最新人教版七年级下册数学期末试卷及答案

合集下载

人教版七年级下学期期末考试数学试卷及答案解析(共六套)

人教版七年级下学期期末考试数学试卷及答案解析(共六套)

人教版七年级下学期期末考试数学试卷(一)一、精心选一选(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)下列各组数中,互为相反数的一组是()A.﹣2与 B.﹣2与 C.﹣2与﹣ D.|﹣2|与2 2.(3分)下列条件中,可能得到平行线的是()A.对顶角的角平分线 B.邻补角的角平分线C.同位角的角平分线 D.同旁内角的角平分线3.(3分)不等式组的解集在数轴上表示为()A. B.C. D.4.(3分)已知是二元一次方程组的解,则m﹣n的值是()A.1 B.2 C.3 D.45.(3分)下列四种调查:①调查某批汽车的抗撞击能力;②调查某城市的空气质量;③调查某风景区全年的游客流量;④调查某班学生的身高情况.其中适合用全面调查方式的是()A.① B.② C.③ D.④6.(3分)如图,a∥b,∠1=100°,∠2=140°,则∠3等于()A.40°B.50°C.60°D.70°7.(3分)以方程组的解为坐标的点(x,y)在第()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)将点P(m+2,2m+4)向右平移1个单位长度得到点M,且点M在y轴上,那么点M的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)9.(3分)将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种10.(3分)若关于x的不等式组恰好只有四个整数解,则a的取值范围是()A.a B. C.﹣2 D.﹣2二.用心填一填(每小题3分,共15分)11.(3分)如图,将△ABC水平向右平移了acm后,得到△A'B'C',已知BC=6cm,B C'=17cm,那么a= cm.12.(3分)已知﹣2x m﹣2y2与3x4y2m+n是同类项,则m﹣3n的平方根是.13.(3分)如图,AB∥CD,OM平分∠BOF,∠2=65°,则∠1= 度.14.(3分)已知(x﹣y+3)2+=0,则x+y= .15.(3分)已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC 的中点,则线段AM的长为.三、解答题16.(8分)解下列方程组::(1)(2).17.(9分)解不等式组,并写出它的所有非负整数解.18.(9分)已知点P(2m+4,m﹣1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,﹣4)且与y轴平行的直线上.19.(9分)甲、乙两名同学在解方程组时,甲解题时看错了m,解得;乙解题时看错了n,解得.请你以上两种结果,求出原方程组的正确解.20.(9分)如图,已知AD∥BC,∠1=∠2,试说明∠A=∠C.21.(9分)一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为人;(2)图①中,a= ,C等级所占的圆心角的度数为度;(3)请直接在答题卡中补全条形统计图.22.(10分)已知关于x、y的方程组.(1)如果该方程组的解互为相反数,求k的值;(2)若x为正数,y为负数,求k的取值范围.23.(12分)义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?参考答案与试题解析一、精心选一选(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与2【分析】根据相反数的概念、性质及根式的性质化简即可判定选择项.【解答】解:A、=2,﹣2与2互为相反数,故选项正确;B、=﹣2,﹣2与﹣2不互为相反数,故选项错误;C、﹣2与不互为相反数,故选项错误;D、|﹣2|=2,2与2不互为相反数,故选项错误.故选A.【点评】本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.2.(3分)下列条件中,可能得到平行线的是()A.对顶角的角平分线B.邻补角的角平分线C.同位角的角平分线D.同旁内角的角平分线【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、对顶角的角平分线AC、AD共线,故错误;B、∵,,∠PAM+∠MAB=180°,∴∠CAM+∠MAE=90°,∴邻补角的角平分线相互垂直,故错误;C、同位角的角平分线AC、BF互相平行,∵AM∥BN,∴∠PAM=∠PBN;∵AC、BF是∠PAM和∠PBN的角平分线,∴∠1=∠PAM=∠PBN=∠2;∴AC∥BF.故正确.D、同旁内角的角平分线AE、BF互相垂直,∵AM∥BN,∴∠MAB+∠PBN=180°;∵AE、BF是∠MAB和∠PBN的角平分线,∴∠3+∠2=∠MAB+∠PBN=90°;∴AE⊥BF.故错误.故选C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.3.(3分)不等式组的解集在数轴上表示为()A. B.C. D.【分析】先将每一个不等式解出来,然后根据求解的口诀即可解答.【解答】解:,解不等式①得:x≥﹣5,解不等式②得:x<2,由大于向右画,小于向左画,有等号画实点,无等号画空心,∴不等式的解集在数轴上表示为:故选C.【点评】此题考查了不等式组的解法及不等式组解集在数轴上的表示,解题的关键是:熟记口诀大于向右画,小于向左画,有等号画实点,无等号画空心.4.(3分)已知是二元一次方程组的解,则m﹣n的值是()A.1 B.2 C.3 D.4【分析】把x与y的值代入方程组计算求出m与n的值,代入原式计算即可得到结果.【解答】解:把代入方程组得:,解得:,则m﹣n=7﹣3=4,故选D【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.5.(3分)下列四种调查:①调查某批汽车的抗撞击能力;②调查某城市的空气质量;③调查某风景区全年的游客流量;④调查某班学生的身高情况.其中适合用全面调查方式的是()A.①B.②C.③D.④【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:①调查某批汽车的抗撞击能力,采用抽样调查,故①错误;②调查某城市的空气质量,由于工作量大,不便于检测,采用抽样调查,故②错误;③调查某风景区全年的游客流量,由于人数多,工作量大,采用抽样调查,故③错误;④调查某班学生的身高情况,应当采用全面调查,故④正确.故选:D.【点评】本题主要考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,难度适中.6.(3分)如图,a∥b,∠1=100°,∠2=140°,则∠3等于()A.40°B.50°C.60°D.70°【分析】先过点A作AB∥a,由a∥b,即可得AB∥a∥b,然后根据两直线平行,同旁内角互补,即可求得∠4与∠5的度数,又由平角的定义,即可求得∠3的度数.【解答】解:如图,过点A作AB∥a,∵a∥b,∴AB∥a∥b,∴∠1+∠4=180°,∠2+∠5=180°,∵∠1=100°,∠2=140°,∴∠4=80°,∠5=40°,∵∠4+∠5+∠3=180°,∴∠3=60°.故选:C.【点评】此题考查了平行线的性质.解题的关键是掌握两直线平行,同旁内角互补定理的应用,注意辅助线的作法.7.(3分)以方程组的解为坐标的点(x,y)在第()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先解方程组得到x和y的值,然后依据各象限内点的坐标特点求解即可.【解答】解:解方程组,得,所以点(,)在第一象限.故选A.【点评】本题考查了二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.也考查了各象限内点的坐标特点.正确求出方程组的解是解题的关键.8.(3分)将点P(m+2,2m+4)向右平移1个单位长度得到点M,且点M在y 轴上,那么点M的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)【分析】根据横坐标,右移加,左移减得到点M(m+2+1,2m+4),再根据y轴上的点横坐标为0可得m+3=0,算出m的值,可得点M的坐标.【解答】解:∵将点P(m+2,2m+4)向右平移1个单位长度得到点M,∴M(m+2+1,2m+4),即(m+3,2m+4),∵点M在y轴上,∴m+3=0,解得:m=﹣3,∴点M的坐标为(0,﹣2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.掌握点的坐标的变化规律是解题的关键.同时考查了y轴上的点横坐标为0的特征.9.(3分)将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种【分析】设兑换成10元x张,20元的零钱y元,根据题意可得等量关系:10x 张+20y张=100元,根据等量关系列出方程求整数解即可.【解答】解:设兑换成10元x张,20元的零钱y元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:,,,,,,因此兑换方案有6种,故选:A.【点评】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.10.(3分)若关于x的不等式组恰好只有四个整数解,则a的取值范围是()A.a B.C.﹣2D.﹣2【分析】此题可先根据一元一次不等式组解出x的取值,再根据不等式组恰好只有四个整数解,求出实数a的取值范围.【解答】解:由≥x﹣3,得x≤11,由2x+2<3(x+a),得x>2﹣3a,由上可得2﹣3a<x≤11,∵不等式组恰好只有四个整数解,即11,10,9,8;∴7≤2﹣3a<8,解得﹣2<a≤﹣.故选C.【点评】此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的取值范围,然后根据不等式组恰好只有四个整数解即可解出a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二.用心填一填(每小题3分,共15分)11.(3分)如图,将△ABC水平向右平移了acm后,得到△A'B'C',已知BC=6cm,B C'=17cm,那么a= 11 cm.【分析】根据平移的性质可得BC′=BC+a,然后代入即可求得.【解答】解:∵△ABC沿水平向右平移了acm后,得到△A'B'C',BC=6cm,B C'=17cm,∴a=CC′=17﹣6=11cm,故答案为11.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.12.(3分)已知﹣2x m﹣2y2与3x4y2m+n是同类项,则m﹣3n的平方根是±6 .【分析】根据同类项的概念即可求出m与n的值,从而可求出答案.【解答】解:由题意可知:m﹣2=42=2m+n∴m=6,n=﹣10∴m﹣3n=6+30=36,∴36的平方根为:±6故答案为:±6【点评】本题考查平方根的概念,解题的关键是正确理解平方根与同类项的概念,本题属于基础题型.13.(3分)如图,AB∥CD,OM平分∠BOF,∠2=65°,则∠1= 130 度.【分析】由AB∥CD,根据两直线平行,同位角相等,即可求得∠BOM的度数,又由OM是∠BOF的平分线,即可求得∠BOF的度数,然后根据两直线平行,内错角相等,即可求得∠1的度数.【解答】解:∵AB∥CD,∠2=65°,∴∠BOM=∠2=65°,∵OM是∠BOF的平分线,∴∠BOF=2∠BOM=130°,∵AB∥CD,∴∠1=∠BOF=130°.故答案为:130.【点评】此题考查了平行线的性质与角平分线的定义.解题的关键是注意掌握两直线平行,同位角相等与两直线平行,内错角相等定理的应用.14.(3分)已知(x﹣y+3)2+=0,则x+y= 1 .【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出x+y的值.【解答】解:∵(x﹣y+3)2+=0,∴,①+②得:3x=﹣3,即x=﹣1,将x=﹣1代入②得:y=2,则x+y=2﹣1=1.故答案为:1【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.(3分)已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC 的中点,则线段AM的长为2cm或6cm .【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB 的延长线上或点C在线段AB上.【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=12cm,∵M是线段AC的中点,则AM=AC=6cm;②当点C在线段AB上时,AC=AB﹣BC=4cm,∵M是线段AC的中点,则AM=AC=2cm.故答案为6cm或2cm.【点评】本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.三、解答题16.(8分)解下列方程组::(1)(2).【分析】(1)把两个方程的两边分别相加,消去一个未知数y,得到一个一元一次方程.解这个一元一次方程,求得未知数x的值.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数y的值.(2)用5去乘方程①的两边,使某一个未知数y的系数互为相反数.把两个方程的两边分别相加,消去一个未知数y,得到一个一元一次方程.解这个一元一次方程,求得未知数x的值.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数y的值.【解答】解:(1)由①+②,可得3x=9,解得x=3,把x=3代入①,可得3+y=4,解得y=1,∴方程组的解为;(2)由①×5+②,可得13x=26,解得x=2,把x=2代入①,可得4+y=3,解得y=﹣1,∴方程组的解为.【点评】本题主要考查了解二元一次方程组,用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解.17.(9分)解不等式组,并写出它的所有非负整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.【解答】解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.18.(9分)已知点P(2m+4,m﹣1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,﹣4)且与y轴平行的直线上.【分析】(1)根据x轴上点的纵坐标为0列方程求出m的值,再求解即可;(2)根据纵坐标与横坐标的关系列方程求出m的值,再求解即可;(3)根据平行于y轴的直线上的点的横坐标相同列方程求出m的值,再求解即可.【解答】解:(1)∵点P(2m+4,m﹣1)在x轴上,∴m﹣1=0,解得m=1,∴2m+4=2×1+4=6,m﹣1=0,所以,点P的坐标为(6,0);(2)∵点P(2m+4,m﹣1)的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得m=﹣8,∴2m+4=2×(﹣8)+4=﹣12,m﹣1=﹣8﹣1=﹣9,∴点P的坐标为(﹣12,﹣9);(3)∵点P(2m+4,m﹣1)在过点A(2,﹣4)且与y轴平行的直线上,∴2m+4=2,解得m=﹣1,∴m﹣1=﹣1﹣1=﹣2,∴点P的坐标为(2,﹣2).【点评】本题考查了点的坐标,熟练掌握坐标轴上点的坐标特征以及平行于坐标轴的直线上的点的坐标特征是解题的关键.19.(9分)甲、乙两名同学在解方程组时,甲解题时看错了m,解得;乙解题时看错了n,解得.请你以上两种结果,求出原方程组的正确解.【分析】把甲的结果代入第二个方程,乙的结果代入第一个方程,联立求出m 与n的值,即可确定出原方程组的解.【解答】解:把代入得:7+2n=13,把代入得:3m﹣7=5,解得:n=3,m=4,∴原方程组为,解得:.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(9分)如图,已知AD∥BC,∠1=∠2,试说明∠A=∠C.【分析】先根据平行线的性质,得出∠A=∠CBE,再根据∠1=∠2,得到DC∥AE,进而得出∠CBE=∠C,等量代换即可得出结论.【解答】证明:∵AD∥BC,∴∠A=∠CBE,又∵∠1=∠2,∴DC∥AE,∴∠CBE=∠C,∴∠A=∠C.【点评】本题主要考查了平行线的性质以及判定的运用,解题时注意:两直线平行,同位角相等,内错角相等.21.(9分)一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为200 人;(2)图①中,a= 35 ,C等级所占的圆心角的度数为126 度;(3)请直接在答题卡中补全条形统计图.【分析】(1)用A的人数与所占的百分比列式计算即可得解;(2)先求出C的人数,再求出百分比即可得到a的值,用C所占的百分比乘以360°计算即可得解;(3)根据计算补全统计图即可.【解答】解:(1)20÷10%=200人;(2)C的人数为:200﹣20﹣46﹣64=70,所占的百分比为:×100%=35%,所以,a=35,所占的圆心角的度数为:35%×360°=126°;故答案为:(1)200;(2)35,126.(3)补全统计图如图所示.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(10分)已知关于x、y的方程组.(1)如果该方程组的解互为相反数,求k的值;(2)若x为正数,y为负数,求k的取值范围.【分析】(1)根据x与y互为相反数,得到y=﹣x,代入方程组计算即可求出k 的值;(2)将k看做已知数表示出x与y,根据题意列出不等式组,求出不等式组的解集即可确定出k的范围.【解答】解:,解得:,(1)根据题意得:x+y=0,即+=0,解得:k=﹣4;(2)根据题意得:,解得:k>8.【点评】此题考查了二元一次方程组的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.23.(12分)义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?【分析】(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,根据,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元可列方程求解.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,根据需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,可列不等式组求解.【解答】解:(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,5x+4(x﹣20)=820,x=100,x﹣20=80,购买A型100元,B型80元;(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,,∴20<m≤22,而m为整数,所以m为21或22.当m=21时,60﹣m=39;当m=22时,60﹣m=38.所以有两种购买方案:方案一购买A21块,B 39块、方案二购买A22块,B38块.【点评】本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,列出不等式组求解.人教版七年级下学期期末考试数学试卷(二)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)16的算术平方根是()A.4 B.±4 C.8 D.±82.(3分)以下问题,不适合抽样调查的是()A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量3.(3分)若a<b,那么下列结论中正确的是()A.a﹣3>b﹣3 B.3a>3b C.>D.﹣3a>﹣3b4.(3分)平面直角坐标系中,点A在第四象限,点A到x轴的距离为2,到y 轴的距离为3,则点A的坐标为()A.(2,﹣3)B.(﹣3,2)C.(3,﹣2)D.(﹣2,3)5.(3分)如图,AD∥BC,AC⊥AB,∠C=62°,则∠DAB的度数为()A.28°B.30°C.38°D.48°6.(3分)关于x,y的方程组的解为,则=()A.﹣3 B.3 C.81 D.﹣817.(3分)不等式﹣2x+3≥5的解集在数轴上表示为()A. B.C.D.8.(3分)如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A.3元,3.5元B.3.5元,3元C.4元,4.5元D.4.5元,4元9.(3分)在平面直角坐标系中,将点A先向左平移3个单位,再向下平移2个单位,得到点B(﹣2,1),则点A的坐标为()A.(﹣5,3)B.(﹣5,﹣1)C.(1,3)D.(1,﹣3)(3分)把一张面值10元的人民币兑换成1元或2元的零钱,兑换方案有()10.A.9种B.8种C.7种D.6种二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)不等式2x+7>4x+1的正整数解是.12.(3分)如图,将一张长方形纸条折叠,则∠1= 度.13.(3分)光明学校在七年级的一次数学测试中,随机抽取40名学生的成绩进行分析,其中有10名学生成绩达到90分以上,以此估计该校七年级900名学生中,这次测试成绩达到90分以上的约有个.14.(3分)点A(m﹣1,5﹣2m)在第一象限,则整数m的值为.15.(3分)如图,在平面直角坐标系中,点A(1,1),B(3,1),C(3,3),D (1,3),动点P从点A出发,以每秒1个单位长度的速度沿AB﹣BC﹣CD﹣DA﹣AB﹣…路线运动,当运动到2017秒时,点P的坐标为.三、解答题(本大题共8小题,共75分)16.(8分)计算:|﹣3|+﹣.17.(8分)已知和是关于x,y的二元一次方程:ax+by=1的两个解,求﹣的值.18.(9分)解不等式组:,并把不等式组的解集在数轴上表示出来.19.(9分)请你给如图建立平面直角坐标系,使文化宫的坐标为(﹣3,1),超市的坐标为(2,﹣3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)直接写出由超市、文化馆、市场围成的三角形的面积.20.(10分)某市教育局为了解七年级学生参加综合实践活动的情况,随机抽取了阳光学校七年级学生一个学期参加综合实践活动的天数.并用得到的数据绘制了下面两幅不完整的统计图.请您根据图中提供的信息,按要求回答下列问题:(1)扇形统计图中a 的值是 ;阳光学校七年级共有 人; (2)在这次抽样调查中,活动时间为5天的学生有 人,并补全条形统计图;(4)如果该市七年级的学生共有23000人,根据以上数据,试估计全市七年级学生“活动时间不少于4天”的学生有多少人?21.(10分)为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民阶梯式计费价格表的部分信息:自来水销售价格 污水处理价格 每户每月用水量 单价:元/立方米 单价:元/立方米 17立方米及以下a0.8 超过17立方米但不超过30立方米的部分b 0.8超过30立方米的部分60.8该市居民王老师家2017年3月份用水30立方米,交水费66元;4月份用水25立方米,交水费91元.(1)求a、b的值.(2)若王老师家5月份交水费150元,则他家5月份用水多少吨?(说明:每户产生的污水量等于自来水量,所交水费包含自来水费和污水处理费)22.(10分)甲、乙两厂家生产的课桌和座椅的质量、价格一致,每张课桌300元,每张椅子80元,甲、乙两个厂家推出各自销售的优惠方案,甲:买一张课桌送1张椅子;乙:课桌和椅子全部按原价的9折优惠.现某学校要购买100张课桌和x(x≥100)张椅子.(1)分别用含x的式子表示购买甲、乙两个厂家桌椅所需的金额:购买甲厂家所需金额;购买乙厂家所需金额.(2)该学校到哪家工厂购买更合算?23.(11分)如图,已知CD⊥AB于D,E是射线AC上一动点,EF⊥AB于F,EF 交直线BC于G,若∠AEF=∠CGE.(1)求证:CD平分∠ACB,下面给出了部分证明过程和理由,请你补充完善:证明:∵CD⊥AB,EF⊥AB(已知)∴∠ADC=∠AFE=90°()∴CD∥()∴∠ACD= (两直线平行,同位角相等)∠BCD= ()∵∠AEF=∠CGE(已知)∴∠ACD=∠BCD即CD平分∠ACB()(2)将EF向右平移,使点E在AC的延长线上,(1)中的结论是否还成立?若成立,请画出图形;若不成立,请画出图形,写出正确结论.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分) 16的算术平方根是()A.4 B.±4 C.8 D.±8【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,直接利用此定义即可解决问题.【解答】解:∵4的平方是16,∴16的算术平方根是4.故选A.【点评】此题主要考查了算术平方根的定义,此题要注意平方根、算术平方根的联系和区别.2.(3分)以下问题,不适合抽样调查的是()A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.。

2024年人教版初一数学下册期末考试卷(附答案)

2024年人教版初一数学下册期末考试卷(附答案)

2024年人教版初一数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是2,则这个数是()A. 2B. 8C. 16D. 42. 在直角坐标系中,点(3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列哪个数是负数()A. 0B. 3/4C. 5/6D. 24. 若一个数的绝对值是3,则这个数是()A. 3B. 3C. 3或35. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 菱形二、判断题(每题1分,共5分)1. 两个互质的数的最小公倍数是它们的乘积。

()2. 一个数既是偶数又是奇数。

()3. 任何两个数的和都是正数。

()4. 任何两个数的差都是负数。

()5. 任何两个数的积都是正数。

()三、填空题(每题1分,共5分)1. 5的平方根是______。

2. 下列数中,最大的是______(2,3,0,5)。

3. 两个相邻的自然数之和是______。

4. 下列数中,最小的数是______(3,4,2,1)。

5. 下列数中,既是偶数又是合数的是______(4,5,6,7)。

四、简答题(每题2分,共10分)1. 请简述什么是勾股定理。

2. 请简述什么是绝对值。

3. 请简述什么是分数。

4. 请简述什么是比例。

5. 请简述什么是方程。

五、应用题(每题2分,共10分)1. 若一个数的平方是16,求这个数。

2. 若一个数的三分之一是4,求这个数。

3. 若一个数的二分之一是5,求这个数。

4. 若一个数的四分之一是3,求这个数。

5. 若一个数的五分之一是2,求这个数。

六、分析题(每题5分,共10分)1. 请分析什么是正比例函数,并举例说明。

2. 请分析什么是反比例函数,并举例说明。

七、实践操作题(每题5分,共10分)1. 请用尺规作一个边长为5cm的正方形。

2. 请用尺规作一个半径为3cm的圆。

八、专业设计题(每题2分,共10分)1. 设计一个包含两个变量的线性方程组,并给出一个解法。

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。

2. 已知一个数的平方等于36,则这个数是______或______。

3. 下列各数中,是无理数的是______、______、______。

4. 一个等边三角形的周长为15,则它的边长是______,面积是______。

5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。

三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。

2. (10分)解方程:2x - 5 = 3x + 1。

3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。

新人教版七年级数学下册期末测试卷及答案

新人教版七年级数学下册期末测试卷及答案

新人教版七年级数学下册期末测试卷及答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是()A.15-B.15C.5 D.-52.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.已知x是整数,当30x-取最小值时,x的值是( )A.5 B.6 C.7 D.86.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我7.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5 8.若长度分别为,3,5a的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.89.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°10.下列等式变形正确的是()A.若﹣3x=5,则x=3 5B.若1132x x-+=,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=1二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.分解因式:23m m-=________.5.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x yx y+=⎧⎨-=⎩(2)143()2()4xyx y x y⎧-=-⎪⎨⎪+--=⎩2.解不等式组:()41710853x xxx⎧+≤+⎪⎨--<⎪⎩,并写出它的所有非负整数解.3.如图,直线AB//CD,BC平分∠ABD,∠1=54°,求∠2的度数.4.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.小明同学在A、B两家超市发现他看中的随身听和书包的单价都相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求小明看中的随身听和书包单价各是多少元?(2)假日期间商家开展促销活动,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(购物满100元返购物券30元,购物满200元返购物券60元,以此类推;不足100元不返券,购物券可通用).小明只有400元钱,他能买到一只随身听和一个书包吗?若能,选择在哪一家购买更省钱.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、D5、A6、D7、C8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、22、20°.3、15°4、(3)m m-5、±46、48三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、不等式组的所有非负整数解为:0,1,2,3.3、72°4、(1)详略;(2)∠ABC=∠DEF,∠ACB=∠DFE,略.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)随身听和书包的单价分别是360元和92元;(2)略.。

2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。

A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。

A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。

A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。

A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。

A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。

A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。

A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。

A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。

A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。

A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。

12. 下列各数中,是无理数的是__________。

13. 下列等式中,正确的是__________。

14. 若一个正方形的边长是a,则它的面积是__________。

15. 下列各数中,是负数的是__________。

16. 若一个数的平方是16,则这个数是__________。

17. 下列各数中,是正整数的是__________。

18. 若一个数的绝对值是7,则这个数是__________。

19. 下列各数中,是偶数的是__________。

20. 若一个数的立方是27,则这个数是__________。

三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。

22. 已知一个数的平方是9,求这个数。

人教版七年级数学下册期末测试题+答案解析(共四套)

人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。

新人教版七年级数学下册期末考试及答案【完美版】

新人教版七年级数学下册期末考试及答案【完美版】

新人教版七年级数学下册期末考试及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c 2.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+36.如果23a b -=,那么代数式22()2a b a b a a b +-⋅-的值为( ) A .3 B .23 C .33 D .437.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .13208.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A.B. C. D.10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是_________.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是________(只填序号).三、解答题(本大题共6小题,共72分)1.解方程组:(1)32316x y x y -=⎧⎨+=⎩(2)25528x y x y -=⎧⎨+=⎩2.已知,x 无论取什么值,式子35ax bx ++必为同一定值,求a b b +的值.3.在△ABC 中,AB=AC ,点D 是射线CB 上的一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE .(1)如图1,当点D 在线段CB 上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是 ______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?6.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、C5、D6、A7、B8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、a≥22、40°3、70.4、a≤2.5、40°6、②.三、解答题(本大题共6小题,共72分)1、(1)5{2xy==;(2)21xy=⎧⎨=-⎩.2、8 53、(1)90°;(2)①α+β=180°;②α=β.4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变,理由略5、(1)40% , 144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.6、每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.。

最新人教版七年级下册数学《期末检测试卷》(附答案)

最新人教版七年级下册数学《期末检测试卷》(附答案)

人教版七年级下学期期末测试数学试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)3.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A. (-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是505. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,47.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B.1.10.9 {24x y x y=-=C.0.9 1.1{24x yx y=-=D.1.10.9{24x yy x=-=8.小明的作业本上有以下四题①42164a a=;②51052a a a⋅=;③211a a aa a=⋅=;④32a a a-=.其中做错误的是()A. ①B. ②C. ③D. ④9. 如图,在△ABC中,三边a、b、c的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c10.如图,天平右盘中每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B. C. D. 二、填空题(每题4分,共40分) 11.如图,a∥b,则∠A=______.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O点,则∠AOB+∠DOC=_____16.若一个二元一次方程的解为2{1xy==-,则这个方程可以是______(只要求写出一个).17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c 满足:23410250a b c c -+-+-+=请你判断△ABC 的形状是_______________19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.20.若关于x 的不等式组0321xa x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE 对称的图案(只画图,不写作法);(3)以G 为原点,GE 所在直线为x 轴,GB 所在直线为y 轴,小正方形边长为单位长度建立直角坐标系,可得点A 的坐标是(_______,_______).23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元. (1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?25. 情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?答案与解析一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍【答案】B【解析】分析:两角互余和为90°,互补和为180°,根据一个角等于它余角的2倍,建立方程,即可求出这个角,进而求出它的补角即可.详解:设这个角为α,则它的余角为90°-α,∵这个角等于它余角的2倍,∴α=2(90°-α),解得,α=60°,∴这个角的补角为180°-60°=120°,∴这个角是它的补角的60120︒︒=12.故选B.点睛:本题考查了余角和补角的概念.利用题中的数量关系:一个角等于它余角的2倍,建立方程是解题的关键.2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)【答案】D【解析】【分析】根据题意,在给出的图形中画一下四个选项的行走路线即可得出小明不能到达学校的路线.【详解】A. (0,4)→(0,0)→(4,0),能到达学校,故不符合题意;B. (0,4)→(4,4)→(4,0),能到达学校,故不符合题意;C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0),能到达学校,故不符合题意;D. (0,4)→(3,4)→(4,2)→(4,0),不能到达学校,故符合题意,故选D.【点睛】本题考查了利用坐标确定位置,也考查了数学在生活中的应用,结合题意,自己动手操作一下即可更准确地得到结论.3. 某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)【答案】B【解析】根据图形易得,小鱼与大鱼的位似比是1︰2,所以点(a,b)的对应点是(-2a,-2b).故选B.4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是50【答案】D【解析】【详解】A、300名学生的视力情况是总体,故此选项错误;B、每个学生的视力情况是个体,故此选项错误;C、50名学生的视力情况是抽取的一个样本,故此选项错误;D、这组数据的样本容量是50,故此选项正确.故选D.5. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°【答案】C【解析】本题主要考查了三角形的外角性质和平行线的性质∵AB∥CD,∴∠D=∠A=35°. ∠DOC=180°-∠BOD=180°-76°=104°,在△COD中,∠C=180°-∠D-∠DOC=180°-35°-104°=41°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,4【答案】A【解析】分析:把x代入方程组中的第2个方程即可求出y,把x、y同时代入第一个方程即可求出被遮盖的数.详解:23x yx y+=⎧⎨+=⎩口①②,把x=2代入②,得2+y=3,∴y=1.把x=2,y=1代入①,得方程2x+y=5.故选A.点睛:本题考查了二元一次方程组的解.先把x的值代入方程组中的第二个方程是解题的关键.7.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B. 1.10.9{24x y x y =-= C. 0.9 1.1{24x y x y =-= D. 1.10.9{24x y y x =-= 【答案】D【解析】【分析】可设平均价为1.关键描述语是:B 套楼房的面积比A 套楼房的面积大24平方米;两套楼房的房价相同,即为平均价1.等量关系为:B 套楼房的面积-A 套楼房的面积=24;0.9×1×B 套楼房的面积=1.1×1×A 套楼房的面积,设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=.故选D . 【详解】解:设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=. 故选D .8.小明的作业本上有以下四题42164a a =;51052a a a =③211a a a a =⋅=32a a a =) A. ①B. ②C. ③D. ④【答案】D【解析】【分析】分别利用二次根式的性质及其运算法则计算即可判定.【详解】①和②是正确;在③中,由式子可判断a >0,从而③正确;在④中,左边两个不是同类二次根式,不能合并,故错误.故选D . 2a =|a |.同时二次根式的加减运算实质上是合并同类二次根式.9. 如图,在△ABC 中,三边a 、b 、c 的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c【答案】D【解析】试题分析:先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.根据勾股定理,得,,,,,故选D.考点:本题考查的是勾股定理点评:解答本题的关键是认真分析格点的特征,熟练运用勾股定理进行计算.10.如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B.C. D.【答案】A【解析】∵由图可知,1g<m<2g,∴在数轴上表示为:.故选A..二、填空题(每题4分,共40分)11.如图,a∥b,则∠A=______.【答案】22°【解析】分析:如下图,过点A作AD∥b,则由已知可得AD∥a∥b,由此可得∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,从而由∠BAC=∠DAC-∠DAB即可求得∠BAC的度数.详解:如下图,过点A作AD∥b,∵a//b,∴AD∥a∥b,∴∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,∴∠BAC=∠DAC-∠DAB=50°-28°=22°.故答案为:22°.点睛:作出如图所示的辅助线,熟悉“平行线的性质:两直线平行,内错角相等”是正确解答本题的关键.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.【答案】(4,-4)【解析】分析:根据点在y轴上,则其横坐标是0,可求出a的值,进而即可求出B点坐标.详解:∵点A(a−1,a+1)是y轴上一点,∴a−1=0,解得a=1,∴a+3=1+3=4,a−5=1−5=−4,∴点B的坐标是(4,−4).故答案为(4,−4).点睛:本题考查了平面直角坐标系中点的坐标特征.熟练掌握y轴上的点的横坐标为0是解题的关键.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.【答案】80【解析】从内到外的正方形依次编号为1,2,3,……,n,则有:正方形的序号正方形四边上的整点的个数1 2×4-4=4;2 3×4-4=8;3 4×4-4=12;…………n 4(n+1)-4=4n.由里向外第 20 个正方形(实线)四条边上的整点个数共有4×20=80.故答案为80.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.【答案】2【解析】分析:根据“在三角形中任意两边之和大于第三边,任意两边之差小于第三边”,以及各边都是整数进行一一分析即可.详解:根据周长为7,以及三角形的三边关系,只有两种不同的三角形,边长为2,2,3或3,3,1.其它的组合都不能满足三角形中三边的关系.故答案为2.点睛:本题考查了三角形三边间的关系. 利用三角形三边间的关系来判断组合是否成立是解题的关键. 15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O 点,则∠AOB+∠DOC=_____【答案】180°【解析】∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC ,∠AOD+∠BOD=∠AOB ,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°16.若一个二元一次方程的解为2{1x y ==-,则这个方程可以是______(只要求写出一个). 【答案】1x y +=【解析】分析: 根据二元一次方程的解的定义,比如把x 与y 的值相加得1,即x+y=1是一个符合条件的方程. 详解:一个二元一次方程的解为21x y =⎧⎨=-⎩, 这个方程可以是 1.x y +=故答案 1.x y +=点睛:本题是一道有关二元一次方程的解的题目,关键是掌握二元一次方程的解的定义.17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.【答案】8【解析】分析:通过理解题意及看图可知本题存在等量关系,即矩形长的2倍=矩形宽的2倍+矩形的长,矩形长的2倍=(中间竖的矩形-4)宽的和,根据这两个等量关系,可列出方程组,再求解即可.详解:设矩形的长为x ,矩形的宽为y ,中间竖的矩形为(k −4)个,即(k −4)个矩形的宽正好等于2个矩形的长, ∵由图形可知:x +2y =2x ,2x =(k −4)y ,则可列方程组()2224x y x x k y +=⎧⎨=-⎩, 解得k =8.故答案为8.点睛:本题考查了二元一次方程组的应用.分析图形并得出对应的相等关系是解题的关键.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c2410250b c c -+-+=请你判断△ABC 的形状是_______________【答案】直角三角形【解析】分析:根据非负数的性质解得各边的长,再根据勾股定理的逆定理判定是否直角三角形即可.24(5)0b c -+-=,根据非负数的性质知,a =3,b =4,c =5,∵32+42=52,∴以为a 、b 、c 为三边的△ABC 是直角三角形.故答案为直角三角形.点睛:本题考查了非负数的性质和勾股定理的逆定理.将题中的21025c c -+转化为完全平方式2(5)c -是解题的关键. 19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.【答案】28或29【解析】分析:根据有空客房10间,每个房间住3人时,只有一个房间不空也不满,即:9间客房住满了,而最后一个房间不空也不满即这间客房住了1个人或2个人,分两种情况列出算式即可求出旅客的总人数.详解:由题可知,前9个房间住的人数是9×3=27人; 最后1间客房(不空也不满的房间)的人数有两种情况:(1)当有1个人时:游客总数为:27+1=28人;(2)当有2个人时:游客总数为:27+2=29人,所以旅游团共有28或29人.故答案为28或29.点睛:本题考查了一元一次不等式的应用.根据题中的不等关系确定不空也不满的房间人数是解题的关键.20.若关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 【答案】43a -<≤-【解析】试题分析:先分别解两个不等式得到不等式组的解集为a≤x<2,则可确定不等式组的5个整数解为1,0,-1,-2,-3,于是可得到a 的取值范围.0321x a x -≥⎧⎨->-⎩①②解①得,x a ≥;解②得,2x <;∴不等式组的5个整数解为1,0,-1,-2,-3,∴43a -<≤-.点睛:本题考查了一元一次不等式组的整数解,已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待求出不等式组的解集,然后再根据题目中对结果的限制的条件得到有关字母的值.三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?【答案】(1)只要作出∠5=∠6;(2)CD∥AB;(3)见解析【解析】分析:(1)掌握尺规作图的基本方法,作入射角等于反射角即∠5=∠6即可;(2)AB与CD平行;(3)由平行线的性质和反射的性质可得∠1=∠2=∠3=∠4,利用平角的定义可得∠ABC=∠BCD,由平行线的判定可得AB与CD平行.详解:(1)只要作出的光线BC经镜面EF反射后的反射角等于入射角即∠5=∠6即可.(2)CD∥AB.(3)如图,作图可知∠5=∠6,∠3+∠5=90°,∠4+∠6=90°,∴∠3=∠4;∵EF∥MN,∴∠2=∠3,∵∠1=∠2,∴∠1=∠2=∠3=∠4;∵∠ABC=180°﹣2∠2,∠BCD=180°﹣2∠3,∴∠ABC=∠BCD,∴CD∥AB.点睛:本题考查了平行线的性质和判定. 结合图形并利用平行线的性质和判定进行证明是解题的关键.22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE对称的图案(只画图,不写作法);(3)以G为原点,GE所在直线为x轴,GB所在直线为y轴,小正方形的边长为单位长度建立直角坐标系,可得点A的坐标是(_______,_______).【答案】(1). -4 (2). 1【解析】分析:(1)将“小猪”所占的面积转化为三角形和四边形面积的和来解答;(2)根据直线DE在网格中作出小猪的轴对称图形即可;(3)按要求建立平面直角坐标系即可得出A点坐标.详解:(1)4×4×12+8×3×12+1×1×12=32.5;(2)画图如下,(3)(-4,1).点睛:本题考查了网格中的面积、轴对称、平面直角坐标系等知识.求面积时合理地进行图形的移动和变换是解题的关键.23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?【答案】只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度.【解析】根据题目给出的条件,找出合适的等量关系,列出方程组,再求解24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?【答案】(1)该企业每套至少应奖励2.78元;(2)小张在六月份应至少加工200套.【解析】分析:(1)最低工资应考虑最不熟练地工人的工资.关系式为:基本工资200+150×60%×每件奖励钱≥最低工资标准450元,列不等式,解之即可;(2)根据关系式:基本工资200+5×小张加工童装套数≥1200,列不等式,解之即可.详解:(1)设企业每套奖励x元,由题意得:200+60%·150x≥450 ,解得:x≥2.78 ,因此,该企业每套至少应奖励2.78元.(2)设小张在六月份加工y套,由题意得:200+5y≥1200 ,解得:y≥200.答:小张在六月份应至少加工200套.点睛:本题考查了一元一次不等式的应用.找出题中的不等关系并建立不等式是解题的关键.25.情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?【答案】(1)可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.【解析】试题分析:(1)关系式为:甲种货车可装的床架数+乙种货车可装的床架数≥60;甲种货车可装的课桌凳数+乙种货车可装的课桌凳数≥100,把相关数值代入求得整数解的个数即可;(2)算出每种方案的总运费,比较即可.解:(1)设安排甲种货车x辆,则安排乙种货车(8﹣x)辆.,解得2≤x≤4,∴x可取2,3,4,∴可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费为:2×1200+6×1000=8400元;甲种货车3辆,乙种货车5辆运费为3×1200+5×1000=8600元;甲种货车4辆,乙种货车4辆运费为4×1200+4×1000=8800元;∴甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新人教版数学精品教学资料
新人教版七年级数学第二学期期末测试卷
题号 一 二 三 四 五 总分 得分 卷首寄语:
亲爱的同学们,进入初中,第一个学期很快就过去了。

在这学期中,你一定有许多收获,下面是检验我们学习效果的时候了,相信你会很棒!
本试卷一共五大题,23小题,总分150分,答题时间为120分钟.
一、精心挑选,小心有陷阱哟!(本大题共10小题,每小题4分,共40分.每小题四个选项中只有一个正确,请把正确选项的代号写在题后的括号内)
1. 在平面直角坐标系中,点P (-3,4)位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 2.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是( )
A .300名学生是总体
B .每名学生是个体
C .50名学生是所抽取的一个样本
D .这个样本容量是50
3.导火线的燃烧速度为0.8cm /s ,爆破员点燃后跑开的速度为5m /s ,为了点火后能够跑到150m 外的安全地带,导火线的长度至少是( )
A .22cm
B .23cm
C .24cm
D .25cm
4.不等式组⎩

⎧+-a x x x <<5
335的解集为4<x ,则a 满足的条件是( )
A .4<a
B .4=a
C .4≤a
D .4≥a
5.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )
A .1个
B .2个
C .3个
D .4个 6.下列运动属于平移的是( )
A .荡秋千
B .地球绕着太阳转
C .风筝在空中随风飘动
D .急刹车时,汽车在地面上的滑动 7.一个正方形的面积是15,估计它的边长大小在( )
A .2与3之间
B .3与4之间
C .4与5之间
D .5与6之间
8.已知实数x ,y 满足()0122
=++-y x ,则y x -等于( ) A .3 B .-3 C . D .-1
9.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )
A .(1,0)
B .(-1,0)
C .(-1,1)
D .(1,-1)
10.根据以下对话,可以求得嫒嫒所买的笔和笔记本的价格分别是( )
A .0.8元/支,2.6元/本
B .0.8元/支,3.6元/本
C .1.2元/支,2.6元/本
D .1.2元/支,3.6元/本
二、细心填空,看谁又对又快哟!(本大题共5小题,每小题5分,共25分)
11.已知a 、b 为两个连续的整数,且a <11 <b ,则=+b a .
嫒嫒,你上周买的笔和笔记本的价格是多少啊? 哦,…,我忘了!只记得先后买了两次,第一次买了5支笔和10本笔
记本共花了42元钱,第二次买了10支笔和5本笔记本共花了30元钱.
姓名
学号
班级
12.若()0232
=++-n m ,则n m 2+的值是______.
13.如图,已知a ∥b ,小亮把三角板的直角顶点放在直线b 上.若∠1=40°,则∠2的度数为 .
14.某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有 人.
15.设[)x 表示大于x 的最小整数,如[)43=,
[)12.1-=-,则下列结论中正确的 是 .
(填写所有正确结论的序号) ①[)00=;②[)x x -的最小值是0;③[)x x -的最大值是0;④存在实数x ,使[)5.0=-x x 成立.
三、认真答一答(本大题共4个小题,每小题8分,共32分)
16. 解方程组⎩
⎨⎧=-=+.1123,
12y x y x
17. 解不等式组:()20213 1.x x x ->⎧⎪⎨+-⎪⎩

≥并把解集在数轴上表示出
来.
18. 如图所示,直线a 、b 被c 、d 所截,且c a ⊥,c b ⊥,170∠=°,求∠3的大小.
19. 某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.
(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是 ;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数是 .
四.实践与应用(本大题共4小题,20、21、22三小题每题10分,23题12分,共42分)
20. 在我国沿海地区,几乎每年夏秋两季都会或多或少地遭受台风的侵袭,加强台风的监测和预报,是减轻台风灾害的重要措施.下表是中央气象台2010年发布的第13号台风“鲇鱼”的有关信息:
时 间
台风中心位置
东 经 北 纬
2010年10月16日23时 129.5° 18.5° 2010年10月17日23时 124.5° 18°
请在下面的经纬度地图上找到台风中心在16日23时和17日23时所在的位置.
21.今年春季我县大旱,导致大量农作物减产,下图是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的产量分别是多少千克?
22.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?
咱家两块农田去年花生产量一共是470千克,可老天不作美,四处大旱,今年两块农田只产花生57千克.
今年,第一块田的产量比去年减产80%,第二块田的产量比去年减产90%.
23.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A 、B 、C 、D 分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:
(1)本次调查一共抽查了多少袋方便面?
(2)将图1中色素含量为B 的部分补充完整;
(3)图2中的色素含量为D 的方便面所占的百分比是多少? (4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?
五.(本大题共11分) 24.我们知道0=+b a 时,033=+b a 也成立,若将a 看成3a 的立方根,b 看成3b 的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.
(1)试举一个例子来判断上述猜测结论是否成立;
(2)若321x -与353-x 互为相反数,求x -1的值.
B
A
C
七年级数学答案
一、选择题:
1 2 3 4 5 6 7 8 9 10 B D C D B
D
B
A
A
D
二、填空题:
11.7;12.-1;13.︒50;14.216;15.④.
16.解:.112312⎩

⎧=-=+②①
y x y x ①+②,得4x =12,解得:x =3.(3分)
将x =3代入①,得9-2y =11,解得y =-1.(3分) 所以方程组的解是⎩

⎧-==13
y x .(2分)
17.解:由20x ->,得 2.x >(2分)
由()2131x x +-≥,得223 1.x x +-≥解得 3.x ≤(2分) ∴不等式组的解集是2 3.x <≤(2分)在数轴上表示如下:(2分)
18.解:∵c a ⊥,c b ⊥,
∴a ∥b .(3分)∴∠1=∠2.(2分) 又∵∠2=∠3,∴∠3=∠1=700.(3分) 19.解:(1)24人;(3分)(2)100;(2分)(3)360人.(3分) 20.答案:(没标注日期酌情扣分)
21.解:设去年第一块田的花生产量为x 千克,第二块田的花生产量为y 千克,根据题意,得
470
(180%)(190%)57x y x y +=⎧⎨
-+-=⎩
解得 100
370x y =⎧⎨=⎩
100(180%)20⨯-=,370(190%)37⨯-=
答:该农户今年第一块田的花生产量是20千克,第二块田的花生产量是37千克.
(设未知数1分,列方程4分,解方程4分,答1分)
22.解:设丁丁至少要答对x 道题,那么答错和不答的题目为(30-x )道.(1分)
根据题意,得()100305>x x --.(4分) 解这个不等式得6
130>
x .(3分)x 取最小整数,得22=x .(1分) 答:丁丁至少要答对22道题.(1分) 23.答案: (1)20袋;(3分) (2)图略;(3分) (3)5%;(3分)
(4)10000×5%=500.(3分) 24.答案:(1)∵2+(-2)=0,而且23=8,(-2)3=-8,有8-8=0,∴结论成立;∴即“若两个数的立方根互为相反数,则这两个数也互为相反数.”是成立的.(5分)
(2)由(1)验证的结果知,1-2x+3x-5=0,∴x=4,∴1211-=-=-x。

相关文档
最新文档