概率;
(2)求从口袋中随机摸出一个球是红球的概率;;
(3)现从口袋中取走若干个白球,并放入相同数量的红球,充分摇匀后,要使从中随机摸出一个球是红球的概率是 ,问取走了多少个白球?
15.如图,在△ABC中,AB=AC=8cm,BC=5cm.D、E分别是AB、AC边上的点,将△ADE沿直线DE折叠,点A落在点A′的位置,点A′在△ABC的外部,则阴影部分图形的周长为________cm.
16.一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线 把绳子再剪一次时,绳子就被剪为9段;若用剪刀在虚线 之间把绳子再剪若干次(剪刀的方向与 平行).按上述规律用剪刀一共剪2020次时绳子的段数是________.

(已整理)2019-2020学年成都市成华区七年级(下)期末数学试卷(含解析)

(已整理)2019-2020学年成都市成华区七年级(下)期末数学试卷(含解析)

2019-2020学年成都市成华区七年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分)1.如图,在线段PA、PB、PC、PD中,长度最小的是()A.线段PA B.线段PB C.线段PC D.线段PD2.中国的方块字中有些具有对称性.下列美术字是轴对称图形的是()A.B.C.D.3.某种新型冠状病毒的直径为0.000000053米,将0.000000053用科学记数法表示为()A.53x10﹣8B.5.3x10﹣7C.5.3x10﹣8D.5.3x10﹣94.“对顶角相等”,这一事件是()A.必然事件B.不确定事件C.随机事件D.不可能事件5.下列长度的三条线段,能组成三角形的是()A.4,5,9B.6,7,14C.4,6,10D.8,8,156.下列运算正确的是()A.(a3)2=a6B.a2•a3=a6C.(a+b)2=a2+b2D.a2+a3=a57.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD8.如图,直线AD∥BC,若∠1=74°,∠BAC=56°,则∠2的度数为()A.70°B.60°C.50°D.40°9.如图,在△ABC中,AB=AC,∠C=70°,△AB'C'与△ABC关于直线AD对称,∠CAD=10°,连接BB',则∠ABB'的度数是()A.45°B.40°C.35°D.30°10.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A.B.C.D.二.填空题(本大题4个小题,每小题4分,共16分)11.已知∠A=30°,则∠A的补角的度数为度.12.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是.13.若a2+b2=6,a+b=3,则ab的值为.14.如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3,△ABD的周长为13,则△ABC的周长为.三.解答题(本大题共6个小题,满分54分)15.(12分)计算:(1)(﹣1)2020﹣(2020﹣π)0+(﹣)﹣2﹣|﹣2|;(2)[(2x2)3﹣6x3(x3﹣2x2)]÷2x4.16.(12分)(1)先化简,再求值:(x+1)(x﹣1)+(2x﹣1)2﹣2x(2x﹣1),其中x=﹣2.(2)先化简,再求值:[(2x﹣y)2+(2x﹣y)(2x+y)]÷4x,其中x=2,y=﹣1.17.(7分)为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.请根据图表提供的信息,解答下列问题:分数段(分)频数(人)频率51≤x<61a0.161≤x<71180.1871≤x<81b n81≤x<91350.3591≤x<101120.12合计1001(1)填空:a=,b=,n=;(2)将频数分布直方图补充完整;(3)该校对考试成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.18.(6分)如图,在△ABC中,AB=AC,点D,E分别是AB,AC的中点,BE,CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.19.(7分)某种型号汽车油箱容量为63升,每行驶100千米耗油8升.设一辆加满油的该型号汽车行驶路程为x千米.(1)写出汽车耗油量y(升)与x之间的关系式;(2)写出油箱内剩余油量Q(升)与x之间的关系式;(3)为了有效延长汽车使用寿命,厂家建议汽车油箱内剩余油量为油箱容量的时必须加油.按此建议,问该辆汽车最多行驶多少千米必须加油?20.(10分)已知:如图,点B在线段AD上,△ABC和△BDE都是等边三角形,且在AD同侧,连接AE交BC于点G,连接CD交BE于点H,连接GH.(1)求证:AE=CD;(2)求证:AG=CH;(3)求证:GH∥AD.B 卷(50分)一、填空题(每小题4分,共20分)21.若2x =5,2y =3,则22x+y =.22.如图,已知11∥l 2,∠C=90°,∠1=40°,则∠2的度数是.23.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.24.如图,图1是“杨辉三角”数阵;图2是(a+b)n 的展开式(按b 的升幂排列).若(1+x)45的展开式按x 的升幂排列得:(1+x)45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=.25.如图,AD,BE 在AB 的同侧,AD=2,BE=2,AB=4,点C 为AB 的中点,若∠DCE=120°,则DE 的最大值是.二、解答题(本大题共3个小题,共30分)26.(8分)图1和图2的大正方形都是由一些长方形和小正方形组成的.观察图形,完成下列各题:(1)如图1,求S 大正方形的方法有两种:S 大正方形=(x+y)2,同时,S 大正方形=S ①+S ②+S ③+S ④=.所以图1可以用来解释等式:;同理图2可以用来解释等式:.(2)已知a+b+c=6,ab+bc+ca=ll,利用上面得到的等式,求a 2+b 2+c 2的值.27.(10分)王老师和小颖住同一小区,小区距离学校2400米.王老师步行去学校,出发10分钟后小颖才骑共享单车出发.小颖途经学校继续骑行若干米到达还车点后,立即跑步返回学校.小颖跑步比王老师步行每分钟快70米.设王老师步行的时间为x(分钟),图1中线段OA和折线B﹣C﹣D分别表示王老师和小颖离开小区的路程y(米)与x(分钟)的关系:图2表示王老师和小颖两人之间的距离S(米)与x(分钟)的关系(不完整).(1)求王老师步行的速度和小颍出发时王老师离开小区的路程;(2)求小颖骑共享单车的速度和小颖到达还车点时王老师、小颖两人之间的距离;(3)在图2中,画出当25≤x≤30时S关于x的大致图象(要求标注关键数据).28.(12分)(1)如图1,在△ABC中,AB=4,AC=6,AD是BC边上的中线,延长AD到点E使DE=AD,连接CE,把AB,AC,2AD集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC上,且DE⊥DF,求证:BE+CF>EF;(3)如图3,在四边形ABCD中,∠A为钝角,∠C为锐角,∠B+∠ADC=180°,DA=DC,点E,F分别在BC,AB上,且∠EDF=∠ADC,连接EF,试探索线段AF,EF,CE之间的数量关系,并加以证明.参考答案与试题解析一、选择题1.【解答】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.故选:B.2.【解答】解:A、爱,不是轴对称图形;B、我,不是轴对称图形;C、中,是轴对称图形;D、华,不是轴对称图形;故选:C.3.【解答】解:0.000000053=5.3×10﹣8.故选:C.4.【解答】解:“对顶角相等”一定正确,所以这一事件是必然事件,故选:A.5.【解答】解:根据三角形任意两边的和大于第三边,得A中,4+5=9,不能组成三角形;B中,6+7=13<14,不能组成三角形;C中,4+6=10,不能够组成三角形;D中,8+8=16>15,能组成三角形.故选:D.6.【解答】解:A、(a3)2=a6,原计算正确,故此选项符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意;D、a2与a3不是同类项,不能合并,原计算错误,故此选项不符合题意.故选:A.7.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.8.【解答】解:∵∠1=74°,∠BAC=56°,∴∠ABC=50°,又∵AD∥BC,∴∠2=∠ABC=50°,故选:C.9.【解答】解:∵AB=AC,∴∠ABC=∠C=70°,∴∠BAC=180°﹣70°﹣70°=40°,∵△AB'C'与△ABC关于直线AD对称,∴∠BAC=∠B′AC′=40°,∠CAD=∠C′AD=10°,∴∠BAB′=40°+10°+10°+40°=100°,∵AB=AB′,∴∠ABB′=(180°﹣100°)=40°,故选:B.10.【解答】解:由于乌龟比兔子早出发,而早到终点;故B选项正确;故选:B.二.填空题11.【解答】解:根据定义,∠A补角的度数是180°﹣30°=150°.12.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故答案为:.13.【解答】解:由a+b=3两边平方,得a2+2ab+b2=9①,a2+b2=6②,①﹣②,得2ab=3,两边都除以2,得ab=.故答案为:.14.【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE+EC=6,∵AB+AD+BD=13,∴AB+BD+DC=13,∴△ABC的周长=AB+BD+BC+AC=13+6=19,故答案为:19.三.解答题15.【解答】解:(1)(﹣1)2020﹣(2020﹣π)0+(﹣)﹣2﹣|﹣2|=1﹣1+9﹣2=7;(2)[(2x2)3﹣6x3(x3﹣2x2)]÷2x4=(8x6﹣6x6+12x5)÷2x4=(2x6+12x5)÷2x4=x2+6x.16.【解答】解:(1)原式=x2﹣1+4x2﹣4x+1﹣4x2+2x=x2﹣2x,当x=﹣2时,原式=4+4=8;(2)原式=(4x2﹣4xy+y2+4x2﹣y2)÷4x=(8x2﹣4xy)÷4x=2x﹣y,当x=2,y=﹣1时,原式=4﹣(﹣1)=4+1=5.17.【解答】解:(1)a=100×0.1=10,b=100﹣10﹣18﹣35﹣12=25,n==0.25;故答案为:10,25,0.25;(2)补全频数分布直方图如图所示;(3)2500××=90(人),答:全校获得二等奖的学生人数90人.18.【解答】证明:(1)∵AB=AC,∴∠ECB=∠DBC,∵点D,E分别是AB,AC的中点,∴BD=AB,CE=AC,∴BD=CE,在△DBC与△ECB中,,∴△DBC≌△ECB(SAS);(2)由(1)知:△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.19.【解答】解:(1)汽车耗油量y(升)与x之间的关系式为:y=,即y=0.08x;(2)油箱内剩余油量Q(升)与x之间的关系式为:Q=63﹣0.08x;(3)当Q=时,63﹣0.08x=9,解得x=675,答:该辆汽车最多行驶675千米必须加油.20.【解答】证明:(1)∵△ABC、△BDE均为等边三角形,∴AB=AC=BC,BD=BE,∠ABC=∠EBD=60°,∴180°﹣∠EBD=180°﹣∠ABC,即∠ABE=∠CBD,在△ABE与△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAG=∠BCH,∵∠ABC=∠EBD=60°,∴∠CBH=180°﹣60°×2=60°,∴∠ABC=∠CBH=60°,在△ABG与△CBH中,,∴△ABG≌△CBH(ASA),∴AG=CH;(3)由(2)知:△ABG≌△CBH,∴BG=BH,∵∠CBH=60°,∴△GHB是等边三角形,∴∠BGH=60°=∠ABC,∴GH∥AD.B 卷一、填空题21.【解答】解:∵2x =5,2y =3,∴22x+y =(2x )2×2y =52×3=75.故答案为:75.22.【解答】解:如图,过点C 作直线l,使l∥11∥l 2,则∠1=∠3,∠2=∠4.∵∠3+∠4=90,∠1=40°,∴∠2=90°﹣40°=50°.故答案是:50°.23.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.24.【解答】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n 的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x)45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)=990;故答案为:990.25.【解答】解:如图,作点A 关于直线CD 的对称点M,作点B 关于直线CE 的对称点N,连接SM,CM,MN,NE.由题意AD=EB=2,AC=CB=2,DM=CM=CN=EN=2,∴∠ACD=∠ADC,∠BCE=∠BEC,∵∠DCE=120°,∴∠ACD+∠BCE=60°,∵∠DCA=∠DCM,∠BCE=∠ECN,∴∠ACM+∠BCN=120°,∴∠MCN=60°,∵CM=CN=2,∴△CMN 是等边三角形,∴MN=2,∵DE≤DM+MN+EN,∴DE≤6,∴当D,M,N,E 共线时,DE 的值最大,最大值为6,故答案为6.二、解答题26.【解答】解:(1)∵S ③=S ④=xy,S ①=x 2,S ②=y 2,∴S 大正方形=S ①+S ②+S ③+S ④=x 2+2xy+y 2.∴(x+y)2=x 2+2xy+y 2.∵图2大正方形的面积=(a+b+c)2,同时图2大正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故答案为:x2+2xy+y2,(x+y)2=x2+2xy+y2,(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∴a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc=(a+b+c)2﹣2(ab+ac+bc)=62﹣2×11=14.27.【解答】解:(1)由图可得,王老师步行的速度为:2400÷30=80(米/分),小颖出发时甲离开小区的路程是10×80=800(米),答:王老师步行的速度是80米/分,小颍出发时王老师离开小区的路程是800米;(2)设直线OA的解析式为y=kx,30k=2400,得k=80,∴直线OA的解析式为y=80x,当x=18时,y=80×18=1440,则小颍骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵小颍骑自行车的时间为:25﹣10=15(分钟),∴小颍骑自行车的路程为:180×15=2700(米),当x=25时,王老师走过的路程为:80×25=2000(米),∴小颍到达还车点时,王老师、小颖两人之间的距离为:2700﹣2000=700(米);答:小颍骑自行车的速度是180米/分,小颍到达还车点时王老师、小颖两人之间的距离是700米;(3)小颍步行的速度为:80+70=150(米/分),小颍到达学校用的时间为:25+(2700﹣2400)÷150=27(分),当25≤x≤30时s关于x的函数的大致图象如右图所示.28.【解答】(1)解:如图1中,∵CD=BD,AD=DE,∠CDE=∠ADB,∴△CDE≌△BDA(SAS),∴EC=AB=4,∵6﹣4<AE<6+4,∴2<2AD<10,∴1<AD<5,故答案为1<AD<5.(2)证明:如图2中,延长ED到H,使得DH=DE,连接DH,FH.∵BD=DC,∠BDE=∠CDH,DE=DH,∴△BDE≌△CDH(SAS),∴BE=CH,∵FD⊥EH.DE=DH,∴EF=FH,在△CFH中,CH+CF>FH,∵CH=BE,FH=EF,∴BE+CF>EF.(3)解:结论:AF+EC=EF.理由:延长BC到H,使得CH=AF.∵∠B+∠ADC=180°,∴∠A+∠BCD=180°,∵∠DCH+∠BCD=180°,∴A=∠DCH,∵AF=CH,AD=CD,∴△AFD≌△CHD(SAS),∴DF=DH,∠ADF=∠CDH,∴∠ADC=∠FDH,∵∠EDF=∠ADC,∴∠EDF=∠FDH,∴∠EDF=∠EDH,∵DE=DE,∴△EDF≌△EDH(SAS),∴EF=EH,∵EH=EC+CH=EC+AF,∴EF=AF+EC.。

【期末复习】人教版2019年 七年级数学下册 期末压轴题专练(含答案)

【期末复习】人教版2019年 七年级数学下册 期末压轴题专练(含答案)

2019年七年级数学下册期末压轴题专练1.如图1,将线段AB 平移至 DC,使点 A与点 D对应,点 B与点 C对应,连接 AD,BC.(1)填空:AB 与CD的位置关系为_______,BC与 AD的位置关系为_________.(2)点 E,G都在直线CD上,∠AGE=∠GAE,AF平分∠DAE 交直线 CD于F.①如图2,若G,E为射线 DC上的点,∠FAG=30°,求∠B的度数;②如图3,若 G,E为射线 CD上的点,∠FAG=α,求∠C的度数.2.已知:如图1,射线AB∥CD,∠CAB的角平分线交射线CD于点P1.(1)若∠C=50°,求∠AP1C的度数.(2)如图1,作∠P1AB的角平分线交射线CD于点P2.猜想∠AP1C与∠AP2C的数量关系,并说明理由.(3)如图2,在(2)的条件下,依次作出∠P2AB的角平分线AP3.∠P3AB的角平分线AP4,……“∠P n-1AB 的角平分线AP n.其中点P3,P4…,P n-1P n都在射线CD上,若∠AP n C=x,直接写出∠C的度数(用含x的代数式表示).3.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.4.已知BC∥OA,∠B=∠A=100°.试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值。

七年级下册数学期末试卷人教版含答案免费

七年级下册数学期末试卷人教版含答案免费

2018~2019学年四川甘孜初一下学期期末数学试卷(人教版)-学生用卷一、选择题(本大题共10小题,每小题3分,共30分)1、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第1题3分2017~2018学年湖北武汉黄陂区初一下学期期中第1题3分2017~2018学年湖北武汉青山区初一下学期期末第2题3分点A(−2,1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限2、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第2题3分不等式组{x+3>02x−4⩽0的解集在数轴上表示为().A.B.C.D.3、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第3题3分下列运动属于平移的是().A. 荡秋千B. 地球绕着太阳转C. 急刹车时,汽车在地面上的滑动D. 风筝在空中随风飘动4、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第4题3分已知x=2,y=−3是二元一次方程5x+my+2=0的解,则m的值为().A. 83B. −83C. 4D. −45、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第5题3分2018~2019学年5月河北廊坊三河市三河市第八中学初一下学期月考第2题3分2017~2018学年江西宜春丰城市初一下学期期末第2题3分2017~2018学年湖北武汉江汉区初一下学期期中第3题3分2016~2017学年湖北武汉江岸区初一下学期期中第5题3分如图,下列条件中不能判定AB//CD的是().A. ∠3=∠4B. ∠1=∠5C. ∠1+∠4=180°D. ∠3=∠56、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第6题3分要反映甘孜州一周内每天的最高气温的变化情况,宜采用().A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布直方图7、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第7题3分如果a>b,那么下列结论一定正确的是().A. 3−a<3−bB. a−3<b−3C. ac2>bc2D. a2>b28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第8题3分2017~2018学年12月陕西西安碑林区西安市第六中学初二上学期月考第6题3分2019~2020学年山东临沂兰山区临沂第三十六中学初一下学期期中第10题3分2017~2018学年福建泉州德化县初一下学期期末第9题4分2016~2017学年3月陕西西安高新区西安高新第一中学初一下学期月考(创新班)第8题3分一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为().A. {x=y−50 x+y=180B. {x=y+50 x+y=180C. {x=y+50 x+y=90D. {x=y−50 x+y=909、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第9题3分2016~2017学年北京丰台区初一下学期期末第4题3分2017~2018学年江苏连云港赣榆区初一下学期期末第5题3分2018~2019学年广西玉林博白县初一下学期期末第3题3分2017~2018学年福建莆田城厢区初一下学期期末第8题4分如果{x=1y=−2是关于x和y的二元一次方程ax+y=1的解,那么a的值是().A. 3B. 1C. −1D. −310、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第10题3分2017~2018学年河北保定定兴县初一下学期期末第9题3分2016~2017学年北京丰台区初一下学期期末第8题3分如果(x−1)2=2,那么代数式x2−2x+7的值是().A. 8B. 9C. 10D. 11二、填空题(本大题共8小题,每小题3分,共24分)11、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第11题3分2019~2020学年四川内江市中区内江市第六初级中学校初一下学期期中第13题4分2018~2019学年内蒙古呼和浩特玉泉区内蒙古师范大学附属第二中学初一下学期期中第15题3分2019~2020学年四川自贡贡井区自贡市田家炳中学初二上学期开学考试第10题3分2020~2021学年广东广州荔湾区广州市真光中学初一下学期期中(真光教育集团)第11题3分将方程2x−3y=5变形为用x的代数式表示y的形式是.12、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第12题3分2019~2020学年6月湖北武汉江夏区武汉市外国语学校美加分校初一下学期月考第11题3分2018~2019学年广西南宁宾阳县开智中学初一下学期期末第15题3分用不等式表示“a与5的差不是正数”:.13、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第13题3分2019~2020学年广东惠州惠城区惠州市惠台学校初一下学期期末第14题4分2019~2020学年黑龙江哈尔滨道里区哈尔滨第一一三中学初一上学期期中第14题3分2017~2018学年浙江宁波海曙区宁波市东恩中学初一上学期期中第14题3分2014~2015学年北京初一下学期期中东城朝阳海淀第16题已知a、b为两个连续的整数,且a<√11<b,则a+b=.14、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第14题3分2020~2021学年河南郑州金水区郑州十一中学分校初一上学期期中第12题3分2020~2021学年10月江苏苏州相城区南京师范大学苏州实验学校初一上学期月考第14题2016~2017学年11月天津宁河区初一上学期月考第13题3分2016~2017学年北京大兴区北京亦庄实验中学初一上学期期中第12题3分若|m−3|+(n−2)2=0,则m+2n的值为.15、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第15题3分2015年湖南株洲芦淞区初三中考一模第12题3分2019年广东揭阳榕城区初三中考一模(空港经济区)第12题2017~2018学年辽宁营口西市区营口市实验中学初一下学期期中第13题3分2017~2018学年4月浙江杭州江干区杭州市采荷中学初一下学期月考第12题4分如图,已知a//b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第16题3分2012年江苏苏州中考真题第15题某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.17、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第17题3分2016~2017学年湖北武汉新洲区初一下学期期末第14题3分方程3x+y=20在正整数范围内的解有组.18、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第18题3分2017~2018学年重庆沙坪坝区重庆市名校联合中学校初一上学期期末第13题4分2017~2018学年重庆初一上学期期末第13题4分福布斯2017年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以330亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为美元.三、计算题(本大题共4小题,每小题5分,共20分)19、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第19题5分2019~2020学年北京海淀区海淀实验中学初一下学期期末第23题4分2017~2018学年北京昌平区初一下学期期末第20题5分2018~2019学年北京延庆区初一下学期期末第21题5分2019~2020学年河北石家庄裕华区石家庄市第四十中学初一下学期期末第26题6分解方程组:{x +y =13x +y =5.20、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第20题5分解不等式组:{x −2>02(x +1)⩾3x −1,并把解集在数轴上表示出来.21、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第21题5分2016~2017学年北京丰台区初一下学期期末第21题4分因式分解:−3a 3b −27ab 3+18a 2b 2.22、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第22题5分2017~2018学年北京昌平区初一下学期期末第21题5分2019~2020学年辽宁大连金普新区初一下学期期中第22题6分已知关于x ,y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =1求a +2b 的值.四、解答题(本大题共4小题,共26分)23、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第23题6分2019~2020学年云南大理巍山县初一下学期期末第17题5分2016~2017学年福建莆田秀屿区莆田第二十五中学初一下学期期末第22题10分如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.24、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第24题6分2016年河南南阳淅川县初三中考一模第18题9分2017~2018学年江苏南京建邺区南京师范大学附属中学新城初级中学初二下学期期中第20题6分某校为了开设武术、舞蹈、剪纸三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1) 将条形统计图补充完整.(2) 本次抽样调查的样本容量是;(3) 已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.25、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第25题7分2019~2020学年广东深圳福田区深圳外国语学校初二上学期单元测试《实数》第17题2014~2015学年广东广州越秀区广州市育才实验学校初一下学期期中第23题2019~2020学年广东广州海珠区广州市海珠区六中珠江中学初一下学期期中模拟第19题8分我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1) 试举一个例子来判断上述猜测结论是否成立.(2) 若√1−2x 3与√3x −53互为相反数,求1−√x 的值.26、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第26题7分2016~2017学年10月重庆石柱土家族自治县石柱中学校初一上学期月考2014~2015学年重庆渝中区重庆市巴蜀中学校初一上学期期末第28题2017~2018学年重庆初一上学期期末第25题4分2018~2019学年辽宁大连高新技术产业园区初一上学期期中第25题10分某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%.方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1) 问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%) (2) 对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?五、填空题(本大题共4小题,每小题4分,共16分)27、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第27题4分2015~2016学年江苏苏州初二下学期期中模拟第11题3分2018~2019学年辽宁沈阳浑南区育才实验学校初二下学期期中第11题3分2019年陕西宝鸡金台区初三中考一模第11题3分2018年山东滨州初三中考二模第13题5分分解因式:2m3−8m=.28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第28题4分2019~2020学年四川绵阳涪城区绵阳南山中学双语学校初一下学期期末模拟第14题3分2016~2017学年湖北武汉新洲区初一下学期期末第12题3分在平面直角坐标系中,若A点坐标为(−1,3),AB//y轴,线段AB=5,则B点坐标为.29、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第29题4分关于x的一元一次方程2(x−m)=4+x的解是非负数,则m的取值范围是.30、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第30题4分已知如图,在频率分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第3组的频率为.六、解答题(本大题共4小题,共34分)31、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第31题8分2019~2020学年江苏苏州工业园区金鸡湖学校初三下学期开学考试第20题6分2020年江苏苏州高新区苏州市高新区第一初级中学校初三中考二模第23题6分某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?(2) 该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有哪几种建造停车位的方案?32、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第32题8分2018~2019学年西藏昌都地区左贡县左贡县中学初一下学期期末第26题4分丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题.33、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第33题8分河南许昌长葛市长葛市天隆学校初一下学期期末(1)第18题7分2020~2021学年3月江西南昌红谷滩区南昌市第五中学初一下学期月考第15题5分2017~2018学年山西吕梁柳林县初一下学期期末第19题6分2015~2016学年河南郑州中原区郑州外国语学校初二上学期期末第19题8分如图,已知AB//CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.34、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第34题10分如图1,平面直角坐标系中,直线AB与x轴负半轴交于点A(a,0),与y轴正半轴交于点B(0,b),且√a+6+|b−4|=0.(1) 求△AOB的面积.(2) 如图2,若P为直线AB上一动点,连接OP,且2S△AOP⩽S△BOP⩽3S△AOP,求P点横坐标x P的取值范围.1 、【答案】 B;2 、【答案】 D;3 、【答案】 C;4 、【答案】 C;5 、【答案】 D;6 、【答案】 C;7 、【答案】 A;8 、【答案】 C;9 、【答案】 A;10 、【答案】 A;;11 、【答案】y=2x−5312 、【答案】a−5⩽0;13 、【答案】7;14 、【答案】7;15 、【答案】50°;16 、【答案】216;17 、【答案】6;18 、【答案】3.3×1010;19 、【答案】{x=2y=−1.;20 、【答案】2<x⩽3.;21 、【答案】−3ab(a−3b)2;22 、【答案】a+2b=2.;23 、【答案】70°.;24 、【答案】 (1) 画图见解析.;(2) 100;(3) 360人.;25 、【答案】 (1) 证明见解析.;(2) −1.;26 、【答案】 (1) 投资者选择方案二所获得的投资收益率更高.;(2) 甲投资了60万元,乙投资了48万元.;27 、【答案】2m(m+2)(m−2);28 、【答案】(−1,8)或(−1,−2);29 、【答案】m⩾−2;30 、【答案】0.3;31 、【答案】 (1) 新建一个地上停车位需要0.1万元,新建一个地下停车位需要0.5万元.;(2) 共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.;32 、【答案】丁丁至少要答对22道题.;33 、【答案】32.5°.;34 、【答案】 (1) 12.;(2) P点横坐标x P的取值范围是−4.5⩽x P⩽−4或−12⩽x P⩽−9.;。

人教版七年级下册数学期末复习:计算题 专项练习题(Word版,含答案)

人教版七年级下册数学期末复习:计算题 专项练习题(Word版,含答案)

人教版七年级下册数学期末复习:计算题专项练习题1.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.2.已知数轴上三点M,O,N对应的数分别为﹣2,0,4,点P为数轴上任意一点,其对应的数为x.(Ⅰ)如果点P到点M,点N的距离相等,那么x的值是.(Ⅱ)数轴上是否存在点P,使点P到点M,点N的距离之和是7?若存在,请求出x 的值;若不存在,请说明理由.(Ⅲ)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?3.例如:数轴上,3和5两数在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|(﹣5)﹣2|=7或|5﹣(﹣2)|=7.试探索:(1)求7与﹣7两数在数轴上所对的两点之间的距离=(2)在数轴上找一个整数点A,使点A到﹣1、﹣5的距离之和等于4,请直接写出所有点A对应的数.(3)找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4这样的整数是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x+2|是否有最小值?如果有,写出最小值,并写出所有符合条件的整数x.如果没有,说明理由.4.同学们,你会求数轴上两点间的距离吗?例如:数轴上,3和5在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|5﹣(﹣2)|=7或2﹣(﹣5)=7.解决问题:如图,在单位长度为1的数轴上有A,B,C三个点,点A,C表示的有理数互为相反数(1)请在数轴上标出原点O,并在A,B,C上方标出他们所表示的有理数;(2)B,C两点间的距离是(3)若点P为数轴上一动点,其对应的数为x①P、B两点之间的距离表示为,若P、B两点之间的距离为5,则x=②若点P到点B、点C的距离相等,则点P对应的数是③若点P到点B、点C的距离之和为7,则点P对应的数是(4)对于任何有理数a①|a﹣1|+|a+5|的最小值为,此时能使|a﹣1|+|a+5|取最小值的所有整数a的和是;②若a>1,则|a﹣1|﹣|a+5|=.③|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是.5.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是A.(+3)+(+2)=+5;B.(+3)+(﹣2)=+1;C.(﹣3)﹣(+2)=﹣5;D.(﹣3)+(+2)=﹣1②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2019的点与表示的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示B点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)6.平移和翻折是初中数学两种重要的图形变化(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是.A.(+3)+(+2)=+5 B.(+3)+(﹣2)=+1C.(﹣3)﹣(+2)=﹣5 D.(﹣3)+(+2)=﹣1②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2017的点与表示的点重合;②若数轴上A、B两点之间的距离为2018(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示,B点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)7.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.8.有一列数:2,4,8,16,32,…,从第二个数开始,每一个数与前一个数之比是一个常数q,这个常数q是2;根据这个规律,如果a1表示第1个数,即a1=2,a2表示第2个数,…,a n(n为正整数)表示这列数的第n个数.(1)a2019=,a n=.(2)阅读以下材料:如果想求1+3+32+33+...+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得:3S=3+32+33+…+320+321②由②减去①式,可以求得S=.对照阅读材料的解法求a1+a2+a3+…+a100的值;(3)记m=a101+a102+a103+…+a2019,求m的个位数.9.阅读材料1:如果a≠0,m,n都是正整数,那么a m表示的含义是“m个a相乘”,a n表示的含义是“n个a相乘”,a m+n表示的含义是“(m+n)个a相乘”,由此我们可以得到公式:a m•a n=a m+n,例如:32×35=32+5=37,5m×5=5m+1.阅读材料2:如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0).(1)观察一个等比数列,,,,,…,则它的公比q=;如果a n(n为正整数)表示这个等比数列的第n项,那么a20=,a n=.(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230……①等式两边同时乘以2,得2S=2+4+8+16+32+…+231……②由②式减去①式,得S=231﹣1,∴1+2+4+8+16+…+230=231﹣1请按照此解答过程,完成下列各题:①求1+5+52+53+54+…+520的值;②求3+2++++…+的值,其中m为正整数.(结果请用含m的代数式表示)10.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿AC方向,以每秒1个单位的速度向终点C运动,设点P运动时间为t秒.(1)用含t的代数式表示点P到点A、C的距离,PA=;PC=.(2)当点P运动到点B时,点Q从C点出发,沿CA方向,以每秒3个单位的速度向A点运动,当其中一点到达目的地时,另一点也停止运动.①当t=,点P、Q相遇,此时点Q运动了秒.②请用含t的代数式表示出在P、Q同时运动的过程中PQ的长.11.100个偶数按每行8个数排成如图所示的阵列:(1)图中方框内的9个数的和与中间的数有什么关系?(2)小童画了一个方框,他所画的方框内9个数的和为360,求这9个数;(3)小郑也画了一个方框,方框内9个数的和为1656,你能写出这9个数吗?如果不能,请说明理由;(4)从左到右,第1至第8列各列数之和分别记为a1、a2、a3、a4、a5、a6、a7、a8,则这8个数中,最大数与最小数之差等于.12.用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(a⊕3)⊕1=128,求a的值.13.用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(⊕3)⊕(﹣)=8,求a的值.14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;(2)若(☆3)☆(﹣)=8,求a的值;(3)若2☆x=m,(x)☆3=n(其中x为有理数),试比较m,n的大小.15.如图,数轴上的A、B两点所表示的数分别为a、b,a+b<0,ab<0,(1)原点O的位置在;A.点A的右边B.点B的左边C.点A与点B之间,且靠近点A D.点A 与点B之间,且靠近点B(2)若a﹣b=2,①利用数轴比较大小:a1,b﹣1;(填“>”、“<”或“=”)②化简:|a﹣1|+|b+1|.参考答案1.解:(1)MN的长为3﹣(﹣1)=4;(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,则x﹣(﹣1)+3﹣x=8,方程无解,即点P不可能在点M 和点N之间.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5;(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.2.解:(I)根据题意得:|x﹣4|=|x﹣(﹣2)|,解得:x=1.故答案为:1.(II)根据题意得:|x﹣4|+|x﹣(﹣2)|=7,解得:x1=﹣2.5,x2=4.5.∴数轴上存在点P,使点P到点M,点N的距离之和是7,x的值为﹣2.5或4.5.(III)设运动时间为t分钟,则点P表示的数为﹣3t,点M表示的数为﹣t﹣2,点N表示的数为﹣4t+4,根据题意得:|﹣3t﹣(﹣t﹣2)|=|﹣3t﹣(﹣4t+4)|,∴﹣3t﹣(﹣t﹣2)=﹣3t﹣(﹣4t+4)或﹣3t﹣(﹣t﹣2)=3t+(﹣4t+4),解得:t1=2,t2=﹣2(舍去).答:2分钟时点P到点M,点N的距离相等.3.解:(1)7与﹣7两数在数轴上所对的两点之间的距离=7﹣(﹣7)=14.(2)所有点A对应的数为﹣1,﹣2,﹣3,﹣4,﹣5;(3)使得|x+3|+|x﹣1|=4这样的整数是﹣3,﹣2,﹣1,0,1;(4)答:有,最小值为5,符合条件的整数有:﹣2,﹣1,0,1,2,3.故答案为:(1)14;(2)﹣1,﹣2,﹣3,﹣4,﹣5;(3)﹣3,﹣2,﹣1,0,1.4.解:(1)如图所示,(2)B,C两点间的距离是|3﹣(﹣1)|=4,故答案为:4;(3)①P、B两点之间的距离表示为|x+1|,若P、B两点之间的距离为5,则x=4或﹣6,故答案为:|x+1|,4或﹣6;②∵点P到点B、点C的距离相等,∴x+1=3﹣x,解得:x=1,∴点P对应的数是1;故答案为:1;③若点P到点B、点C的距离之和为7,则有|x+1|+|3﹣x|=7,解得:x=4.5或﹣2.5;故答案为:4.5或﹣2.5;(4)①当a≥1时,|a﹣1|+|a+5|=a﹣1+a+5=2a+4,∴|a﹣1|+|a+5|的最小值为6,当a≤﹣5时,|a﹣1|+|a+5|=1﹣a﹣a﹣5=﹣2a﹣4,∴|a﹣1|+|a+5|的最小值为6;当﹣5<a<1时,|a﹣1|+|a+5|=1﹣a+a+5=6,综上所述,|a﹣1|+|a+5|的最小值为6;∴|a﹣1|+|a+5|取最小值的所有整数a的和是﹣5﹣4﹣3﹣2﹣1+0+1=﹣14;故答案为:6,﹣14;②当a>1,则|a﹣1|﹣|a+5|=a﹣1﹣a﹣5=﹣6,故答案为:﹣6;③|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是③分类讨论:当a≤﹣5;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1﹣a﹣2﹣a+4﹣a﹣5=﹣4a﹣2,∴当a=﹣5时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为18;当﹣5<a≤﹣2;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1﹣a﹣2﹣a+4+a+5=﹣2a+8 当a=﹣2时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为12;当﹣2<a≤1;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1+a+2﹣a+4+a+5=12;当1<a≤4;|a﹣1|+|a+2|+|a﹣4|+|a+5|=a﹣1+a+2﹣a+4+a+5=2a+10,当a=1时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为12;当a>4时,|a﹣1|+|a+2|+|a﹣4|+|a+5|=a﹣1+a+2+a﹣4+a+5=4a+2,综上所述,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是12,故答案为:12.5.解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2)=﹣1.故选:D.②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是﹣1010.故答案为:﹣1010.(2)①∵对称中心是1,∴表示2019的点与表示﹣2017的点重合;②∵对称中心是1,AB=2019,∴则A点表示﹣1008.5,B点表示1010.5;③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为(a+b).故答案为:D;﹣1010;﹣2017;﹣1008.5,1010.5;(a+b).6.解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2),故选D.②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是﹣1019,故答案为﹣1009.(2)①∵对称中心是1,∴表示2017的点与表示﹣2015的点重合,②∵对称中心是1,AB=2018,∴则A点表示﹣1008,B点表示1010,③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为(a+b);故答案为﹣2015,﹣1008,1010,(a+b).7.解:(1)AB=﹣4﹣(﹣10)=6,运动1秒后,A表示﹣5,B表示﹣1,∴AB=﹣1+5=4.故答案为6,4.(2)运动t秒后,点A,点B运动的距离分别为5t,3t,故答案为5t,3t.(3)由题意:(5﹣3)t=6,∴t=3.(4)由题意:6+3t﹣5t=5或5t﹣(6+3t)=5,解得t=或,∴t的值为或秒时,线段AB的长为5.8.解:(1)∵从第二个数开始,每一个数与前一个数之比是一个常数2∴a2019=22019,a n=2n故答案为:22019,2n.(2)设S100=a1+a2+a3+…+a100①则2S100=a2+a3+…+a100+a101 ②∴②﹣①得:S100=a101﹣a1=2101﹣2∴a1+a2+a3+…+a100的值为:2101﹣2.(2)∵2n的个位数字分别为2,4,8,6,循环a101=2101,a2019=22019101÷4=25...1,(2019﹣100)÷4=479 (3)故m=a101+a102+a103+…+a2019,中的第一个数a101的末位数字为2每相邻4个一组数字求和的个位数字为0,末三项的个位数字为:2,4,8,其和为14 故m=a101+a102+a103+…+a2019的个位数字为:4.∴m的个位数字为4.9.解:(1)q=÷=;a20=或,a n=或;(2)①令S=1+5+52+53+54+…+520……①,等式两边同时乘以5,得5S=5+52+53+54+55+…+521……②,由②式减去①式,得4S=521﹣1,,∴;②令……①等式两边同时乘以,得……②,由②式减去①式,得,∴.故答案为:;或,或.10.解:(1)PA=t;PC=36﹣t;故答案为:t,36﹣t;(2)①有依题意有t+3(t﹣16)﹣16=20,解得:t=21,t﹣16=21﹣16=5.故当t=21,点P、Q相遇,此时点Q运动了5秒.故答案为:21,5;②当16≤t≤21时PQ=36﹣t﹣3(t﹣16)=84﹣4t;当21<t≤28时PQ=3(t﹣16)+t﹣36=4t﹣84.11.解:(1)∵2+4+6+18+20+22+34+36+38=180=9×20,∴图中方框内的9个数的和是中间的数的9倍.(2)设中间数为x,则另外8个数分别为:x﹣18,x﹣16,x﹣14,x﹣2,x+2,x+14,x+16,根据题意得:9x=360,解得:x=40,∴这9个数分别为:22,24,26,38,40,42,54,56,58.(3)假设能成立,设中间数为y,则另外8个数分别为:y﹣18,y﹣16,y﹣14,y﹣2,y+2,y+14,y+16,根据题意得:9y=1656,解得:y=184,∵184÷2÷8=11……4,∴184为第12行第4个数,∴这9个数为:166,168,170,182、184、186、198、200、202.又∵仅有100个数,∴202不存在,∴假设不成立,即方框内9个数的和不能为1656.(4)∵200÷2÷8=12……4,∴尾数200为第13行第4个数,∴a1=2+18+34+...+194==1274,a2=1274+2×13=1300,a3=1300+2×13=1326,a4=1326+2×13=1352,a5=10+26+42+ (186)=1176,a6=1176+2×12=1200,a7=1200+2×12=1224,a8=1224+2×12=1248,∴这8个数中,最大数为1352,最小数为1176,∴1352﹣1176=176.故答案为:176.12.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:a⊕3=a×32+2×a×3+a=16a,16a⊕1=16a×12+2×16a×1+16a=64a,已知等式整理得:64a=128,解得:a=2.13.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:⊕3=×32+2××3+=8(a+1),8(a+1)⊕(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=2(a+1),已知等式整理得:2(a+1)=8,解得:a=3.14.解:(1)(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)解:☆3=×32+2××3+=8(a+1)8(a+1)☆(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=8解得:a=3;(3)由题意m=2x2+2×2x+2=2x2+4x+2,n=x×32+2×x×3+=4x,所以m﹣n=2x2+2>0.所以m>n.15.解:(1)∵ab<0,a+b<0,∴原点O的位置在点A与点B之间,且靠近点A.故答案为:C(2)①∵a﹣b=2,原点O的位置在点A与点B之间,且靠近点A,∴a<1,b<﹣1,故答案为:<、<;②∵a<1,b<﹣1,∴a﹣1<0,b+1<0,∴|a﹣1|+|b+1|=﹣a+1﹣b﹣1=﹣a﹣b.。

2019--2020第二学期期末考试七年级数学试题(附答案)

2019--2020第二学期期末考试七年级数学试题(附答案)
pOPq#$-$%$'4+ %!$0,'0#,4"
54 678 !"!,4 $$%($%!))
!!p@q# %!$*%#"$!0#! Ó×p§VØYÙb!
七年级数学试卷 98 第(页共-页
54 678 !#!,4
!!rs;<. k&()* )* ÚzxY1¨./-() L/ Û(* L0'(4(*+'.4 )!+Ü'(*. D#!
货 物种类
货厢型号 装货量
甲 乙
A
35x 吨 15x 吨
B
25(50-x)吨 35(50-x)吨
解:设用 A 型货厢 x 节,则用 B 型货厢(50-x)节,由题意,得 35x 25(50 x) 1530 15x 35(50 x) 1150
解得 28≤x≤30. 因为 x 为整数,所以 x 只能取 28,29,30.
所以∠CED=∠AEF=55°,
七年级数学参考答案,第 1页,共 3 页
所以∠ACD=180°-∠CED-∠D =180°-55°-42=83°.
22. (7 分)∠3 两直线平行,同位角相等 已知 等量代换 DG 内错角相等,两直线平行。 两直线平行,同旁内角互补。
23.(9 分)
分组 600≤ x <800 800≤ x <1000 1000≤ x <1200 1200≤ x <1400 1400≤ x <1600 1600≤ x <1800
七年级数学试卷 98 第,页共-页
54 678 !+!##4
!!>WXµ±®FYZ[#*("\GYZ[##*"\]^1?ZUÝ_Z[X`ab ?ZUic() \YÑCDZd*"e!;<FYZ[(*\#GYZ[#*\ifg1 e( hZdFYZ[!*\#GYZ[(*\ifg1e) hZdij²Ü]^ () \Y ZdDe®klYXmO: lßàCËn.O:

精品解析:江苏省扬州市邗江区2019-2020学年七年级下学期期末数学试题(解析版)

精品解析:江苏省扬州市邗江区2019-2020学年七年级下学期期末数学试题(解析版)
∵AE⊥BC于E,
∴∠CAE=90°﹣60°=30°,
∴∠DAE=∠CAD﹣∠CAE=35°﹣30°=5°,
故答案为:5°.
【点睛】本题考查了三角形的内角和定理、角平分线的定义、直角三角形的两锐角互余,属于基础题型,熟练掌握它们的性质及应用是解答的关键.
13.已知 , ,则 __________, __________.
故答案为:35°.
【点睛】本题考查了折叠的性质、平角定义和三角形的内角和定理,熟练掌握折叠的性质是解答的关键.
17.为了适合不同人群的口味,某商店对苹果味、草莓味、牛奶味的糖果混合组装成甲、乙两种袋装进行销售.甲种每袋装有苹果味、草莓味、牛奶味的糖果各10颗,乙种每袋装有苹果味糖果20颗,草莓味和牛奶味糖果各5颗.甲、乙两种袋装糖果每袋成本价分别是袋中各类糖果成本之和.已知每颗苹果味的糖果成本价为0.4元,甲种袋装糖果的售价为23.4元,利润率为30%,乙种袋装糖果每袋的利润率为20%.若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装糖果的数量之比是__________.
【答案】98
【解析】
∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB,铅直距离等于(AD-1)×2,
又∵长AB=50米,宽BC=25米,
∴小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为50+(25-1)×2=98米,
故答案为98.
12.在△ABC中,已知∠B=50°,∠C=60°,AE⊥BC于E,AD平分∠BAC,则∠DAE的度数是_____.
【解析】
因为“同位角相等”的题设是“两个角是同位角”,结论是“这两个角相等”,
所以命题“同位角相等”的逆命题是“相等的两个角是同位角”.

2019-2020学年山东省济南市章丘区七年级下学期期末数学试卷 (Word版 含解析)

2019-2020学年山东省济南市章丘区七年级下学期期末数学试卷 (Word版 含解析)

2019-2020学年山东省济南市章丘区七年级第二学期期末数学试卷一、选择题(共12小题).1.下列计算正确的是()A.a2•a3=a6B.(2a2)3=6a6C.(a2)3=a6D.2a﹣a=22.芯片是手机、电脑等高科技产品的核心部件,目前我国芯片已可采用14纳米工艺.已知14纳米为0.000000014米,数据0.000000014用科学记数法表示为()A.1.4×10﹣10B.1.4×10﹣8C.14×10﹣8D.1.4×10﹣93.下列图形中,不是轴对称图形的为()A.B.C.D.4.如图所示,下列条件能判断a∥b的是()A.∠1=∠2B.∠3=∠4C.∠2+∠3=180°D.∠1+∠3=180°5.如图,△ABC≌△A′B′C,点B′在边AB上,线段A′B′与AC交于点D,若∠A=40°,∠B=60°,则∠A′CB的度数为()A.100°B.120°C.135°D.140°6.在一个不透明的布袋中装有2个白球和3个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到白球的概率是()A.B.C.D.7.成都市二环路高架环线快速公交已开通,小彬从家步行到公交车站台,等公交车去学校.图中的折线表示小彬的行程s(千米)与所花时间t(分钟)之间的函数关系,下列说法错误的是()A.他离家8千米,共用了30分钟B.他等公交车时间为6分钟C.他步行的速度是100米/分钟D.公交车的速度是350米/分钟8.若(x+1)(x﹣3)=x2+mx+n,则m+n的值是()A.﹣5B.﹣2C.﹣1D.19.如图,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50°,则∠BGE=()A.100°B.90°C.80°D.70°10.如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE 的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm11.如图,直线l1∥l2,∠A=124°,∠B=86°,则∠1+∠2=()A.30°B.35°C.36°D.40°12.定义:f(a,b)=(b,a),g(m,n)=(﹣m,﹣n),例如f(2,3)=(3,2),g(﹣1,﹣4)=(1,4),则g(f(﹣5,6))等于()A.(﹣6,5)B.(﹣5,﹣6)C.(6,﹣5)D.(﹣5,6)二、填空题(共6小题,每小题4分,共24分)13.计算:(m﹣1)(m+1)﹣m2=.14.如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为.15.如图,△ABC中,AB=AC,AD是BC边上的中线,∠ABC的平分线交AD于点E,EF ⊥AB于点F,若EF=3,则ED的长度为.16.将一副三角板如图放置,若AE∥BC,则∠AFD=度.17.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角的度数分别.18.如图,在4×4的正方形网格中,已有4个小方格涂成了灰色,现在要从其余白色小方格中选出一个也涂成灰色,使整个灰色部分的图形构成轴对称图形,这样的白色小方格个.三、解答题(共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.计算:﹣12﹣(3﹣π)0+(﹣)﹣2.20.先化简,再求值:(2x+y)(2x﹣y)﹣2x(2x﹣3y),其中x=,y=﹣2.21.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.22.小亮和小芳都想参加学校杜团组织的暑假实践活动,但只有一个名额,小亮提议用如下的办法决定谁去参加活动:将一个转盘9等分,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小亮去参加活动;转到3的倍数,小芳去参加活动;转到6或者其它号码,则重新转动转盘.(1)转盘转到2的倍数的概率是多少?(2)你认为这个游戏公平吗?请说明理由.23.如图,在△ABC中,CD⊥AB,垂足为D,E是AC边上一点,EH⊥AB,垂足为H,∠1=∠2.(1)试说明DF∥AC;(2)若∠A=38°,∠BCD=45°,求∠3的度数.24.如图,在10×8的正方形网格中,每个小正方形的边长都为1.网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A1B1C1(要求A与A1、B与B1、C与C1相对应);(2)求△ABC的面积.25.小明在暑期社会实践活动中,以每千克10元的价格从批发市场购进若干千克荔枝到市场上去销售,在销售了40千克之后,余下的荔枝,每千克降价4元,全部售完.销售金额y(元)与售出荔枝的重量x(千克)之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)在这个变化关系中,自变量是,因变量是;(2)①降价前售出荔枝的单价为元/千克,②降价前销售金额y(元)与售出荔枝的重量x(千克)之间的关系式为;(3)小明从批发市场上共购进了多少千克的荔枝?(4)小明这次卖荔枝共赚了多少钱(不计其它成本)?26.如图,已知AB∥CD,∠B=30°,∠D=120°.(1)若∠E=60°,则∠F=.(2)请探索∠E与∠F之间满足何数量关系?并说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P 的度数.27.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①∠AEB的度数为②猜想线段AD,BE之间的数量关系为:,并证明你的猜想.(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请求出∠AEB的度数及线段CM,AE,BE之间的数量关系.参考答案一、选择题(共12小题,每小题4分,共48分,在每个小题给出四个选项中,只有一项符合题目要求)1.下列计算正确的是()A.a2•a3=a6B.(2a2)3=6a6C.(a2)3=a6D.2a﹣a=2【分析】分别根据同底数幂的乘法法则,积的乘法运算法则,幂的乘方运算法则以及合并同类项法则逐一判断即可.解:A.a2•a3=a5,故本选项不合题意;B.(2a2)3=8a6,故本选项不合题意;C.(a2)3=a6,故本选项符合题意;D.2a﹣a=a,故本选项不合题意.故选:C.2.芯片是手机、电脑等高科技产品的核心部件,目前我国芯片已可采用14纳米工艺.已知14纳米为0.000000014米,数据0.000000014用科学记数法表示为()A.1.4×10﹣10B.1.4×10﹣8C.14×10﹣8D.1.4×10﹣9【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:0.000000014=1.4×10﹣8.故选:B.3.下列图形中,不是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、不是轴对称图形,故此选项符合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意;故选:A.4.如图所示,下列条件能判断a∥b的是()A.∠1=∠2B.∠3=∠4C.∠2+∠3=180°D.∠1+∠3=180°【分析】利用内错角相等两直线平行即可判断.解:∵∠3=∠4,∴a∥b,故选:B.5.如图,△ABC≌△A′B′C,点B′在边AB上,线段A′B′与AC交于点D,若∠A=40°,∠B=60°,则∠A′CB的度数为()A.100°B.120°C.135°D.140°【分析】根据全等三角形的性质得到∠A′=∠A=40°,∠A′B′C=∠B=60°,CB =CB′,根据三角形内角和定理求出∠A′CB′=80°,根据等腰三角形的性质,三角形内角和定理求出∠BCB′=60°,根据角的和差关系计算即可.解:∵△ABC≌△A′B′C,∴∠A′=∠A=40°,∠A′B′C=∠B=60°,CB=CB′,∴∠A′CB′=80°,∠BCB′=60°,∴∠A′CB=∠A′CB′+∠BCB′=140°.故选:D.6.在一个不透明的布袋中装有2个白球和3个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到白球的概率是()A.B.C.D.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.解:摸到白球的概率,故选:D.7.成都市二环路高架环线快速公交已开通,小彬从家步行到公交车站台,等公交车去学校.图中的折线表示小彬的行程s(千米)与所花时间t(分钟)之间的函数关系,下列说法错误的是()A.他离家8千米,共用了30分钟B.他等公交车时间为6分钟C.他步行的速度是100米/分钟D.公交车的速度是350米/分钟【分析】根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.解:A、依题意他离家8km共用了30min,故选项正确;B、依题意在第10min开始等公交车,第16min结束,故他等公交车时间为6min,故选项正确;C、他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min,故选项正确;D、公交车(30﹣16)min走了(8﹣1)km,故公交车的速度为7000÷14=500m/min,故选项错误.故选:D.8.若(x+1)(x﹣3)=x2+mx+n,则m+n的值是()A.﹣5B.﹣2C.﹣1D.1【分析】直接利用多项式乘以多项式运算法则计算得出m,n,再代入计算可得答案.解:∵(x+1)(x﹣3)=x2+mx+n,∴x2﹣2x﹣3=x2+mx+n,解得:m=﹣2,n=﹣3,∴m+n=﹣2﹣3=﹣5.故选:A.9.如图,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50°,则∠BGE=()A.100°B.90°C.80°D.70°【分析】先根据平行线的性质得出∠DEF=∠EFG,再由图形翻折变换的性质得出∠GEF =∠DEF,根据三角形外角的性质即可得出结论.解:∵四边形纸片ABCD是矩形纸片,∴AD∥BC.∴∠DEF=∠EFG,又∵∠EFG=50°,∴∠DEF=50°,∵四边形EFC′D′由四边形EFCD翻折而成,∴∠GEF=∠DEF=50°,∴∠EGB=50°+50°=100°.故选:A.10.如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE 的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm【分析】AC=AE+EC=BE+EC,根据已知条件易求.解:∵DE是边AB的垂直平分线,∴AE=BE.∴△BCE的周长=BC+BE+CE=BC+AE+CE=BC+AC=18.又∵BC=8,∴AC=10(cm).故选:C.11.如图,直线l1∥l2,∠A=124°,∠B=86°,则∠1+∠2=()A.30°B.35°C.36°D.40°【分析】过点A作AC∥l1,过点B作BD∥l1,根据平行公理可得l1∥AC∥BD∥l2,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补可得∠CAB+∠ABD=180°,然后求出∠3+∠4,再求解即可.解:如图,过点A作AC∥l1,过点B作BD∥l1,∵直线l1∥l2,∴l1∥AC∥BD∥l2,∴∠3=∠1,∠4=∠2,∠CAB+∠ABD=180°,∴∠3+∠4=124°+86°﹣180°=30°,∴∠1+∠2=∠3+∠4=30°.故选:A.12.定义:f(a,b)=(b,a),g(m,n)=(﹣m,﹣n),例如f(2,3)=(3,2),g(﹣1,﹣4)=(1,4),则g(f(﹣5,6))等于()A.(﹣6,5)B.(﹣5,﹣6)C.(6,﹣5)D.(﹣5,6)【分析】根据f、g的定义解答即可.解:g(f(﹣5,6))=g(6,﹣5)=(﹣6,5).故选:A.二、填空题(共6小题,每小题4分,共24分)13.计算:(m﹣1)(m+1)﹣m2=﹣1.【分析】原式利用平方差公式化简,去括号合并即可得到结果.解:原式=m2﹣1﹣m2=﹣1.故答案为:﹣1.14.如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为.【分析】根据正方形的性质可得出“∠MBO=∠NCO=45°,OB=OC,∠BOC=90”,通过角的计算可得出∠MOB=∠NOC,由此即可证出△MOB≌△NOC,同理可得出△AOM≌△BON,从而可得知S阴影=S正方形ABCD,再根据几何概率的计算方法即可得出结论.解:∵四边形ABCD为正方形,点O是对角线的交点,∴∠MBO=∠NCO=45°,OB=OC,∠BOC=90°,∵∠MON=90°,∴∠MOB+∠BON=90°,∠BON+∠NOC=90°,∴∠MOB=∠NOC.在△MOB和△NOC中,有,∴△MOB≌△NOC(ASA).同理可得:△AOM≌△BON.∴S阴影=S△BOC=S正方形ABCD.∴蚂蚁停留在阴影区域的概率P==.故答案为:.15.如图,△ABC中,AB=AC,AD是BC边上的中线,∠ABC的平分线交AD于点E,EF ⊥AB于点F,若EF=3,则ED的长度为3.【分析】利用角平分线的性质定理解决问题即可.解:∵AC=AB,AD是中线,∴AD⊥BC,∵BE平分∠ABC,EF⊥BA,ED⊥BC,∴ED=EF=3,故答案为3.16.将一副三角板如图放置,若AE∥BC,则∠AFD=75度.【分析】根据两直线平行,同旁内角互补及三角板的特征进行做题.解:因为AE∥BC,∠B=60°,所以∠BAE=180°﹣60°=120°;因为两角重叠,则∠DAF=90°+45°﹣120°=15°,∠AFD=90°﹣15°=75°.故∠AFD的度数是75度.故答案为:75.17.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角的度数分别10°、10°或42°、138°.【分析】如果两个角的两边分别平行,那么这两个角相等或互补.设一个角为x度.则另一个角为(4 x﹣30)度.依据上面的性质得出方程,求出方程的解即可.解:设一个角为x度,则另一个角为(4x﹣30)度,∵如果两个角的两边分别平行,那么这两个角相等或互补∴4x﹣30=x或4x﹣30+x=180,解得:x=10或x=42,当x=42时,4x﹣30=138,即这两个角是10°、10°或42°、138°,故答案为:10°、10°或42°、138°.18.如图,在4×4的正方形网格中,已有4个小方格涂成了灰色,现在要从其余白色小方格中选出一个也涂成灰色,使整个灰色部分的图形构成轴对称图形,这样的白色小方格3个.【分析】直接利用轴对称图形的性质分析得出答案.解:如图所示:当将1,2,3处涂灰色可以使整个灰色部分的图形构成轴对称图形,故共3个.故答案为:3.三、解答题(共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.计算:﹣12﹣(3﹣π)0+(﹣)﹣2.【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.解:﹣12﹣(3﹣π)0+(﹣)﹣2=﹣1﹣1+9=7.20.先化简,再求值:(2x+y)(2x﹣y)﹣2x(2x﹣3y),其中x=,y=﹣2.【分析】原式利用平方差公式,以及单项式乘以多项式法则计算得到最简结果,把x与y 的值代入计算即可求出值.解:原式=4x2﹣y2﹣4x2+6xy=6xy﹣y2,当x=,y=﹣2时,原式=﹣9﹣4=﹣13.21.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.【分析】由∠A=∠F,根据内错角相等,两直线平行,即可求得AC∥DF,即可得∠C =∠FEC,又由∠C=∠D,则可根据同位角相等,两直线平行,证得BD∥CE.【解答】证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.22.小亮和小芳都想参加学校杜团组织的暑假实践活动,但只有一个名额,小亮提议用如下的办法决定谁去参加活动:将一个转盘9等分,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小亮去参加活动;转到3的倍数,小芳去参加活动;转到6或者其它号码,则重新转动转盘.(1)转盘转到2的倍数的概率是多少?(2)你认为这个游戏公平吗?请说明理由.【分析】(1)直接根据概率公式计算可得;(2)利用概率公式计算出两人获胜的概率即可判断.解:(1)∵共有9种等可能的结果,其中2的倍数有4个,∴P(转到2的倍数)=;(2)游戏不公平,∵共有9种等可能的结果,其中3的倍数有3个,∴P(转到3的倍数)==,∵>,∴游戏不公平.23.如图,在△ABC中,CD⊥AB,垂足为D,E是AC边上一点,EH⊥AB,垂足为H,∠1=∠2.(1)试说明DF∥AC;(2)若∠A=38°,∠BCD=45°,求∠3的度数.【分析】(1)由CD⊥AB,EH⊥AB可得出∠ADC=∠AHE=90°,由“同位角相等,两直线平行”可得出CD∥EH,由“两直线平行,同位角相等”可得出∠1=∠4,结合∠1=∠2可得出∠2=∠4,再利用“内错角相等,两直线平行”可得出DF∥AC;(2)在Rt△ADC中,利用三角形内角和定理可求出∠4的度数,结合∠BCD的度数可求出∠ACB的度数,由DF∥AC,再利用“两直线平行,同位角相等”即可求出∠3的度数.解:(1)∵CD⊥AB,EH⊥AB,∴∠ADC=∠AHE=90°,∴CD∥EH,∴∠1=∠4.又∵∠1=∠2,∴∠2=∠4,∴DF∥AC.(2)在Rt△ADC中,∵∠A=38°,∴∠4=180°﹣90°﹣∠A=52°,∴∠ACB=∠4+∠BCD=97°.∵DF∥AC,∴∠3=∠ACB=97°.24.如图,在10×8的正方形网格中,每个小正方形的边长都为1.网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A1B1C1(要求A与A1、B与B1、C与C1相对应);(2)求△ABC的面积.【分析】(1)依据轴对称的性质,即可得到△ABC关于直线MN对称的△A1B1C1;(2)运用割补法进行计算即可得到△ABC的面积.解:(1)如图所示,△A1B1C1即为所求;(2)△ABC的面积为:3×4﹣﹣﹣=12﹣3﹣2﹣2=5.25.小明在暑期社会实践活动中,以每千克10元的价格从批发市场购进若干千克荔枝到市场上去销售,在销售了40千克之后,余下的荔枝,每千克降价4元,全部售完.销售金额y(元)与售出荔枝的重量x(千克)之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)在这个变化关系中,自变量是x,因变量是y;(2)①降价前售出荔枝的单价为16元/千克,②降价前销售金额y(元)与售出荔枝的重量x(千克)之间的关系式为y=16x;(3)小明从批发市场上共购进了多少千克的荔枝?(4)小明这次卖荔枝共赚了多少钱(不计其它成本)?【分析】(1)由函数的定义可得出答案;(2)①由函数图象可知过(40,640),可求得单价;②利用待定系数法可求得函数关系式;(3)由降价后所卖的单价和金额可求得降价后所卖的重量,可求得答案;(4)利用利润=售价﹣进价,可求得答案.解:(1)在这个变化过程中,销售金额随价格的变化而变化,∴自变量为x,因变量为y,故答案为:x;y;(2)①由图象可知降价前销售金额为640元,销售40千克,∴降价前售出荔枝的单价为640÷40=16(元/千克);故答案为:16;②设降价前销售金额y(元)与售出荔枝的重量x(千克)之间的关系式为y=kx,由图象知过(40,640),代入可得640=40k,解得k=16,∴y=16x,故答案为:y=16x;(3)由图象可知降价后的销售金额为760﹣640=120(元),又降价后的价格为16﹣4=12(元/千克),降价后的销售量为120÷12=10(千克),10+40=50(千克),∴小明从批发市场上共购进了50千克的荔枝;(4)降价前的利润为40×(16﹣10)=240(元),降价后的利润为10×(12﹣10)=20(元),240+20=260(元),∴小明这次卖荔枝共赚了260元.26.如图,已知AB∥CD,∠B=30°,∠D=120°.(1)若∠E=60°,则∠F=90°.(2)请探索∠E与∠F之间满足何数量关系?并说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P 的度数.【分析】(1)分别过点E,F作EM∥AB,FN∥AB,根据平行线的性质得到∠B=∠BEM=30°,∠MEF=∠EFN,∠D+∠DFN=180°,代入数据即可得到结论;(2)根据平行线的性质得到∠B=∠BEM=30°,∠MEF=∠EFN,由AB∥CD,AB∥FN,得到CD∥FN,根据平行线的性质得到∠D+∠DFN=180°,于是得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,则∠EFD=(2x+30)°,根据角平分线的定义得到∠PEF=∠BEF=x°,∠EFG=∠EFD=(x+15)°,根据平行线的性质得到∠PEF=∠EFH=x°,∠P=∠HFG,于是得到结论.解:(1)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°∴∠EFD=∠BEF+30°=90°;故答案为:90°;(2)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°,∴∠EFD=∠BEF+30°;(3)如图2,过点F作FH∥EP,由(2)知,∠EFD=∠BEF+30°,设∠BEF=2x°,则∠EFD=(2x+30)°,∵EP平分∠BEF,GF平分∠EFD,∴∠PEF=∠BEF=x°,∠EFG=∠EFD=(x+15)°,∵FH∥EP,∴∠PEF=∠EFH=x°,∠P=∠HFG,∵∠HFG=∠EFG﹣∠EFH=15°,∴∠P=15°.27.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①∠AEB的度数为60°②猜想线段AD,BE之间的数量关系为:AD=BE,并证明你的猜想.(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请求出∠AEB的度数及线段CM,AE,BE之间的数量关系.【分析】(1)①根据等边三角形的性质和全等三角形的判定证明△ACD≌△BCE,根据全等三角形的性质计算即可;②根据全等三角形的性质解答;(2)根据等腰直角三角形的性质和全等三角形的判定证明△ACD≌△BCE,根据全等三角形的性质计算即可.解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴∠CEB=∠CDA=120°,∴∠AEB=60°,故答案为:60°;②AD=BE,证明:∵△ACD≌△BCE,∴AD=BE,故答案为:AD=BE;(2)∠AEB=90°,AE﹣BE=2CM,证明:∵△DCE是等腰直角三角形,CM是中线,∴CM=DM=EM=DE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴∠CDA=∠CEB,∵∠CDA=135°,∴∠AEB=135°﹣45°=90°,∴BE=AD,∴AE﹣AD=DE=2CM,∴AE﹣BE=2CM.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末综合练习题一、填空题(每小题3分,共24分)1.如图,已知∠1=∠2=∠3=59°,则∠4= .答案 121° 2.的相反数是 ;|-3|= .答案;3-3.若P(a+2,a-1)在y 轴上,则点P 的坐标是 . 答案 (0,-3)4.不等式3<x+4的解集是 .答案 x<35.图是某公园里一处风景欣赏区(矩形ABCD),AB=50米,BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间从入口A 到出口B 所走的路线(图中虚线)长为 米.答案 986.为了了解各校情况,县教委对40个学校的九年级学生课外完成作业时间调研后进行了统计,并根据收集的数据绘制了如图4所示的两幅不完整的统计图,则九年级学生课外完成作业时间在30~45分钟的学校对应的扇形圆心角度数是 .图4答案 162°7.已知x 、y 是二元一次方程组的解,则代数式x 2-4y 2的值为 .答案8.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC 的边时反弹,反弹时反射角等于入射角,小球第1次碰到矩形的边时的点为P 1,第2次碰到矩形的边时的点为P 2,……,第n 次碰到矩形的边时的点为P n ,则点P 3的坐标是 ;点P 2 014的坐标是 .答案 (8,3);(5,0)二、选择题(每小题3分,共24分)9.如果a>b,那么下列结论中错误的是( )A.a-3>b-3B.3a>3bC.>D.-a>-b答案 D10.下列各数:①0.010 010 001,②π-3.14,③0,④,⑤,⑥,⑦,其中无理数有( )A.1个B.2个C.3个D.4个 答案 C11.下列调查中,适合用抽样调查方式收集数据的是( )①调查某批次汽车的抗撞击能力;②了解某班学生的身高情况;③调查某池塘中现有鱼的数量;④企业招聘中,对应聘人员进行面试.A.②③B.①②C.②④D.①③ 答案 D12.在平面直角坐标系中,点A 位于第二象限,距x 轴1个单位长度,距y 轴4个单位长度,则点A 的坐标为( ) A.(1,4) B.(-1,4) C.(-4,1) D.(4,-1) 答案 C 13.不等式组的解集在数轴上表示正确的是( )答案 A14.如图1,a ∥b,AC ⊥AB,∠1=60°,则∠2的度数是( )图1A.50°B.45°C.35°D.30° 答案 D 15.以方程组的解为坐标的点(x,y)位于平面直角坐标系中的( )A.第一象限B.第二象限C.第三象限D.第四象限 答案 A16.将一张面值100元的人民币兑换成10元或20元的零钱,兑换方案有( )A.6种B.7种C.8种D.9种答案 A三、解答题(共72分)17.(8分)解下面不等式组,并将它的解集在图6所示的数轴上表示出来.图6解析由①解得x<-1,由②解得x≤2.如图:∴原不等式组的解集为x<-1.18.(8分)在平面直角坐标系中,△ABC的三个顶点的位置如图7所示,点A'的坐标是(-2,2),现将△ABC平移,使点A平移到点A'的位置,点B'、C'分别是B、C的对应点.(1)请画出平移后的△A'B'C'(不写画法),并直接写出点B'、C'的坐标:B'( )、C'( );(2)若△ABC内部一点P的坐标为(a,b),则点P的对应点P'的坐标是( ).图7解析(1)△A'B'C'如图所示.B'(-4,1),C'(-1,-1).(2)点A(3,4)变换到点A'(-2,2),横坐标减5,纵坐标减2,所以点P(a,b)的对应点P'的坐标为(a-5,b-2).19.(10分)已知x,y满足方程组且x+y<0.(1)试用含m的式子表示方程组的解;(2)求实数m的取值范围;(3)化简|m+|-|2-m|.解析(1)由②得x=4m+1+y,③把③代入①得2(4m+1+y)+3y=3m+7,解得y=-m+1.把y=-m+1代入③得x=3m+2.∴方程组的解为(2)∵x+y<0,∴3m+2-m+1<0,∴解得m<-.(3)∵m<-,∴|m+|-|2-m|=-m--(2-m)=-3.20.(10分)为了解2020学年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作了不完整的统计表和统计图(如图8).分数x(分) 频数百分比60≤x<7030 10%70≤x<8090 n80≤x<90 m 40%90≤x≤10060 20%图8请根据图表提供的信息,解答下列问题:(1)本次调查的样本容量为;(2)在表中:m= ,n= ;(3)补全频数分布直方图;(4)如果比赛成绩在80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是.解析(1)30÷10%=300.(2)m=300×40%=120;n=1-10%-40%-20%=30%.(3)补全的频数分布直方图如图.(4)样本中,优秀人数为120+60=180,优秀率=×100%=60%.∴估计该竞赛项目的优秀率大约是60%.21.(10分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:每户每月用水量自来水销售价格污水处理价格单价:元/吨单价:元/吨17吨及以下 a 0.80超过17吨但不超过30吨的部分b0.80超过30吨的部分 6.00 0.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费)已知小王家2020学年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9 200元,则小王家6月份最多能用水多少吨?解析(1)由题意,得②-①,得5(b+0.8)=25,解得b=4.2,把b=4.2代入①,得17(a+0.8)+3×5=66,解得a=2.2.∴a=2.2,b=4.2.(2)当月用水量为30吨时,水费为17×3+13×5=116(元).又9 200×2%=184(元),116<184,∴小王家6月份的用水量可以超过30吨.设小王家6月份用水量为x吨,由题意,得17×3+13×5+6.8(x-30)≤184,6.8(x-30)≤184-116,解得x≤40.∴小王家6月份最多能用水40吨.22.(12分)如图9,点D为射线CB上一点,且不与点B、C重合,DE∥AB交直线AC于点E,DF∥AC交直线AB于点F.画出符合题意的图形,猜想∠EDF与∠BAC的数量关系,并说明理由.图9解析当点D在线段CB上时,如图①,∠EDF=∠BAC.证明:∵DE∥AB(已知),∴∠1=∠BAC(两直线平行,同位角相等).∵DF∥AC(已知),∴∠EDF=∠1(两直线平行,内错角相等).∴∠EDF=∠BAC(等量代换).当点D在线段CB的延长线上时,如图②,∠EDF+∠BAC=180° ,证明:∵DE∥AB(已知),∴∠EDF+∠F=180°(两直线平行,同旁内角互补).∵DF∥AC(已知),∴∠F=∠BAC(两直线平行,内错角相等).∴∠EDF+∠BAC=180°(等量代换).23.(14分)在平面直角坐标系中,已知A(a,b),B(2,2),且|a-b+8|+=0.(1)求点A的坐标;(2)过点A作AC⊥x轴于点C,连接BC,AB,求三角形ABC的面积;(3)在(2)的条件下,延长AB交x轴于点D,设AB交y轴于点E,那么OD与OE是否相等?请说明理由.解析(1)由|a-b+8|+=0,得解这个方程组,得所以点A的坐标为(-2,6).(2)如图,过B作BF⊥x轴于F,则三角形ABC的面积=梯形ACFB的面积-三角形BCF的面积.∴三角形ABC的面积=(BF+AC)·CF-·CF·BF=×(2+6)×4-×4×2=12.(3)OD与OE相等.理由如下:如图,设点D的坐标为(x,0)(x>0),点E的坐标为(0,y)(y>0),则CD=x+2,OE=y.因为三角形ABC的面积=三角形ACD的面积-三角形BCD的面积.所以12=×(x+2)×6-×(x+2)×2=2(x+2),解得x=4,即OD=4.又因为三角形EOD的面积=三角形ACD的面积-梯形ACOE的面积,所以×4×y=×6×6-×(y+6)×2,解得y=4,即OE=4.所以OD=OE.。

相关文档
最新文档