避免电池的热失控安全设计
锂离子电池安全性保护措施

锂离子电池安全性保护措施摘要:在锂离子电池中,存在着最普遍的安全问题。
锂离子电池的热失控是造成安全事故的重要因素。
文章总结了近年来国内外关于锂离子电池安全防护的一些方法,其中包括了国内外关于锂离子电池的内部防护和外部防护措施的研究与探讨。
本文对近年来国内外关于不可燃电解质、阻燃添加剂、隔膜、正极材料、限流设备、电池管理系统等方面的工作原理及最新的研究成果,并对今后的安全性进行了预测。
关键词:锂离子电池安全性;保护措施在众多新能源中,以高电压、高比容量、长循环寿命、无环境污染等优异的特性的锂离子电池深受当今社会的青睐,至今已经取代了传统的3C型二次电池,逐渐成了电力行业的主流。
但近年来,由于使用锂离子电池引起的火灾和爆炸事故时有发生,严重影响了其发展。
锂离子电池之所以会有这样的危险,是因为它的内部放热反应不受控制,这主要是因为:(1)某些不符合标准的运行方式,比如在锂离子电池过度充电时,正极材料中会出现脱锂的反应,使得结构破碎,电解液也被氧化,从而产生了巨大的热能。
(2)在长期的循环中,锂离子电池的负极表面会产生锂枝晶,其中一些会剥落,成为"死锂",而另一些则会不断繁殖,最后会击穿金属薄膜,从而导致电池短路。
(3)强酸性电解质溶液,是由碳酸酯和羧酸酯所构成的强有机溶剂,在高热时会引起氧化分解,从而放出巨大的热能,引起电池的过热,但一旦没有及时排除,很易导致电池的过热,引起电池的自燃,乃至自爆。
为解决锂离子脱嵌电池的安全问题,本文浅析一下锂离子电池安全性保护措施。
一、从电极材料讨论锂离子电池安全性保护措施对电解质和膜片进行了修饰,对电极材料的改性也是目前研究的热点。
有的学者建议将磷基化合物嵌入到正极中而不是加入阻燃剂,而是采用预先埋入阻燃剂的磷酸铁锂作为正极材料。
之后,他们又将软水铝石作为阻燃剂嵌入到锂离子正极中,这两种阻燃剂均表现出优良的阻燃性,且不会使正电极的电化学性质有明显的下降。
动力电池的电池包热失控与防护策略

动力电池的电池包热失控与防护策略动力电池是电动汽车等新能源车辆的关键组件,其性能和安全问题备受关注。
在动力电池中,电池包是承载电池单体并提供电力的重要部分。
然而,由于各种因素的影响,电池包热失控的风险也存在。
因此,制定有效的防护策略对于确保动力电池的安全运行至关重要。
一、动力电池包热失控的原因分析1. 过充电/过放电:不合理的充电和放电操作可能导致电池包内部温度快速升高,进而引发热失控的风险。
2. 短路:电池包中的电池单体如果出现短路,会导致电池包内部电流剧烈增大,产生大量热量。
3. 外部热源:外部高温环境的影响也会使得电池包内部温度升高,加剧热失控的风险。
二、动力电池包热失控的防护策略1. 温度监测与控制:在电池包内部设置温度传感器,并通过监测系统实时监测电池包的温度。
当温度超过设定阈值时,及时进行散热或其他措施以防止热失控的发生。
2. 热管理系统:采用有效的热管理系统,如散热片、散热管道等,将电池包内部的热量迅速传导出去,保持温度适宜。
3. 电池包设计优化:合理设计电池包的内部结构,提高各单体电池之间的热扩散能力,避免温度集中。
4. 安全隔离措施:在电池包设计中,设置安全隔离层以减少热量传导,隔绝热失控的影响范围,以保证车辆内部人员的安全。
5. 压力释放机制:在电池包内部设置压力释放装置,一旦热失控发生,通过释放内部的高压气体,减轻电池包的压力,降低意外事故的风险。
6. 高温报警与灭火系统:在电池包内部设置高温报警装置,一旦温度达到预警值,及时发出警报并触发灭火系统,防止热失控进一步扩大。
7. 安全测试与认证:对于动力电池包的设计、生产和使用,进行严格的安全测试与认证,确保其符合相关标准和规范,提高安全性能。
三、结语动力电池包热失控是电动汽车等新能源车辆面临的重要安全问题。
通过采取合理的防护策略,可以有效降低热失控的风险,确保动力电池的安全运行。
在未来,我们应继续加强对动力电池包热失控相关问题的研究,不断提升防护策略的能力,为新能源车辆的可持续发展做出贡献。
锂电池安全问题汇总及常见预防措施

锂电池安全问题汇总及常见预防措施锂离子电池热失控过程电池热失控都是由于电池的生热速率远高于散热速率,且热量大量累积而未及时散发出去所引起的。
从本质上而言,“热失控”是一个能量正反馈循环过程:升高的温度会导致系统变热,系统变热后温度升高,又反过来让系统变得更热。
不严格的划分,电池热失控可以分为三个阶段:锂离子电池热失控过程图第1阶段:电池内部热失控阶段由于内部短路、外部加热,或者电池自身在大电流充放电时自身发热,使电池内部温度升高到90℃~100℃左右,锂盐LiPF6开始分解;对于充电状态的碳负极化学活性非常高,接近金属锂,在高温下表面的SEI膜分解,嵌入石墨的锂离子与电解液、黏结剂会发生反应,进一步把电池温度推高到150℃,此温度下又有新的剧烈放热反应发生,例如电解质大量分解,生成PF5,PF5进一步催化有机溶剂发生分解反应等。
第2阶段:电池鼓包阶段电池温度达到200℃之上时,正极材料分解,释放出大量热和气体,持续升温。
250-350℃嵌锂态负极开始与电解液发生反应。
第3阶段:电池热失控,爆炸失效阶段在反应发生过程中,充电态正极材料开始发生剧烈分解反应,电解液发生剧烈的氧化反应,释放出大量的热,产生高温和大量气体,电池发生燃烧爆炸。
锂离子电池材料的安全性负极材料负极材料虽然比较稳定,但嵌锂状态下的碳负极在高温下会与电解液发生反应。
负极与电解液之间的反应包括以下三个部分:SEI的分解;嵌入负极的锂与电解液的反应;嵌入负极的锂与黏结剂的反应。
常温下电子绝缘的SEI膜能够防止电解液的进一步分解反应。
但在100℃左右会发生SEI膜的分解反应。
锂离子电池各种放热反应的温度区间与反应焓在更高温度下,负极表面失去了SEI膜的保护,嵌入负极的锂将与电解液溶剂直接反应有C2H4O产生,可能为乙醛或氧化乙烯。
嵌入锂的石墨在300℃以上与熔融的PVDF–HPF共聚物发生如下反应:反应热随着嵌锂程度的增加而增加,反应热随黏结剂种类不同而不同。
车用锂离子动力电池热失控诱发与扩展机理、建模与防控

车用锂离子动力电池热失控诱发与扩展机理、建模与防控车用锂离子动力电池热失控诱发与扩展机理、建模与防控引言车用锂离子动力电池作为新能源汽车的核心部件,具有高能量密度、长寿命和环境友好等优势。
然而,在长时间使用或异常情况下,锂离子动力电池可能会出现热失控的情况,导致严重的安全问题。
不了解热失控的诱发与扩展机理,不能有效地进行建模与防控,这将对新能源汽车的发展带来重大障碍。
一、热失控的诱发机理1. 过充电与过放电过充电和过放电是引发锂离子动力电池热失控的主要原因之一。
过充电会引起电池内部发生副反应,产生大量热量,导致电池温度升高;过放电会导致锂离子析出金属锂,形成锂枝和锂塑料,造成电池内短路并升温。
2. 电池内部短路电池内部短路是热失控的另一个主要诱发因素。
当电池内部发生结构破坏、电解液泄露或隔膜被破坏时,正负极之间会发生短路,导致电池温度升高,并且可能引发火灾。
3. 外部因素的影响外部因素,如高温环境、机械撞击、震动和电池老化等,也会引发锂离子动力电池的热失控。
高温环境会增加电池内部自发热的速率,机械撞击和震动会导致电池内部物质的移位和损伤,电池老化会导致电池内部结构和材料的退化。
二、热失控的扩展机理一旦锂离子动力电池发生热失控,温度升高快速释放的大量热量将会导致热失控的扩展。
在扩展过程中,主要有以下机理:1. 热反应的链式反应锂离子动力电池的热失控是一个自加速的过程。
在高温下,电池内部发生的自燃和爆炸反应产生更多的热量,进一步加剧电池的热失控,形成链式反应。
2. 气体生成与扩散电池内部的热失控过程中,会产生大量的气体,如氢气和氧气等。
这些气体的生成和扩散会加速电池的扩展过程,导致火灾和爆炸的发生。
3. 热通道和热传导热通道和热传导是热失控扩展的重要机理之一。
电池内部结构的设计、材料的选择以及电池组的组装方式会影响热通道的形成与热传导的速率,进而影响热失控的扩展速度和范围。
三、建模与防控策略建立准确的锂离子动力电池热失控模型是进行防控的基础。
新能源车三元锂电池防火防爆设计

新能源车三元锂电池防火防爆设计
新能源车的三元锂电池使用广泛,但其防火防爆设计十分重要。
以下是一些设计原则和措施:
1. 引入高安全性材料:采用具有高熔点、高电解质稳定性和低挥发性的材料,以降低电池热失控和爆炸的风险。
2. 严格控制电池温度:安装温度传感器和热敏开关,通过监测和控制电池温度,避免过热引发火灾和爆炸。
3. 设立安全隔离区域:在车辆内部设计电池箱,将电池与其他部件或乘客隔离,以防止电池受到外部冲击而引发安全事故。
4. 安全泄压通道:在电池箱上设置压力安全泄放通道,一旦电池内部产生异常气体压力,可以及时释放,减少发生爆炸的风险。
5. 安全防护装置:采用防护膜、阻燃材料、防火延迟物质等隔离层处理,以进一步提高电池的防火和防爆性能。
6. 安全监测系统:装备电池状态监测系统,实时监测电池容量、电流和温度等参数,及时发现异常情况并采取相应的措施。
7. 故障诊断与应急措施:车辆应配备故障诊断系统,当发生电池故障时能够及时发出警示,并提供相应的紧急切断电源的控制装置。
8. 健全安全宣教和培训体系:通过开展驾驶员和维修人员的培训,提高其对电池防火防爆知识的了解和安全操作意识。
请注意,以上只是一些常见的防火防爆设计原则和措施,实际的设计应根据车辆和电池的具体要求进行详细考虑和实施。
锂电池热失控的原因及预防措施

锂电池热失控的原因分析及预防措施对于锂电池热失控的研究,众多研究者一直都在不断深入研究,以此来预防和降低锂电池在使用过程中的风险。
以下锂电池的失控原理也是一些研究者的看法。
一.热失控的原理分析对于热失控的原理,分为了三个阶段:第1阶段:热失控开始阶段:125℃左右,这个阶段是一般认为是负极SEI膜反应分解,使得负极与电解液直接接触,从而导致了电解液与负极中的锂反应并生成气体。
第2阶段:电池内部气体释放和升温加速,温度在125~180℃左右,这个阶段正极材料分解释氧,锂盐也会分解,如LiPF6分解生成LiF和路易斯酸PF5。
而路易斯酸会在高温下与电解液反应产生大量的气体。
第3阶段:热失控阶段,大约为180℃以上。
在这个阶段正/负电极材料与电解液发生盛剧烈的放热反应和电解液分解放热,电池内部温度急剧升高,电池泄压阀打开或引发自燃。
也有研究者将热失控细分为如下范围:一般动力电池的热失控有三个特征温度,起始发热温度T1,热失控引发温度T2,热失控最高温度T3。
T1:指的是SEI膜分解的温度,T3:它取决于整个反应焓,T2:这个温度跟电池本身的状态,电池体系,使用状态相关,这个温度会由一个缓慢的升热会突然引发急剧的升热,这个生热速率可以达到几百到1000度/秒,这是引发热失控的关键。
通过一些研究发现,它主要有3个方面的原因,内部短路,正极释氧,负极析锂。
二、热失控的原因分析1、机械滥用破坏性变形和位移是机械滥用的两个共同特征,在外力的作用下导致的锂电池(电芯)发生形变,隔膜被破坏,正负极之间短路而诱发热失控,比如挤压、碰撞、针刺等。
2、热滥用比如长期使得锂电池在高温环境下工作,比如:外界高温环境,大电流过程中使用产生的了很多的极化热、反应热、分解热等。
3、电滥用锂电池过充电导致活性物质结构遭到破坏,电解液分解产气,导致电池内部压强增大。
除此之外,还包括过放电、大倍率(超过规格)充电等。
1)外短路锂电池的正负极不通过负载直接导通连接。
锂离子动力电池系统热失控抑制技术和热防护设计综述

工艺设计改造及检测检修China Science & Technology Overview0.引言安全性是电动汽车动力电池设计的核心性能之一,随着电动汽车保有量的快速增长,电池安全事故明显增加,成为社会关注热点。
中国电动汽车百人会(China EV100)研究统计结果-《2019电动汽车安全报告》、中国新能源汽车评价规程(CEVE)发布的《2019年动力电池安全性研究报告》以及新能源汽车国家大数据联盟(NDANEV)发布的《新能源汽车国家监管平台大数据安全监管成果报告》均指出由动力电池热失效造成的烧车事故呈连年上升趋势,电池安全问题成为制约新能源汽车产业发展的关键因素[1-3]。
国标《电动汽车用动力蓄电池安全要求》也对动力电池热安全防护提出了强制要求[4]。
当前电动汽车动力电池系统持续向高比能量和集成化发展为电池安全设计带来挑战。
当前电池材料体系无重大突破,即电池本征安全短时间内无法明显改善,为满足电池安全性能要求必须对电池系统进行合理的热防护设计或应用热失控抑制手段。
本文通过总结梳理现有电池系统热防护设计思路,针对不同电芯热扩散路径和热失控特点,从电芯间热防护、模组间热防护和电池系统整包热防护3个层面解析了热防护材料和热设计方案。
此外还综合评估了紧急冷却、全氟己酮喷射、气溶胶和冷媒直冷等热失控抑制技术在电池系统上的应用。
1.电池系统热防护设计1.1电芯间热防护设计如图1所示目前消费类锂离子电芯主要有扣式、圆柱形、薄板型(软包)、方形4种形式,其中电动汽车主要用到的是圆柱形、薄板型(软包)、方形电芯,根据电芯形式不同,需针对性设计电芯间热防护方案。
圆柱电池一般采用极片卷绕方式,由于体表面积较大,散热性能要优于方型电池[5]。
此外,圆柱形电池可依据具体需求而进行多种形式的组合,便于电池包空间的充分布局。
圆柱形电池的电芯间热防护方案一般采用灌封胶或结构胶如图2(a)中灰色部分所示。
每个电芯周围使用阻燃结构胶材料进行填充,当某个电芯发生热失控后热量被约束在热失控电芯内,避免扩散至周围电芯从而阻断热失控连锁反应。
电池热失控解决方案

电池热失控解决方案技术解决方案电池热失控解决方案一、解决方法1、改善电池的散热结构设计电池的散热结构设计是提高其热稳定性的有效手段。
可以采用有利的散热结构设计技术改善电池失控温度的热稳定性,利用有效的散热技术,对电池进行散热,以保证电池在正常工作温度下工作的安全性。
2、改善电池内部接触的温度控制采用有效的温度控制技术来减少电池内部接触的温度差,提高电池热稳定性。
例如,可以采用恒定散热器结构,并在电池接触处安装控温装置,以控制电池内部接触温度的波动。
3、采用新技术增加电池的电池热失控稳定性利用新型电池结构、新型电池工艺、新型电池材料等新型技术,在电池尺寸和容量上取得突破性进展,让电池支持更高的工作能量,从而提高电池的热失控稳定性。
4、采用新型技术改善电池使用环境可以采用新型技术将电池的工作环境改善为较为平稳的环境,以降低热失控的可能性。
新型技术可以在电池的外壳上覆盖有材料,把电池的工作环境完全分隔出来,使用电池更加安全。
另外,可以在电池的表面安装凉爽片,以降低热失控的影响,保证电池的正常工作。
二、应用场景1、智能电池智能电池现已广泛应用于手机、平板电脑、汽车等产品中,解决了电池失控的问题。
该产品的特点是内置可控温器,可以自动检测外部温度,如果一段时间内外部温度升高,该系统将自动控制电池内部温度,以避免电池发出失控信号。
2、电池冷却装置电池冷却装置可以有效地降低电池的温度,防止电池失控。
这种装置可以将空气通过高效的风扇罩,以及特殊的导热件等方式将电池表面的热量传导到空气中,从而改善电池的热失控状况。
3、电池控制系统电池控制系统可以通过电子控制来确保电池的正常工作状态,控制电池的充电状态和放电状态,从而提高电池的热失控稳定性。
此外,控制系统还可以根据外部温度环境给出及时反馈,从而有效控制电池温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
避免电池的热失控安全设计
热失控是锂离子电池使用中最为严重的安全事故,热失控往往是由于锂离子电池在发生了挤压变形、穿刺或者高温炙烤等导致隔膜被破坏引发正负极短路,或者由于电池外部短路,导致锂离子电池内部短时间内积累了大量热量,引发正负极活性物质和电解液等发生分解,导致锂离子电池起火和爆炸,严重威胁使用者的生命和财产安全。
因此在锂离子电池安全测试中一般都会要求锂离子电池通过过充、过放、短路和挤压、针刺等实验,但是随着动力电池能量密度和电池容量的不断提升,电池通过针刺实验变得越来越困难,因此在工信部发布的《电动汽车用锂离子动力蓄电池安全要求》中规定针刺实验暂不执行。
但是新版的要求只是对针刺实验暂不执行,后续是否会恢复还未可知,如果厂家实现了大容量、高能量密度的动力电池顺利通过针刺实验,那么必将在竞争中取得显著的优势。
今天我们就来谈一谈那些给锂离子电池热失控装上“刹车”的技术。
1.电解液阻燃剂
电解液阻燃剂是一种非常有效的减少电池热失控风险的方法,但是这些阻燃剂往往会对锂离子电池的电化学性能产生严重的影响,因此难以在实际中应用。
为了解决这一问题,美国加州大学圣迭戈分校的Yu Qiao团队采用胶囊封装的方式将阻燃剂DBA(二苄胺)储存在微型胶囊的内部,分散在电解液中,在平时不会对锂离子电池的电性能产生影响,但是当电池受到挤压等外力破坏时,这些胶囊中的阻燃剂就会释放出来,对电池进行“毒化”引起电池失效,从而避免热失控的发生。
2018年Yu Qiao团队再次利用了上述技术,采用了乙二醇和乙二胺作为阻燃剂,封装后装入锂离子电池内部使得锂离子电池在针刺实验中最高温度下降了70%,显著降低了锂离子电池热失控的风险。
上面提到的方法都是自毁式的,也就是说该阻燃剂一旦发生作用,整个锂离子电池就要报废了,而日本东京大学的Atsuo Yamada团队【3】开发了一种不会影响锂离子电池性能的阻燃电解液,该电解液采用了高浓度的NaN(SO2F)2(NaFSA)or LiN(SO2F)2 (LiFSA)作为锂盐,同时向其中添加了常见的阻燃剂磷酸三甲酯TMP,显著提高了锂离子电池的。