(精品)小学奥数7-5-4 组合之插板法.专项练习及答案解析
排列组合之插板法及变形

排列组合之插板法及变形主要⽤于“相同元素”分到“不同容器”的排列组合。
【例1】共有10本相同的书分到7个班⾥,每个班⾄少要分到⼀本书,问有⼏种不同分法?【解析】注意,这⾥⾯有个隐含的条件,根据常理,7个班肯定是不同的。
如果是书柜,可能是相同的。
因为书是相同的,可以排成⼀排,分给7个班,也就是在这⼀排书中间插⼊6个板,把书分成7份即可。
这排书共10本,中间有9个空,选6个空插板,所以有C(9,6)种分法。
【例2】共有10本相同的书分到7个班⾥,问有⼏种不同分法?【解析】注意这⾥没有要求每个班⾄少要分到⼀本,如果⽤插板法,两个板可以插到同⼀个空⾥。
显然⽤原来的⽅法不能解决。
但思路是⼀样的,把书分给7个班,我们还是插6块板,把书分成7份(如果板中间没有书,说明这⼀份是0)。
但这个时候空位的数量不⼀定了,把思路换⼀下,当插好板以后,书和板⼀共16个位⼦,其实就是16个位⼦选6个位⼦放板。
所以有C(16,6)种分法。
【例3】10个相同的球放⼊编号为1、2、3的盒⼦内,盒内球数不少于编号数,有⼏种不同的放法?【解析】球数不少于编号数,就是1号盒⼦最少放1个球,2号盒⼦最少放2个球...。
如果我们先把2号盒⼦放1个球,2号盒⼦放1个球,就变成每个盒⼦⾄少放⼀个球了,这时可以⽤最普通的插板法。
答案是C(7,2)。
【例4】有10颗相同的糖,每天⾄少吃1颗,共有⼏种吃法?【解析】注意,此题没有确定要⼏天吃完(例如如果要5天吃完,那么就是9个空插4个板,C(9,4)种),所以可以1天吃完,可以两天吃完。
也可以10天吃完。
那么就有C(9,0)+C(9,1)+C(9,2)+...+C(9,9)。
此题有⼀个更简单的思路,根据上⾯的分析,10颗糖排成⼀排,中间有9个空,每个空都可以插板,也可以不插板,插板或不插板各代表⼀种吃法,所以共有2*2*2...*2(9个2)=2^9种吃法。
由此也可以知道,C(9,0)+C(9,1)+C(9,2)+...+C(9,9)=2^9。
(小学奥数)7-5-4 组合之插板法.教师版

1.使学生正确理解组合的意义;正确区分排列、组合问题;2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;3.掌握组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.一、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步:第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法.根据乘法原理,得到m m m n n m P C P =⨯.因此,组合数12)112321mm n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()(). 这个公式就是组合数公式.二、组合数的重要性质一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤)这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =.规定1n nC =,01n C =.7-5-4.组合之插板法知识要点教学目标插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.使用插板法一般有如下三种类型:⑴ m 个人分n 个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的(1)n -个空隙中放上(1)m -个插板,所以分法的数目为11m n C --.⑵ m 个人分n 个东西,要求每个人至少有a 个.这个时候,我们先发给每个人(1)a -个,还剩下[(1)]n m a --个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为1(1)1m n m a C ----.⑶ m 个人分n 个东西,允许有人没有分到.这个时候,我们不妨先借来m 个东西,每个人多发1个,这样就和类型⑴一样了,不过这时候物品总数变成了()n m +个,因此分法的数目为11m n m C -+-.【例 1】 将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有 种不同的放法。
小学奥数教程:组合之插板法_全国通用(含答案)

1.使学生正确理解组合的意义;正确区分排列、组合问题;2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;3.掌握组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.一、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步:第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法.根据乘法原理,得到m m m n n m P C P =⨯. 因此,组合数12)112321mm n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()(). 这个公式就是组合数公式.二、组合数的重要性质一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤)这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =.规定1n nC =,01n C =.例题精讲 知识要点教学目标7-5-4.组合之插板法插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.使用插板法一般有如下三种类型:⑴ m 个人分n 个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的(1)n -个空隙中放上(1)m -个插板,所以分法的数目为11m n C --.⑵ m 个人分n 个东西,要求每个人至少有a 个.这个时候,我们先发给每个人(1)a -个,还剩下[(1)]n m a --个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为1(1)1m n m a C ----.⑶ m 个人分n 个东西,允许有人没有分到.这个时候,我们不妨先借来m 个东西,每个人多发1个,这样就和类型⑴一样了,不过这时候物品总数变成了()n m +个,因此分法的数目为11m n m C -+-.【例 1】 将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有 种不同的放法。
奥数精编训练-组合之插板法【精品】

1.使学生正确理解组合的意义;正确区分排列、组合问题;2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;3.掌握组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.一、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步:第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法.根据乘法原理,得到m m m n n m P C P =⨯. 因此,组合数12)112321mm n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()(). 这个公式就是组合数公式.二、组合数的重要性质一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤)7-5-4.组合之插板法教学目标知识要点这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =.规定1n nC =,01n C =.插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.使用插板法一般有如下三种类型:⑴ m 个人分n 个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的(1)n -个空隙中放上(1)m -个插板,所以分法的数目为11m n C --.⑵ m 个人分n 个东西,要求每个人至少有a 个.这个时候,我们先发给每个人(1)a -个,还剩下[(1)]n m a --个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为1(1)1m n m a C ----. ⑶ m 个人分n 个东西,允许有人没有分到.这个时候,我们不妨先借来m 个东西,每个人多发1个,这样就和类型⑴一样了,不过这时候物品总数变成了()n m +个,因此分法的数目为11m n m C -+-.【例 1】 将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有种不同的放法。
(推荐)排列组合问题之插板法

排列组合问题之插板法:插板法是用于解决“相同元素”分组问题,且要求每组均“非空”,即要求每组至少一个元素;若对于“可空”问题,即每组可以是零个元素,又该如何解题呢?例1.现有10个完全相同的球全部分给7个班级,每班至少1个球,问共有多少种不同的分法?【解析】:题目中球的分法共三类:第一类:有3个班每个班分到2个球,其余4个班每班分到1个球。
其分法种数为C37=35。
第二类:有1个班分到3个球,1个班分到2个球,其余5个班每班分到1个球。
其分法种数2*C27=42。
第三类:有1个班分到4个球,其余的6个班每班分到1个球。
其分法种数C17=7。
所以,10个球分给7个班,每班至少一个球的分法种数为84:。
由上面解题过程可以明显感到对这类问题进行分类计算,比较繁锁,若是上题中球的数目较多处理起来将更加困难,因此我们需要寻求一种新的模式解决问题,我们创设这样一种虚拟的情境——插板。
将10个相同的球排成一行,10个球之间出现了9个空档,现在我们用“档板”把10个球隔成有序的7份,每个班级依次按班级序号分到对应位置的几个球(可能是1个、2个、3个、4个),借助于这样的虚拟“档板”分配物品的方法称之为插板法。
由上述分析可知,分球的方法实际上为档板的插法:即是在9个空档之中插入6个“档板”(6个档板可把球分为7组),其方法种数为C39=84。
由上述问题的分析解决看到,这种插板法解决起来非常简单,但同时也提醒各位考友,这类问题模型适用前提相当严格,必须同时满足以下3个条件:①所要分的元素必须完全相同;②所要分的元素必须分完,决不允许有剩余;③参与分元素的每组至少分到1个,决不允许出现分不到元素的组。
下面再给各位看一道例题:例2.有8个相同的球放到三个不同的盒子里,共有()种不同方法.A.35 B.28 C.21 D.45【解析】:这道题很多同学错选C,错误的原因是直接套用上面所讲的“插板法”,而忽略了“插板法”的适用条件。
(小学奥数)组合之插板法

1.使學生正確理解組合的意義;正確區分排列、組合問題;2.瞭解組合數的意義,能根據具體的問題,寫出符合要求的組合;3.掌握組合的計算公式以及組合數與排列數之間的關係;4.會分析與數字有關的計數問題,以及與其他專題的綜合運用,培養學生的抽象能力和邏輯思維能力;通過本講的學習,對組合的一些計數問題進行歸納總結,重點掌握組合的聯繫和區別,並掌握一些組合技巧,如排除法、插板法等.一、組合問題 日常生活中有很多“分組”問題.如在體育比賽中,把參賽隊分為幾個組,從全班同學中選出幾人參加某項活動等等.這種“分組”問題,就是我們將要討論的組合問題,這裏,我們將著重研究有多少種分組方法的問題.一般地,從n 個不同元素中取出m 個(m n ≤)元素組成一組不計較組內各元素的次序,叫做從n 個不同元素中取出m 個元素的一個組合.從排列和組合的定義可以知道,排列與元素的順序有關,而組合與順序無關.如果兩個組合中的元素完全相同,那麼不管元素的順序如何,都是相同的組合,只有當兩個組合中的元素不完全相同時,才是不同的組合.從n 個不同元素中取出m 個元素(m n ≤)的所有組合的個數,叫做從n 個不同元素中取出m 個不同元素的組合數.記作m n C .一般地,求從n 個不同元素中取出的m 個元素的排列數m n P 可分成以下兩步: 第一步:從n 個不同元素中取出m 個元素組成一組,共有m n C 種方法;第二步:將每一個組合中的m 個元素進行全排列,共有m m P 種排法.根據乘法原理,得到m m m n n m P C P =⨯. 因此,組合數12)112321mm n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()(). 這個公式就是組合數公式.知識要點教學目標7-5-4.組合之插板法二、組合數的重要性質一般地,組合數有下麵的重要性質:m n m n n C C -=(m n ≤)這個公式的直觀意義是:m n C 表示從n 個元素中取出m 個元素組成一組的所有分組方法.n m n C -表示從n 個元素中取出(n m -)個元素組成一組的所有分組方法.顯然,從n 個元素中選出m 個元素的分組方法恰是從n 個元素中選m 個元素剩下的(n m -)個元素的分組方法.例如,從5人中選3人開會的方法和從5人中選出2人不去開會的方法是一樣多的,即3255C C =.規定1n n C =,01n C =.插板法一般用來解決求分解一定數量的無差別物體的方法的總數,使用插板法一般有三個要求:①所要分解的物體一般是相同的:②所要分解的物體必須全部分完:③參與分物體的組至少都分到1個物體,不能有沒分到物體的組出現.在有些題目中,已知條件與上面的三個要求並不一定完全相符,對此應當對已知條件進行適當的變形,使得它與一般的要求相符,再適用插板法. 使用插板法一般有如下三種類型:⑴ m 個人分n 個東西,要求每個人至少有一個.這個時候我們只需要把所有的東西排成一排,在其中的(1)n -個空隙中放上(1)m -個插板,所以分法的數目為11m n C --. ⑵ m 個人分n 個東西,要求每個人至少有a 個.這個時候,我們先發給每個人(1)a -個,還剩下[(1)]n m a --個東西,這個時候,我們把剩下的東西按照類型⑴來處理就可以了.所以分法的數目為1(1)1m n m a C ----.⑶ m 個人分n 個東西,允許有人沒有分到.這個時候,我們不妨先借來m 個東西,每個人多發1個,這樣就和類型⑴一樣了,不過這時候物品總數變成了()n m +個,因此分法的數目為11m n m C -+-.【例 1】 將三盆同樣的紅花和四盆同樣的黃花擺放成一排,要求三盆紅花互不相鄰,共有 種不同的放法。
插板法例题

插板法例题
插板法是一种组合数学中的经典计数方法,常用于解决排列、组合等问题。
以下是一个使用插板法的例题:
题目:将5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为 _______.
分析:根据题意,将5个小球和3块插板一起排列,将3块插板隔出4个空,再将5个小球放入4个空位中,由分步计数原理计算可得答案.
解:根据题意,将5个小球和3块插板一起排列,有A83种情况,
将3块插板隔出4个空,再将5个小球放入4个空位中,有A54种情况,
则不同的放法有A83⋅A54=24×120=2880种;
故答案为:2880.。
小学数学竞赛7-5-组合

1.使学生正确理解组合的意义;正确区分排列、组合问题;2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;3.掌握组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.一、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .一般地,求从n 个不同元素中取出的m 个元素的排列数n m P 可分成以下两步: 第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m mP 种排法. 根据乘法原理,得到m m mn n m P C P =⋅.知识要点教学目标组合因此,组合数12)112321⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⋅⋅m mn nm m P n n n n m C P m m m ()(()()().这个公式就是组合数公式.二、组合数的重要性质一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤)这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n mn C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =. 规定1n nC =,01n C =.模块一、组合及其应用【例 1】 计算:⑴ 26C ,46C ;⑵ 27C ,57C .(2级) 【解析】 ⑴ 226622651521P C P ⨯===⨯,4466446543154321P C P ⨯⨯⨯===⨯⨯⨯ ⑵ 227722762121P C P ⨯===⨯,557755765432154321P C P ⨯⨯⨯⨯===⨯⨯⨯⨯ 【小结】注意到上面的结果中,有2466C C =,2577C C =.【例 2】 计算:⑴ 198200C ;⑵ 5556C ;⑶ 981001001002C C -.(2级)【解析】 ⑴ 21982001982200200200200222001991990021P CCCP -⨯=====⨯; ⑵ 15556551565656561156561P C CC P -=====;⑶ 2981002100100100100221009922122494821P CCCP ⨯-=-⨯=-=-=⨯.【巩固】 计算:⑴ 312C ;⑵ 9981000C ;⑶ 2288P C -.(2级)例题精讲【解析】⑴312121110220 321C⨯⨯==⨯⨯⑵9982100010001000999499500 21C C ⨯===⨯⑶2288878756282821P C ⨯-=⨯-=-=⨯.【例 3】6个朋友聚会,每两人握手一次,一共握手多少次?(2级)【解析】这与课前挑战的情景是类似的.因为两个人握手是相互的,6个朋友每两人握手一次,握手次数只与握手的两个人的选取有关而与两个人的顺序无关,所以这是个组合问题.由组合数公式知,266515 21C⨯==⨯(次).所以一共握手15次.【巩固】某班毕业生中有20名同学相见了,他们互相都握了一次手,问这次聚会大家一共握了多少次手?(2级)【解析】2202019190 21C⨯==⨯(次).【例 4】(难度等级※※)学校开设6门任意选修课,要求每个学生从中选学3门,共有多少种不同的选法?(4级)【解析】被选中的3门排列顺序不予考虑,所以这是个组合问题.由组合数公式知,3665420 321C⨯⨯==⨯⨯(种).所以共有20种不同的选法.【例 5】某校举行排球单循环赛,有12个队参加.问:共需要进行多少场比赛?(2级)【解析】因为比赛是单循环制的,所以,12个队中的每两个队都要进行一场比赛,并且比赛的场次只与两个队的选取有关而与两个队选出的顺序无关.所以,这是一个在12个队中取2个队的组合问题.由组合数公式知,共需进行212121166 21C⨯==⨯(场)比赛.【巩固】芳草地小学举行足球单循环赛,有24个队参加.问:共需要进行多少场比赛?(2级)【解析】由组合数公式知,共需进行2242423276 21C⨯==⨯(场)比赛.【例 6】一批象棋棋手进行循环赛,每人都与其他所有的人赛一场,根据积分决出冠军,循环赛共要进行78场,那么共有多少人参加循环赛?(4级)【解析】从若干人中选出2人比赛,与选出的先后顺序无关,这是一个组合问题.依题意,假设有n个人参加循环赛,应该有217821⋅-==⨯n n nC (),所以17821312⋅-=⨯=⨯n n(),所以13n=,即一共有13人参加循环赛.【例 7】某校举行男生乒乓球比赛,比赛分成3个阶段进行,第一阶段:将参加比赛的48名选手分成8个小组,每组6人,分别进行单循环赛;第二阶段:将8个小组产生的前2名共16人再分成4个小组,每组4人,分别进行单循环赛;第三阶段:由4个小组产生的4个第1名进行2场半决赛和2场决赛,确定1至4名的名次.问:整个赛程一共需要进行多少场比赛?(4级)【解析】第一阶段中,每个小组内部的6个人每2人要赛一场,组内赛266515 21C⨯==⨯场,共8个小组,有158120⨯=场;第二阶段中,每个小组内部4人中每2人赛一场,组内赛24436 21C⨯==⨯场,共4个小组,有6424⨯=场;第三阶段赛224+=场.根据加法原理,整个赛程一共有120244148++=场比赛.【例 8】从分别写有1、3、5、7、9的五张卡片中任取两张,做成一道两个一位数的乘法题,问:⑴有多少个不同的乘积?⑵有多少个不同的乘法算式?(6级)【解析】⑴要考虑有多少个不同乘积.由于只要从5张卡片中取两张,就可以得到一个乘积,所以,有多少个乘积只与所取的卡片有关,而与卡片取出的顺序无关,所以这是一个组合问题.由组合数公式,共有225522541021PCP⨯===⨯(个)不同的乘积.⑵要考虑有多少个不同的乘法算式,它不仅与两张卡片上的数字有关,而且与取到两张卡片的顺序有关,所以这是一个排列问题.由排列数公式,共有255420P=⨯=(种)不同的乘法算式.【巩固】9、8、7、6、5、4、3、2、1、0这10个数字中划去7个数字,一共有多少种方法?(4级)【解析】相当于在10个数字选出7个划去,一共有10×9×8×7×6×5×4÷(7×6×5×4×3×2×1)=10×9×8÷(3×2×1)=120种.【巩固】从分别写有1、2、3、4、5、6、7、8的八张卡片中任取两张,做成一道两个一位数的加法题,有多少种不同的和?(4级)【解析】228822872821PCP⨯===⨯(种).【例 9】在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?(6级)【解析】两个数的和是偶数,通过前面刚刚学过的奇偶分析法,这两个数必然同是奇数或同是偶数,而取出的两个数与顺序无关,所以是组合问题.从50个偶数中取出2个,有25050491225 21C⨯==⨯(种)取法;从50个奇数中取出2个,也有25050491225 21C⨯==⨯(种)取法.根据加法原理,一共有122512252450+=(种)不同的取法.【小结】在本题中,对两个数的和限定了条件.不妨对这个条件进行分类,如把和为偶数分成两奇数相加或两偶数相加.这样可以把问题简化.【巩固】从19、20、……、93、94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?(6级)【解析】19、20、……、93、94中有38个奇数,38个偶数,从38个数中任取2个数的方法有:238383770321C ⨯==⨯(种),所以选法总数有:70321406⨯=(种).【例 10】 一个盒子装有10个编号依次为1,2,3,,10的球,从中摸出6个球,使它们的编号之和为奇数,则不同的摸法种数是多少?(6级)【解析】 10个编号中5奇5偶,要使6个球的编号之和为奇数,有以下三种情形:⑴ 5奇1偶,这时对奇数只有1种选择,对偶数有5种选择.由乘法原理,有155⨯=(种)选择;⑵ 3奇3偶,这时对奇数有3554310321C ⨯⨯==⨯⨯(种)选择,对偶数也有3554310321C ⨯⨯==⨯⨯(种)选择.由乘法原理,有1010100⨯=(种)选择;⑶ 1奇5偶,这时对奇数有5种选择,对偶数只有1种选择.由乘法原理, 有515⨯=(种)选择.由加法原理,不同的摸法有51005110++=(种).【例 11】 用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多少个互不相同的六位数?(6级)【解析】 先考虑在6个数位上选2个数位放1,这两个1的顺序无所谓,故是组合问题,有26651521C ⨯==⨯(种)选法;再从剩下的4个数位上选2个放2,有2443621C ⨯==⨯(种)选法;剩下的2个数位放3,只有1种选法.由乘法原理,这样的六位数有156190⨯⨯=(个).在前一问的情况下组成的90个六位数中,首位是1、2、3的各30个.如果将3全部换成0,这30个首位是0的数将不是六位数,所以可以组成互不相同的六位数903060-=(个).【例 12】 从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?(6级) 【解析】 整个过程可以分三步完成:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法;第二步,从2,4,6,8中任取两个数字,也是一个组合问题,有24C 种方法;第三步,用取出的5个数字组成没有重复数字的五位数,有55P 种方法.所以总的个数为:3255457200C C P ⨯⨯=(个).【例 13】 从0、0、1、2、3、4、5这七个数字中,任取3个组成三位数,共可组成多少个不同的三位数?(这里每个数字只允许用1次,比如100、210就是可以组成的,而211就是不可以组成的).(2008年“陈省身杯”国际青少年数学邀请赛五年级)(4级)【解析】 若三位数不含有0,有54360⨯⨯=(个),若含有一个0,有54240⨯⨯=(个),若含有两个0,有5(个),所以共有60405105++=(个).【例 14】 用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多少个互不相同的六位数?(6级)【解析】 先考虑在6个数位上选2个数位放1,这两个1的顺序无所谓,故是组合问题有2615C =种选法;再从剩下的4个数位上选2个放2,有246C =种选法;剩下的2个数位放3,只有1种选法.由乘法原理,这样的六位数有156190⨯⨯=个.在前一问的情况下组成的90个六位数中,首位是1、2、3的各30个.如果将3全部换成0,这30个首位是0的数将不是六位数,所以可以组成互不相同的六位数903060-=个.【巩固】用两个3,一个2,一个1,可以组成多少个不重复的4位数?(6级) 【解析】 这道题由于3有2个,是其中最特殊的,所以从它入手.先从四位数的4个数位中选择2个来放3,有246C =种选法;然后剩下的两个数位放1和2,有2种放法;根据乘法原理,共有6212⨯=种不同的方法,所以可以组成12个不重复的四位数.【例 15】 工厂某日生产的10件产品中有2件次品,从这10件产品中任意抽出3件进行检查,问:(1)一共有多少种不同的抽法?(2)抽出的3件中恰好有一件是次品的抽法有多少种?(3)抽出的3件中至少有一件是次品的抽法有多少种?(6级) 【解析】 (1)从10件产品中抽出3件,抽法总数为310C =120(种)(2)3件中恰好一件次品,那么还有两件正常品.抽法总数为12C ×28C =56(种)(3)与“至少有一件是次品”互补的事件是“全都不是次品” 全都不是次品的抽法总数为38C =56(种)所以至少有一件次品的抽法总数为120-56=64(种).【例 16】 200件产品中有5件是次品,现从中任意抽取4件,按下列条件,各有多少种不同的抽法(只要求列式)?⑴都不是次品;⑵至少有1件次品;⑶不都是次品.(6级)【解析】 第⑴题:与顺序无关;都不是次品,即全部都是正品,正品有195件.第⑵题:与顺序无关;至少有1件次品,即有1件次品、2件次品、3件次品、4件次品等四类情况,次品共5件.可用直接法解答,也可用间接法解答.第⑶题:与顺序无关;不都是次品,即至少有1件是正品. ⑴都不是次品,即全部为正品.共有抽法4195C 种.⑵至少有1件次品,包括1件、2件、3件、4件次品的情况.共有抽法31221341955195519555()C C C C C C C +++种(或44200195()C C -种).⑶不都是次品,即至少有1件正品.共有抽法1322314195519551955195()C C C C C C C +++种(或442005()C C -种).【例 17】 在一个圆周上有10个点,以这些点为端点或顶点,可以画出多少不同的:⑴ 直线段;⑵ 三角形;⑶ 四边形.(6级)【解析】 由于10个点全在圆周上,所以这10个点没有三点共线,故只要在10个点中取2个点,就可以画出一条线段;在10个点中取3个点,就可以画出一个三角形;在10个点中取4个点,就可以画出一个四边形,三个问题都是组合问题. 由组合数公式:⑴ 可画出221010221094521P C P ⨯===⨯(条)直线段.⑵ 可画出331010331098120321P C P ⨯⨯===⨯⨯(个)三角形. ⑶ 可画出44101044109872104321P C P ⨯⨯⨯===⨯⨯⨯(个)四边形.【巩固】 平面内有10个点,以其中每2个点为端点的线段共有多少条?(4级) 【解析】 这道题不考虑线段两个端点的顺序,是组合问题,实际上是求从10个元素中取出2个元素的组合数,由组合数公式,2101094521C ⨯==⨯,所以以10个点中每2个点为端点的线段共有45条.【巩固】 在正七边形中,以七边形的三个顶点为顶点的三角形共有多少个?(4级) 【解析】 三角形的形状与三个顶点选取的先后顺序无关,所以这是一个组合问题,实际上是求从7个点中选出3个点的选法,等于3776535321C ⨯⨯==⨯⨯(种).【例 18】 平面内有12个点,其中6点共线,此外再无三点共线.⑴ 可确定多少个三角形?⑵ 可确定多少条射线?(6级)【解析】 ⑴ 分三类:①有2个顶点在共线的6点中,另1个顶点在不共线的6点中的三角形有2665669021C ⨯⨯=⨯=⨯个; ②有1个顶点在共线的6点中,另2个顶点在不共线的6点中的三角形有2665669021C ⨯⨯=⨯=⨯(个); ③3个顶点都在不共线的6点中的三角形有3665420321C ⨯⨯==⨯⨯个.根据加法原理,可确定909020200++=个三角形. ⑵ 两点可以确定两条射线,分三类: ①共线的6点,确定10条射线;②不共线的6点,每两点确定两条射线,共有2665223021C ⨯⨯=⨯=⨯(条)射线; ③从共线的6点与不共线的6点中各取一个点可以确定66272⨯⨯=(条)射线. 根据加法原理,可以确定103072112++=(条)射线.【巩固】 如图,问:⑴ 图1中,共有多少条线段?⑵ 图2中,共有多少个角?(4级)54321 ...P 9P 3P 2P 1BAO图1 图2 【解析】 ⑴ 在线段AB 上共有7个点(包括端点A 、B ).注意到,只要在这七个点中选出两个点,就有一条以这两个点为端点的线段,所以,这是一个组合问题,而27C 表示从7个点中取两个不同点的所有取法,每种取法可以确定一条线段,所以共有27C 条线段. 由组合数公式知,共有227722762121P C P ⨯===⨯(条)不同的线段; ⑵ 从O 点出发的射线一共有11条,它们是OA , 1OP ,2OP ,3OP ,,9OP ,OB .注意到每两条射线可以形成一个角,所以,只要看从11条射线中取两条射线有多少种取法,就有多少个角.显然,是组合问题,共有211C 种不同的取法,所以,可组成211C 个角.由组合数公式知,共有2211112211105521P C P ⨯===⨯(个)不同的角.【例 19】 某班要在42名同学中选出3名同学去参加夏令营,问共有多少种选法?如果在42人中选3人站成一排,有多少种站法?(6级)【解析】 要在42人中选3人去参加夏令营,那么,所有的选法只与选出的同学有关,而与三名同学被选出的顺序无关.所以,应用组合数公式,共有342C 种不同的选法.要在42人中选出3人站成一排,那么,所有的站法不仅与选出的同学有关,而且与三名同学被选出的顺序有关.所以,应用排列数公式,共有342P 种不同的站法.由组合数公式,共有3342423342414011480321P C P ⨯⨯===⨯⨯(种)不同的选法; 由排列数公式,共有34242414068880P =⨯⨯=(种)不同的站法.【巩固】 学校新修建的一条道路上有12盏路灯,为了节省用电而又不影响正常的照明,可以熄灭其中2盏灯,但两端的灯不能熄灭,也不能熄灭相邻的2盏灯,那么熄灯的方法共有多少种?(6级)【解析】 要熄灭的是除两端以外的2盏灯,但不相邻.可以看成有10盏灯,共有9个空位,在这9个空位中找2个空位的方法数就是熄灭2盏灯的方法数,那么熄灯的方法数有29983621C ⨯==⨯(种).【例 20】 将三盘同样的红花和四盘同样的黄花摆放成一排,要求三盘红花互不相邻,共有__________种不同的方法.(2007年“希望杯”第一试)(4级)【解析】 因为三盘红花不能相邻,所以可以先将四盘黄花摆好,红花只能摆在黄花之间或者黄花的两边.这样共有5个空,每个空最多只能放一盘红花,相当于从5个元素中取出3个,所以共有3554310123C ⨯⨯==⨯⨯种不同的放法.【例 21】 在一次合唱比赛中,有身高互不相同的8个人要站成两排,每排4个人,且前后对齐.而且第二排的每个人都要比他身前的那个人高,这样才不会被挡住.一共有多少种不同的排队方法?(4级)【解析】 因为所有人的身高两两不同,所以只要确定了位于同一列的两个人是谁,也就确定了他们的前后关系.所以排队方法总数为:222 864281562520C C C⨯⨯=⨯⨯=(种).【例 22】在一次考试的选做题部分,要求在第一题的4个小题中选做3个小题,在第二题的3个小题中选做2个小题,在第三题的2个小题中选做1个小题,有多少种不同的选法?(6级)【解析】由于选做的题目只与选取的题目有关,而与题目的顺序无关,所以在三道题中选题都是组合问题.第一题中,4个小题中选做3个,有344324 321C⨯⨯==⨯⨯(种)选法;第二题中,3个小题中选做2个,有23323 21C⨯==⨯(种)选法;第三题中,2个小题中选做1个,有12212 1C⨯==(种)选法.根据乘法原理,一共有43224⨯⨯=(种)不同的选法.【例 23】某年级6个班的数学课,分配给甲、乙、丙三名数学老师任教,每人教两个班,分派的方法有多少种?(6级)【解析】分三步进行:第一步,取两个班分配给甲,与先后顺序无关,是组合问题,有266515 21C⨯==⨯(种)选法;第二步,从余下的4个班中选取两个班给乙,有24436 21C⨯==⨯(种)选法;第三步,剩余的两个班给丙,有1种选法.根据乘法原理,一共有156190⨯⨯=(种)不同的分配方法.【例 24】(2007年“迎春杯”高年级初赛)将19枚棋子放入55⨯的方格网内,每个方格至多只放一枚棋子,且每行每列的棋子个数均为奇数个,那么共有________种不同的放法.(4级)【解析】55⨯的方格网共有25个方格,放入19枚棋子,说明还有6个空格.由于棋子的数目较多,直接考虑棋子比较困难,可以反过来考虑6个空格.由于每行每列的棋子个数均为奇数个,而每行每列都有5个方格,说明每行每列的空格数都是偶数个.那么每行每列的空格数可能为0,2或4.如果有某一行或某一列的空格数为4个,为保证每行每列的空格数都是偶数个,那么这4个空格所在的列或行都至少还有另外1枚棋子,这样至少有8个空格,与题意不符,所以每行每列的空格数不能为4个,只能为0个或2个.则肯定是某3行和某3列中每行每列各有2个空格,如下:□□○□○□○□□其中□表示空格,○表示有棋子的方格,其它的方格则全部有棋子.选择有空格的3行3列有33551010100C C⨯=⨯=种选法,在这3行3列中选择6个空格(也相当于每行每列选择1枚棋子)有3216⨯⨯=种选法,所以总共有1006600⨯=种不同的放法.【例 25】甲射击员在练习射击,前方有三种不同类型的气球,共3串,有一串是红气球3个,有一串是黄气球2个,有一串是绿气球4个,而且每次射击必须射最下面的气球,问有多少种不同的射法?(6级)绿黄红【解析】根据射击规则,任意一种打法都对应三个红色气球,二个黄色气球,四个绿色气球,即9个物体的排列,当然有987654321⨯⨯⨯⨯⨯⨯⨯⨯种排列方法.但是,其中三个红色气球是不能随意排列的,应该是固定由下到上的,而上面却包括了它的随意排列的情况,所以应该除以321⨯⨯,其他黄色气球、绿色气球依此类推.所以共有射击方法:(987654321)(321)(21)(4321)⨯⨯⨯⨯⨯⨯⨯⨯÷⨯⨯÷⨯÷⨯⨯⨯(987654)(21)(4321)=⨯⨯⨯⨯⨯÷⨯÷⨯⨯⨯1260=(种).本题也可以这样想:任意一种打法都对应9个物体的排列,从中先选出3个位置给红色气球,有39C种选法;这3个红色气球的顺序是固定的,所以它们之间只有一种排列顺序;再从剩下的6个位置中选出2个给黄色气球,有26C种选法;它们之间也只有一种排列顺序;剩下的4个位置给绿色气球,它们之间也只有一种排列顺序.所以,根据乘法原理,共有32961260C C⨯=种不同的射法.【例 26】有8个队参加比赛,采用如下图所示的淘汰制方式.问在比赛前抽签时,可以得到多少种实质不同的比赛安排表?(6级)【解析】(法1)先选4人,再考虑组合的方法.8选4有4870C=种组合,其中实质不同的有一半,即70235÷=种;对每一边的4个人,共有实质性不同的2423C÷=种,所以,可以得到3533315⨯⨯=种实质不同的比赛安排表.(法2)先考虑所有情况,再考虑重复情况首先是8!87654321=⨯⨯⨯⨯⨯⨯⨯考虑到实质相同:1、2;3、4;5、6;7、8;一、二;三、四;A、B,以上7组均可交换,即每一种实际上重复计算了72次,答案为:78!2315÷=.【例 27】某池塘中有A B C、、三只游船,A船可乘坐3人,B船可乘坐2人,C船可乘坐1人,今有3个成人和2个儿童要分乘这些游船,为安全起见,有儿童乘坐的游船上必须至少有个成人陪同,那么他们5人乘坐这三支游船的所有安全乘船方法共有多少种?(6级)【解析】由于有儿童乘坐的游船上必须至少有1个成人陪同,所以儿童不能乘坐C船.⑴若这5人都不乘坐C船,则恰好坐满A B、两船,①若两个儿童在同一条船上,只能在A船上,此时A船上还必须有1个成人,有133C=种方法;②若两个儿童不在同一条船上,即分别在A B、两船上,则B船上有1个儿童和1个成人,1个儿童有122C=种选择,1个成人有133C=种选择,所以有236⨯=种方法.故5人都不乘坐C船有369+=种安全方法;⑵若这5人中有1人乘坐C船,这个人必定是个成人,有133C=种选择.其余的2个成人与2个儿童,①若两个儿童在同一条船上,只能在A船上,此时A船上还必须有1个成人,有122C=种方法,所以此时有326⨯=种方法;②若两个儿童不在同一条船上,那么B船上有1个儿童和1个成人,此时1个儿童和1个成人均有122C=种选择,所以此种情况下有32212⨯⨯=种方法;故5人中有1人乘坐C船有61218+=种安全方法.所以,共有91827+=种安全乘法.【例 28】有蓝色旗3面,黄色旗2面,红色旗1面.这些旗的模样、大小都相同.现在把这些旗挂在一个旗杆上做成各种信号,如果按挂旗的面数及从上到下颜色的顺序区分信号,那么利用这些旗能表示多少种不同信号? (4级)【解析】按挂旗的面数来分类考虑.第一类:挂一面旗.从蓝、黄、红中分别取一面,可以表示3种不同信号;第二类:挂两面旗.按颜色分成:红+黄(222P=种);红+蓝(222P=种);黄+蓝(222P=种);黄+黄(1种);蓝+蓝(1种);共8种;第三类:挂三面旗.按颜色分类:红+蓝+蓝(133C=种);红+黄+黄(133C=种);红+黄+蓝(336P=种);黄+黄+蓝(133C=种);黄+蓝+蓝(133C=种);蓝+蓝+蓝(1种);共19种;第四类:挂四面旗.按颜色分类:红+黄+黄+蓝(24212C⨯=或44212P÷=种);红+黄+蓝+蓝(24212C⨯=或44212P÷=种);红+蓝+蓝+蓝(144C=种);黄+黄+蓝+蓝(22426C C⨯=种);黄+蓝+蓝+蓝(144C=种),共38种;第五类:挂五面旗.按颜色分类:红+黄+黄+蓝+蓝(32153130C C C⨯⨯=种);红+黄+蓝+蓝+蓝(352120C⨯⨯=种);黄+黄+蓝+蓝+蓝(325210C C⨯=种),共60种;第六类:挂六面旗.红+黄+黄+蓝+蓝+蓝(32163160C C C⨯⨯=种).根据加法原理,共可以表示3819386060188+++++=种不同的信号.【例 29】从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?⑴恰有3名女生入选;⑵至少有两名女生入选;⑶某两名女生,某两名男生必须入选;⑷某两名女生,某两名男生不能同时入选;⑸某两名女生,某两名男生最多入选两人.(6级)【解析】⑴恰有3名女生入选,说明男生有5人入选,应为3581014112C C⨯=种;⑵要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:8871181010843758C C C C --⨯=;⑶4人必须入选,则从剩下的14人中再选出另外4人,有4141001C =种; ⑷从所有的选法818C 种中减去这4个人同时入选的414C 种:84181443758100142757C C -=-=.⑸分三类情况:4人无人入选;4人仅有1人入选;4人中有2人入选,共:817261441441434749C C C C C +⨯+⨯=.【例 30】 从4名男生,3名女生中选出3名代表.⑴ 不同的选法共有多少种?⑵ “至少有一名女生”的不同选法共有多少种?⑶ “代表中男、女生都要有”的不同选法共有多少种?(6级)【解析】 ⑴ 相当于从7名学生中任意选3名,不同的选法有3776535321C ⨯⨯==⨯⨯(种).⑵ 方法一:可以分成三类:①选1名女生,选2名男生.由乘法原理,有12344331821C C ⨯⋅=⨯=⨯(种)选法; ②选2名女生,选1名男生.由乘法原理,有21343241221C C ⨯⋅=⨯=⨯(种)选法; ③选3名女生,男生不选,有1种选法.根据加法原理,“至少有一名女生”的不同选法有1812131++=(种).方法二:先不考虑对女生的特殊要求,从从7名学生中任意选3名,有3776535321C ⨯⨯==⨯⨯(种)选法;考虑一个女生都不选的情况,则3名代表全产生于男生中,有344324321C ⨯⨯==⨯⨯ (种)选法,所以,至少选一名女生的选法有35431-=种,这种“去杂法”做起来也比较简单.⑶ “代表中男、女生都要有”,可以分成两类:①1名男生,2名女生,由乘法原理,有21343241221C C ⨯⋅=⨯=⨯(种)选法; ②2名男生,1名女生,由乘法原理,有12344331821C C ⨯⋅=⨯=⨯(种)选法. 根据加法原理,“代表中男、女生都要有”的不同选法共有121830+=(种).【小结】选择问题是组合问题中的一类常见问题,可根据具体情况从正面考虑或逆向求解,采用“去杂法”.【巩固】 在6名内科医生和4名外科医生中,内科主任和外科主任各一名,现要组成5人医疗小组送医下乡,按照下列条件各有多少种选派方法? ⑴ 有3名内科医生和2名外科医生; ⑵ 既有内科医生,又有外科医生; ⑶ 至少有一名主任参加; ⑷ 既有主任,又有外科医生.(8级)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.使学生正确理解组合的意义;正确区分排列、组合问题;2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;3.掌握组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.一、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步:第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法.根据乘法原理,得到m m m n n m P C P =⨯.因此,组合数12)112321mm n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()(). 这个公式就是组合数公式.二、组合数的重要性质一般地,组合数有下面的重要性质:m n m n nC C -=(m n ≤) 这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元7-5-4.组合之插板法知识要点教学目标素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =. 规定1n n C =,01n C =.插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.使用插板法一般有如下三种类型:⑴ m 个人分n 个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的(1)n -个空隙中放上(1)m -个插板,所以分法的数目为11m n C --. ⑵ m 个人分n 个东西,要求每个人至少有a 个.这个时候,我们先发给每个人(1)a -个,还剩下[(1)]n m a --个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为1(1)1m n m a C ----.⑶ m 个人分n 个东西,允许有人没有分到.这个时候,我们不妨先借来m 个东西,每个人多发1个,这样就和类型⑴一样了,不过这时候物品总数变成了()n m +个,因此分法的数目为11m n m C -+-.【例 1】 将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有种不同的放法。
【考点】计数之插板法 【难度】2星 【题型】填空【关键词】希望杯,五年级,一试,第18题 【解析】 四盆黄花摆好后,剩下5个位子可插进红花,选三个位置将三盆红花插入,35543==10321C ⨯⨯⨯⨯,所以有10种选择. 【答案】10种【例 2】 在1,2,3,……,7,8的任意排列中,使得相邻两数互质的排列方式共有______种.【考点】复杂乘法原理 【难度】4星 【题型】解答【关键词】西城实验【解析】 这8个数之间如果有公因子,那么无非是2或3.8个数中的4个偶数一定不能相邻,对于这类多个元素不相邻的排列问题,考虑使用“插入法”即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入但在偶数插入时,还要考虑3和6相邻的情况.奇数的排列一共有4!24=种对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插再在剩下的四个位置中插入2、4、8,一共有43224⨯⨯=种所以一共有243241728⨯⨯=种.【答案】1728例题精讲【例 3】有10粒糖,分三天吃完,每天至少吃一粒,共有多少种不同的吃法?【考点】计数之插板法【难度】2星【题型】解答【解析】如图:○○|○○○○|○○○○,将10粒糖如下图所示排成一排,这样每两颗之间共有9个空,从头开始吃,若相邻两块糖是分在两天吃的,就在其间画一条竖线隔开表示之前的糖和之后的糖不是在同一天吃掉的,九个空中画两条竖线,一共有98236⨯÷=种方法.【答案】36【巩固】小红有10块糖,每天至少吃1块,7天吃完,她共有多少种不同的吃法?【考点】计数之插板法【难度】3星【题型】解答【解析】分三种情况来考虑:⑴ 当小红最多一天吃4块时,其余各每天吃1块,吃4块的这天可以是这七天里的任何一天,有7种吃法;⑵ 当小红最多一天吃3块时,必有一天吃2块,其余五天每天吃1块,先选吃3块的那天,有7种选择,再选吃2块的那天,有6种选择,由乘法原理,有7642⨯=种吃法;⑶ 当小红最多一天吃2块时,必有三天每天吃2块,其四天每天吃1块,从7天中选3天,有3776535 321C⨯⨯==⨯⨯(种)吃法.根据加法原理,小红一共有7423584++=(种)不同的吃法.另外还可以用挡板法来解这道题,10块糖有9个空,选6个空放挡板,有639984C C==(种)不同的吃法.【答案】84【巩固】有12块糖,小光要6天吃完,每天至少要吃一块,问共有种吃法.【考点】计数之插板法【难度】3星【题型】解答【关键词】西城实验【解析】将12块糖排成一排,中间共有11个空,从11个空中挑出5个空插挡板,把12块糖分成6堆,则这样的每一种分法即对应一种吃法,所以共有5 111110987462 12345C⨯⨯⨯⨯==⨯⨯⨯⨯种.【答案】462【巩固】把5件相同的礼物全部分给3个小朋友,要使每个小朋友都分到礼物,则分礼物的不同方法一共有种.【考点】计数之插板法【难度】3星【题型】解答【关键词】十三分,小升初,入学测试【解析】把5件相同的礼物排成一列,中间有4个间隔,现在用两个板去隔,每个间隔最多放一个板.这2个板的每一种放法都把5件礼物分成3份,所以这两个板的每一种放法都对应一种分礼物的方法.而板的放法有246C=种,所以分礼物的不同方法有6种.【答案】6【巩固】把7支完全相同的铅笔分给甲、乙、丙3个人,每人至少1支,问有多少种方法?【考点】计数之插板法【难度】3星【题型】解答【解析】将铅笔排成一排,用两块挡板将这一排铅笔隔开成三份,然后分与甲、乙、丙,挡板可插入的位置一共有716-=个,6个位置中安插两个不分次序的挡板一共有65215⨯÷=种方法.处理分东西的问题用隔板(挡板)法可以顺利解决.【答案】15【巩固】学校合唱团要从6个班中补充8名同学,每个班至少1名,共有多少种抽调方法?【考点】计数之插板法 【难度】3星 【题型】解答【解析】 插板法,8名同学之间有7个空,插5块板,一共有5277762121C C ⨯===⨯(种)方法. 【答案】21【例 4】 10只无差别的橘子放到3个不同的盘子里,允许有的盘子空着.请问一共有多少种不同的放法?【考点】计数之插板法 【难度】3星 【题型】解答【解析】 把10只无差别的橘子放到3个不同的盘子里,允许有的盘子空着,然后在每个盘子里再另加一个橘子,这就变成了把13只无差别的橘子放到3个不同的盘子里,不允许任何一个盘子空着.反过来也是一样,把13只橘子放到3个盘子里,不允许任何一个盘子空着,再从每一个盘子中取出一个橘子,这就变回题目中的放法.所以把10只无差别的橘子放到3个不同的盘子里且允许有的盘子空着的放法数目,和把13只无差别的橘子放到3个不同的盘子里且不允许任何一个盘子空着的放法数目相同.我们现在来计算把13只无差别的橘子放到3个不同的盘子里且不允许任何一个盘子空着的放法数目.这时我们用隔板地方法,把这13只橘子排成一列,则这13只橘子之间有12个空隙.我们只要选定这12个空隙中的2个空隙,再这两个空隙中分别放一块隔板,这样就分成了3组,就相当于把这13只橘子分成了3堆,如下图.所以只要求出从12个空隙中选出2个空隙有多少种方法就可以了.1211266=⨯÷=212C ,所以题目中所求的不同的放法有66种.【答案】66【巩固】 将13个相同的苹果放到3个不同的盘子里,允许有盘子空着。
一共有 种不同的放法。
【考点】计数之插板法 【难度】3星 【题型】填空【关键词】学而思杯,6年级,第8题【解析】 215105C =种。
【答案】105种【例 5】 把20个苹果分给3个小朋友,每人最少分3个,可以有多少种不同的分法?【考点】计数之插板法 【难度】3 【题型】解答【解析】 先给每人2个,还有14个苹果,每人至少分一个,13个空插2个板,有21378C =种分法.【答案】78【巩固】三所学校组织一次联欢晚会,共演出14个节目,如果每校至少演出3个节目,那么这三所学校演出节目数的不同情况共有多少种?【考点】计数之插板法 【难度】3星 【题型】解答【解析】 由于每校至少演出3个节目,所以可以由每所学校先分别出2个节目,剩下的8个节目再由3所学校分,也就是在8个物体间插入2个挡板,8个物体一共有7个间隔,这样的话一共有762121⨯÷⨯=()种方法. 【答案】21【例 6】 (1)小明有10块糖,每天至少吃1块,8天吃完,共有多少种不同吃法?(2)小明有10块糖,每天至少吃1块,8天或8天之内吃完,共有多少种吃法?【考点】计数之插板法 【难度】3星 【题型】解答【解析】 将10拆成8个自然数的和,有两种拆法,10=1+1+1+1+1+1+1+3=1+1+1+1+1+1+2+2.若8天中有7天每天吃一块,另外一天吃三块,有8种吃法.若8天中有6天每天吃一块,另外2天每天吃两块,有8×7÷2=28种吃法.8+28=36,所以共有36种吃法.(2)考虑有n 块糖,每天至少吃1块,n 天之内吃完的情况.将n 块糖排成一行,这样在n 块糖之间就产生了n -1个空隙.可以在这些空隙中插入竖线,如果一条竖线都没有插,就代表着1天把所有的糖吃完.如果每个空隙都插入竖线,就代表着每天吃一块糖,n 天吃完.每个空隙都可以选择插或者不插,这样每一种插法都代表着一种吃法.由于每个空隙都有插或者不插两个选择,所以n -1个空隙就有2n -1种插法,即n 块糖每天至少吃1块,一共有2n -1种不同的吃法.当有10块糖时,10天之内吃完共有29=512种吃法.10块糖9天吃完时,其中1天要吃2块,其余8天每天吃1块,共有9种吃法.10块糖10天吃完时,每天吃1块,有1种吃法.512-9-1=502,所以10块糖8天或8天之内吃完,共有502种吃法.【答案】502【巩固】有10粒糖,每天至少吃一粒,吃完为止,共有多少种不同的吃法?【考点】计数之插板法 【难度】3星 【题型】解答【解析】 初看本题似乎觉得很好入手,比如可以按天数进行分类枚举:1天吃完的有1种方法,这天吃10块;2天吃完的有9种方法,10=1+9=2+8=……=9+1; 当枚举到3天吃完的时,情况就有点错综复杂了,叫人无所适从……所以我们必须换一种角度来思考.不妨从具体的例子入手来分析,比如这10块糖分4天吃完:第1天吃2块;第2天吃3块;第3天吃1块;第4天吃4块.我们可以将10个“○”代表10粒糖,把10个“○”排成一排,“○”之间共有9个空位,若相邻两块糖是分在两天吃的,就在其间画一条竖线(如下图).○○|○○○|○|○○○○比如上图就表示“第1天吃2块;第2天吃3块;第3天吃1块;第4天吃4块.” 这样一来,每一种吃糖的方法就对应着一种“在9个空位中插入若干个‘|’的方法”,要求有多少个不同的吃法,就是要求在这9个空位中插入若干个“|”的方法数.由于每个空位都有画‘|’与“不画‘|’两种可能:根据乘法原理,在这9个空位中画若干个“|”的方法数有:9922222512⨯⨯⨯==,这也就说明吃完10颗糖共有512种不同的吃法.【答案】512【例 7】 马路上有编号为1,2,3,…,10的十只路灯,为节约用电又能看清路面,可以把其中的三只灯关掉,但又不能同时关掉相邻的两只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法有多少种?【考点】计数之插板法 【难度】3星 【题型】解答【解析】10只灯关掉3只,实际上还亮7只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在7只亮着的路灯之间的6个空档中放入3只熄灭的灯,有3620C =种方法.【答案】20【巩固】学校新修建的一条道路上有12盏路灯,为了节省用电而又不影响正常的照明,可以熄灭其中2盏灯,但两端的灯不能熄灭,也不能熄灭相邻的2盏灯,那么熄灯的方法共有多少种?【考点】组合之基本运用【难度】3星【题型】解答【解析】要熄灭的是除两端以外的2盏灯,但不相邻.可以看成有10盏灯,共有9个空位,在这9个空位中找2个空位的方法数就是熄灭2盏灯的方法数,那么熄灯的方法数有299836 21C⨯==⨯(种).【答案】2936C=【例 8】在四位数中,各位数字之和是4的四位数有多少?【考点】计数之插板法【难度】3星【题型】解答【解析】设原四位数为ABCD,按照题意,我们有4A B C D+++=,但是对A、B、C、D要求不同,因为这是一个四位数,所以应当有0A≠,而其他三个字母都可以等于0,这样就不能使用我们之前的插板法了,因此我们考虑将B、C、D都加上1,这样B、C、D都至少是1,而且这个时候它们的和为437+=,即问题变成如下表达:一个各位数字不为0的四位数,它的各位数字之和为7,这样的四位数有多少个?采用插板法,共有6个间隔,要插入3个板,可知这样的四位数有3620C=个,对应着原四位数也应该有20个.【答案】20【巩固】大于2000小于3000的四位数中数字和等于9的数共有多少个?【考点】计数之插板法【难度】3星【题型】解答【解析】大于2000小于3000的四位数,首位数字只能为2,所以后三位数字之和为7,后三位数字都有可能为0,为使用隔板法,先将它们变成至少为1的数,可以将每个数都加上1,这样它们的和为10,且每个数都至少为1,那么采用隔板法,相当于在9个间隔中选择2个插入隔板,有2936C=种方法,所以满足题意的四位数有36个.【答案】36【例 9】兔妈妈摘了15个相同的磨菇,分装在3个相同的筐子里,如果不允许有空筐,共有多少种不同的装法?如果分装在3个不同的筐子里,不允许有空筐,又有多少种不同的装法?【考点】计数之插板法【难度】4星【题型】解答【解析】⑴分装在3个相同的筐子里,两种不同的装法意味着这两种装法中3个筐子里的蘑菇数量不完全相同.可以进行分类讨论:①如果每个筐至少有5个,有1种情况;②如果每个筐至少有4个,则相当于把15433-⨯=个蘑菇分装在3个筐子里,且至少有1个筐子是空的(否则没有筐子是空的,将与①中的情况相同),有(0,0,3)和(0,1,2)2种情况;③如果每个筐至少有3个,则相当于把6个蘑菇分装在3个筐子里,且至少有1个筐子是空的,有(0,0,6),(0,1,5),(0,2,4)和(0,3,3)4种情况;④如果每个筐至少有2个,类似分析可知有5种情况;⑤如果每个筐至少有1个,类似分析可知有7种情况.所以共有1245719++++=种不同的装法.⑵如果分装在3个不同的筐子里,不允许有空筐,可以把这15个蘑菇排成一列,中间有14个间隔,现在用两个板去隔,每个间隔最多放一个板.这2个板的每一种放法都把15个蘑菇分成3份,所以这两个板的每一种放法都对应一种装蘑菇的方法.而板的放法有21491C 种,所以装蘑菇的不同方法有91种.【答案】91。