移动通信实验第一部分 数字调制与调制技术
移动通信调制技术介绍

无线传感器网络(WSN):使用调制技术实现传 感器节点之间的无线数据传输。
卫星通信中的应用
01
01
卫星通信系统:利用卫星作为 中继站进行通信
02
02
卫星调制技术:将信号调制到 卫星通信频率上
03
03
卫星通信的优点:覆盖范围广, 传输速度快,抗干扰能力强
04
04
卫星通信的应用领域:军事、 航空、航海、应急通信等
4
更高效的调制技术
更高阶的调制技术: 如64QAM、 256QAM等,可 以提高频谱效率
更先进的多天线技 术:如MIMO、 波束赋形等,可以 提高传输速率和覆 盖范围
更智能的调制技术: 如自适应调制、动 态功率控制等,可 以提高系统灵活性 和性能
01
提高信号传输效 率
2
幅度调制技术
幅度调制技术是一
1
种通过改变信号的
幅度来传递信息的
技术。
常见的幅度调制技
2
术包括:调幅
(AM)、调频
(FM)和调相
(PM)。
调幅技术通过改变
3
信号的幅度来传递
信息,具有较高的
抗干扰能力。
调频技术通过改变
4
信号的频率来传递
信息,具有较高的
传输速率和较低的
误码率。
更绿色的调制技术: 如低功耗、低辐射 等,可以降低能耗 和保护环境
更灵活的调制技术
自适应调制技术:根据信道条件自动调整调制方式, 提高传输效率
多载波调制技术:将多个载波组合在一起,提高传 输速率和频谱利用率
智能天线技术:利用多天线阵列,实现空间分集和 波束赋形,提高传输可靠性和覆盖范围
数字调制解调技术

第3章 移动通信中的调制解调技术 ①恒包络调制技术(不管调制信号如何变化,载波振
幅保持恒定)。恒包络调制技术有2FSK、MSK、GMSK、 TFM和GTFM等。恒包络调制技术的功率放大器工作在C 类,具有带外辐射低、接收机电路简单等优点,但其频带 利用率比线性调制技术稍差一些。
电子信息工程系通信技术教研室
第3章 移动通信中的调制解调技术
图3-1 各类二进制调制原理波形图
电子信息工程系通信技术教研室
第3章 移动通信中的调制解调技术 移动信道的基本特征如下: ①带宽有限,它取决于可使用的频率资源和信道的传
播特性; ②干扰和噪声的影响较大,这主要是由移动通信工作
的电磁环境所决定的; ③存在着多径衰落。
·信号频率偏移严格符合 1 4Tb
,相位调制指数 h
f1 f2 Tb
1/ 2 。
·以载波相位为基准的信号相位在一个码元期间( Ts )内准确地线性变化
/2。
·在一个码元期间内,信号应是 1 载波周期的整倍数。 4
·在码元转换时刻,信号的相位是连续的,即信号波形无突变。
电子信息工程系通信技术教研室
输入及相位常数有关。在给定输入序列{ak} 的相位轨迹如图3-5所示。
MSK
电子信息工程系通信技术教研室
第3章 移动通信中的调制解调技术
图3-5 MSK的相位轨迹
电子信息工程系通信技术教研室
第3章 移动通信中的调制解调技术
2. MSK 信号的特点
MSK 信号具有如下特点:
·已调信号振幅是恒定的。
第3章 移动通信中的调制解调技术
其中,
k
k1
k1 k
ak ak1 ak ak1
移动通信中的数字调制技术

•
2020/2/29
1/4
• 培训的目的
1.了解数字调制原理和特点 2.了解移动通信系统中的各种调制技术
2020/2/29
2/4
• 调制的概念
将待传送的基带信号加到高频载波上进行传输的过程,即按照 调制信号(基带信号)的变化规律去改变载波的某些参数的过程。
其简单模型可以表示为:
2020/2/29
9/4
• 码元速率
码元:数字信号中每一个符号的通称。即可以用二进制表示,也可以用其 它进制的数表示。 码元传输速率,又称为码元速率或传码率。码元速率又称为波特率,指每 秒信号的变化次数。若数字传输系统所传输的数字序列恰为二进制序列, 则等于每秒钟传送码元的数目,而在多电平中则不等同。单位为"波特",常 用符号"Baud"表示,简写为"B"
31/4
2020/2/29
32/4
传输数字信号时也有三种基本的调制方式:幅移键控(ASK)、 频移键控(FSK)和相移键控(PSK)。 它们分别对应于用载波(正弦波)的幅度、频率和相位来传递数 字基带信号,可以看成是模拟线性调制和角度调制的特殊情况。 理论上,数字调制与模拟调制在本质上没有什么不同,它们都是 属正弦波调制。但是,数字调制是调制信号为数字型的正弦波调 制,而模拟调制则是调制信号为连续型的正弦波调制。 在数字通信的三种调制方式(ASK、FSK、PSK)中,就频带利用率 和抗噪声性能(或功率利用率)两个方面来看,一般而言,都是 PSK系统最佳。所以PSK在中、高速数据传输中得到了广泛的应用。
2020/
1.符号速率 符号速率*扩频因子=码片速率,符号速率=码片速率/扩频因子
2020/2/29
数字调制解调技术

抗多径干扰能力主要取决于调制解调 算法的设计和实现,以及信号处理技 术的运用。常用的抗多径干扰技术包 括RAKE接收、信道估计与均衡、多 天线技术等。这些技术的应用可以有 效抑制多径干扰的影响,提高数字信 号的传输质量和稳定性。
05
数字调制解调技术的未 来发展
高频谱效率的调制解调技术
总结词
随着通信技术的发展,对频谱效率的要求越来越高,高频谱效率的调制解调技术成为研 究热点。
02
通过将多个载波信号进行调制 ,多载波调制能够提高信号传 输的效率和可靠性。
03
多载波调制具有频谱利用率高 、抗多径干扰能力强等优点, 因此在无线通信、宽带接入等 领域得到广泛应用。
03
数字解调技术
相干解调
相干解调是一种基于相位的解调方法,它利用发送信号的相位信息来恢复原始信 号。在相干解调中,接收到的信号与本地振荡器产生的信号进行相位比较,以恢 复原始信号的相位信息。
抗多径干扰能力
抗多径干扰能力
总结词
详细描述
抗多径干扰能力是指数字调制解调技 术在存在多径干扰的情况下仍能保持 正常工作的能力。多径干扰是无线通 信中常见的问题,良好的抗多径干扰 能力能够提高通信质量。
抗多径干扰能力是评估数字调制解调 技术性能的重要指标,尤其在无线通 信中,它直接影响到通信的质量和稳 定性。
思路。
多模态调制解调技术
总结词
随着通信环境的多样化,多模态调制解 调技术成为研究的热点,以满足不同通 信环境下的需求。
VS
详细描述
多模态调制解调技术是指能够处理多种通 信模式的调制解调技术。目前已经出现了 一些多模态调制解调技术,如OFDM (Orthogonal Frequency Division Multiplexing,正交频分复用)和SC-FDE (Single Carrier Frequency Domain Equalization,单载波频域均衡)等。这 些技术通过融合不同的通信模式,提高了 通信系统的灵活性和适应性,为未来通信 技术的发展提供了新的方向。
第2章调制解调技术GMSK及π4DQPSK资料.

xk
xk 1
(ak1
ak )
k
2
xk 1
xk1 k
ak ak 1 ak ak 1
第二节、移动通信的数字调制技术
由下列两式可得出MSK的相位轨迹
xk
xk 1
(ak 1
ak )
k
2
k
2Tb
akt
xk
MSK的相位轨迹θ(t)
(t)
3 / 2 - 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1
G
Sout / Nout Sin / Nin
3m
2 f
(m
f
1)
第一节、基本调制技术
目前应用的模拟 FM 移动通信系统: 话音最高频率 fm= 3 kHz; 最大调制频偏 f = 5 kHz, 则单路信号带宽为多少?
B=2(fm+f)=16 kHz 按照FDM原理,保护频带 Bg = 9 kHz,则一个信道的宽 度为 25 kHz(即载波频率点间隔 25 kHz )。
调制方案的性能衡量标准: 功率效率--在低功率下保持正确传输的能力。(Eb/N0越小越好) 带宽效率—有限带宽内容纳数据量的能力。 (Rb/B越大越好)
在信道频带受限时 为了提高频带利用率,通常采用多进制数字 调制系统。其代价是增加信号功率和实现上的复杂性。
脉冲成型技术可消除码间串扰和保持小的信号带宽,因而得到广 泛应用。
设输入到调制器的比特流为{an}, an=±1, n=-∞~+∞。 FSK的输出信号形式(第n个比特区间)为
s(t)
cos(2 cos(2
( (
fc fc
f f
)t) )t)
an 1 an 1
移动通信中的调制解调

移动通信中的调制解调AM和FM射频信号被用来传递信息,信息有可能是音频,数据或者其他格式,该信息被调制(modulate)到载波信号上,并通过射频传送到接收器,在接收器端,信息从载波上分离出来,这个被称为解调(demodulation)。
而载波本身并不带有任何信息。
调制方法多种多样,简单的一般有幅度调制,频率调制和相位调制,尽管调频和调相本质上是相同的。
每种调制方法都有其有缺点。
了解每种调制方法的基础是很重要的,尽管大家更为关注的是移动通信系统的调制方法。
复习这些简单技术可以让大家对它们的优缺点有更好的认识。
载波无线通信的基础是载波,基本的载波如下图所示,这个信号在发射器部分产生,并不带有任何信息,在接收器部分也作为不变的信号出现。
调幅调制最显而易见的的方式就是调幅了,通过调整信号幅度大小传递信息。
最简单的调制是OOK(on–off keying,开关键控),载波以开关的形式传递信息。
这个是数字调制的基础,并用在传递莫斯(Morse)电码上面,莫斯在早期的“无线”应用上广为采用,通过开或关的长度传递码元。
在音频或其他领域应用更为常见的是,整个信号的幅度通过载波体现,如下图,这个被称为幅度调制(AM)。
AM解调音频信号的过程十分简单,只需要一个简单的二极管包络检波电路就可以实现,如图3-3,在这个电路中二极管只允许无线信号的半波通过,一个电容被作为低通滤波器来去除信号的高频部分,只留下音频信号。
这个信号直接通过放大后输出至扬声器。
该解调电路十分简单和易于实现,在目前的AM收音机接收上面还在广泛采用。
AM解调过程同样可以用更为有效的同步检波电路实现。
如图3-4,射频信号被本地载波振荡信号混频。
该电路的优点是比二极管检波器有更好的线性度,而且对失真和干扰的抵抗比较好。
产生本振信号的方法很多,其中最简单的就是把接收到的无线信号通过高通滤波器,从而滤掉调制信号保留精确频率和相位的载波,再与无线信号混频滤波就能得到原始音频信号。
移动通信的编码与调制技术

移动通信的编码与调制技术在当今高度互联的时代,移动通信已经成为我们生活中不可或缺的一部分。
从日常的语音通话、短信交流,到高清视频播放、在线游戏,移动通信技术的不断发展为我们带来了越来越便捷和丰富的体验。
而在这背后,编码与调制技术起着至关重要的作用。
首先,我们来谈谈编码技术。
编码,简单来说,就是将信息转换为特定的代码形式,以便于传输和存储。
在移动通信中,常用的编码技术包括信源编码和信道编码。
信源编码的主要任务是减少信息的冗余度,提高传输效率。
例如,在语音通信中,我们不会传输连续的声音信号,而是对其进行采样和量化,将模拟的声音信号转换为数字形式。
通过合理的编码算法,可以去除那些人耳不太敏感的部分,从而在不影响语音质量的前提下减少数据量。
信道编码则是为了提高通信的可靠性。
由于移动通信环境复杂,信号在传输过程中容易受到各种干扰和衰减。
信道编码通过在原始信息中添加一些冗余信息,使得接收端能够检测和纠正传输过程中产生的错误。
常见的信道编码方式有卷积码、Turbo 码等。
接下来,我们再看看调制技术。
调制就像是给信息穿上不同的“外衣”,以便让它们能够在无线信道中顺利传输。
在移动通信中,常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
幅度调制是根据信息的变化改变载波的幅度;频率调制则是改变载波的频率;相位调制则是改变载波的相位。
而现代移动通信系统中,更广泛采用的是数字调制技术,如二进制相移键控(BPSK)、正交相移键控(QPSK)、正交幅度调制(QAM)等。
以 QPSK 为例,它将信息编码为四个不同的相位状态,每个相位状态代表两个比特的信息。
这样,在相同的带宽下,能够传输更多的信息。
QAM 则更进一步,它同时改变载波的幅度和相位,从而可以在一个符号中传输更多的比特。
例如 16QAM 可以在一个符号中传输 4 比特的信息。
编码与调制技术的选择并非是孤立的,而是需要根据具体的通信需求和系统条件来综合考虑。
移动通信PPT课件

移动台所受到的噪声影响主要来自于城市噪声、各 种车辆发动机点火噪声、微波炉干扰噪声等;
(1) 互调干扰 (2) 邻道干扰 (3) 同频干扰
3. 通信系统复杂
移动台的移动需要频率、功率控制,地址登记,越区切换,漫游跟 踪等技术,入网、计费管理
4. 对移动台的要求高
移动通信中建立一个呼叫是由BSS和SS共同完成的; BSS提供并管理MS和SS之间的无线传输通道,SS负责呼 叫控制功能,所有的呼叫都是经由SS建立连接的;OMS 负责管理控制整个移动网。
MS也是一个子系统。它实际上是由移动终端设备和用户 数据两部分组成的,移动终端设备称为移动设备;用户数 据存放在一个与移动设备可分离的数据模块中,此数据模 块称为用户识别卡(SIM)。
多普勒频移产生调制噪声
由于移动台的不断运动,当达到一 定速度时,如超音速飞机,固定点 接收到的载波频率将随运动速度v 的不同,产生不同的频移,即产生 多普勒效应,使接收点的信号场强 振幅、相位随时间、地点而不断地 变化
fd
v
cos
2021/7/1
图1.3 多普勒效应
10
1.1.1 移动通信的特点
③ 微小区:小区半径r=0.1~1km ④ 微微小区:小区半径r<0.1km,适于办公室、家庭等移动应用
环境。
2021/7/1
12
1.1.2 移动通信的组网理论
2. 频率覆盖
蜂窝系统的基站工作频率,由于传播损耗提供足够的隔离度, 在相隔一定距离的另一个基站可以重复使用同一组工作频率,称 为频率复用。.1.1 移动通信的特点
1.移动通信利用无线电波进行信息传输 传播环境复杂:直射波与随时间变化的绕 射波、反射波、散射波的叠加 多普勒效应:移动台的高速运动
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分数字调制与调制技术
实验四MSK调制及相干解调实验
五、实验步骤及实验结果
1、在实验箱上正确安装基带成形模块(以下简称基带模块)、IQ调制解调模块(以下简
称IQ模块)、码元再生模块(以下简称再生模块)和PSK载波恢复模块。
2、MSK调制实验。
a、关闭实验箱总电源,用台阶插座线完成如下连接:
源端口目的端口连线说明基带模块:PN31 基带模块:NRZ IN 提供PN31伪随机序列
基带模块:I-OUT IQ模块:I-IN将基带成型后的I路信号进行调制
基带模块:Q-OUT IQ模块:Q-IN 将基带成型后的Q路信号进行调制
* 检查连线是否正确,检查无误后打开电源。
b、按基带成形模块上“选择”键,选择MSK模式(MSK指示灯亮)。
c、用示波器对比观察“NRZ IN”和“NRZ OUT”信号,写出差分编码规则。
d、用示波器观察基带模块上“NRZ-I”及“NRZ-Q”测试点,并分别与“NRZ OUT”
测试点的信号进行对比,观察串并转换情况。
NRZ-I与NRZ OUT NRZ-Q与NRZ OUT
e、用示波器观测基带模块上“I-OUT”和“Q-OUT”点信号,并分别与“NRZ-I”、“NRZ-Q”
对比,说明MSK信号的成形规则。
I-OUT与NRZ-I Q-OUT与NRZ-Q
f、用频谱分析仪观测调制后MSK信号频谱(可用数字示波器上FFT功能替代观测),
观测点为IQ模块调制单元的“输出”端(TP4)
3、MSK相干解调实验。
a、关闭实验箱总电源,保持步骤2中的连线不变,用同轴视频线完成如下连接:
源端口目的端口
IQ模块(IQ调制单元):输出(J2)IQ模块(IQ解调单元):输入(J3)
IQ模块(载波单元):输出(J5)IQ模块(载波单元):输入(J4)
* 检查连线是否正确,检查无误后打开电源。
b、示波器探头分别接IQ解调单元上的“I-OUT”及“Q-OUT”端,观察解调后的波形。
c、对比解调前后I路信号
示波器探头分别接IQ模块的“I-OUT”端及“I-IN”端,注意观察两者是否一致。
(若一致表示解调正确,若不一致则可能是载波相位不对,可按IQ模块复位键S1复位或重新开关该模块电源复位。
)
d、对比观测解调前后Q路信号
示波器探头分别接IQ模块的“Q-OUT”端及“Q-IN”端,注意观察两者是否一致。
(若一致表示解调正确,若不一致则可能是载波相位不对,可将按IQ模块复位键S1复位或重新开关该模块电源复位。
)
4、MSK再生信号观察
a、关闭实验箱总电源,保持步骤2、3中的连线不变,用台阶插座线完成如下连接:
源端口目的端口连线说明
IQ模块:I-OUT 再生模块:I-IN 将解调后的I路信号进行抽样判决
IQ模块:Q-OUT 再生模块:Q-IN 将解调后的Q路信号进行抽样判决
* 检查连线是否正确,检查无误后打开电源。
b、按再生模块上“选择”键,选择MSK模式(MSK指示灯亮)。
c、对比观测原始NRZ信号与再生后的NRZ信号
示波器探头分别接再生模块上“NRZ”端和基带模块上“NRZ IN”端,观察两路码元是否一致。
若一致表示解调正确,若不一致可回到步骤2重新实验。
5、观测载波非相干时信号波形
断开IQ模块上载波“输出”端与该模块上载波“输入”视频线,将IQ模块上载波“输入”端与PSK载波恢复模块上“VCO-OUT”端连接起来,此时载波不同步。
从步骤2开始再次观察各信号。
从步骤2开始再次观察
IQ 解调电路的载波由PSK 载波恢复模块上的本振源提供时,解调变为非相干解调,
从解调输出的模拟基带信号可以看出信号失真很大,无法进行码元再生。
实验十四白噪声信道模拟实验
四、实验步骤及实验结果
1、在实验箱上正确安装基带成形模块、IQ调制解调模块及信道模拟模块。
2、关闭实验箱电源,按如下方式连线:
a﹑用台阶插座线完成如下连接:
源端口目的端口连线说明基带模块:PN31 IQ模块:I-IN 提供PN31伪随机序列b﹑用同轴视频线完成如下连接:
源端口目的端口连线说明IQ模块:输出(J2) 信道模块:输入将调制信号送入模拟信道中
* 检查连线是否正确,检查无误后打开电源。
3、示波器探头接信道模块“AD”测试点,调节“AD幅度”电位器,使“AD”处信号
峰峰值为1V左右。
4、按下“选择”键,选择白噪声信道,“白噪”指示灯亮。
5、用示波器观测“OUT2”测试点处的原始信号,调节“OUT2 幅度”电位器可以改变
信号幅度。
6、用示波器观测“OUT1”测试点,输出为白噪声信号,调节“OUT1 幅度”电位器可
以改变噪声信号的大小。
7、将“OUT2 幅度”电位器顺时针旋到底,“OUT1 幅度”电位器逆时针旋到底,用示
波器观测信道模块上“输出”点信号波形,此时信号输出幅度最大,无噪声输出。
顺时针调节“OUT1 幅度”电位器,增大噪声信号,用示波器观测“输出”点信号波形,观测噪声对信号的影响。
有噪声输出。