余角和补角课件

合集下载

《余角和补角》PPT课件(华师大版)

《余角和补角》PPT课件(华师大版)
2 1
如果两个角的和等于90°,我们就说 这两个角互为余角.
如果两个角的和等于180°(平角), 就说这两个角互为补角,即其中一个 角是另一个角的补角.
1.一个角是70°30′,求它的余角和补角. 2.一个角的补角是它的3倍,这个角多少度? 3.一个角是钝角,它的一半是什么角?
例3 如图,∠1与∠2互补,∠1与∠3互补,那么 ∠2与∠3相等吗?为什么?
角共有 ( )对. C
E
2
D
1
A
O
B
5.一个锐角的补角与它的余角的关系?
6.如果∠1+ ∠ 2=90°, ∠ 2+ ∠ 3=90°,那 么∠ 1与∠ 3之间的关系是_______
7.若∠ 和∠ 互 为余角,则∠ 和∠ 的
补角之和等于_____
8.若一个角的余角与它的补角的和是 210°,则这个角等于_____
练习
如图,要测量两堵围墙所形成的角AOB的度 数,但人不能进入围墙,如何测量?
A B
∠AOB=180°-α

例题: 点A,O,B在同一条直线上,
射线OD,OE分别平分∠AOC和∠BO
C,图中有哪些互余的角?






随堂练习
1 .下列叙述正确的是( ) . A . 40°与60 °的角互为余角 B . 110 °与90 °的角互为补角 C . 10 °、20 °、60 °的角互为余角 D . 120 °与60 °的角互为补角
余角和补角
2
1
2
1
Байду номын сангаас
2
1
互为余角 如果两个角的和是一
个直角,那么这两个角叫 做互为余角,其中一个角 是另一个角的余角.

6.3.3余角和补角-(课件)人教版(2024)数学七年级上册

6.3.3余角和补角-(课件)人教版(2024)数学七年级上册

感悟新知
知2-练
解: OE 平分∠BOC. 理由如下:
因为∠DOE=9 0°,
所以∠DOC+ ∠COE=9 0°.
又因为∠AOB=180°,所以∠AOD+ ∠BOE=90°.
因为OD平分∠AOC,所以∠AOD= ∠DOC.
所以∠COE= ∠BOE,即OE 平分∠BOC.
感悟新知
4-1.[期末·厦门思明区]如图,∠AOB=90 °, ∠COD=90°,OA 平分∠DOE, 若 ∠BOC=20°,求∠AOE 的度数. 解:因为∠AOB=∠COD=90°, ∠BOC+∠AOC=∠AOB,∠AOD+ ∠COA=∠COD,所以∠AOD=∠BOC =20°.因为OA平分∠DOE, 所以∠AOE=∠AOD=20°.
感悟新知
知1-练
又因为∠AOC+ ∠BOC=180 °,∠AOC+ ∠DOE=180 °, ∠DOE+∠BOC=1 8 0°, 所以图中互补的角有7 对,分别是∠1 和∠BOD,∠4 和 ∠AOE,∠3 和∠BOD,∠2 和∠AOE, ∠AOC 和∠BOC,∠AOC 和∠DOE,∠DOE 和∠BOC.
感悟新知
解题秘方:从图中找互余或互补的角,可从两个方 面进行:一个方面是从角的度数入手,和为9 0 °的 两个角互余,和为180 °的两个角互补;另一个方面 是从整体入手,将直角分成两个角,则这两个角互 余,将平角分成两个角,则这两个角互补.
感悟新知
知1-练
(1)图中互余的角有几对?分别是哪些?
感悟新知
(3)写出∠COD 的补角. 解:∠COD的补角为∠AOE.
知2-练
感悟新知
知2-练
例 4 如图6.3-25,已知O 是直线AB 上的一点,OC是一 条射线,OD平分∠AOC,∠DOE=90 °,OE 平分 ∠BOC 吗?为什么?

余角和补角的定义课件

余角和补角的定义课件

摄影
在摄影中,为了获得更好的拍摄 角度和构图,摄影师会运用补角
的概念来调整相机的角度。
余角和补角的综合应用实例
桥梁设计
在桥梁设计中,为了确保桥梁的稳定 性和安全性,需要精确地计算不同部 分的角度。余角和补角的综合运用可 以帮助工程师更好地设计和建造桥梁 。
道路规划
在道路规划和设计中,为了确保道路 的顺畅和车辆的安全行驶,需要计算 和调整道路的角度。余角和补角的运 用可以帮助设计师更好地完成这项任 务。
THANK YOU
余角和补角的定义课件
• 余角和补角的定义 • 余角和补角的性质应用 • 余角和补角的计算方法 • 余角和补角的特殊情况 • 余角和补角的实际应用
01
余角和补角的定义
余角的定义
总结词
余角是两个角的度数之和为90度。
总结词
补角是两个角的度数之和为180度。
详细描述
如果两个角的度数之和为90度,则这两个 角互为余角。例如,如果一个角是45度, 那么与它互为余角的另一个角就是45度。
角度的减法计算
利用补角的Leabharlann 质,可以将一个角度减去另一个角度,得到一 个新角度。
03
余角和补角的计算方法
余角的计算方法
定义
如果两个角的度数之和为90°,则这两个角互为余 角。
计算公式
余角 = 90° - 已知角。
举例
已知角为45°,则其余角 = 90° - 45° = 45°。
补角的计算方法
定义
总结词
余角的定义是两个角的度 数之和为90度。
详细描述
如果两个角的度数之和为 90度,则这两个角互为 余角。例如,如果一个角 是30度,那么与它互为 余角的另一个角就是60 度。

6.3.3 余角和补角 课件人教版(2024)数学七年级上册

6.3.3 余角和补角 课件人教版(2024)数学七年级上册

证明:因为 OC ⊥ AB ,所以∠ COA =∠ COB =90°.
因为 OC 平分∠ DOE ,所以∠ COD =∠ COE .
因为∠ AOC +∠ COD =90°,∠ BOE +∠ COE =90°,
所以∠ AOD =∠ BOE .
4. 如图,∠ AOC =∠ COB =90°,∠ DOE =90°, A , O , B 三
∠ BOC ,则图中互余的角共有(
A. 1对
B. 2对
C. 3对
D. 4对
D
)
7. 几何直观【人教七上P188复习题T11改编】按如图所示的方法折
纸,然后回答问题:
(1)∠1与∠ AEC ,∠3和∠ BEF 分别有何关系?
解:(1)因为∠1+∠ AEC =180°,所以∠1与∠ AEC 互补.
因为∠3+∠ BEF =180°,所以∠3与∠ BEF 互补.
因为 OD 平分∠ BOC ,所以∠ COD =∠ DOB .
因为∠ COE +∠ COD =∠ DOE =90°,
所以∠ AOE =∠ COE .
所以 OE 平分∠ AOC .
2. 如图,点 O 在直线 AB 上,∠ AOC 与∠ COD 互补, OE 平分
∠ AOC ,∠ DOE =48°,求∠ BOD 的度数.
(2)∠1与∠3有何关系?

(2)由翻折的性质,得∠1+∠3= ×180°
6. (2023·北京)如图,∠ AOC =∠ BOD =90°,∠ AOD =126°,
则∠ BOC 的大小为(
A. 36°
B. 44°
C. 54°
D. 63°
C
)
7. 如图,若将一副三角尺折叠放在一起,使直角的顶点重合于点

人教版七年级上册《6.3.3 余角和补角》课件ppt

人教版七年级上册《6.3.3 余角和补角》课件ppt

学生活动一 【一起探究 余角和补角的概念 】
2 1
如如果图两,个可角的以和说等∠于19是0°∠( 直2 角的余),角就,说这两个角 或互∠为2余是角∠( 简1的称为余两角个,角或互∠余1)和. ∠2互余.
图中给出的各角,哪些互为余角?
15o
24o
46.2o
75o
66o
43.8o
4 3
如果两个角的和等于180°(平角),就说这两个角互 为补角 ( 简称为两个角互补 ).
如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.
(1)∠AOD的余角是_∠__C_O__E_、__∠__B__O_E_,
∠COD的余角是_∠__C__O_E__、__∠__B_O_E__;
D
C E
AO
B
如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°. (2)OE是∠BOC的平分线吗?请说明理由.
AO
C E
B
C D
E
解:因为点A,O,B在同一直线上,
所以∠AOC和∠BOC 互为补角.
AO
B
又因为射线 OD 和射线 OE 分别平分∠AOC 和∠BOC,
所以∠COD+∠COE
=
1 2
∠AOC+
1 2
∠BOC
=
1 2
(∠AOC+∠BOC
) = 90°.
所以∠COD和∠COE互为余角,
同理∠AOD和∠BOE,∠AOD和∠COE,∠COD和∠BOE也互为余角.
想一想
∠α
∠α的余角
5° 32° 45° 77° 62°23′ x°(0<x<90)
85° 58°
45° 13° 27°37′ (90–x)°

课件余角补角的概念与性质.ppt

课件余角补角的概念与性质.ppt

知识抢答
判断:
看谁反应快
1.如果∠1=30°,∠2=25°,∠3=35°,那么∠1、 ∠2、∠3这三个角称为互为余( )
2.两块直角三角板中∠A=90°, C
D
∠D=90°,则∠A与∠D互为补角。 ()
E F
A
B
开动脑筋
1、如图,O为直线AB上一点,
∠AOD=900,则图中哪些角互为
余角?哪些角互为补角?
图中给出的各角,那些互为补角?
10o30o60o80o100o
120o
150o
170o
(1)互为余角数量关系为:
因为∠α+ ∠β=90°, 所以∠α和 ∠β互余.
因为∠α和 ∠β互余, 所以∠α+ ∠β=90°.
(2)互为补角数量关系为:
因为∠α+ ∠β=180°, 因为∠α和 ∠β互补, 所以∠α和 ∠β互补. 所以∠α+ ∠β=180°.
∠1+ ∠ 2=900
如果两个角的和是一个直角(90度) , 这两个角叫做互为余角,简称互余。
其中的一个角叫做另一个角的余角。
图中给出的各角,那些互为余角?
10o
30o
50o
60o
40o
80o
如l 图,将一三角板(尺)的直角顶点放在直线 上 (三角板和直线在同一平面内),随意绕该顶点在 同一平面内转动三角板(三角板总在直线的上方), 问∠1与∠2的和是否会发生变化?
注意:互余、互补是指两个角的数量关系,与位置无关
今天你需要完成的任务是:
1.课本第139页 7题,第140页11题,13题. 2.∠α的余角是它的3倍,∠α是多少度?
3.(选做题)一个角的余角比这个角的补角的 1 还小10°,求这个
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档