2018年普通高等学校招生全国统一考试数学(北京卷文)

合集下载

(精校版)2018年北京文数高考试题文档版(含答案)

(精校版)2018年北京文数高考试题文档版(含答案)

(精校版)2018年北京文数高考试题文档版(含答案)绝密★启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={(|||<2)},B={?2,0,1,2},则A B=(A){0,1} (B){?1,0,1}(C){?2,0,1,2}(D){?1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(5)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率f ,则第八个单音频率为(A )32f (B )322f (C )1252f(D )1272f(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(7)在平面坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )AB(B )CD (C )EF(D )GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ?(C )当且仅当a <0时,(2,1)A ? (D )当且仅当32a ≤时,(2,1)A ? 第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

高三数学-2018年普通高校全国统一考试北京数学(文)-新

高三数学-2018年普通高校全国统一考试北京数学(文)-新

绝密★启用前2018年普通高等学校招生全国统一考试数 学(文史类)(北京卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至9页,共150分。

考试时间120分钟 考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名,准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号除黑。

如需改动,用像皮擦干净后,再选涂其他答案标号。

不能答在试卷上。

一、本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)设集合A ={}312<+x x ,B ={}23<<x x -,则A ⋂B 等于(A) {}23<<x x - (B) {}21<<x x (C) 3->x x(D) 1<x x(2)函数y =1+cos x 的图象 (A )关于x 轴对称 (B )关于y 轴对称 (C )关于原点对称(D )关于直线x =2π对称 (3)若a 与b -c 都是非零向量,则“a ·b =a ·c ”是“a ⊥(b -c )”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D) 既不充分也不必要条件(4)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有(A )36个 (B )24个 (C )18个 (D )6个 (5)已知⎩⎨⎧≥--=1,log 1,4)3()(x x x a x a x f ,<是(-∞,+∞)上的增函数,那么a 的取值范围是(A )(1,+∞) (B )(-∞,3) (C)⎪⎭⎫⎢⎣⎡3,53(D)(1,3)(6)如果-1,a,b,c ,-9成等比数列,那么(A)b=3,ac=9 (B)b=-3,ac=9(C)b=3,ac=-9 (D)b=-3,ac=-9(7)设A、B、C、D是空间四个不同的点,在下列命题中,不正确...的是(A)若AC与BD共而,则AD与BC共面(B)若AC与BD是异面直线,则AD与BC是异面直线(C) 若AB=AC,DB=DC,则AD=BC(D) 若AB=AC,DB=DC,则AD BC(8)下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口A、B、C 的机动车辆数如图所示,图中x1`x2`x3,分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶上与驶出的车辆数相等),则(A)x1>x2>x3(B)x1>x2>x3(C)x2>x3>x1(D)x3>x2>x1绝密★启用前2018年普通高等学校招生全国统一考试数 学(文史类)(北京卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至9页,共150分。

(精校版)2018年北京文数高考试题(含答案)

(精校版)2018年北京文数高考试题(含答案)

绝密★启封前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={(|||<2)},B={−2,0,1,2},则A B=(A){0,1} (B){−1,0,1}(C){−2,0,1,2}(D){−1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A )12 (B )56 (C )76(D )712(4)设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率f ,则第八个单音频率为 (A )32f (B )322f (C )1252f(D )1272f(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(7)在平面坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )AB(B )CD (C )EF(D )GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2018年北京高考数学(文)试题及答案

2018年北京高考数学(文)试题及答案

绝密★启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={(|||<2)},B={−2,0,1,2},则A B=(A){0,1} (B){−1,0,1}(C){−2,0,1,2}(D){−1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f,则第八个单音的频率为学科#网(A(B(C)(D)(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A)1 (B)2(C)3 (D)4(7)在平面直角坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )AB(B )CD (C )EF(D )GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

【真题】2018年北京市高考数学(文)试题含答案解析

【真题】2018年北京市高考数学(文)试题含答案解析

A .充分而不必要条件 B.必要而不充分条件 C.充分必要条件
D .既不充分也不必要条件 .
5. “十二平均律 ”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个 理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三
个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于
i
2)在复平面内,复数 1 - i的共轭复数对应的点位于
(A )第一象限
( B)第二象限
( C )第三象限
( D)第四象限
3.执行如图所示的程序框图,输出的 1
A. 2 5
B. 6 7
C. 6 7
D. 12
s 值为( ).
4.设 a , b , c , d 是非零实数,则 “ad bc ”是 “a , b , c , d 成等比数列 ”的( ).
12 2 .若第一个单音的频率为 f ,则第八个单音的频率为(
).
A. 3 2 f
32
B. 2 f
12 5
C. 2 f D. 12 27 f
6.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为(
).
A.1
B. 2
C. 3
D. 4
2018 年普通高等学校招生全国统一考试 (北京卷)
数学(文史类) 第一部分(选择题 共 40 分) 一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,选出 符合题目要求的一项 .
A
1.若集合
xx 2 B

x 2,0,1, 2 ,则 A,0,1 (C) -2,0,1 (D ) -1,0,1,2

2018年北京市高考数学试卷(文科)(含解析版)

2018年北京市高考数学试卷(文科)(含解析版)

绝密★本科目考试启用前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.(5分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2}D.{﹣1,0,1,2}2.(5分)在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)执行如图所示的程序框图,输出的s值为()A.B.C.D.4.(5分)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f 6.(5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.47.(5分)在平面直角坐标系中,,,,是圆x2+y2=1上的四段弧(如图),点P其中一段上,角α以Ox为始边,OP为终边.若tanα<cosα<sinα,则P所在的圆弧是()A.B.C.D.8.(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉A C.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A二、填空题共6小题,每小题5分,共30分。

2018北京高考数学真题及答案解析

2018北京高考数学真题及答案解析

2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={(x||x|<2)},B={−2,0,1,2},则A B=(A){0,1} (B){−1,0,1}(C){−2,0,1,2} (D){−1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A )12 (B )56 (C )76(D )712(4)设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率f ,则第八个单音频率为(A (B(C )(D )(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(7)在平面坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O x为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )AB(B )CD (C )EF(D )GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

【解析版】2018年高考北京卷文数试题

【解析版】2018年高考北京卷文数试题

绝密★启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

A. {0,1}B. {−1,0,1}C. {−2,0,1,2}D. {−1,0,1,2}【答案】A.故选A.点睛:此题考查集合的运算,属于送分题.2.A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3. 执行如图所示的程序框图,输出的s值为【答案】B【解析】分析:初始化数值详解:初始化数值循环结果执行如下:循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4. 设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】分析:等比数列”.详解:当成等比数列时,则.故选B.”以及“.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.5. “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单若第一个单音的频率为f,则第八个单音的频率为【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,数列;(2)是等比数列.6. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中实行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可实行棱长、表面积、体积等相关问题的求解.7. 在平面直角坐标系中,(如图),点P在其中一段O为始边,OP为终边,若P所在的圆弧是【答案】C【解析】分析:逐个分析A、B、C、D四个选项,利用三角函数的三角函数线可得准确结论.为余弦线,有向线段为正弦线,有向线段切线.A选项:A选项错误;B选项:故B选项错误;CC选项准确;D选项:点故D选项错误.综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到所对应的三角函数线实行比较.8.A. 对任意实数aB. 对任意实数a,(2,1C. 当且仅当a<0时,(2,1D. 时,(2,1【答案】D.此命题的逆否命题为:若故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,. 设,若,则,则很难入手时,能够考虑其逆否命题形式.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试数学(北京卷文)
第一部分(选择题 共40分)

一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目
要求的一项.

1.已知全集U=R,集合P={x︱x2≤1},那么
A.(-∞, -1] B.[1, +
∞)
C.[-1,1] D.(-
∞,-1] ∪[1,+∞)

2.复数
A.i B.-i C.

D.
3.如果那么
A.y< x<1 B.x< y<1

C.1< x4.若p是真命题,q是假命题,则
A.p∧q是真命题
B.p∨q是假命题
C.﹁p是真命题
D.﹁q是真命题
5.某四棱锥的三视图如图所示,该四棱锥的表面积是

A.32
B.16+16
C.48
D.16+32
6.执行如图所示的程序框图,若输入A的值为2,则输入的P值为

A.2 B.3
C.4 D.5
7.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储

时间为天,且每件产品每天的仓储费用为1元.为使平均没见产品的生产准备费用与
仓储费用之和最小,每批应生产产品
A.60件 B.80件 C.100
件 D.120件
8.已知点A(0,2),B(2,0).若点C在函数y = x的图像上,则使得ΔABC的面积为2
的点C的个数为
A.4 B.3 C.2
D.1

第二部分 (非选择题 共110分)
二、填空题共6小题,每小题5分,共30分.

9.在中.若b=5,,sinA=,则a=___________________.
10.已知双曲线(>0)的一条渐近线的方程为,则
= .

11.已知向量a=(,1),b=(0,-1),c=(k,).若a-2b与c共线,则k=________________.
12.在等比数列{an}中,a1=,a4=4,则公比q=______________;a1+a2+„+an=
_________________.

13.已知函数若关于x 的方程f(x)=k有两个不同的实根,则实数
k的取值范围是_______
14.设A(0,0),B(4,0),C(t+4,3),D(t,3)(tR).记N(t)为平行四边形ABCD
内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N(0)
= N(t)的所有可能取值为
三、解答题6小题,共80分,解答应写出文字说明,演算步骤或证明过程.
15.(本小题共13分)

已知函数.
(Ⅰ)求的最小正周期:

(Ⅱ)求在区间上的最大值和最小值.
16.(本小题共13分)
以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,
无法确认,在图中以X表
示.

(1)如果X=8,求乙组同学植树棵树的平均数和方差;
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数
为19的概率.

(注:方差其中为的
平均数)
17.(本小题共14分)
如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中
点.
(Ⅰ)求证:DE∥平面BCP;
(Ⅱ)求证:四边形DEFG为矩形;
(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.

18.(本小题共13分)
已知函数.
(Ⅰ)求的单调区间;
(Ⅱ)求在区间[0,1]上的最小值.

19.(本小题共14分)
已知椭圆的离心率为,右焦点为(,0),斜率
为I的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).
(I)求椭圆G的方程;
(II)求的面积.

20.(本小题共13分)
若数列满足,则称为
数列,记.
(Ⅰ)写出一个E数列A5满足;
(Ⅱ)若,n=2000,证明:E数列是递增数列的充要条件是=2011;
(Ⅲ)在的E数列中,求使得=0成立得n的最小值.
参考答案
一、选择题(共8小题,每小题5分,共40分)
(1)D (2)A (3)D (4)D
(5)B (6)C (7)B (8)A
二、填空题(共6小题,每小题5分,共30分)

(9) (10)2
(11)1 (12)2
(13)(0,1) (14)6 6,7,8,
三、解答题(共6小题,共80分)
(15)(共13分)

解:(Ⅰ)因为

所以的最小正周期为
(Ⅱ)因为
于是,当时,取得最大值2;
当取得最小值—1.
(16)(共13分)
解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,
所以平均数为

方差为
(Ⅱ)记甲组四名同学为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11;
乙组四名同学为B1,B2,B3,B4,他们植树的棵数依次为9,8,9,10,分别从甲、
乙两组中随机选取一名同学,所有可能的结果有16个,它们是:

(A1,B1),(A1,B2),(A1,B3),(A1,B4),
(A2,B1),(A2,B2),(A2,B3),(A2,B4),
(A3,B1),(A2,B2),(A3,B3),(A1,B4),
(A4,B1),(A4,B2),(A4,B3),(A4,B4),
用C表示:“选出的两名同学的植树总棵数为19”这一事件,则C中的结果有4个,

它们是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),故所求概率为
(17)(共14分)
证明:(Ⅰ)因为D,E分别为AP,AC的中点,
所以DE//PC。
又因为DE平面BCP,
所以DE//平面BCP。

(Ⅱ)因为D,E,F,G分别为
AP,AC,BC,PB的中点,
所以DE//PC//FG,DG//AB//EF。
所以四边形DEFG为平行四边形,
又因为PC⊥AB,
所以DE⊥DG,
所以四边形DEFG为矩形。
(Ⅲ)存在点Q满足条件,理由如下:
连接DF,EG,设Q为EG的中点
由(Ⅱ)知,DF∩EG=Q,且QD=QE=QF=QG=EG.
分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN。
与(Ⅱ)同理,可证四边形MENG为矩形,其对角线点为EG的中点Q,

且QM=QN=EG,
所以Q为满足条件的点.
(18)(共13分)

解:(Ⅰ)
令,得.
与的情况如下:
x
() (

—— 0 +
↗ ↗
所以,的单调递减区间是();单调递增区间是
(Ⅱ)当,即时,函数在[0,1]上单调递增,
所以(x)在区间[0,1]上的最小值为
当时,
由(Ⅰ)知上单调递减,在上单调递增,所以在区
间[0,1]上的最小值为;
当时,函数在[0,1]上单调递减,
所以在区间[0,1]上的最小值为
(19)(共14分)

解:(Ⅰ)由已知得
解得

所以椭圆G的方程为
(Ⅱ)设直线l的方程为

由得
设A、B的坐标分别为AB中点为E,

因为AB是等腰△PAB的底边,
所以PE⊥AB.

所以PE的斜率
解得m=2。
此时方程①为
解得
所以
所以|AB|=.

此时,点P(—3,2)到直线AB:的距离
所以△PAB的面积S=
(20)(共13分)
解:(Ⅰ)0,1,0,1,0是一具满足条件的E数列A5.
(答案不唯一,0,—1,0,1,0;0,±1,0,1,2;0,±1,0,—1,—2;0,
±1,0,—1,
—2,0,±1,0,—1,0都是满足条件的E的数列A5)
(Ⅱ)必要性:因为E数列A5是递增数列,

所以.
所以A5是首项为12,公差为1的等差数列.
所以a2000=12+(2000—1)×1=2011.
充分性,由于a2000—a1000≤1,
a2000—a1000≤1
„„
a2—a1≤1
所以a2000—at≤19999,即a2000≤a1+1999.
又因为a1=12,a2000=2011,
所以a2000=a1+1999.

故是递增数列.
综上,结论得证.
(Ⅲ)对首项为4的E数列Ak,由于

„„
„„
所以
所以对任意的首项为4的E数列Am,若
则必有.
又的E数列
所以n是最小值是9.

相关文档
最新文档