浙教版七年级数学上期末综合培优(一)
浙教版2020-2021学年第一学期七年级数学上册期末试卷(培优)

浙教版2020第一学期数学七年级上册期末试卷(培优)一.选择题1.x、y、z在数轴上的位置如图所示,则化简|x﹣y|+|z﹣y|的结果是()A.x+z﹣2y B.2y﹣x﹣z C.z﹣x D.x﹣z2.将正整数按如图所示的位置顺序排列:根据排列规律,则2015应在()A.A处 B.B处C.C处D.D处3.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.则其中男生人数比女生人数多()A.11人B.12人C.3人D.4人4.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28 B.29 C.30 D.315.若3a-b-2=0,则代数式-9a+3b-7的值是( )A. -13B. 13C. -1D. 16.如图,点A,P,Q,B在一条不完整的数轴上,点A表示数-3,点B表示数3,若动点P 从点A出发以每秒1个单位长度向终点B匀速运动,同时动点Q从点B出发以每秒2个单位长度向终点A匀速运动,其中一点到达终点时,另一个点也随之停止运动,当BP=3AQ时,点P在数轴上表示的数是( )A. 2.4B. -1.8C. 0.6D. -0.67.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( )A .2B .22C. 2 D .328.已知线段AB a =,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A.9a π B .a 8π C. a89π D .94a π9. 已知a ,b ,c 三个数,a 为1+7,b 为3+5,c 为5+3,则这三个数的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .a =b =c10.将一张长方形纸片(如图1)进行折叠操作.第一次折叠后(如图2),使得∠DAE 1=4∠E 1AF 1,再沿着AE 1将纸片剪开,取△DAE 1部分继续折叠;第二次折叠后(如图3),使得∠DAE 2=4∠E 2AF 2,再沿着AE 2将纸片剪开,取△DAE 2部分继续折叠;……按此操作,若将纸片沿着AE n 剪开,此时∠DAE n 小于20°,则n 的最小值是( )A .2B .3C .4D .5图3图2图1DCB AE 2F 2E 1'E 1B'F 1DC DAA二.填空题11.已知关于x的方程kx=5﹣x,有正整数解,则整数k的值为.12.小明和小慧两位同学在数学活动课中,把长为30cm,宽为10cm的长方形白纸条粘合起来,小明按如图甲所示的方法粘合起来得到长方形ABCD,粘合部分的长度为6cm,小慧按如图乙所示的方法粘合起来得到长方形A1B1C1D1,黏合部分的长度为4cm.若长为30cm,宽为10cm的长方形白纸条共有100张,则小明应分配到张长方形白纸条,才能使小明和小慧按各自要求黏合起来的长方形面积相等(要求100张长方形白纸条全部用完).13.如图,直线AB,CD相交于点O,OE平分∠BOD,若∠AOE=144°,则∠AOC的度数是.14.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为20cm,宽为16cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是.15.如图,大正方形内有两个大小一样的长方形ABCD和长方形EFGH,且AB,AD,EF,EH 分别在大正方形的四条边上,大正方形内有个小正方形与两长方形有重叠(图中两个长方形形状的阴影部分),若B两正方形的周长分别为44与30,且AB=EH=6,AD=EF=3,则两阴影部分的周长和为________。
【浙教版】七年级数学上期末试卷含答案(1)

一、选择题1.育才学校学生来自甲、乙、丙三个地区,其人数比为7:3:2,如图所示的扇形图表示其分布情况.如果来自丙地区的学生为180人,则这个学校学生的总人数和表示乙地区扇形的圆心角度数分别为( )A .1080人、90B .900人、210C .630人、90D .270人、60 2.下列说法正确..的是( ) A .一个数,如果不是正数,必定是负数B .所有有理数都能用数轴上的点表示C .调查某种灯泡的使用寿命采用普查D .两点之间直线最短3.为响应习总书记“绿水青山,就是金山银山”的号召,某校今年3月开展了植树活动.按班级顺序领取树苗,七(1)班先领取全部的110,七(2)班领取100棵后,再领取余下部分的110,且两班领取的树苗相等,则树苗总棵数为( ) A .6400B .8100C .9000D .4900 4.3x =-是下列哪个方程的解( )A .35210x x -+=+B .123x x -=C .()32x x x +=-D .2633x -+= 5.某商店在某一时间以200元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店在这次交易中( )A .亏了10元钱B .亏了20元钱C .盈利20元钱D .不盈不亏 6.有下列调查:①了解地里西瓜的成熟程度;②了解某班学生完成20道素质测评选择题的通过率;③了解一批导弹的杀伤范围;④了解成都市中学生睡眠情况.其中不适合普查而适合抽样调查的是( )A .①②B .①②④C .①③④D .②③④ 7.已知点A ,B ,C 在同一条直线上,线段10AB =,线段8BC =,点M 是线段AB 的中点.则MC 等于( )A .3B .13C .3或者13D .2或者18 8.下列说法正确的是( )A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条9.如图,点C 、D 是线段AB 上任意两点,点M 是AC 的中点,点N 是DB 的中点,若AB a ,MN b =,则线段CD 的长是( )A .2b a -B .()2a b -C .-a bD .1()2a b + 10.如图,用火柴棍分别搭一排三角形组成的图形和一排正方形组成的图形,三角形、正方形的每一边用一根火柴棒.如果搭这两个图案一共用了2030根火柴棒,且正方形的个数比三角形的个数的少4个,则搭成的三角形的个数是( )A .429B .409C .408D .40411.5的相反数的倒数是( )A .5-B .5C .15- D .1512.若一个几何体的表面展开图如图所示,则这个几何体是( )A .三棱柱B .四棱柱C .三棱锥D .四棱锥二、填空题13.某中学七年级甲、乙、丙三个班中,每班的学生人数都为40名.某次数学考试的成绩统计如下:(如图,每组分数含最小值,不含最大值)根据图、表提供的信息,则80~90分这一组人数最多的班是_____班.14.如今,中学生睡眠不足的问题正愈演愈烈,“缺觉”已是全国中学生们的老大难问题.教育部规定,初中生每天的睡眠时间应为9个小时.鹏鹏记录了他一周的睡眠时间,并将统计结果绘制成如图所示的折线统计图,则鹏鹏这一周的睡眠够9个小时的有______天.15.有四个大小完全相同的小长方形和两个大小完全相同的大长方形按如图所示的位置摆放,按照图中所示尺寸,小长方形的长与宽的差是__________.(用含m ,n 的式子表示)16.若0a b =≠,则下列式子中正确的是(填序号)______①22a b -=-,②1132a b =,③3344a b -=-,④551a b =-. 17.已知线段AC 和线段BC 在同一直线上,若12cm AC =,8cm BC =,线段AC 的中点为M ,线段BC 的中点为N ,试求M 、N 两点之间的距离.18.在新冠疫情某隔离区域,张护士负责A ,B ,C ,D 四个区域隔离病人的身体状况的观察与日常生活的联络服务,每天张护士都按照A B C D C B A B C →→→→→→→→→⋅⋅⋅的路线来回巡察,从A 隔离区域开始数连续的正整数1,2,3,…当张护士第()21n -次在C 隔离区域巡察时(n 为正整数),恰好数到的数是______(用含n 的代数式表示).19.如果收入80元记作80+元,那么支出90元记作______元.20.一张长50cm ,宽40cm 的长方形纸板,在其四个角上分别剪去一个小正方形(边长相等且为整厘米数)后,折成一个无盖的长方体形盒子,这个长方体形盒子的容积最大为_____cm 3.三、解答题21.为了了解某中学学生的身高情况,随机对该校男、女生的身高进行抽样调查.抽取的样本中,男、女生的人数相同,根据所得数据绘制成如图所示的统计图表.组别男女生身高(cm)A150155x<B155160x<C160165x<D165170x<E170175x<根据图表中提供的信息,回答下列问题:(1)在样本中,组距是__________,女生身高在B组的有__________人;(2)在样本中,身高在170175x<之间的共有__________人,人数最多的是__________组(填组别序号);(3)已知该校共有男生500人,女生480人,请估计身高在160170x<之间的学生有多少人?22.解方程:(1)5+3x=8+2x;(2)12x-=1﹣325x+.23.如图,线段AB的中点为M,C点将线段MB分成MC,CB两段,且:1:3MC CB=,若20AC=,求AB的长.24.用火柴棒按下面的方式搭图形(1)把下表填完整:图形编号①②③火柴棒根数7s=n的代数式表示)(3)是否存在一个图形共有117根火柴棒?若存在,求出是第几个图形,如不存在,请说明理由.25.计算:(1)2151 ()() 32624+-÷-;(2)(﹣2)3×(﹣2+6)﹣|﹣4|.26.下面是由些棱长1cm的正方体小木块搭建成的几何体的主视图、俯视图和左视图,①请你观察它是由多少块小木块组成的;②在俯视图中标出相应位置立方体的个数;③求出该几何体的表面积(包含底面).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】用丙地区的人数除以该地区人数所占的比即可求出总人数,用360°去乘乙地区人数所占的比即可得出相应的圆心角度数,【详解】解:180÷2732++=1080人,360°×3732++=90°, 故选:A .【点睛】 本题考查了扇形统计图,理解各个部分所占整体的百分比,以及各个扇形的圆心角度数实际是这一部分所占周角的百分比即可.2.B解析:B【分析】根据有理数的定义,数轴、普查、线段的定义进行解答即可.【详解】解:A 、一个数,如果不是正数,可能是负数,也可能是0,故A 选项错误;B 、所有的有理数都能用数轴上的点表示,故B 正确;C 、调查某种灯泡的使用寿命,利用普查破坏性较强,应采用抽样调查,故此选项错误; D、两点之间,线段最短,故原题说法错误.故选B.【点睛】本题考查了有理数的定义、数轴、普查、线段的定义,掌握相关知识是解题的关键. 3.C解析:C【分析】设树苗总数为x 棵,根据各班的树苗数都相等,可得出七(1)班和七(2)班领取的树苗数相等,由此可得出方程.【详解】解:设树苗总数x 棵,根据题意得:111100(100)101010x x x =+--, 解得:x=9000,∴树苗总数是9000棵.故选:C .【点睛】本题考查了一元一次方程的应用,解答本题的关键是得出各班的树苗数都相等,这个等量关系,因为七(1),七(2)班领取数量好表示,所以我们就选取这两班建立等量关系. 4.B解析:B【分析】根据方程的解的定义,把x =-3代入方程进行检验即可.【详解】x=-代入方程,左边=14,右边=4,左边≠右边,故不符合题意;解:A、把3x=-代入方程,左边=-3,右边=-3,左边=右边,故符合题意;B、把3x=-代入方程,左边=0,右边=6,左边≠右边,故不符合题意;C、把3x=-代入方程,左边=4,右边=3,左边≠右边,故不符合题意.D、把3故选:B.【点睛】本题主要考查了方程解的定义,解题关键是将x的值代入方程左右两边进行验证.5.A解析:A【分析】设盈利服装的进价为x元,亏损服装的进价为y元,根据利润=售价﹣进价,即可得出关于x(y)的一元一次方程,解之即可求出x(y)的值,再利用总利润=总售价﹣总进价即可得出结论.【详解】解:设盈利服装的进价为x元,亏损服装的进价为y元,依题意得:200﹣x=25%x,200﹣y=﹣20%y,解得:x=160,y=250,∴200+200﹣160﹣250=﹣10(元),即商店在这次交易中亏了10元钱.故选择:A.【点睛】本题考查销售问题,掌握利润=售价﹣进价,抓住售价﹣进价=进价×利润率(盈利为正,亏损为负)构造方程是解题关键.6.C解析:C【分析】根据普查适用的范围小,具有适用性,抽样调查具有代表性,机会均等的原则,不具破坏性的特点依次判断即可.【详解】①了解地里西瓜的成熟程度,不适合普查而适合抽样调查;②了解某班学生完成20道素质测评选择题的通过率,适合普查;③了解一批导弹的杀伤范围,不适合普查而适合抽样调查;④了解成都市中学生睡眠情况,不适合普查而适合抽样调查;故选:C.【点睛】此题考查普查与抽样调查的定义,正确理解两者的关系及各自的特点是解题的关键. 7.C解析:C【分析】由于点C的位置不能确定,故应分点C在线段AB外和点C在线段AB之间两种情况进行解答.【详解】解:当A、B、C的位置如图1所示时,∵线段AB=10,线段BC=8,点M是线段AB的中点,∴BM=12AB=12×10=5,∴MC=BM+BC=5+8=13;当A、B、C的位置如图2所示时,∵线段AB=10,线段BC=8,点M是线段AB的中点,∴BM=12AB=12×10=5,∴MC= BC-BM =8-5=3.综上所述,线段MC的长为3或13.故选:C【点睛】本题考查的是两点间的距离,在解答此题时要注意进行分类讨论,不要漏解.8.D解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A、射线AB和射线BA是不同的射线,故本选项不符合题意;B、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C、两点之间,线段最短,故本选项不符合题意;D 、七边形的对角线一共有7(73)142条,正确故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.9.A解析:A先由AB MN a b -=-,得AM BN a b +=-,再根据中点的性质得22AC BD a b +=-,最后由()CD AB AC BD =-+即可求出结果.【详解】解:∵AB a ,MN b =,∴AB MN a b -=-,∴AM BN a b +=-,∵点M 是AC 的中点,点N 是DB 的中点,∴AM MC =,BN DN =,∴()()2222AC BD AM MC BN DN AM BN a b a b +=+++=+=-=-, ∴()()222CD AB AC BD a a b b a =-+=--=-.故选:A .【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.10.C解析:C【分析】根据搭建三角形和正方形一共用了2030根火柴,且三角形的个数比正方形的个数多4个,即可得搭建三角形的个数.【详解】解:∵搭建三角形和正方形一共用了2030根火柴,且三角形的个数比正方形的个数多4个,观察图形的变化可知:搭建n 个三角形需要(2n+1)根火柴棍,n 个正方形需要(3n+1)根火柴棍,所以2n+1+3(n-4)+1=2030,解得n=408.故选:C .【点睛】本题考查了规律型-图形的变化类,解决本题的关键是根据图形的变化寻找规律. 11.C解析:C【分析】只有符号不同的两个数互为相反数,两数相乘为1的数互为倒数.【详解】解:5的相反数为5-,5-的倒数为15-,故5的相反数的倒数是15-.故答案为:C .本题考查倒数和相反数.熟练掌握倒数和相反数的求法是解题的关键.12.A解析:A【分析】由展开图得这个几何体为棱柱,底面为三边形,则为三棱柱.【详解】解:由图得,这个几何体为三棱柱.故选:A.【点睛】本题考查了几何体的展开图,有两个底面的为柱体,有一个底面的为锥体.二、填空题13.甲【分析】根据题意和统计图表中的信息可以得到甲乙丙三个班中80~90分这一组人数然后比较大小即可解答本题【详解】解:甲班80~90分这一组有40﹣2﹣5﹣8﹣12=13(人)乙班80~90分这一组有解析:甲【分析】根据题意和统计图表中的信息,可以得到甲、乙、丙三个班中80~90分这一组人数,然后比较大小,即可解答本题.【详解】解:甲班80~90分这一组有40﹣2﹣5﹣8﹣12=13(人),乙班80~90分这一组有40×(1﹣5%﹣10%﹣35%﹣20%)=12(人),丙班80~90分这一组有11人,∵13>12>11,∴80~90分这一组人数最多的是甲班,故答案为:甲.【点睛】本题考查频数分布直方图、扇形统计图、频数分布表,解答本题的关键是明确题意,利用数形结合的思想解答.14.2【分析】根据折线统计图可以得到鹏鹏这一周的睡眠够9个小时的有2天【详解】由统计图可知周五周六两天的睡眠够9个小时故答案为:2【点睛】本题考查折线统计图解题的关键是明确题意利用数形结合的思想解答问题解析:2【分析】根据折线统计图可以得到鹏鹏这一周的睡眠够9个小时的有2天.【详解】由统计图可知,周五、周六两天的睡眠够9个小时,故答案为:2.【点睛】本题考查折线统计图,解题的关键是明确题意,利用数形结合的思想解答问题. 15.【分析】设小长方形的长为x 宽为y 根据图形列得m+y-x=n+x-y 整理即可得到答案【详解】设小长方形的长为x 宽为y 根据题意得:m+y-x=n+x-y ∴x-y=故答案为:【点睛】此题考查图形类列代数式 解析:2m n - 【分析】设小长方形的长为x ,宽为y ,根据图形列得m+y-x=n+x-y ,整理即可得到答案.【详解】设小长方形的长为x ,宽为y ,根据题意得:m+y-x=n+x-y ,∴x-y=2m n -, 故答案为:2m n -. 【点睛】此题考查图形类列代数式,正确理解图形中的数量关系是解题的关键.16.①③【分析】根据等式的性质进行逐一判断即可【详解】解:①若根据等式基本性质1则故①正确;②若根据等式基本性质2则故②错误;③若根据等式基本性质2则故③正确;④若根据等式基本性质2则故④错误故答案为:解析:①③【分析】根据等式的性质进行逐一判断即可.【详解】解:①若0a b =≠,根据等式基本性质1,则22a b -=-,故①正确;②若0a b =≠,根据等式基本性质2,则111332a b b =≠,故②错误; ③若0a b =≠,根据等式基本性质2,则3344a b -=-,故③正确; ④若0a b =≠,根据等式基本性质2,则5551a b b =-≠,故④错误.故答案为:①③.【点睛】本题考查了等式的性质,解决本题的关键是掌握等式的性质.17.或【分析】分两种情况解答:当点B 位于AC 的延长线上当点B 位于AC 之间根据线段中点把线段分成相等的两部分以及线段的和差关系即可解答【详解】解:∵点M 是线段的中点∴同理(1)当点B 位于AC 外如图1所示( 解析:10cm 或2cm【分析】分两种情况解答:当点B 位于AC 的延长线上,当点B 位于AC 之间,根据线段中点把线段分成相等的两部分,以及线段的和差关系即可解答【详解】解:∵点M 是线段AC 的中点,∴12MC AC =,同理12NC BC =. (1)当点B 位于AC 外,如图1所示,1122MN MC NC AC BC =+=+ ()()()1112810cm 22AC BC =+=+=.(2)当点B 位于AC 之间,如图2所示,1122MN MC NC AC BC =-=- ()()()111282cm 22AC BC =-=⨯-=. 综上,M 、N 两点间的距离为10cm 或2cm .【点睛】本题考查了线段中点的定义,解题关键是分情况确定点B 的位置,进行解答. 18.6n-3【分析】根据题意可以发现六个为一个循环每个循环中字母C 出现两次从而可以解答本题【详解】解:按照A→B→C→D→C→B→A→B→C→…的方式进行每6个字母ABCDCB 一循环每一循环里字母C 出现解析:6n-3【分析】根据题意可以发现六个为一个循环,每个循环中字母C 出现两次,从而可以解答本题.【详解】解:按照A→B→C→D→C→B→A→B→C→…的方式进行,每6个字母ABCDCB 一循环,每一循环里字母C 出现2次,当循环n 次时,字母C 第2n 次出现时(n 为正整数),此时数到最后一个数为6n ,当字母C 第(2n-1)次出现时(n 为正整数),再数3个数恰好一个循环,∴恰好数到的数是6n-3.故答案为:6n-3.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.19.【分析】根据正负数的含义可得:收入记住+则支出记作-据此判断即可【详解】解:如果收入80元记作+80元那么支出90元记作:-90元故答案为:-90【点睛】本题考查了正负数在实际生活中的应用要熟练掌握解析:90-【分析】根据正负数的含义,可得:收入记住“+”,则支出记作“-”,据此判断即可.【详解】解:如果收入80元记作+80元,那么支出90元记作:-90元.故答案为:-90.【点睛】本题考查了正负数在实际生活中的应用,要熟练掌握,解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.20.6552三、解答题21.(1)5、12;(2)10、C;(3)541人【分析】(1)根据组距的定义结合表格可得组距,求出男生总人数,再用女生总人数乘以B组的百分比可得;(2)将位于这一小组内的频数相加,分别计算出各组人数之和即可求得结果;(3)分别用男、女生的人数乘以对应的百分比,相加即可得解.【详解】解:(1)在样本中,组距是5,男生共有2+4+8+12+14=40人,∵男、女生的人数相同,女生身高在B组的人数有40×(1-35%-20%-15%-5%)=12人,故答案为:5、12;(2)在样本中,身高在170≤x<175之间的人数共有8+40×5%=10人,∵A组人数为2+40×20%=10人,B组人数为4+12=16人,C组人数为12+40×35%=26人,D 组人数为14+40×10%=18人,E组人数为8+40×5%=10人,∴C组人数最多,故答案为:10、C;(3)500×121440++480×(35%+10%)=541(人),故估计身高在160≤x<170之间的学生约有541人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(1)x =3;(2)x =1【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)移项,可得:3x ﹣2x =8﹣5,合并同类项,可得:x =3.(2)去分母,可得:5(x ﹣1)=10﹣2(3x +2),去括号,可得:5x ﹣5=10﹣6x ﹣4,移项,可得:5x +6x =10﹣4+5,合并同类项,可得:11x =11,系数化为1,可得:x =1.【点睛】本题考查一元一次方程的求解,熟练掌握一元一次方程的解法是解题关键.23.32【分析】本题需先设MC x =,根据已知条件C 点将线段MB 分成:1:3MC CB =的两段,求出MB=4x ,利用M 为AB 的中点,列方程求出x 的长,即可求出AB 的长;【详解】解:∵ :1:3MC CB =,设MC x =,则3CB x =,∴4AM MB MC CB x ==+=,∴4520AC AM MC x x x =+=+==,解得4x =.∵M 为AB 的中点∴832AB x ==.【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,求出线段的长是解本题的关键;24.(1)见解析;(2)52s n =+;(3)存在,见解析,第23个图形【分析】(1)观察图形与表格发现,后一个图形比前一个图形多用5根火柴棒,由此得出第三个图形比第二个图形多用5根火柴棒,第四个图形比第三个图形多用5根火柴棒;(2)由后一个图形比前一个图形多用5根火柴棒,而第一个图形用了7根火柴;即7=5×1+2,即可求出第n 个图形需要(5n+2)根小棒;(3)将s=117代入计算,即可求出答案.【详解】解:(1)根据题意,把下表填完整:7=5×1+2;第二个图形用了12根火柴;即12=5×2+2;第三个图形用了17根火柴;即17=5×3+2;…∴第n 个图形需要(5n+2)根小棒;∴52s n =+;故答案为:52s n =+. (3)根据题意,当117s =时,则52117n +=,解得:23n =,第23个图形共有117根火柴棒.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出发生变化的位置,并且观察变化规律,进而用式子表示一般规律.25.(1)-8;(2)-36【分析】(1)除法转化为乘法,再利用乘法分配律展开,进一步计算即可;(2)先计算乘方和绝对值、括号内的减法,再计算乘法,最后计算减法即可.【详解】解:(1)原式=215()(24)326+-⨯- =﹣16﹣12+20=﹣8;(2)(﹣2)3×(﹣2+6)﹣|﹣4|=(﹣8)×4﹣4=﹣32﹣4=﹣36.【点睛】本题考查了有理数的混合运算,解题关键是熟练的运用有理数的运算法则进行计算. 26.①共有10个正方体小木块组成;②详见解析;③240cm .【解析】【分析】①由俯视图可得该组合几何体最底层的小木块的个数,由主视图和左视图可得第二层和第三层小木块的个数,相加即可;②根据上题得到的正方体的个数在俯视图上标出来即可;③将几何体的暴露面(包括底面)的面积相加即可得到其表面积.【详解】解:①∵俯视图中有6个正方形,∴最底层有6个正方体小木块,由主视图和左视图可得第二层有3个正方体小木块,第三层有1个正方体小木块,∴共有10个正方体小木块组成.②根据①得:③表面积为:2+++++++=.6665563340cm【点睛】本题考查了由三视图判断几何体的知识,解决本类题目不但有丰富的数学知识,而且还应有一定的空间想象能力.。
浙教版七年级数学上册 期末综合培优考试卷(含答案)

浙教版七年级数学上册 期末模拟考试卷一、擦亮眼睛选一选(每小题只有一个正确答案,每小题2分,共20分)1.4的平方根是―――――――――――――――――――――――――― ( ) A .±2 B .2 C .—2 D .±22.零是―――――――――――――――――――――――――――――――( ) A .最小的有理数 B .最小的正整数 C .最小的自然数 D .最小的整数3.已知∠A 与∠B 互余,如果∠A=25°,则∠B 的度数是―――――――――( ) A .75° B .65° C .155° D .175°4.下列四个数中,无理数是―――――――――――――――――――――――( ) A .2.020020002 BC .17-D5.若a 与b 互为相反数,c 与d 互为倒数,则a -cd +b 的值等于――――――( ) A .2 B .-1 C .1 D .无法确定 6.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( ) A 、106元 B 、105元 C 、118元 D 、108元7.下图是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图,下面对全年食品支出费用判断正确的是――――――――――――――――――――――( ) A 、甲户比乙户多 B 、乙户比甲户多 C 、甲、乙两户一样多 D 、无法确定哪一户多8.已知:n 20是整数,则满足条件的最小正整数n 为――――――――― ( ) A 、2B 、3C 、4D 、59.如果012=-+x x ,那么代数式7223-+x x 的值为―――――― ( ) A 、6B 、8C 、6-D 、8-其他衣着食品教育其他教育食品衣着乙甲24%19%23%34%21%23%25%31% ABC D E O 第7题 第10题10.如图,点O 在直线AE 上,OB 平分∠AOC ,∠BOD=900,则∠DOE 和∠COB 的关系是―――――――――――――――――――――――――――――――( ) A 、互余 B 、互补 C 、相等 D 、和是钝角二、想清楚了再下手(每小题3分,共30分)11.32-的绝对值是 .12.在对某同学一天24小时支配方式的扇形统计图中,如果休息时间为30%,学习时间占40%,休闲娱乐占20%,剩下的为上学、放学时的走路时间,则走路时间为 小时. 13.在数轴上与表示3的点的距离最近的整数点所表示的数是 . 14.将近似数23460保留两个有效数字,并用科学记 数法表示 .15.写出一个以4-为解的一元一次方程: _______________________.16.已知A 、B 是数轴上两点,AB=2,如果A 表示 –1,则B 表示 .17.如图,∠AOC 和∠BOD 都是直角,若∠AOD=130°,则∠COB= .18.下列一组按规律排列的数:1,2,4,8,16,…,第2019个数是 . 19.如果代数式75-x 与x 39-的值互为相反数,则x =________. 20.对于任意两个有理数43*ba b a +=,则方程64*3=x 的解是=x .三、注重过程不丢分(本题有7小题,共50分)21.计算(6分)])3(1[31)5.01(124--⨯⨯---22.化简并求值(7分)当3=a ,32-=b 时,求代数式)(2)(22ba ab ab b a ---的值.OACBD23.解方程(6分)131=--x x24.小周测得班里五名同学的身高并把它绘制成统计图(如右图)(8分) (1)哪个同学最高?哪个同学最矮? (2)最高的同学的身高是最矮的同学身高的几倍?(结果保留二个有效数字)(3)为了更为直观、清楚地反映这5名同学的身高状况,这个图应做怎样的改动?25.(7分)如图,不在同一直线上的三点A 、B 、C ,读句画图 (1) 画线段AC ,射线AB ,直线BC .(2) 若点A 代表集镇,直线BC 表示一段河道,现要从河BC 向集镇A 引水,应按怎样的路线开挖水渠,才能使长度最短?请在图中画出这条路线,并说明理由。
浙教版七年级数学上综合培优

浙教版七年级数学上综合培优20181 .已知x=y ,则下面变形不一定成立的是(A. x+a=y+aB. x - a=y - aC. ■-D. 2x=2ya aA. 一33 .某块手表每小时比准确时间慢3分钟,若在清晨4点午该手表指示时间为 10点50分时,准确时间应该是(A. 11 点 10 分B. 11 点 9 分C. 11 点 8 分D. 11 4 .一队学生去校外参加劳动,以 4km/h 的速度步行前往,走了半小时,学校有紧急通知要传给队长,通讯员以 14km/h 的速度按原路追上去, ( )A. 10mi nB. 11minC. 12mi nD.3 3 35 .收费标准如下:用水每月不超过6m ,按0.8元/m 收费,如果超过6m ,超过部分按331.2元/m 收费.已知某用户某月的水费平均 0.88元/m ,那么这个用户这个月应交水费为( )A. 6.6 元B. 6 元C. 7.8 元D. 7.2 元6 .某商场五一期间举行优惠销售活动,采取满一百元送二十元,并且连环赠送 ”的酬宾方式,即顾客每消费满 100元(100元可以是现金,也可以是购物券,或二者合计)就送 20 元购物券,满200元就送40元购物券,依次类推,现有一位顾客第一次就用了 16 000元购 物,并用所得购物券继续购物,那么他购回的商品大约相当于它们原价的()A. 90%B. 85%C. 80%D. 77 .根据下面的两个统计图,下列说确的是()A. —中的学生喜欢运动,三中的学生喜欢学习B. —中喜欢足球的人数与三中喜欢数学的人数相等C. 三中喜欢自然的学生与一中喜欢排球的人数相等D. 以上答案都不正确&甲、乙两户居民家庭全年支出的费用都设计成扇形统计图.且知甲、乙两户食品支出费 用分别占全年支出费用的 31% 34%下面对食品支出费用判断正确的是()A.甲户比乙户多 B .乙户比甲户多 C.甲、乙两户一样多 D .无法确定哪一户多2 .如果关于x 的方程是一元一次方程,则 m 的值为(B . 3C .- 3D .不存在30分与准确时间对准,则当天上 ) 点7分则通讯员追上学生队伍所需的时间是13mi9•某出版局2004年在图书、杂志和报纸出版物中,杂志数目占总数目的 年,该出版局三类刊物出版印数如图.关于 2004年杂志数与2003年的杂志数相比,下列说确的是( )A.扩大B.减少C.相等D .不能判定10. 如图,共有线段( )-----C ~D —A. 3条B. 4条C. 5条D. 6条11. 平面有三条直线,它们的交点个数可能有(A. 2B. 3C. 4D. 512.在下列说法中,正确的是( )①两条射线组成的图形叫做角;②角的大小与边的长短无关; ③角的两边可以一样长,也可以一长一短;④角的两边是两条射线.A.①②B.②④C.②③D .③④8B. 延长一个角的两边D.反向延长射线OM 得到一个平角)B. 23°2' 36” =25.48 °D . 22.25 °22 °5 '10% 而在 2003)种情形.14.下列说法中正确的是()A .角是两条射线组成的图形 C .周角是一条射线15. 下列各式中,正确的角度互化是(A . 63.5 °63 °0 '冬,"7?0 4%16. 如图,/ AOB=130 °射线 0C是/ AOB部任意一条射线, 0D、OE分别是/ AOC、/BOC的平分线,下列叙述正确的是()B. Z AOD+ / BOE=Z EOC+ / COD= / DOE=65C. Z B0E=2 / CODD.Z AOD=-/jT0C217. 已知/ AOB=60 °其角平分线为 OM,/ BOC=20 °其角平分线为 ON,则/ MON的大小为()A. 20 °B. 40°C. 20° 或 40 °D . 30 或 10 °18. 已知/ AOC=2 / BOC,若/ BOC=30 °,/ AOB 等于()A. 90 °B. 30°C. 90° 或 30 °D . 120。
期末模拟试题(一)- 2022-2023学年七年级上册数学同步培优题库(浙教版)(解析卷)

2022-2023学年七年级上期期末模拟试题(一)注意事项:本试卷满分120分,考试时间120分钟,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·四川成都·七年级期末)目前,成都市已累计改造的老旧小区惠及居民约45万户,大力促进了人居环境有机更新,提升了市民幸福指数.将数据45万用科学记数法表示为()A.4.5×105B.4.5×104C.45×104D.0.45×1062.(2022·浙江·七年级期末)在实数−1,0,1中,最小的实数是()5A.−1 B.C.0 D.153.(2022·山东威海·期末)小明在设计黑板报时,想在黑板上画出一条笔直的参照线,由于尺子不够长,他想出了如下方法:①在一根长度合适的毛线上涂满粉笔末;②由两个同学分别按住毛线两端,并绷紧;③捏起毛线后松开,便可在黑板上弹出一条笔直的参照线.上述方法的数学依据是() A.两点之间,线段最短B.两点确定一条直线C.线段中点的定义D.两点间距离的定义【答案】B【分析】直接利用直线的性质分析得出答案.【详解】解:这种画法的数学依据是:两点确定一条直线.故选:B.【点睛】此题主要考查了直线的性质,正确把握直线的性质是解题关键.4.(2022·江西南昌·二模)已知一种户外帐篷的几何体及其主视图如图所示,则它的左视图为( )A .B .C .D .【答案】A 【分析】根据左视图的定义即从物体左边看到的平面图形进行选择即可.【详解】解:由左视图的定义得,形状为矩形,且中间分割线为虚线.故选:A【点睛】本题考查了三视图,左视图是从物体左边看到的视图.要注意左视图为矩形,中间线段看不到,故为虚线.5.(2022·浙江·七年级期末)下列说法正确的是( )A .2mn 与212n m -是同类项B .单项式x 没有系数C .33x y 的次数是3D .多项式2321x x --的项是23x ,2x ,1 【答案】A【分析】根据单项式、多项式及同类项的定义判断各选项即可.【详解】A.2mn 与212n m -是同类项,故A 正确;B.单项式x 的系数为1,故B 错误;C.33x y 的次数是4,故C 错误;D.多项式3x 2−2x −1的项是3x 2,-2x ,-1,故D 错误.故选:A .【点睛】本题主要考查了单项式、多项式及同类项的定义,熟练掌握单项式是数或字母的积组成的式子;单项式和多项式统称为整式,是解题的关键.6.(2022·河南南阳·七年级期末)已知等式325m n =+,则下列等式变形不正确的是( ) A .3126m n +=+B .352m n -=C .645m n =+D .2533m n =+ 【答案】C【分析】利用等式的性质逐项分析即可得出答案.【详解】解:等式325m n =+两边同时加1可得3126m n +=+,A 选项正确,不合题意;等式325m n =+两边同时减5可得352m n -=,B 选项正确,不合题意;等式325m n =+两边同时乘以2可得6410m n =+,C 选项不正确,符合题意;等式325m n =+两边同时除以3可得2533m n =+,D 选项正确,不合题意;故选:C . 【点睛】本题考查等式的变形,熟练掌握等式的性质是解题的关键.等式两边同时加上(或减去)同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立.7.(2022·浙江金华·七年级期末)将一副三角尺按下列三种位置摆放,其中能使α∠和∠β相等的摆放方式是( )A .B .C .D .【答案】A 【分析】根据图形以及三角板中的角度分别计算,αβ∠∠即可【详解】A.904545,45αβ∠=︒-︒=︒∠=︒,符合题意;B. 45,30αβ∠=︒∠=︒,不符合题意;C. 18045135,3090=120αβ∠=︒-︒=︒∠=︒+︒︒,不符合题意;D. 604515,30αβ∠=︒-︒=︒∠=︒,不符合题意;故选A【点睛】本题考查了三角板中角度的计算,掌握几何图形中角度的计算是解题的关键.8.(2022·广东广州·七年级期末)下列结论:①射线OP 和射线PO 是同一条射线;②如果线段AM =MC ,则M 是线段AC 的中点;③在同一平面内,已知∠AOB =60°,∠AOC =30°,则∠BOC =30°;④等角的余角相等.其中正确的结论有( )A .4个B .3个C .2个D .1个【答案】D【分析】根据射线定义,确定①错误;根据线段中点定义,只有三点共线结论才成立,折线不行,故②错误;根据角的定义及角度计算,若OC 在∠AOB 内部,则∠BOC =30°,若OC 在∠AOB 外部,则∠BOC =90°,故③错误;根据余角的性质,等角的余角相等,故④正确,即可得到结论.【详解】解:①根据射线定义,即可确定①错误;②根据线段中点定义,只有A M C 、、三点共线结论才成立,对于折线就不成立,故②错误; ③根据角的定义及角度计算,若OC 在∠AOB 内部,则∠BOC =30°;若OC 在∠AOB 外部,则∠BOC =90°,故③错误;④根据余角的性质,等角的余角相等,故④正确,故选:D .【点睛】本题主要考查射线定义、线段中点定义、角的概念与计算和余角的性质等知识,熟练掌握相关知识点并准确理解题意是解决问题的关键.9.(2022·浙江·七年级专题练习)将连续奇数1,3,5,7,9,…排成如图所示的数表,若将十字形框上下左右移动,可框出另外五个数,则框出的五个数之和可以是( )A .2020B .2022C .2023D .2025【答案】D【分析】先设中间的数为2x +1(x 为整数),进而得到该数上方、下方、左边、右边的数分别为(2x +1)-10、(2x +1)+10、(2x +1)-2、(2x +1)+2,然后求得框出的五个数之和,即可得到答案.【详解】解:设中间的数为2x +1(x 为整数),则该数上方、下方、左边、右边的数分别为(2x +1)-10、(2x +1)+10、(2x +1)-2、(2x +1)+2, ∴框出的五个数之和为(2x +1)+(2x +1)-10+(2x +1)+10+(2x +1)-2+(2x +1)+2=10x +5, ∵x 为整数,∴10x +5是5的倍数,且个位数字为5,故选:D .【点睛】本题考查了代数式的表示,属于数字的变化规律类题型,解题的关键是会用含有未知数的式子表示框出的5个数.10.(2022·江苏·无锡市江南中学七年级期中)如图为甲、乙、丙三根笔直的钢管平行摆放在地面上的情形.已知乙有一部分只与甲重叠,其余部分只与丙重叠,甲没有与乙重叠的部分的长度为3m ,丙没有与乙重叠的部分的长度为4m .若乙的长度最长且甲、乙的长度相差x m ,乙、丙的长度相差y m ,则乙的长度为(用含有x 、y 的代数式表示)( )A .()7m x y -+B .()7m x y ++C .()27m x y +-D .()27m x y +-【答案】B【分析】设乙的长度为a m ,则甲的长度为:()a x -m ;丙的长度为:()a y -m ,甲与乙重叠的部分长度为:(3)a x --m ;乙与丙重叠的部分长度为:(4)a y --m ,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,列出方程(3)(4)a x a y a --+--=,即可解答.【详解】解:设乙的长度为a m ,∵乙的长度最长且甲、乙的长度相差x m ,乙、丙的长度相差y m ,∴甲的长度为:()a x -m ;丙的长度为:()a y -m ,∴甲与乙重叠的部分长度为:(3)a x --m ;乙与丙重叠的部分长度为:(4)a y --m ,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,∴(3)(4)a x a y a --+--=,34a x a y a --+--=,34a a a x y +-=+++,7a x y =++,∴乙的长度为:(7)x y ++m ;故选:B【点睛】本题考查了列代数式,解决本题的关键是根据图形表示出长度,找到等量关系,列方程.二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)11.(2021·山东·七年级期末七年级期末)如图,把一副七巧板按如图进行1~7编号,1~7号分别对应着七巧板的七块,如果编号5对应的面积等于5cm 2,则由这幅七巧板拼得的“房子”的面积等于______cm 2.【答案】80【分析】将七巧板进行分割,分成16个面积相等的三角形,从而计算即可.【详解】解:如图,将七巧板进行如下分割,可将七巧板分成16个面积相等的三角形,其中编号5对应的面积为5cm 2,∴由这个七巧板拼成的正方形的面积为:16×5=80cm 2, 则拼成的“房子”的面积为80cm 2,故答案为:80.【点睛】本题考查了图形的剪拼,七巧板的性质,解题的关键是明确七巧板的构成,以及每块的面积与整个七巧板的关系. 12.(2022·河北·威县七年级期末)2的算术平方根是_____;2是____的算术平方根.【答案】2;4【分析】一个数的平方根有两个,其中正的根是这个数的算术平方根,由此即可求出答案.【详解】解:∵2的平方根是2± ,4的平方根是4=2±±,∴根据算术平方根的定义得,2 的算术平方根是2;2是4的算术平方根,故答案是:2;4【点睛】本题主要考查算术平方根的定义,理解算术平方根是一个数的平方根中正的那个根是解题的关键.13.(2022·江苏扬州·七年级阶段练习)在数轴上表示a ,0,1,b 四个数的点如图所示,已知=OA OB ,则化简:1a a b a b++++=______.【答案】a -【分析】根据数轴上的点的位置,=OA OB ,根据相反数的意义可得+a b 的符号,根据除法法则判断a b,根据点A 的位置可判断+1a 的符号,进而化简绝对值,即可求解.【详解】解:∵=OA OB ∴=a b ,根据数轴可知10a b <-<<,∴0,1,10a a b a b+==-+<∴1a a b a b ++++=011a a +--=-,故答案为:a - 【点睛】本题考查了根据数轴上的点的位置判断式子的符号,相反数的意义,有理数的除法,绝对值的意义,数形结合是解题的关键.14.(2022·广东茂名·七年级阶段练习)如图,每个小正方形边长都为1的3×3方格纸中,3个白色小正方形已被剪掉,现需在编号为①~⑥的小正方形中,再剪掉一个小正方形,从而使余下的5个小正方形恰好能折成一个棱长为1的无盖正方体,则需要再剪掉的小正方形可能是 _____.(请填写所有可能的小正方形的编号)【答案】①②③【分析】根据正方体的11种展开图的模型即可求解.【详解】解:把图中的①或②或③剪掉,剩下的图形能折成一个棱长为1的无盖正方体,故答案为:①②③.【点睛】本题考查了正方体的展开与折叠,牢记正方体的11种展开图的模型是解决本题的关键.15.(2022·浙江·宁波市七年级期末)点O为直线l上一点,射线OA、OB均与直线l重合,将射线OB绕点O逆时针旋转α(0≤α≤90°),过点O作射线OC、OD、OM、ON,使得∠BOC=90°,∠COD=2α,∠COM=13∠AOC,∠CON=13∠COD(OM在∠AOC内部,ON在∠COD内部),当∠MON=12α时,则α=_____.【答案】20°##20度【分析】由平角的定义可得∠AOC=180°﹣∠BOC﹣α=90°﹣α,由已知条件可得∠CON=23 a,∠COM=30°﹣13a,利用∠COM=∠MON+∠CON,即可求得α.【详解】解:由题意可得:∠AOC=180°﹣∠BOC﹣α=90°﹣α,∵∠COD=2α,∠COM=13∠AOC,∠CON=13∠COD,∴∠CON=23a,∠COM=13(90°﹣α)=30°﹣13a,∵∠COM=∠MON+∠CON,∠MON=12α∴30°﹣13a=12α+23a,解得:α=20°.故答案为:20°.【点睛】此题考查了角的运算问题,解题的关键是掌握角的和差关系以及运用一元一次方程求解.16.(2022·浙江温州·七年级期末)商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、商品代码和校验码”.校验码是用来校验商品条形码中前12位数字代码的正确性,具有特定的算法.如图1是某商品条形码,从左至右偶数位数字为9,2,2,5,0,6,奇数位数字为6,4,7,2,0,1,校验码的算法为:步骤1:计算偶数位数字之和a,即a=9+2+2+5+0+6=24;步骤2:计算奇数位数字之和b,即b=6+4+7+2+0+1=20;步骤3:计算3a与b的和c,即c=3×24+20=92;步骤4:取c的个位数d,d=2;步骤5:计算10与d的差就是校验码X,即X=10-2=8.若某条形码为690128599121M,则校验码M的值为_____;如图2,某条形码中的两位数字被墨水污染了,已知这两个数字相同,则这个数字是_____.【答案】9 5【分析】根据计算步骤直接求出M的值即可,设被污染的数字为x,根据步骤列方程求解即可.【详解】解:根据题意得:从左至右偶数位数字为9,1,8,9,1,1,奇数位数字为6,0,2,5,9,2,∴a=9+1+8+9+1+1=29,b=6+0+2+5+9+2=24,∴c=3×29+24=111,∴d=1,∴校验码M=10-1=9;设被墨水污染的数字为x,则条形码为693188x78899x,步骤1:计算偶数位数字之和a,即a=9+1+8+7+8+9=42,步骤2:计算奇数位数字之和b,即b=6+3+8+x+8+9=34+x,步骤3:计算3a与b的和c,即c=3×42+34+x=160+x,步骤4:取c的个位数d,d=x,步骤5:计算10与d的差就是校验码x,即x=10-x,解得x=5.故答案为:9;5【点睛】本题主要考查一元一次方程的应用,根据题中步骤列出方程并求解是解题的关键.三、解答题(本大题共8小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2022·浙江杭州·七年级期末)计算:(1)()()42015--+--; (3)()()32132232÷---⨯; (4)11632⎛⎫÷- ⎪⎝⎭. 4201524159(2)解:32716347--=--=-93282 1144822(4) 解:11632⎛⎫÷- ⎪⎝⎭236661666366【点睛】本题考查的含乘方的有理数的混合运算,平方根,立方根的含义,掌握混合运算的运算顺序,平方根,立方根的含义18.(2022·江苏·七年级期末)(1)先化简,再求值:4y ﹣(3x 2+5y ﹣3)﹣(﹣2x 2﹣5y +5),其中x =﹣3,y =﹣4;(2)若关于x ,y 的多项式3(x 2﹣2xy +y 2)﹣2(2x 2﹣kxy +2y 2)中不含xy 项,求k 的值. 【答案】(1)−x 2+4y −2,−27;(2)3.【分析】(1)原式去括号,合并同类项进行化简,然后代入求值; (2)原式去括号,合并同类项进行化简,然后令含xy 的项的系数为零,列方程求解.【详解】解:(1)原式=4y −3x 2−5y +3+2x 2+5y −5=−x 2+4y −2,当x =−3,y =−4时,原式=−(−3)2+4×(−4)−2=−9−16−2=−27;(2)原式=3x 2−6xy +3y 2−4x 2+2kxy −4y 2=−x 2−6xy +2kxy −y 2,∵原式的结果中不含xy 项,∴−6+2k =0,解得:k =3,即k 的值为3.【点睛】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“−”号,去掉“−”号和括号,括号里的各项都变号)是解题关键.19.(2022·广东·九年级专题练习)解方程:(1)()319x +=; (2)12123x x -+-=; (3))1(32)1(2121-=⎥⎦⎤⎢⎣⎡--x x x ; (4)3213(1)(32)(1)45102x x x --+=--.20.(2022·四川成都·七年级期末)先观察下列各式,再完成题后问题:1112323=-⨯;1113434=-⨯;1114545=-⨯ (1)①请仿照上面各式的结构写出:156=⨯__________; ②1111122334(1)n n +++⋅⋅⋅+=⨯⨯⨯+__________;(其中,n 为整数,且满足1n ≥) (2)运用以上方法思考:求1111111141224406084112144+++++++的值.11n n ++-+115672+++178+++⨯1178++-+【点睛】此题主要考查了数字变化规律,正确将已知分数化简变形是解题关键.21.(2022·云南临沧市·七年级期中)若整数m 的两个平方根为63a -,22a -;b (1)求a 及m 的值;(2)求275m b ++的立方根. 【答案】(1)a =4,m =36;(2)6【分析】(1)根据平方根的性质得到63220a a -+-=,求出a 值,从而得到m ;(2b 值,代入求出275m b ++,从而得到275m b ++的立方根. 【详解】解:(1)∵整数m 的两个平方根为63a -,22a -, ∴63220a a -+-=,解得:4a =,∴222426a -=⨯-=,∴m =36;(2)∵b <910<,∴b =9, ∴275275369216m b ++=+⨯+=,∴275m b ++的立方根为6.【点睛】本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.22.(2022·浙江·七年级期末)“双十一”期间,某电商城销售一种空调和立式风扇,空调每台定价3000元,立式风扇每台定价600元.商场决定开展促销活动,活动期间向客户提供两种优惠方案. 方案一:买一台空调送一台立式风扇;方案二:空调和立式风扇都按定价的90%付款.现某客户要到该卖场购买空调5台,立式风扇x 台(x >5).(1)若该客户按方案一购买,需付款 元,(用含x 的代数式表示)若该客户按方案二购买,需付款 元.(用含x 的代数式表示)(2)若x =10,通过计算说明此时按哪种方案购买较为合算?(3)当x =10时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元? 【答案】(1)(60012000x +),(50013500x +) (2)方案一购买较划算(3)先按方案一购买5台空调,送5台立式风扇,再按方案二购买5台立式风扇,付款17700元【分析】(1)方案一:买5台空调,送5台立式风扇,故费用为:5台空调的费用加上(5)x -台立式风扇的费用方案二:5台空调的90%加上x 台立式风扇的90%,通过计算比较即可 (2)将10x =分别代入(1)中所得的两种方案中并计算即可(3)买空调最多5台,故可先买5台空调,送5台立式风扇,再按第二种方案购买5台立式风扇即可 (1)解:按方案一购买,需付款: 30005(5)600x ⨯+-⨯ (60012000)x =+(元)按方案二购买,需付款:3000590%90%600x ⨯⨯+⨯ (54013500)x =+ (元)故答案为:(60012000)x +,(54013500)x + (2)解:当10x=时,方案一:600101200018000⨯+=(元)方案二:540101350018900⨯+=(元)1800018900<∵∴此时按方案一方案购买较为合算(3)解:先按方案一买5台空调,送5台立式风扇,再按方案二买5台立式风扇53000560090%17700⨯+⨯⨯=(元)答:需付款17700元【点睛】本题考查了列代数式及代数式求值在销售问题中的应用,理清题中的数量关系是解题的关键23.(2022·河北·七年级期末)如图,已知点C在线段AB上,AB=20,BC=13AC,点D,E在射线AB上,点D在点E的左侧.(1)DE在线段AB上,当E为BC中点时,求CE的长;(2)在(1)的条件下,点F在线段AB上,CF=3,求EF的长;(3)若AB=2DE,线段DE在射线AB上移动,且满足关系式4BE=3(AD+CE),求CDAC的值.【答案】(1)CE=2.5;(2)EF的长为0.5或5.5;(3)1930 CDAC=.【分析】(1)根据AC=20,BC=13AC可得BC的长度,再根据线段的中点可得答案;(2)分两种情况:当点F在点E的右侧或当点F在点E的左侧,再根据线段的中点计算即可;(3)根据DE的位置分情况计算即可.(1)解:∵AB=20,BC=13 AC,∴BC=5,AC=15,∵E为BC中点,∴CE=2.5;(2)解:当点F在点E的右侧,如图,EF=CF-CE=3-2.5=0.5,当点F在点E的左侧,如图,EF=CF+CE=3+2.5=5.5,综上:EF的长为0.5或5.5;(3)解:∵BC=13AC,AB=2DE,满足关系式4BE=3(AD+CE),设CE=x,BC=5,AC=15,DE=10,①当DE在线段AC上时,如图,则AD=15-x-10=5-x,BE=5+x,∵4BE=3(AD+CE),即4(5+x)=3(5-x+x),解得x=-1.25,不合题意,舍去;②当点C在DE之间时,如图,∴AD=15+x-10=5+x,BE=5-x,∵4BE=3(AD+CE),即4(5-x)=3(5+x+x),解得x=0.5,∴CD=10-0.5=9.5,∴9.5191530 CDAC==;③线段CB在线段DE上时,如图,则AD=15+x-10=5+x,BE=x-5,即4(x-5)=3(5+x+x),解得x=-17.5,不合题意,舍去;④当D 在CB 之间时,如图,AD =15+x -10=5+x ,BE =x -5, 即4(x -5)=3(5+x +x ), 解得x =-17.5,不合题意,舍去; ⑤当D 在B 的右边时,如图,AD =15+x -10=5+x ,BE =x -5,即 4(x -5)=3(5+x +x ), 解得x =-17.5,不合题意,舍去. 综上,1930CD AC =. 【点睛】本题考查了两点间的距离,熟练掌握线段中点的定义和线段的和差是解题关键,注意分情况计算.24.(2022·浙江宁波·七年级期末)如图①.直线DE 上有一点O , 过点O 在直线DE 上方作射线OC , 将一直角三角板AOB (其中45OAB ∠=)的直角顶点放在点O 处, 一条直角边OB 在射线 OE 上, 另一边OA 在直线DE 的上方,将直角三角形绕着点O 按每秒15的速度顺时针旋转一周,设旋转时间为t 秒.(1)当直角三角板旋转到图②的伩置时, 射线OB 恰好平分COE ∠, 此时, AOC ∠与AOD ∠ 之间的数量关系为____________.(2)若射线OC 的位置保持不变, 且120COD ∠=,①在旋转过程中,是否存在某个时刻,使得射线OB , 射线OC , 射线OE 中的某一条射线是另外两条射线所夹锐角的角平分线? 若存在,请求出t 的值; 若不存在, 请说明理由;②在旋转过程中, 当边AB 与射线OD 相交时, 如图③, 请直接写出BOC AOD ∠∠-的值____________.【答案】(1)AOC AOD∠=∠(2)①2t=;②30︒【分析】(1)根据OB平分∠COE,得出∠COB=∠EOB,根据∠AOB=90°,得出∠BOC+∠AOC =90°,∠BOE+∠AOD =90°,利用等角的余角性质得出∠AOC=∠AOD即可;(2)①存在,根据120COD∠=,得出∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边OB在射线OE上,∠EOB=∠BOC=11603022COE∠=⨯︒=︒,列方程15°t=30°,解得t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∠EOB=2∠EOC=120°>90°,∠EOB不是锐角舍去,当OE 平分∠BOC时,∠EOB=∠EOC=60°,∠BOC=2∠EOC=120°>90°∠BOC不是锐角舍去即可;②如图根据∠COD=120°,可得AB与OD相交时,∠BOC=∠COD-∠BOD=120°-∠BOD,∠AOD=∠AOB-∠BOD=90°-∠BOD,代入计算即可.(1)解:∵OB平分∠COE,∴∠COB=∠EOB,∵∠AOB=90°,∴∠BOC+∠AOC =90°,∠BOE+∠AOD =90°,∴∠AOC=∠AOD,故答案为:∠AOC=∠AOD;(2)解:①存在,∵120COD∠=,∴∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边OB在射线OE上,∠EOB=∠BOC=11603022COE∠=⨯︒=︒,则15°t=30°,∴t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∴∠EOB=2∠EOC=120°>90°,∴当OC平分∠EOB时,∠EOB不是锐角舍去,当OE 平分∠BOC 时,∠EOB =∠EOC =60°, ∴∠BOC =2∠EOC =120°>90°,当OE 平分∠BOC 时,∠BOC 不是锐角舍去,综上,所有满足题意的t 的取值为2, ②如图∵∠COD =120°, 当AB 与OD 相交时,∵∠BOC=∠COD-∠BOD=120°-∠BOD ,∠AOD=∠AOB-∠BOD=90°-∠BOD , ∴()1209030BOC AOD BOD BOD ∠∠-=︒-∠-︒-∠=︒,故答案为:30°.【点睛】本题考查角平分线定义,三角板中角度计算,图形旋转,角的和差计算,熟练掌握角平分线的性质,分类讨论的思想运用是解答的关键.。
浙教版(2024)数学七年级上册期末综合素质评价(含答案)

期末综合素质评价一、选择题(本题有10小题,每小题3分,共30分)1.若a与1互为相反数,则a的值为( )A.-1B.0C.2D.12.下列说法:①规定了原点、正方向的直线是数轴;②数轴上两个不同的点可以表示同一个有理数;③无理数在数轴上无法表示出来;④任何一个有理数都可以在数轴上找到与它对应的唯一点.其中正确的是( )A.①②③④B.②③C.③④D.④3.据浙江省统计局统计,2023年上半年全省生产总值为3871700000 000元.数3871700000000用科学记数法表示为( ) A.0.38717×1013B.3.8717×1012 C.3.8717×1011D.38.717×1011a2b2+3y是同类项,则x和y 4.[2024·桐庐校级月考]已知2a7x-5b17与-13的值分别为( )A.5,1B.1,5C.-1,5D.-5,1 5.[2024·杭州拱墅区校级月考]已知关于x的方程(k-2)x|k|-1+6=3k是一元一次方程,则k=( )A.±2B.2C.-2D.±16.同一平面内有A,B,C三点,经过任意两点画直线,共可画( )A.1条B.3条C.1条或3条D.不能确定7.下列说法中正确的有( )①过两点有且只有一条直线;②连结两点的线段叫两点间的距离;③有公共端点的两条射线组成的图形叫作角;④若AB=BC,则点B是AC 的中点.A.1个B.2个C.3个D.4个8.如图,1时30分的时候,钟表的时针与分针所组成的小于平角的角的度数是( )A .120°B .125°C .135°D .150°9.一艘船在静水中的速度为20 km /h ,水流速度为4 km /h ,从甲码头顺流航行到乙码头,再返回到甲码头共用5 h .若设甲、乙两码头的距离为x km ,则下列方程正确的是( )A .(20+4)x +(20-4)x =5B .20x +4x =5C . x 20+x 4=5D . x 20+4+x20-4=510.[新视角 新定义题]定义:对于一个有理数x ,我们把[x ]称作x 的伴随数:若x ≥0,则[x ]=x -1;若x <0,则[x ]=x +1.例如:[1]=1-1=0,[-2]=-2+1=-1.现有以下判断:(1)[0]=-1;(2)已知有理数x >0,y <0,且满足[x ]=[y ]+1,则x -y =3;(3)对任意有理数x ,有[x ]-[x +1]=-1或1;(4)方程[3x ]+[x +5]=3的解只有x =0.其中正确的是( )A .(1)(3)B .(1)(2)(3)C .(1)(2)(4)D .(1)(2)(3)(4)二、填空题(本题有6小题,每小题4分,共24分)11.建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是: .12.[2024·丽水校级二模]将实数-π,0,-5和2由小到大用“<”连接起来为 .13.[2024·绍兴越城区期末]如图,在同一平面内,三角尺的直角顶点C 正好在直线DE 上.如果∠BCE =25°,那么∠ACD 的度数为 °.14.[2024·衢州期末]如果x -2y +1=0,那么代数式2 024-2x +4y3= .15.如图是一组有规律的图案,它由若干个大小相同的圆片组成,第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…,依此规律,第n 个图案中有 个白色圆片(用含n 的代数式表示).16.如图,已知数轴上点A 对应的数为8,B 是数轴上一点,且AB =14.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t s (t >0).当t = 时,PB =4.三、解答题(本题有8小题,共66分)17.(6分)计算:(1)(-3)-|-8|-2×(-4);(2)-14-12×[3-(-3)2].18.(6分)解方程:(1)2(x +4)=3x -8;(2)2x +13-x -56=1.19.(6分)先化简,再求值:23(6a -3ab )+(ab -2a )-2(ab +b ),其中a -b =9,ab =-6.20.(8分)如图,已知在平面上有三个点A ,B ,C ,请用尺规按下列要求作图:(1)作直线AB ;(2)作射线AC ;(3)在射线AC 上作线段AD ,使AD =2AB.21.(8分)已知一个正数的平方根分别是a -2和7-2a ,3b +1的立方根是-2,c 是39的整数部分.(1)求a ,b ,c 的值;(2)求5a +2b -c 的平方根.22.(10分)[2023·衢州衢江区期末]如图,直线AB ,CD 相交于点O ,OE 是∠BOC 内一条射线,OC 平分∠AOE .(1)若∠BOE =80°,求∠AOC 的度数;(2)若∠BOE 比∠BOD 大30°,求∠BOD 的度数.23.(10分)[情境题 生活应用]某地天然气收费方案如下:阶梯年用气量价格补充说明第一阶梯0~400 m 3(含400)的部分3元/m 3第二阶梯400~800 m 3(含800)的部分4元/m 3第三阶梯800 m 3以上的部分5元当家庭人口超过3人时,每增加1人,第一、二阶梯年用气量上限将分别增加100 m 3,150 m 3,同时,第二、三阶梯年用气量下限随之调整,每一阶梯的价格保持不变5/m 3(1)某家庭当年用气量为500 m 3.若该家庭人口为3人,则需缴纳燃气费用 元;若该家庭人口为4人,则需缴纳燃气费用 元.(2)甲户家庭人口为3人,乙户家庭人口为4人.某年甲、乙两户年用气量之和为1 000 m 3,甲户年用气量大于乙户年用气量.已知甲、乙两户一共缴纳燃气费用3 200元,求甲、乙两户年用气量分别是多少.(3)某公司共有22名员工,员工宿舍有3人间和4人间两种类型的房间可供选择,且员工所选择的房间必须住满.结算天然气费用时,将每间宿舍视作一户家庭,按上表的收费标准进行收费.假定每名员工的年用气量为250 m 3,要使该公司员工宿舍当年缴纳总天然气费用最低,则3人间的房间数为 .24.(12分)[新视角 动态探究题]如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”.图中点A 表示-12,点B 表示10,点C 表示20,我们称点A 和点C 在“折线数轴”上相距32个单位长度.动点P 从点A 出发,以2个单位长度/秒的速度沿“折线数轴”的正方向运动,从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q 从点C 出发,以1个单位长度/秒的速度沿“折线数轴”的负方向运动,从点B 运动到点O 期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t 秒,回答下列问题:(1)动点P 从点A 运动至点C 需要多久?(2)若P ,Q 两点在点M 处相遇,则点M 在“折线数轴”上表示的数是多少?(3)当t 为何值时,P ,O 两点在“折线数轴”上相距的长度与Q ,B 两点在“折线数轴”上相距的长度相等?7参考答案一、1. A 2. D 3. B 4. B 5. C 6. C 7. B 8. C 9. D 10. B二、11.两点确定一条直线 12.-π<-5<0<213.115 14.2 026 15.(2+2n ) 16.2或3.6三、17.【解】(1)原式=-3-8+8=-3.(2)原式=-1-12×(3-9)=-1+3=2.18.【解】(1)2(x +4)=3x -8,2x +8=3x -8,2x -3x =-8-8,-x =-16,x =16.(2)2x +13-x -56=1,2(2x +1)-(x -5)=6,4x +2-x +5=6,4x -x =6-2-5,3x =-1,x =-13.19.【解】原式=4a -2ab +ab -2a -2ab -2b=2a -3ab -2b =2(a -b )-3ab .因为a -b =9,ab =-6,所以原式=2×9-3×(-6)=36.20.【解】(1)如图,连结AB ,并延长AB ,BA ,得到直线AB .(2)如图,连结AC ,并延长AC ,得到射线AC .(3)如图,以点A 为圆心,线段AB 长为半径画弧,交射线AC 于点E,再以点E为圆心,线段AB长为半径画弧,交射线AC于点D,线段AD即为所求.21.【解】(1)因为一个正数的平方根分别是a-2和7-2a,所以a-2+7-2a=0,解得a=5.因为3b+1的立方根是-2,所以3b+1=-8,解得b=-3.因为36<39<49,所以6<39<7,39的整数部分是6,所以c=6,所以a的值为5,b的值为-3,c的值为6.(2)因为a的值为5,b的值为-3,c的值为6,所以5a+2b-c=5×5+2×(-3)-6=13,所以5a+2b-c的平方根为±13.22.【解】(1)因为∠BOE=80°,∠BOE+∠AOE=180°,所以∠AOE=180°-∠BOE=100°.因为OC平分∠AOE,所以∠AOC=1∠AOE=50°.2(2)设∠BOD=x,则∠AOC=x.因为OC平分∠AOE,所以∠AOE=2∠AOC=2x.因为∠BOE比∠BOD大30°,所以∠BOE=x+30°.因为∠AOE+∠BOE=180°,所以2x+x+30°=180°,解得x=50°,即∠BOD=50°.23.【解】(1)1600;1500(2)设甲户的年用气量为x m3,则乙户的年用气量为(1000-x)m3.因为甲户年用气量大于乙户年用气量,所以x>1000-x,所以x>500,所以1000-x<500.当500<x≤800时,3×400+4(x-400)+3(1000-x)=3200.解得x=600.当800<x<1000时,3×400+4×(800-400)+5(x-800)+3(1000-x)=3200.解得x=700(不合题意,舍去).所以x=600,所以1000-x=400.答:甲、乙两户年用气量分别是600m3,400m3.(3)624.【解】(1)动点P从点A运动至点C需要的时间为[0-(-12)]÷2+(20-10)÷2+(10-0)÷1=6+5+10=21(秒).(2)由题意可得P,Q两点在OB上相遇,所以(t-6)+2(t-10)=10,解得t=12.所以点M在“折线数轴”上所表示的数是6.(3)当点P在AO上,点Q在CB上时,OP=12-2t,BQ=10-t,因为OP=BQ,所以12-2t=10-t,解得t=2;当点P在OB上,点Q在CB上时,OP=t-6,BQ=10-t,因为OP=BQ,所以t-6=10-t,解得t=8;当点P在OB上,点Q在OB上时,OP=t-6,BQ=2(t-10),因为OP=BQ,所以t-6=2(t-10),解得t=14;当点P在BC上,点Q在OA上时,OP=10+2(t-16),BQ=10+(t-15),因为OP=BQ,所以10+2(t-16)=10+(t-15),解得t=17.综上所述:当t=2或8或14或17时,P,O两点在“折线数轴”上相距的长度与Q,B两点在“折线数轴”上相距的长度相等.9。
2020-2021学年浙江版七年级上册数学 期末测评培优卷(含解析)(1)

2020-2021学年浙江版七年级上册数学期末测评培优卷(含解析)(一)(测试时间:120分钟,满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•杭州期中)下列运算正确的是()A.(﹣1)2020=﹣1 B.﹣22=4 C.±3 D. 32.(2020秋•瑞安市期中)下列四个实数中,最小的是()A.﹣2 B.C.0 D.23.(2020秋•瑞安市期中)在数轴上到表示﹣1的点的距离是3个单位的点所表示的数为()A.2 B.﹣2或4 C.﹣4 D.﹣4或24.(2020秋•余杭区期中)下列说法正确的是()①一个数的绝对值一定是正数;②绝对值是同一个正数的数有两个,它们互为相反数;③任何有理数小于或等于它的绝对值;④绝对值最小的整数是1.A.②③B.①②③C.①②D.②③④5.(2020春•义乌市期末)下列各组数中,相等的一组是()A.﹣(﹣1)与﹣|﹣1| B.﹣32与(﹣3)2C.(﹣4)3与﹣43D.与()2 6.(2020•温岭市校级期末)已知单项式﹣3a m﹣1b6与ab2n是同类项,则m+n的值是()A.0 B.3 C.4 D.57.(2020•上城区期末)若ax=ay,那么下列等式一定成立的是()A.x=y B.x=|y| C.(a﹣1)x=(a﹣1)y D.3﹣ax=3﹣ay 8.(2020•吴兴区期末)如图,AC⊥BC,AC=4,点D是线段BC上的动点,则A、D两点之间的距离不可能是()A.3.5 B.4.5 C.5 D.5.59.(2020•上城区期末)某商场年收入由餐饮、零售两类组成.已知2018年餐饮类收入是零售类收入的2倍,2019年因商场运营调整,餐饮类收入减少了10%,零售类收入增加了18%,若该商场2019年零售类收入为708万元,则该商场2019的年收入比2018年()A.增加12万元B.减少12万元C.增加24万元D.减少24万元10.(2020•椒江区期末)如图,点C、D为线段AB上两点,AC+BD=a,且AD+BC AB,则CD 等于()A.2a B.a C.a D.a二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2020秋•翠屏区期末)3.(选填“>”、“<”或“=”)12.(2020秋•西湖区校级期中)比较8的立方根和2的平方根的大小:.(结果用<号连接)13.已知关于x的一元一次方程0.5x+1=2x+b的解为x=2,那么关于y的一元一次方程0.5(y﹣1)+1=2(y﹣1)+b的解为.14.(2020秋•垦利区期末)一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折2次后,可以得3条折痕,那么对折5次可以得到条折痕.15.(2020秋•上城区期末)如图,点O在直线AB上,∠AOD=120°,CO⊥AB,OE平分∠BOD,则图中一共有对互补的角.16.(2020秋•上城区期末)如图,一个点表示一个数,不同位置的点表示不同的数,每行各点所表示的数自左向右从小到大,且相邻两个点所表示的数相差1,每行数的和等于右边相应的数字.那么,表示2020的点在第行,从左向右第个位置.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2020春•肇源县期末)计算与化简:(1)12﹣(﹣6)+(﹣9);(2)(﹣48)×();(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.18.(2019秋•吉州区期末)先化简,再求值:xy,其中x =3,y.19.(2020•顺德区模拟)解方程(1)x﹣2(x﹣4)=3(1﹣x)(2)120.(2020春•南岗区校级期中)某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?21.(2019秋•苍南县期末)已知点A,B,C如图所示,根据要求完成下列各题.(1)画直线BC,线段AB和射线CA.(2)过点A画BC的垂线段AD,垂足为D,并量出点A到直线BC的距离为cm.(以答题纸为测量依据,结果精确到0.1cm).22.(2020秋•西湖区校级期中)数学中,运用整体思想方法在求代数式的值中非常重要.例如:已知,a2+2a=1,则代数式2a2+4a+4=2(a2+2a)+4=2×1+4=6.请你根据以上材料解答以下问题:(1)若x2﹣3x=2,则1+3x﹣x2=;(2)已知a﹣b=5,b﹣c=3,求代数式(a﹣c)2﹣3a+2+3c的值;(3)当x=﹣1,y=2时,代数式ax2y﹣bxy2﹣1的值为8,则当x=1,y=﹣2时,求代数式ax2y﹣bxy2﹣1的值.23.(2019秋•义乌市期末)(1)如图(a),将两块直角三角尺的直角顶点C叠放在一起.①若∠DCE=60°,则∠ACB=;若∠ACB=140°,则∠DCE=.②猜想∠ACB与∠DCE的度数有何特殊关系,并说明理由.(2)如图(b),两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的度数有何关系?请说明理由.(3)如图(c),已知∠AOB=α,作∠COD=β(α,β都是锐角且α>β),若OC在∠AOB的内部,请直接写出∠AOD与∠BOC的度数关系.24.(2019秋•吴兴区期末)每年“双十一”购物活动,商家都会利用这个契机进行打折满减的促销活动.某商家平时的优惠措施是按所有商品标价打七折;“双十一”活动期间的优惠措施是:购买的所有商品先按标价总和打七五折,再享受折后每满200元减30元的优惠.如标价为300元的商品,折后为225元,再减30元,即实付:300×0.75﹣30=195(元).(1)该商店标价总和为1000元的商品,在“双十一”购买,最后实付只需多少元?(2)小明妈妈在这次活动中打算购买某件商品,打折满减后,应付金额是507元,求该商品的标价.(3)在(2)的条件下,若该商家出售的商品标价均为整数,小明通过计算后告诉妈妈:通过凑单的办法,只须再多支付元,就可以得到最大的优惠.2020-2021学年浙江版七年级上册数学期末测评培优卷(含解析)(一)(测试时间:120分钟,满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•杭州期中)下列运算正确的是()A.(﹣1)2020=﹣1 B.﹣22=4C.±3 D. 3【分析】依据乘方运算,算术平方根以及立方根的定义,即可得出结论.【解析】A.(﹣1)2020=1,故本选项错误;B.﹣22=﹣4,故本选项错误;C.,故本选项错误;D.,故本选项正确;故选:D.2.(2020秋•瑞安市期中)下列四个实数中,最小的是()A.﹣2 B.C.0 D.2【分析】先根据实数的大小比较法则进行比较,再得出选项即可.【解析】﹣20<2,所以最小的是﹣2,故选:A.3.(2020秋•瑞安市期中)在数轴上到表示﹣1的点的距离是3个单位的点所表示的数为()A.2 B.﹣2或4 C.﹣4 D.﹣4或2【分析】先根据题意列出算式﹣1+3和﹣1﹣3,再求出答案即可.【解析】﹣1+3=2,﹣1﹣3=﹣4,所以在数轴上到表示﹣1的点的距离是3个单位的点所表示的数为是﹣4或2,故选:D.4.(2020秋•余杭区期中)下列说法正确的是()①一个数的绝对值一定是正数;②绝对值是同一个正数的数有两个,它们互为相反数;③任何有理数小于或等于它的绝对值;④绝对值最小的整数是1.A.②③B.①②③C.①②D.②③④【分析】根据绝对值的意义和性质,逐项判断即可.【解析】0的绝对值是0,因此选项A不符合题意;绝对值是同一个正数的数有两个,它们互为相反数,因此选项B符合题意;正数和0的绝对值等于它本身,负数的绝对值等于它的相反数,因此选项C符合题意;绝对值最小生物数是0,因此选项D不符合题意;因此,正确的结论有②③,故选:A.5.(2020春•义乌市期末)下列各组数中,相等的一组是()A.﹣(﹣1)与﹣|﹣1| B.﹣32与(﹣3)2C.(﹣4)3与﹣43D.与()2【分析】根据有理数的乘方的定义,绝对值的性质对各选项分别计算,然后利用排除法求解.【解析】A、﹣|﹣1|=﹣1,﹣(﹣1)=1,﹣(﹣1)≠﹣|﹣1|,故本选项错误;B、(﹣3)2=9,﹣32=﹣9,9≠﹣9,故本选项错误;C、(﹣4)3=﹣64,﹣43=﹣64,(﹣4)3=﹣43,故本选项正确;D、,,,故本选项错误.故选:C.6.(2020•温岭市校级期末)已知单项式﹣3a m﹣1b6与ab2n是同类项,则m+n的值是()A.0 B.3 C.4 D.5【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得m、n的值,再代入所求式子计算即可.【解析】∵单项式﹣3a m﹣1b6与ab2n是同类项,∴m﹣1=1,2n=6,解得m=2,n=3,∴m+n=2+3=5.故选:D.7.(2020•上城区期末)若ax=ay,那么下列等式一定成立的是()A.x=y B.x=|y| C.(a﹣1)x=(a﹣1)y D.3﹣ax=3﹣ay【分析】利用等式的性质对每个式子进行变形即可找出答案.【解析】A、当a=0时,x与y不一定相等,故本选项错误;B、当a=0时,x与|y|不一定相等,故本选项错误;C、当a=0时,x与y不一定相等,故本选项错误;D、等式ax=ay的两边同时乘﹣1,再同时加上3,该等式仍然成立,故本选项正确.故选:D.8.(2020•吴兴区期末)如图,AC⊥BC,AC=4,点D是线段BC上的动点,则A、D两点之间的距离不可能是()A.3.5 B.4.5 C.5 D.5.5【分析】利用垂线段最短得到AD≥AC,然后对各选项进行判断.【解析】∵AC⊥BC,AC=4,∴AD≥AC,即AD≥4.观察选项,只有选项A符合题意.故选:A.9.(2020•上城区期末)某商场年收入由餐饮、零售两类组成.已知2018年餐饮类收入是零售类收入的2倍,2019年因商场运营调整,餐饮类收入减少了10%,零售类收入增加了18%,若该商场2019年零售类收入为708万元,则该商场2019的年收入比2018年()A.增加12万元B.减少12万元C.增加24万元D.减少24万元【分析】设2018年零售类收入为x万元,餐饮类收入为2x万元,由“零售类收入增加了18%,若该商场2019年零售类收入为708万元”,列出方程可求x的值,即可求解.【解析】设2018年零售类收入为x万元,餐饮类收入为2x万元,由题意可得:x(1+18%)=708,解得:x=600,∴2x=1200万元,∴708+1200×(1﹣10%)﹣(600+1200)=﹣12万元,∴该商场2019的年收入比2018年减少了12万元,故选:B.10.(2020•椒江区期末)如图,点C、D为线段AB上两点,AC+BD=a,且AD+BC AB,则CD 等于()A.2a B.a C.a D.a【分析】根据线段的和差定义计算即可.【解析】∵AD+BC AB,∴2(AD+BC)=3AB,∴2(AC+CD+CD+BD)=3(AC+CD+BD),∴CD=AC+BC=a,故选:B.二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2020秋•翠屏区期末)3.(选填“>”、“<”或“=”)【分析】应用放缩法,判断出、3的大小关系即可.【解析】∵3,∴3.故答案为:>.12.(2020秋•西湖区校级期中)比较8的立方根和2的平方根的大小:.(结果用<号连接)【分析】利用立方根的定义和平方根的定义确定出各数,再比较数的大小即可.【解析】8的立方根是2,2的平方根是±,则2,故答案为:2.13.已知关于x的一元一次方程0.5x+1=2x+b的解为x=2,那么关于y的一元一次方程0.5(y﹣1)+1=2(y﹣1)+b的解为.【分析】设y﹣1=m,则方程变形为0.5m+1=2m+b,根据关于x的方程0.5x+1=2x+b的解为x=2,即可得出m=2,进而得出关于y的一元一次方程,解方程即可得出y值,此题得解.【解析】设y﹣1=﹣m,则方程变形为0.5m+1=2m+b,∵关于x的方程0.5x+1=2x+b的解为x=2,∴m=2,即y﹣1=2,解得:y=3,∴关于y的一元一次方程0.5(y﹣1)+1=2(y﹣1)+b的解为y=3.故答案为:y=3.14.(2020秋•垦利区期末)一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折2次后,可以得3条折痕,那么对折5次可以得到条折痕.【分析】对前三次对折分析不难发现每对折1次把纸分成的部分是上一次的2倍,折痕比所分成的部分数少1,求出第4次的折痕即可;再根据对折规律求出对折n次得到的部分数,然后减1即可得到折痕条数.【解析】由图可知,第1次对折,把纸分成2部分,1条折痕,第2次对折,把纸分成4部分,3条折痕,第3次对折,把纸分成8部分,7条折痕,第4次对折,把纸分成16部分,15条折痕,…,依此类推,第n次对折,把纸分成2n部分,2n﹣1条折痕.当n=5时,25﹣1=31,故答案为:31.15.(2020秋•上城区期末)如图,点O在直线AB上,∠AOD=120°,CO⊥AB,OE平分∠BOD,则图中一共有对互补的角.【分析】根据互补的定义进行解答,找到两个角之和为180°角的对数.【解析】∵∠AOD=120°,CO⊥AB于O,OE平分∠BOD,∴∠COD=∠DOE=∠EOB=30°,∴这三个角都与∠AOE互补.∵∠COE=∠DOB=60°,∴这两个角与∠AOD互补.另外,∠AOC和∠COB都是直角,二者互补.因此一共有6对互补的角.故答案为:6.16.(2020秋•上城区期末)如图,一个点表示一个数,不同位置的点表示不同的数,每行各点所表示的数自左向右从小到大,且相邻两个点所表示的数相差1,每行数的和等于右边相应的数字.那么,表示2020的点在第行,从左向右第个位置.【分析】观察不难发现,每一行的数字的个数为连续的奇数,且数字为相应的序数,然后求解即可.【解析】由图可知,前n行数的个数为1+3+5+…+2n﹣1n2,∵452=2025,∴表示2020的点在第45行,从左向右第45×2﹣1﹣(2025﹣2020)=84个位置.故答案为:45;84.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2020春•肇源县期末)计算与化简:(1)12﹣(﹣6)+(﹣9);(2)(﹣48)×();(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.【分析】根据有理数的混合运算顺序和运算法则进行计算便可.【解析】(1)12﹣(﹣6)+(﹣9)=12+6+(﹣9)=18+(﹣9)=9;(2)(﹣48)×()=(﹣48)×()+(﹣48)×()+(﹣48)=24+30﹣28=26;(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3=﹣9÷46+(﹣8)6+(﹣8)=(﹣18)+(﹣8)=﹣26.18.(2019秋•吉州区期末)先化简,再求值:xy,其中x =3,y.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解析】原式=3x2y﹣2xy2+2xy﹣3x2y+3xy2﹣xy=xy2+xy,当x=3,y时,原式1.19.(2020•顺德区模拟)解方程(1)x﹣2(x﹣4)=3(1﹣x)(2)1【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解析】(1)去括号得:x﹣2x+8=3﹣3x,移项合并得:2x=﹣5,解得:x=﹣2.5;(2)去分母得:4﹣3x+1=6+2x,移项合并得:﹣5x=1,解得:x=﹣0.2.20.(2020春•南岗区校级期中)某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?【分析】(1)先表示出第二车间的人数,再表示出第三车间的人数即可;(2)把表示三个车间的人数的代数式相加即可得到答案;(3)先表示出调动后第一车间的人数,再用调动后第一车间的人数减去第三车间的人数即可.【解析】(1)∵第二车间的人数比第一车间人数的少20人,即人,而第三车间人数是第二车间人数的多10人,∴第三车间的人数为:人;(2)三个车间共有:人;(3)(x+10)﹣(x﹣15)=25(人),答:原第三车间人数比调动后的第一车间人数少25人.21.(2019秋•苍南县期末)已知点A,B,C如图所示,根据要求完成下列各题.(1)画直线BC,线段AB和射线CA.(2)过点A画BC的垂线段AD,垂足为D,并量出点A到直线BC的距离为cm.(以答题纸为测量依据,结果精确到0.1cm).【分析】(1)过点C、B作直线,要向两方延伸;过A、C作射线,向A点方向延伸,C点方向不延伸;作线段AB,不向任何一个方向延伸;(2)利用直角三角三角板过A作垂线AD,利用直尺测量即可.【解析】(1)如图所示:(2)经测量AD=1.8cm,故答案为:1.8.22.(2020秋•西湖区校级期中)数学中,运用整体思想方法在求代数式的值中非常重要.例如:已知,a2+2a=1,则代数式2a2+4a+4=2(a2+2a)+4=2×1+4=6.请你根据以上材料解答以下问题:(1)若x2﹣3x=2,则1+3x﹣x2=;(2)已知a﹣b=5,b﹣c=3,求代数式(a﹣c)2﹣3a+2+3c的值;(3)当x=﹣1,y=2时,代数式ax2y﹣bxy2﹣1的值为8,则当x=1,y=﹣2时,求代数式ax2y﹣bxy2﹣1的值.【分析】(1)根据整体思想代入计算即可求解;(2)根据已知条件先求出a﹣c的值,再整体代入到所求代数式中即可;(3)根据已知可得2a+4b=9,再整体代入到所求代数式中即可.【解析】(1)因为x2﹣3x=2,所以1+3x﹣x2=1﹣(x2﹣3x)=1﹣2=﹣1故答案为:﹣1.(2)∵a﹣b=5,b﹣c=3,∴a﹣b+b﹣c=a﹣c=5+3=8,∴(a﹣c)2﹣3a+2+3c=(a﹣c)2﹣3(a﹣c)+2=(a﹣c﹣2)•(a﹣c﹣1)=(8﹣2)×(8﹣1)=42;(3)∵当x=﹣1,y=2时,代数式ax2y﹣bxy2﹣1的值为8,即2a+4b﹣1=8,可得2a+4b=9,∴当x=1,y=﹣2时,代数式ax2y﹣bxy2﹣1=﹣2a﹣4b﹣1=﹣(2a+4b)﹣1=﹣9﹣1=﹣10.23.(2019秋•义乌市期末)(1)如图(a),将两块直角三角尺的直角顶点C叠放在一起.①若∠DCE=60°,则∠ACB=;若∠ACB=140°,则∠DCE=.②猜想∠ACB与∠DCE的度数有何特殊关系,并说明理由.(2)如图(b),两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的度数有何关系?请说明理由.(3)如图(c),已知∠AOB=α,作∠COD=β(α,β都是锐角且α>β),若OC在∠AOB的内部,请直接写出∠AOD与∠BOC的度数关系.【分析】(1)①先求出∠BCD,再代入∠ACB=∠ACD+∠BCD求出即可;先求出∠BCD,再代入∠DCE=∠BCE﹣∠BCD求出即可;②先计算:∠ACB=90°+∠BCD,再加上∠DCE可得结果;(2)先计算∠DAB=60°+∠CAB,再加上∠CAE可得结果;(3)分情况讨论:①OD在OB上方;OD在∠BOC内部;③OD在∠AOC内部;④OD在OA下方.【解析】(1)①若∠DCE=60°∵∠ACD=90°,∠DCE=60°∴∠ACE=90°﹣60°=30°∵∠BCE=90°∴∠ACB=∠ACE+∠BCE=30°+90°=120°若∠ACB=140°∵∠BCE=90°∴∠ACE=140°﹣90°=50°∵∠ACD=90°∴∠DCE=90°﹣50°=40°.故答案为:120°;40°;②∵∠ACB=∠ACD+∠BCD=90°+∠BCD∴∠ACB+∠DCE=90°+∠BCD+∠DCE=90°+∠BCE=180°;(2)∠DAB+∠CAB=120°.∵∠DAB=∠DAC+∠CAB=60°+∠CAB;∴∠DAB+∠CAB=60°+∠CAB+∠CAE=60°+∠EAB=120°;(3)①OD在OB上方时,如图∠AOD+∠BOC=∠AOB+∠COD=α+β②OD在∠BOC内部,如图∠AOD+∠BOC=∠AOB+∠COD=α+β;③OD在∠AOC内部,如图∠AOD+∠BOC=∠AOB﹣∠COD=α﹣β;④OD在OA下方,如图∠BOC﹣∠AOD=∠AOB﹣∠AOC﹣(∠COD﹣∠AOC)=∠AOB﹣∠AOC ﹣∠COD+∠AOC=∠AOB﹣∠COD=α﹣β.综上所述,∠AOD+∠BOC=α﹣β或∠AOD+∠BOC=α+β或∠BOC﹣∠AOD=α﹣β.24.(2019秋•吴兴区期末)每年“双十一”购物活动,商家都会利用这个契机进行打折满减的促销活动.某商家平时的优惠措施是按所有商品标价打七折;“双十一”活动期间的优惠措施是:购买的所有商品先按标价总和打七五折,再享受折后每满200元减30元的优惠.如标价为300元的商品,折后为225元,再减30元,即实付:300×0.75﹣30=195(元).(1)该商店标价总和为1000元的商品,在“双十一”购买,最后实付只需多少元?(2)小明妈妈在这次活动中打算购买某件商品,打折满减后,应付金额是507元,求该商品的标价.(3)在(2)的条件下,若该商家出售的商品标价均为整数,小明通过计算后告诉妈妈:通过凑单的办法,只须再多支付元,就可以得到最大的优惠.【分析】(1)根据“双十一”活动期间的优惠措施即可求解;(2)根据“双十一”活动期间的优惠措施可知该商品折后应该可以享受两次“满200减30”,设原标价为x元,根据打折满减后,应付金额是507元列出方程即可求解;(3)求出享受三次“满200减30”需要的钱数,减去507即可求解.【解析】(1)打折后:1000×0.75=750(元),“满200减30”再享受优惠:3×30=90(元),最后实付:750﹣90=660(元).故最后实付只需660元;(2)标价总和打七五折后:满200元,不到400元,可减30元,不合题意;满400元,不到600元,可减60元,符合题意;满600元,不到800元,可减90元,不合题意.则该商品折后应该可以享受两次“满200减30”,设原标价为x元,则0.75x﹣60=507,解得x=756.答:该商品原标价为756元;(3)600﹣90﹣507=3(元).答:只须再多支付3元,就可以得到最大的优惠.故答案为:3.。
【浙教版】七年级数学上期末试卷附答案(1)

一、选择题1.下列说法正确..的是( ) A .一个数,如果不是正数,必定是负数 B .所有有理数都能用数轴上的点表示 C .调查某种灯泡的使用寿命采用普查 D .两点之间直线最短2.下列调查中,最适宜采用全面调查(普查)的是( )A .调查一批袋装食品是否含有防腐剂B .对一批导弹的杀伤半径的调查C .了解某校学生的身高情况D .对重庆市居民生活垃圾分类情况的调查3.某超市有线上和线下两种销售方式,去年10月份该超市线下销售额比线上销售额多a 元,与去年相比,该超市今年10月份线上销售额增长35%,线下销售额减少10%,若该超市今年10月份的销售总额比去年10月份的销售总额增加了10%,则今年10月份线上销售额与当月销售总额的比为( )A .12B .611C .59D .474.下列变形错误的是( )A .由x y =得:88x y -=-B .由32x =得:23x =C .由23x -=得:32x =-D .由342x x -=得:324x x =+5.下列等式变形正确的是( ) A .若25x -=,则25x =-B .若()2134x x +-=,则2134x x +-=C .若7235x x -=--,则7352x x +=+D .若1132x x -+=,则()2316x x +-= 6.老师布置10道题作为课堂练习,学习委员将全班同学的答题情况绘制成右图,问答对8道题同学频率是( )A .0.8B .0.4C .0.25D .0.087.若线段122A A =,在线段12A A 的延长线上取一点3A ,使2A 是13A A 的中点;在线段13A A 的延长线上取一点4A ,使3A 是41A A 的中点;在线段41A A 的延长线上取一点5A ,使4A 是15A A 的中点……,按这样操作下去,线段2021A A 的长度为( )A .182B .192C .202D .2128.已知点C 在线段AB 上,点D 在线段AB 的延长线上,若5AC =,3BC =,14BD AB =,则CD 的长为( )A .2B .5C .7D .5或1 9.已知∠'α21=,∠β0.36=︒,则∠α和∠β的大小关系是( ) A .∠α=∠β B .∠α>∠βC .∠α<∠βD .无法确定10.下列运算正确的是( )A .2347a a a +=B .44a a -=C .32523a a a +=D .10.2504ab ab -+= 11.5的相反数的倒数是( ) A .5-B .5C .15-D .1512.如图所示的几何体从正面看,得到的图形是( )A .B .C .D .二、填空题13.甲、乙两家汽车销售公司根据近几年的销售量分别制作如下统计图:从2009-2013年,这两家公司中销售量增长较快的是__________公司.14.为了调查某校中学生对3月12日“植树节”是否了解,从该校全体学生1000名中,随机抽查了40名学生,结果显示有1名学生不了解,由此,估计该校全体学生中对“植树节”不了解的约有________名学生.15.若|2||3|9x x ++-=,则x 的值为________.16.如图在长方形ABCD 的边上有P 、Q 两个动点速度分别为2cm /s ,1cm/s ,两个点同时出发,运动过程中,一个点停止运动时另一个点继续向终点运动,运动时间为t 秒.动点P 从A 点出发沿折线A D C --向终点C 运动,动点Q 从C 点出发,沿折线C D A--向终点A 运动.若8cm AB =,6cm AD =,当APC △和AQC 的面积之和为8平方厘米时,t 的值为_________.17.如图,已知线段AB m =,CD n =,线段CD 在直线AB 上运动(点A 在点B 的左侧,点C 在点D 的左侧),若()21260m n -+-=. (1)求线段AB ,CD 的长;(2)若点M ,N 分别为线段AC ,BD 的中点,4BC =,求线段MN 的长; (3)当CD 运动到某一时刻时,点D 与点B 重合,点P 是线段AB 的延长线上任意一点,下列两个结论:①PA PB PC-是定值,②PA PBPC +是定值,请选择你认为正确的一个并加以说明.18.单项式21315x a b +与38x y a b +-的差仍是单项式,则x y -=______. 19.如图,数轴上点A ,B ,C 对应的有理数分别是a ,b ,c ,2OA OC OB ==,且24a b c ++=-,则a b b c -+-=______.20.如图,用一个平面从正方体的三个顶点处截去正方体的一角变成一个新的多面体,这个多面体共有________ 条棱.三、解答题21.为宣传普及新冠肺炎防控知识,引导学生做好防控,某校举行了主题为“防控新冠,从我做起”的线上知识竞赛活动,测试内容为 20道判断题,每道题5分,满分 100分.为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩,已知抽取得到的八年级的数据如下(单位:分):80,95,75,75,90,75,80,65, 80.85.75,65,70,65,85,70,95,80,75.80.为了便于分析数据,统计员对八年级数据进行了整理,得到表1表1:等级分数(单位:分)学生数D60<x≤705C70<x≤80aB80<x≤90bA90<x≤1002年级平均分中位数优秀率八年级78分c分m%九年级76分82.5分50%22.国庆期间,七(1)班的明明、丽丽等同学随家长一同到吉水进士文化园游玩,下面是购买门票时,明明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)明明他们一共去了几个成人,几个学生?(2)请你帮助明明算一算,用哪种方式购票更省钱?说明理由;(3)购完票后,明明发现七(2)班的张小涛等7名同学和他们的9名家长共16人也来购票,请你为他们设计出最省的购票方案,并求出此时的购票费用.23.如图,已知点C在线段AB上,点D、E分别在线段AC、BC上,AB=,则DE=_______;(1)观察发现:若D、E分别是线段AC、BC的中点,且12(2)拓展探究;若2AD DC =,2BE CE =,且10AB =,求线段DE 的长;(3)数学思考:若AD kDC =,BE kCE =(k 为正数),则线段DE 与AB 的数量关系是________. 24.计算(1)()()664 2.50.1-⨯--÷- (2)()()322524-⨯--÷ (3)()()225214382a a a a +---+(4)22135322x x x x ⎡⎤⎛⎫---+⎪⎢⎥⎝⎭⎣⎦25.计算:()2020313121468⎛⎫-+-⨯+- ⎪⎝⎭. 26.如图,用一张长为2π米、宽为2米的铁皮制作一个圆柱形管道,如果制作中不考虑材料损耗,试求可围成管道的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据有理数的定义,数轴、普查、线段的定义进行解答即可. 【详解】解:A 、一个数,如果不是正数,可能是负数,也可能是0,故A 选项错误; B 、所有的有理数都能用数轴上的点表示,故B 正确;C 、调查某种灯泡的使用寿命,利用普查破坏性较强,应采用抽样调查,故此选项错误; D、两点之间,线段最短,故原题说法错误. 故选B. 【点睛】本题考查了有理数的定义、数轴、普查、线段的定义,掌握相关知识是解题的关键.2.C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似. 【详解】解:A 、调查一批袋装食品是否含有防腐剂,最适宜采用抽样调查,故本选项不合题意; B 、对一批导弹的杀伤半径的调查,最适宜采用抽样调查,故本选项不合题意; C 、了解某校学生的身高情况,最适宜采用全面调查(普查);D 、对重庆市居民生活垃圾分类情况的调查,最适宜采用抽样调查,故本选项不合题意; 故选:C . 【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B解析:B 【分析】设去年10月线上销售额为x 元,则去年总销售额为2x a +()元,今年10月线上销售额为(135%)x +元,线下销售额为(110%)()x a -+元,今年10月份总销售额:135%90%()x x a ++元,根据“今年10月份的销售总额比去年10月份的销售总额增加了10%”列出方程,解方程求出4x a =,从而得出今年10月份线上销售额与当月销售总额,即可求解. 【详解】解:设去年10月线上销售额为x 元,线下销售额为(x +a )元,去年总销售额为2x a +()元,则今年10月线上销售额为(135%)x +元,线下销售额为(110%)()x a -+元,今年10月份总销售额:135%90%()x x a ++元根据题意得:(2)(110%)135%90%()x a x x a ++=++, 解得:4x a =,今年10月线上销售额为4135% 5.4a a ⋅=元, 今年10月总销售额为135%490%(4)9.9a a a a ⋅++=元故5.469.911a a =. 故选B .【点睛】本题考查一元一次方程的应用,根据题意找准等量关系,正确列出一元一次方程是解题的关键.4.C解析:C利用等式的性质将各式进行变形,即可做出判断. 【详解】解:A 、由x y =可以得到88x y -=-,故此选项不符合题意;B 、由32x =得:23x =,故选项不符合题意; C 、由23x -=得:3+2x =-,故选项变形错误,符合题意;D 、由342x x -=得:324x x =+,故选项不符合题意. 故选:C . 【点睛】此题考查了等式的性质运用,灵活掌握等式的性质是解答此题的关键.5.D解析:D 【分析】各项利用等式的性质判断即可. 【详解】解:A 、若25x -=,则52x =-,所以选项A 变形错误,故选项A 不符合题意; B 、若()2134x x +-=,则2234x x +-=,所以选项B 变形错误,故选项B 不符合题意;C 、若7235x x -=--,则7352x x +=-+,所以选项C 变形错误,故选项C 不符合题意;D 、若1132x x -+=,则()2316x x +-=,正确,故选项D 符合题意. 故选:D . 【点睛】此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.6.B解析:B 【分析】根据条形统计图,求出答对题的总人数,再求出答对8道题的同学人数,然后利用答对8道题的同学人数÷答对题的总人数即可得出答案. 【详解】解:答对题的总人数:4+20+18+8=50(人) 答对8道题的人数: 20人∴答对8道题的同学的频率:20÷50=0.4 故选:B 【点睛】本题主要考查了条形统计图的应用,利用条形统计图得出答对题的总人数与答对8道题的人数是解题的关键.7.B解析:B【分析】根据线段中点的定义,和两点之间的距离,找出题目中的规律,即可得到结论.【详解】由题意可知:如图写出线段的长,A1A2=2,A2是 A1A3的中点得A1A2=A2A3=2,A1A3=4,A3是 A1A4的中点得A1A3=A3A4=4,A1A4=8,A4是 A1A5的中点得A1A4=A4A5=8,……根据线段的长,找出规律,∵A1A2=2,A2A3=2=21,A3A4=4=22,A4A5=8=23,A5A6=16=24,A7A8=……,总结通项公式,∴线段 A n A n+1=2n-1(n为正整数)∴线段 A20A21=219故此题选:B【点睛】本题考查了两点间的距离,线段中点的定义,找出题目中的规律是解题的关键.8.B解析:B【分析】根据线段的和差关系可求AB,再根据14BD AB=,可求BD,再根据线段的和差关系可求CD的长.【详解】解:如图,∵点C在线段AB上,AC=5,BC=3,∴AB=AC+BC=5+3=8,∴14BD AB==2,∵点D在线段AB的延长线上,∴CD=BC+BD=3+2=5.故选B【点睛】本题考查了线段的和差,根据题意,画出正确图形,是解题关键.9.C解析:C 【分析】一度等于60′,知道分与度之间的转化,统一单位后比较大小即可求解. 【详解】解:∵∠α=21′,∠β=0.36︒=21.6′, ∴∠α<∠β. 故选:C . 【点睛】考查了度分秒的换算,熟练掌握角的比较与运算,能够在度与分之间进行转化.10.D解析:D 【分析】根据合并同类项得法则计算即可. 【详解】解:A.347a a a +=,故A 选项错误; B.43a a a -=,故B 选项错误;C.3a 与22a 不是同类项,不能合并,故C 选项错误;D.10.2504ab ab -+=,故D 选项正确; 故选:D . 【点睛】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.11.C解析:C 【分析】只有符号不同的两个数互为相反数,两数相乘为1的数互为倒数. 【详解】解:5的相反数为5-,5-的倒数为15-,故5的相反数的倒数是15-. 故答案为:C . 【点睛】本题考查倒数和相反数.熟练掌握倒数和相反数的求法是解题的关键.12.A解析:A 【解析】 【分析】根据从正面看得到的图形是主视图和主视图的特点,可得答案.【详解】解:从正面看最下面一层是三个小正方形,上面一层有1个正方形,且位于最右侧,故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.二、填空题13.甲【分析】结合折线统计图求出甲乙各自的增长量即可求出答案【详解】解:从折线统计图中可以看出:甲公司2009年的销售量约为100辆2013年约为500多辆则从2009~2013年甲公司增长了400多辆解析:甲【分析】结合折线统计图,求出甲、乙各自的增长量即可求出答案.【详解】解:从折线统计图中可以看出:甲公司2009年的销售量约为100辆,2013年约为500多辆,则从2009~2013年甲公司增长了400多辆;乙公司2009年的销售量为100辆,2013年的销售量为400辆,则从2009~2013年,乙公司中销售量增长了400-100=300辆;∴甲公司销售量增长的较快.故答案为:甲.【点睛】本题主要考查了折线图,从折线的陡峭情况来判断,很易错选乙公司;但是两幅图中横轴的组距选择不一样,所以就没法比较了,因此还要抓住关键.14.【分析】先通过样本计算对植树节不了解的所占比例然后估计整体中对植树节不了解的人数【详解】解:随机抽查了40名学生中不了解人数占的百分比为×100=25则估计该校全体学生中对植树节不了解的学生人数为1解析:25【分析】先通过样本计算对“植树节”不了解的所占比例,然后估计整体中对“植树节”不了解的人数.【详解】解:随机抽查了40名学生中“不了解”人数占的百分比为140×100%=2.5%,则估计该校全体学生中对“植树节”不了解的学生人数为1000×2.5%=25人.故答案是:25.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.15.或5【分析】根据绝对值的意义及数轴上两点间的距离分析求解【详解】解:表示数轴上x 表示的点到-2的距离;表示数轴上x 表示的点到3的距离∵3-(-2)=5且∴x <-2或x >3当x <-2时解得:当x >3时解析:4-或5【分析】根据绝对值的意义及数轴上两点间的距离分析求解.【详解】解:|2|x +表示数轴上x 表示的点到-2的距离;|3|x -表示数轴上x 表示的点到3的距离 ∵3-(-2)=5且|2||3|9x x ++-=∴x <-2或x >3当x <-2时,|2||3|9x x ++-=239x x ---+=,解得:4x =-当x >3时,|2||3|9x x ++-=239x x ++-=,解得:5x =综上,x 的值为-4或5故答案为:-4或5.【点睛】本题考查一元一次方程的应用,根据数轴上两点间的距离数形结合思想解题是关键. 16.s 或12s 【分析】分四种情况求解即可:点P 在AD 上运动点Q 在CD 上运动时;点P 在CD 上运动时点Q 在CD 上运动时;点P 与点C 重合点Q 在CD 上运动时;点P 与点C 重合点Q 在AD 上运动时【详解】解:①6÷2 解析:811s 或12s 【分析】 分四种情况求解即可:点P 在AD 上运动,点Q 在CD 上运动时;点P 在CD 上运动时,点Q 在CD 上运动时;点P 与点C 重合,点Q 在CD 上运动时;点P 与点C 重合,点Q 在AD 上运动时.【详解】解:①6÷2=3秒,当0<t≤3时,即当点P 在AD 上运动,点Q 在CD 上运动时,如图1, ∵四边形ABCD 是长方形,∴CD=8cm AB =,∵S △APC +S △AQC =1122AP CD CQ AD ⋅+⋅=1128622t t ⨯⨯+⨯⨯ =8t+3t=8, ∴t=811;②(6+8)÷2=7秒,当3<t<7时,即当点P 在DC 上运动时,点Q 在CD 上运动时,如图2,∵S △APC +S △AQC =1122PC AD CQ AD ⋅+⋅ =()111426622t t ⨯-⨯+⨯⨯ =42-3t=8, ∴t=343(舍去);③8÷1=8秒,当7<t≤8时,即当点P 与点C 重合,点Q 在CD 上运动时,如图3, ∵S △APC +S △AQC =102CQ AD +⋅ =162t ⨯⨯ =3t=8, ∴t=83(舍去);④14÷1=14秒,当7<t<14时,即当点P 与点C 重合,点Q 在AD 上运动时,如图4, ∵S △APC +S △AQC =102AQ CD +⋅ =()11482t ⨯-⨯ =56-4t=8,∴t=12;综上可知:t 的值为811s 或12s . 【点睛】 本题考查了一元一次方程的应用,以及分类讨论的数学思想,分类讨论是解答本题的关键.17.(1);(2)9;(3)②正确见解析【分析】(1)利用两个非负数和为0可得每个非负数为0可求即可;(2)分类考虑当点在点的右侧和点在点的左侧时利用中点可求AMDN 利用线段和差求AD 可求MN=AD-A解析:(1)12AB =,6CD =;(2)9;(3)②正确,2PA PB PC +=,见解析 【分析】(1)利用两个非负数和为0,可得每个非负数为0,可求12m =,6n =即可; (2)分类考虑当点C 在点B 的右侧和点C 在点B 的左侧时,利用中点可求AM ,DN ,利用线段和差求AD ,可求MN=AD-AM-DN 即可;(3)利用PA=PC+AC ,PB=PC-BC ,求出PA+PB=2PC 即可.【详解】解:(1)由()21260m n -+-=,()212600m n ≥--≥,,12=06=0m n --,,得12m =,6n =,所以12AB =,6CD =;(2)当点C 在点B 的右侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,4BC =, 所以()()1124118222AM AC AB BC ==+⨯+==,()()111645222DN BD CD BC ===++=, 又因为124622AD AB BC CD =++=++=,所以22859MN AD AM DN =--=--=, 当点C 在点B 的左侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,所以()()1111244222AM MC AC AB BC ===--==,()()111641222BN ND BD CD BC ===--==, 所以126414AD AB CD BC =+-=+-=所以14419MN AD AM DN =--=--=. 综上,线段MN 的长为9;(3)②正确,且2PA PB PC+=.理由如下: 因为点D 与点B 重合,所以BC DC =, 所以6AC AB BC AB DC =-=-=,所以AC BC =,所以()()222PC AC PC BC PA PB PC AC BC PC PC PC PC PC++-++-====.【点睛】本题考查非负数的性质,线段中点,线段和差,线段的比问题,掌握非负数的性质,线段中点,线段和差,线段的比,关键是利用线段和差PA=PC+AC ,PB=PC-BC ,求出PA+PB=2PC .18.-1【分析】根据同类项的定义列方程计算即可;【详解】∵单项式与的差仍是单项式∴单项式与是同类项∴解得:∴;故答案是-1【点睛】本题主要考查了同类项的定义解析:-1【分析】根据同类项的定义列方程计算即可;【详解】∵单项式21315x a b +与38x y a b +-的差仍是单项式, ∴单项式21315x a b +与38x y a b +-是同类项, ∴2133x x y +=+⎧⎨=⎩, 解得:23x y =⎧⎨=⎩, ∴231x y -=-=-;故答案是-1.【点睛】本题主要考查了同类项的定义.19.8【分析】根据得代入即可求出a 和c 的值再根据绝对值的性质化简即可求出结果【详解】解:∵∴∵∴即∴∴故答案是:8【点睛】本题考查数轴的性质和绝对值的性质解题的关键是掌握数轴上的点表示有理数的性质和化简 解析:8【分析】根据2OA OC OB ==得2c a b =-=-,代入24a b c ++=-即可求出a 和c 的值,再根据绝对值的性质化简a b b c -+-,即可求出结果.【详解】解:∵2OA OC OB ==,∴2c a b =-=-,∵24a b c ++=-,∴4a c c -+=-,即4a =-,∴4c =, ∴()448a b b c b a c b c a -+-=-+-=-=--=.故答案是:8.【点睛】本题考查数轴的性质和绝对值的性质,解题的关键是掌握数轴上的点表示有理数的性质和化简绝对值的方法.20.12三、解答题21.无22.(1)明明他们一共去了6个成人,4个学生;(2)买团体票更省钱;(3)购买13张团体票,3张学生票更省钱,购票总费用为372元.【分析】(1)根据题意,可以找出题目中的等量关系,列出相应的方程,从而可以解答本题;(2)根据题意可以算出团购的费用,然后与(1)中320比较大小,即可解答本题;(3)根据题意,可以知道学生按照学生票购买,成人按团体票购买最省钱,然后求出相应的费用即可解答本题.【详解】解:(1)设一共去了x个成人,则学生(10-x)人,40x+0.5×40×(10-x)=320,解得,x=6.∴10-x=10-6=4,答:明明他们一共去了6个成人,4个学生;(2)买团体票更省钱,理由:∵购买团体票时,花费为:40×0.6×13=312(元),∵312<320,∴买团体票更省钱;(3)购买13张团体票,3张学生票更省钱,费用为:40×0.6×13+3×0.5×40=312+60=372(元),答:购票总费用为372元.【点睛】本题考查一元一次方程的应用,解答此类问题的关键是明确题意,找出所题目中的等量关系,列出相应的方程.23.(1)6;(2)103;(3)()1AB k DE=+【分析】(1)根据中点的定义,结合线段的和、差计算即可(2)利用线段之间的和、差关系倍数关系计算即可(3)结合(2)的求解,再利用线段之间的和、差关系倍数关系计算即可【详解】(1)D、E为线段AC,BC的中点11,22DC AC CE BC ∴== ()12DC CE AC BC ∴+=+ ,DE DC CE AB AC BC =+=+12DE AB ∴= 1211262AB DE =∴=⨯= (2)2,2AD DC BE CE == AB AD DC CE BE =+++,()223AB DC DC CE CE DC CE ∴=+++=+10,AB DE DC CE ==+3310103DE ABDE DE ∴=∴=∴=(3),AD kDC BE kCE == AB AD DC CE BE =+++,DE DC CE =+()()1AB kDC DC CE kCE k DC CE ∴=+++=++()1k DE AB ∴+=【点睛】本题考查了线段n 等分点的有关计算,掌握线段之间和、差倍数关系是解题关键. 24.(1)-289;(2)22;(3)23a 3413a -+-;(4)29x 32x -- 【分析】(1)先算乘除,再算加减即可;(2)先算乘方,再算乘除,后算加减即可;(3)去括号合并同类项即可;(4)先去小括号,再去中括号,然后合并同类项即可;【详解】(1)原式=26425--=-289;(2)原式=()4584⨯--÷=()202--=22;(3)原式=2252112328a a a a +--+-=233413a a -+-;(4)原式=22135322x x x x ⎛⎫--++ ⎪⎝⎭=22135322x x x x -+-- =2932x x --. 【点睛】本题考查了有理数的混合运算,整式的加减,熟练掌握运算法则是解答本题的关键.25.1102-. 【分析】 原式利用乘法分配律以及乘方的意义计算即可得到结果.【详解】 解:()2020313121468⎛⎫-+-⨯+- ⎪⎝⎭ =3131212121468-⨯+⨯-⨯+ =99212-+-+ =1102-. 【点睛】 此题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.26.2π【解析】【分析】由2πr =2π,求出r =1,再根据:体积=底面积×高,即可求解.【详解】设围城管道后底面的半径为r ,由题意得:2πr =2π,则r =1,管道的最大体积=底面积×高=πr 2×2=2π.【点睛】本题是一个简单的体积计算问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版七年级数学上期末综合培优2018一,选择题1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a ,b ,c 三个数的和为( )A 、-1B 、0C 、1D 、不存在 2、对于任何有理数a ,下列各式中一定为负数的是( ) A 、-(-3+a ) B 、-a C 、-|a+1| D 、-|a|-1 3. 适合81272=-++a a 的整数a 的值的个数有 ………………( ) A .5 B .4 C .3 D .24.x 是任意有理数,则2|x |+x 的值( ).A .大于零B . 不大于零C .小于零D .不小于零5.在-0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的数字是( )A .1B .4C .2D .86.如图,在数轴上1,的对应点A 、B , A 是线段BC 的中点,则点C 所表示的数是( )A .B .C .D .7.若实数a 、b 、c 在数轴上对应点的位置如图所示, 则|c |-|b -a |+|b +c |等于…………( )A .-aB .-a +2bC .-a -2cD .a -2b8. 小红在集市上先买回5只羊,平均每只a 元,稍后又买回3只羊,平均每只b 元,后 来他以每只2ba +的价格把羊全部卖掉了,结果发现赔了钱,赔钱的原因是……( ) A .b a > B .b a < C .b a = D .与a 、b 的大小无关 9、如果某数的平方根是4m +5和m -15,那么这个数是················································································································· ( )A 、2B 、-2C 、169D 、-169222-22-21-12-x21CA10、绝对值大于 1 小于 4 的整数的和是( ) A 、0 B 、5 C 、-5 D 、1011、a,b 互为相反数,下列各数中,互为相反数的一组为( )A.a 2与b 2B. a 3与b 3C. a 2n 与b 2n (n 为正整数)D. a 2n+1与b 2n+1(n 为正整数)12、若a 2003·(-b)2004<0,则下列结论正确的是( ) A .a>0,b>0 B.a<0,b>0 C.a<0,b<0 D.a<0,b ≠0。
13,对于直线AB ,线段CD ,射线EF ,在下列各图中能相交的是( )14,如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( )A 、1∠=3∠B 、31801∠-︒=∠C 、3901∠+︒=∠D 、以上都不对 15,如图,P 为直线l 外一点,C B A 、、为l 上三点,且l PB ⊥,那么( )A 、PC PB PA 、、三条线段中PB 最短 B 、线段PB 叫做点P 到直线l 的距离C 、线段AB 是点A 到PB 的距离D 、线段AC 的长度是点A 到PC 的距离16,如图,115︒∠=,90AOC ︒∠=,点B 、O 、D 在同一直线上, 则2∠的度数为( )A 、75︒B 、15︒C 、105︒D 、165︒17在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的( )A 、南偏西50度方向B 、南偏西40度方向C 、北偏东50度方向D 、北偏东40度方向二,填空18、平方与绝对值都是它的相反数的数是________,这个数的立方和它的关系是_________。
19、已知P 是数轴上的一个点。
把P 向左移动3个单位后,再向右移动一个单位,这时它到原点的距离 是4个单位,则P 点表示的数是______。
20、数轴上哪个数与-24和40的距离相等_____,与数轴上数a 和b距离相等的A B C DO12A点表示的数是_______。
21、在数轴上表示 a 的点到原点的距离为 3,则 a -3=____。
22.23-的相反数地 ,绝对值是 .23.写出两个无理数,使它们的和为有理数 ;写出两个无理数,使它们的积为有理数 .24.在数轴上,到原点距离为5个单位的点表示的数是 .25、若方程2(3)30a a x--+=是关于x 的一元一次方程,则a =_________26、已知代数式2x y -的值是-2,则代数式32x y -+的值是27+2y +=0,则22x y -的值为28、整式mx +2n 的值随x 的取值不同而不同, 右表是当x 取不同值时对应的整式的值,则关于x 的方程4=--n mx 的解为______.29、如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A 和点B ,则点A 表示的数是;点B 表示的数是 .30、某市出租车收费标准为:起步价8元,3千米后每千米1.8元,则某人乘坐出租车x (x>3的整数)千米应付 元。
31、已知n 是自然数,多项式y n +1+3x 3-2x 是三次三项式,那么n 可以取的数是 32、对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a=c 且b=d 时,(a ,b )=(c ,d ).定义运算“⊕”:(a ,b )⊕(c ,d )=(ac-bd ,ad+bc ).若(1,2)⊕(p ,q )=(5,b ),则p= ,q=33、已知x 、y 、z 满足:x <y ,x +y =0,xyz >0,|y |>|z |,则化简|x +z |-|y +z |的结果为____34、如图,C 是线段AB 的中点,D 是线段AC 的中点,CD=2,则线段AB 的长度为 ;第14题图题图 题图35、直线AB 、CD 相交于点O ,且118AOC BOD ∠+∠=,则AOD ∠=_________度; 36、如图,点A 到直线BC 的距离是线段___________的长度,点A 到直线CD 的距离是线段___________的长度;37、在8:30,估计时钟上的时针和分针之间的夹角为___ 度;三,计算38. (本题6分)已知实数a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是4,求2a 22m b -+的值.39.写出所有适合下列条件的数(每小题5分,共10分)(1)大于 (2的所有整数。
40, (1), )1.0()5.2(466-÷--⨯- (2), ()()222104122-⨯---- 41.(本题6分)一个底面半径为4 cm 的圆柱形玻璃杯装满水,杯的高度为π32cm ,现将这杯水倒入一正方形容器中,正好达到正方体容器容积的81处,(玻璃杯及容器的厚度可以不计),求正方体容器的棱长.42.请你将一根细长的绳子,沿中间对折,再沿对折后的绳子中间再对折,这样连续对折5次,最后用剪刀沿对折5次后的绳子的中间将绳子剪断,此时绳子将被剪成 _________ 段. 43.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为 _________ .44.班级开联欢会买奖品,买铅笔和钢笔共100支,已知每支钢笔5元,每支中性笔2元,共花了260元,求买了多少支钢笔和中性笔?45.武夷山茶叶机械制造车间有900人,一人每天加工10个螺栓或25个螺母,组装一部茶机器需4个螺栓和5个螺母,问应安排多少人生产螺栓,多少人生产螺母,才能尽可能多的组装成这种机器.46.下列图形中∠1与∠2是对顶角的是()A.B.C.D.47.如图,在△ABC中,AC⊥BC,CD⊥AB,则图中能表示点到直线(或线段)的距离的线段有()48、如图,(1)已知∠AOB为直角,∠AOC为锐角,OE平分∠BOC,OF平分∠AOC,求∠EOF的度数;(2)若将(1)中的条件“∠AOB为直角”改为“∠AOB为任意一个角”,则∠AOB与∠EOF的大小关系如何?发现结论并说明理由.49、已知∠AOB=900,∠BOC=300,分别作∠AOC,∠BOC的平分线OM,ON,(1)求∠MON的度数。
(2)如图∠AOB=900,将OC向下旋转,使∠BOC=,仍然分别作∠AOC,∠BOC的平分线OM,ON,能否求出∠MON的度数,若能,求出其值,若不能,试说明理由。
(3)如图,∠AOB=900,将OC向上旋转,使OC在∠AOB的内部,且∠BOC =,仍然分别作∠AOC,∠BOC的平分线OM,ON,还能否求出∠MON的度数吗?若能,求出其值,若不能,说明理由。